JP2016045106A - 部材の使用温度の推定方法および部材の使用温度の推定装置 - Google Patents

部材の使用温度の推定方法および部材の使用温度の推定装置 Download PDF

Info

Publication number
JP2016045106A
JP2016045106A JP2014170226A JP2014170226A JP2016045106A JP 2016045106 A JP2016045106 A JP 2016045106A JP 2014170226 A JP2014170226 A JP 2014170226A JP 2014170226 A JP2014170226 A JP 2014170226A JP 2016045106 A JP2016045106 A JP 2016045106A
Authority
JP
Japan
Prior art keywords
temperature
particle size
measuring
time
fine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014170226A
Other languages
English (en)
Other versions
JP6469386B2 (ja
Inventor
東海林 剛
Tsuyoshi Shoji
剛 東海林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Power Ltd
Original Assignee
Mitsubishi Hitachi Power Systems Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Hitachi Power Systems Ltd filed Critical Mitsubishi Hitachi Power Systems Ltd
Priority to JP2014170226A priority Critical patent/JP6469386B2/ja
Publication of JP2016045106A publication Critical patent/JP2016045106A/ja
Application granted granted Critical
Publication of JP6469386B2 publication Critical patent/JP6469386B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

【課題】部材の使用温度を高精度に推定することができる方法を提供する。
【解決手段】Ni基系合金またはオーステナイト鋼で構成され且つ表面に細粒組織が形成された粒径測定用の部材を予め設定された温度領域で使用した後に、粒径測定用の部材の細粒組織の粒径Dt1を測定する測定工程と、予め測定された細粒組織の粒径Dと温度Tと時間tとの対応関係に基づいて、粒径測定用の部材が使用された実際の時間t1と、測定工程で測定された粒径Dt1とから、粒径測定用の部材が使用された実際の温度Tを推定する推定工程と、を実行する部材の使用温度の推定方法。
【選択図】図3

Description

本発明は、金属材料の温度履歴を推定する方法に係わり、特にボイラや、熱交換器、石炭ガス化プラント等において使用されるNi基系合金やオーステナイト鋼で構成された高温となる部材の使用温度の推定方法に関する。
発電用ボイラや各種熱交換器、石炭ガス化プラントなどにおいては、高温部に使用される高温部材として、Ni基系合金やオーステナイト鋼が使用されている。例えば、石炭ガス化プラントでは、高温腐食雰囲気中の減肉および熱疲労の対策として、Ni基合金製バーナ構造を採用して、長寿命化を図っている場合がある。また、火力発電用ボイラにおいては、経済性の向上および温室ガス排出抑制の観点からプラントの効率を向上させるために、近年、蒸気条件が高温・高圧化する傾向にあり、高温強度と耐食性を向上させた高強度オーステナイト鋼からなる伝熱管(過熱器,再熱器)が多数使用されている。また、将来的には、更なる蒸気条件の高温・高圧化に伴い、高強度のNi基合金の採用も考えられる。
このような高温部に使用される高温部材は、高温運転中に腐食やクリープ・疲労損傷を受け、材質が劣化することが知られている。この際の材料の損傷と劣化は、実機使用中に受けた作用応力、使用温度および時間によって支配されるものである。一般的に、応力と使用時間は求められるが、温度に関しては運転状況によって変動があるため、設計温度に対する偏差が生じる場合があり、精度が低い。従って、余寿命診断を高精度に行うためには、特に高温部材の温度履歴を高精度に評価する必要がある。
高温部材の温度履歴を評価する従来方法として、下記の特許文献1,2に記載の方法が知られている。特許文献1では、使用後の伝熱管材の析出物の含有率の変化を利用して、使用温度を推定する方法が提案されている。また、特許文献2では、汎用性があり且つ簡便な温度推定手法として、使用後の伝熱管材の硬さ変化を利用する方法、すなわち、材料の時効による硬さ変化を利用した温度推定方法が提案されている。
なお、粒径と温度の関係について記載された公報として、下記の特許文献3,4がある。特許文献3には、鋼線の製造装置などに関する技術が記載されており、焼入れ時の加熱温度を変えて、残留オーステナイトの旧オーステナイト結晶粒径を変化させることが記載されている。また、特許文献4には、熱間圧延シミュレーション装置において、加熱炉(151)の加熱温度を取得し、鋼板(f)の加熱後のオーステナイト粒径を予測することが記載されている。
特開2006−300601号公報 特開2003−344261号公報 特開2003−306747号公報 特開2010−214464号公報
図8は従来技術としてNi基系合金またはオーステナイト鋼の析出量から使用温度を推定する場合の説明図であり、加熱温度が析出物の固溶温度以下の場合の説明図である。図9は従来技術としてNi基系合金またはオーステナイト鋼の析出量から使用温度を推定する場合の説明図であり、析出物が、析出物の固溶温度を超える温度領域まで過熱された場合の説明図である。
現用のボイラ伝熱管用材のオーステナイト鋼では、主要析出物は、析出および成長が早い炭化物であり、ボイラの通常点検期間よりも短時間で析出量が飽和状態に達する。したがって、点検時期t1に、特許文献1に記載の方法で、温度を推定しようとしても、飽和状態の炭化物の析出量から温度を推定することになり、温度推定の誤差は大きいという問題がある(図8)。また、高温過熱されて損傷した部位においては、析出物の固溶温度以上に加熱される場合もある。よって、析出物が固溶し、組織変化が捉えられなくなり、温度推定が困難になる恐れもある(図9)。
図10は従来技術としてNi基系合金またはオーステナイト鋼の硬さから使用温度を推定する場合の説明図であり、加熱温度が析出物の固溶温度以下の場合の説明図である。図11は従来技術としてNi基系合金またはオーステナイト鋼の硬さから使用温度を推定する場合の説明図であり、析出物が、析出物の固溶温度を超える温度領域まで過熱された場合の説明図である。また、オーステナイト鋼の時効硬化も主に炭化物の析出による。よって、炭化物の析出飽和と同様に、硬さも短時間で飽和状態に達する。
したがって、特許文献2に記載の温度推定方法においても、時効初期以降には硬さからの温度推定は困難になるという問題がある(図10)。また、高温過熱されて損傷した部位において、析出物の固溶により硬さ低下が生じた場合もあり、正確な温度推定ができなくなる恐れもある(図11)。なお、Ni基系合金についても、特許文献1,2の方法を用いて温度を推定する場合には、オーステナイト鋼と同様の問題が生じる。
なお、特許文献3には、加熱温度を変えて結晶粒径を変えることが記載されているが、結晶粒径を変えた鋼線などを製造する発明に関しての記載である。また、特許文献4には、熱間圧延シミュレーション装置に関し、圧延された鋼板(f)について、加熱温度から加熱後のオーステナイト粒径を予測することが記載されている。しかしながら、特許文献4の技術は、温度から粒径を予測する技術であり、粒径から使用温度を推定する技術ではない。また、特許文献4に記載の技術は、熱間圧延に関するシミュレーションの技術であり、鋼板(f)の製造段階の技術である。よって、特許文献3,4に記載の技術では、伝熱管などの使用時の温度とは状況が異なり、そのまま適用することはできない。
従って、高温部材の使用中の温度を幅広く簡便に推定できる有効な手段はないのが現状である。
本発明は、汎用性があり、簡便な方法で、Ni基系合金やオーステナイト鋼からなるボイラ,石炭ガス化プラント設備などの部材の使用温度を高精度に推定することを技術的課題とする。
前記技術的課題を解決するために、請求項1に記載の部材の使用温度の推定方法は、Ni基系合金またはオーステナイト鋼で構成され且つ表面に細粒組織が形成された粒径測定用の部材を予め設定された温度領域で使用した後に、前記粒径測定用の部材の細粒組織の粒径を測定する測定工程と、予め測定された細粒組織の粒径と温度と時間との対応関係に基づいて、前記粒径測定用の部材が使用された実際の時間と、前記測定工程で測定された粒径とから、前記粒径測定用の部材が使用された実際の温度を推定する推定工程とを実行することを特徴とする。
請求項2に記載の発明は、請求項1に記載の部材の使用温度の推定方法において、前記対応関係は、細粒組織の粒径と温度と時間との関数であるオストワルド成長式であることを特徴とする。
請求項3に記載の発明は、請求項1または2に記載の部材の使用温度の推定方法において、前記粒径測定用の部材の表面に対して加工硬化処理を行った後に再結晶熱処理を行って形成された細粒組織の粒径を測定する前記測定工程を実行することを特徴とする。
前記技術的課題を解決するために、請求項4に記載の部材の使用温度の推定方法は、Ni基系合金またはオーステナイト鋼で構成された本体部材に対して、Ni基系合金またはオーステナイト鋼で構成され且つ表面に細粒組織が形成された粒径測定用の部材を取り付けて、前記本体部材および前記粒径測定用の部材を予め設定された温度領域で使用した後に、前記粒径測定用の部材の細粒組織の粒径を測定する測定工程と、予め測定された細粒組織の粒径と温度と時間との対応関係に基づいて、前記粒径測定用の部材が使用された実際の時間と、前記測定工程で測定された粒径とから、前記粒径測定用の部材が使用された実際の温度を推定して、前記本体部材が使用された実際の温度を推定する推定工程とを実行することを特徴とする。
前記技術的課題を解決するために、請求項5に記載の部材の使用温度の推定装置は、Ni基系合金またはオーステナイト鋼で構成され且つ表面に細粒組織が形成された粒径測定用の部材が予め設定された温度領域で使用された場合に、前記粒径測定用の部材の細粒組織の粒径を測定する測定手段と、前記粒径測定用の部材が使用された実際の時間を取得する取得手段と、予め測定された細粒組織の粒径と温度と時間との対応関係に基づいて、前記取得手段で取得された時間と、前記測定手段で測定された粒径とから、前記粒径測定用の部材が使用された実際の温度を算出して推定する推定手段とを備えたことを特徴とする。
(作用)
本発明によれば、ボイラや、石炭ガス化プラント設備などにおいて高温で使用される部材の損傷調査や定期点検の際に、使用後の伝熱管の細粒組織、或いは、取付けられた粒径測定用の部材の細粒組織の粒径変化を計測することで、実機の運転中の同部位にある部材の温度履歴を簡易且つ高精度で推定することができる。
また、常時計測に必要な温度測定用の装置等を取り付けずに使用温度を推定することができ、測定対象を多数点、広範囲に低コストで高温の機器の保守を行うことができる。
請求項1,5に記載の発明によれば、Ni基系合金やオーステナイト鋼からなる部材の使用温度を高精度に推定することができる。
請求項2に記載の発明によれば、オストワルド成長式を用いて計算して使用温度を算出することができる。
請求項3に記載の発明によれば、加工硬化処理を行った後に再結晶熱処理を行わない場合に比べて、部材の表面の細粒組織を小さくすることができる。
請求項4に記載の発明によれば、粒径測定用の部材を用いて、Ni基系合金やオーステナイト鋼からなる本体部材の使用温度を高精度に推定することができる。
図1は実施例1のNi基系合金またはオーステナイト鋼で構成された高温部材の表面に細粒層を形成する場合の説明図であり、図1(A)は高温部材の受入組織の模式図、図1(B)は図1(A)の高温部材に対して表面加工処理をした後の図、図1(C)は図1(B)の高温部材に対して再結晶熱処理をした後の図である。 図2は細粒組織が形成された高温部材の一例としての管の説明図であり、図2(A)は断面のミクロ組織の図、図2(B)は表面近傍の硬さ分布の説明図である。 図3は実施例1のNi基系合金またはオーステナイト鋼で構成された高温部材の結晶粒径変化特性を示す説明図である。 図4は実施例1の高温部材の説明図であり伝熱管の説明図である。 図5は実施例1の高温部材の使用温度の推定方法の説明図であり、測定装置の説明図である。 図6は実施例2の高温部材の使用温度の推定方法の説明図であり、高温部材の表面に温度推定材を溶接して設置する場合の説明図である。 図7は実施例3の高温部材の使用温度の推定方法の説明図であり、高温部材の表面に温度推定材を固定具を用いて設置する場合の説明図である。 図8は従来技術としてNi基系合金またはオーステナイト鋼の析出量から使用温度を推定する場合の説明図であり、加熱温度が析出物の固溶温度以下の場合の説明図である。 図9は従来技術としてNi基系合金またはオーステナイト鋼の析出量から使用温度を推定する場合の説明図であり、析出物が、析出物の固溶温度を超える温度領域まで過熱された場合の説明図である。 図10は従来技術としてNi基系合金またはオーステナイト鋼の硬さから使用温度を推定する場合の説明図であり、加熱温度が析出物の固溶温度以下の場合の説明図である。 図11は従来技術としてNi基系合金またはオーステナイト鋼の硬さから使用温度を推定する場合の説明図であり、析出物が、析出物の固溶温度を超える温度領域まで過熱された場合の説明図である。
図1は実施例1のNi基系合金またはオーステナイト鋼で構成された高温部材の表面に細粒層を形成する場合の説明図であり、図1(A)は高温部材の受入組織の模式図、図1(B)は図1(A)の高温部材に対して表面加工処理をした後の図、図1(C)は図1(B)の高温部材に対して再結晶熱処理をした後の図である。本発明の実施例1における部材の使用温度の推定方法では、高温部材1の一例として、発電プラント用の大型ボイラにおいて、蒸気温度が600℃以上の高温部の伝熱管,管寄せ、主蒸気管と再熱蒸気管等に使用される管材を用いて、管材の表面に細粒組織を形成し、その細粒組織を利用する。なお、実施例1において、高温とは、蒸気温度が600(℃)以上になる温度を意味し、特に、蒸気温度が700(℃)以上でも利用可能である。次に、細粒組織を形成する工程を説明する。
図1において、実施例1では、一例として、高温部材1の表面にショットピーニング(Shot Peening)により加工硬化処理を行い、次に加工硬化処理された層2に対して、高温部材の材質に応じた温度範囲における再結晶熱処理を行って、高温部材の表面近傍に細粒組織3を形成する。なお、ショットピーニングとは、冷間加工の一種で、多数の小さな粒子を金属表面に衝突させ、金属の塑性変形を惹き起こして金属を加工硬化させる処理である。また、再結晶熱処理とは、冷間加工された金属内で、相の変化なしに、核生成及び成長によって新しい結晶粒が発達することを意図した熱処理である。
ここで、実施例1では、ショットピーニングに用いる粒子は、その材質、形状は問わない。ただ、ショット加工層は0.3(mm)以上とし、高温部材表面からの深さが0.2(mm)までの範囲は硬さをほぼ一定とし、その硬さは肉厚中央部より最大約HV200硬化し、且つ高温部材の内外面の全面に均一にショット加工層を形成することが好ましい。特に、高温部材表面からの深さが0.2(mm)までの範囲における結晶粒径は50(μm)以下であることが望ましい。
また、実施例1の再結晶熱処理の温度については、各材料の1/2融点温度以上、固溶化処理温度以下、且つ肉厚内部結晶粒の成長が少ない再結晶温度領域であることが好ましい。そして、実施例1の再結晶熱処理の時間については、熱処理の温度に応じて変えることになるが、目安としては、30分以上数時間以内であることが好ましい。
一例として、表1に記載の化学成分を有するAlloy625を高温部材1として使用する場合には、Alloy625の1/2融点温度は800(℃)、固溶化処理温度は約1200(℃)、肉厚内部結晶粒の成長が少ない再結晶温度範囲は、1050〜1150(℃)である。
Figure 2016045106
よって、Alloy625に対して再結晶熱処理を行って細粒組織3を形成する場合、再結晶熱処理は、温度1050〜1150(℃)の範囲で30分以上数時間以内行うことが望ましい。
図2は細粒組織が形成された高温部材の一例としての管の説明図であり、図2(A)は断面のミクロ組織の図、図2(B)は表面近傍の硬さ分布の説明図である。図2において、高温部材1に対し、ショット加工および再結晶熱処理を行って、表面を観測する実験を行った。実験は、高温部材の一例として、高強度Ni基系合金であるHR6Wで作成され且つ直径350(mm)、厚さ40(mm)の大径管1を使用した。そして、大径管1の断面ミクロ組織及び表面近傍硬さ分布を観測した。観測結果をそれぞれ図2 に示す。
図2(A)は、再結晶熱処理終了後の大径管1を、光学顕微鏡で倍率100倍で撮影したものである。また、図2(B)は、ショット加工終了後および再結晶熱処理終了後のそれぞれを、大径管周方向に輪切り切断して、その断面の外表面から内表面までのビッカース硬さを測定したものである。
この結果から、Ni基系大径管1の表面には、高エネルギー密度のショット加工層2の形成およびその後の再結晶熱処理により、厚さ0.3(mm)以上の細粒組織3が形成され且つ肉厚中央と同等の硬さを有する延性の優れた表面層の形成が確認された。ここで、従来法における機械加工仕上げ(ショット加工による加工硬化)では、表面近傍の硬さが硬くなるとともに、粒径が大きく粗いため、延性が乏しくなっている(割れやすくなっている)。延性の乏しい表面粗粒組織を有する従来のNi基径合金大径管に対して、実施例1の大径管1では、ショット処理および再結晶熱処理を施したことにより、図2(B)に示すように硬さの分布にムラが少なくなるとともに、図2(A)に示すように表面近傍で粒径が細かくなっており、表面層の延性が向上している(割れにくくなっている)。よって、表面延性の優れた細粒組織を有するNi基系大径管1が製造できるようになったことが理解される。
なお、図2(B)において、ショット加工処理では、ショット加工層が0.3(mm)以上で、高温部材表面からの深さが0.2(mm)までの範囲は硬さをほぼ一定とし、その硬さは肉厚中央部より最大約HV200硬化するように、ショット加工処理が実行されたことも分かる。
以上より、Ni基系合金では、加工硬化と再結晶熱処理を受けて細粒組織が発生することが理解される。なお、オーステナイト鋼でも同様の現象は生じる。すなわち、Ni基系合金とオーステナイト鋼は共に、高温強度と高温耐食性を有しており、何れも加工硬化と再結晶熱処理を受けて細粒組織が発生し、表面層の延性が向上し易くなっている。
図3は実施例1のNi基系合金またはオーステナイト鋼で構成された高温部材の結晶粒径変化特性を示す説明図である。本発明の実施例1における部材の使用温度の推定方法では、予め設定された対応関係に基づいて、微細組織の結晶粒径と使用時間とから、高温部材の使用温度を推定する。実施例1では、予め設定された対応関係として、オストワルド成長式を利用する。オストワルド成長式は、結晶粒径を、温度と時間の関数で表す式である。具体的には、下記の式(1)となる。
n−D0 n=k・t・exp(−Q/R・T)… 式(1)
ここで、Qは高温部材の拡散の活性化エネルギー(J×103/mol)、Rは気体定数(8.314 4621(75) J K-1 mol-1)、Tは温度(K) 、tは使用時間(h) 、nとkは定数、Dは使用後の結晶粒径(μm)、D0は使用前の結晶粒径(μm)である。なお、定数nとkは実験室的な短時間試験に基づいて予め測定設定される。
図3において、式(1)に基づいて、結晶粒径Dについての使用時間tと温度Tに対する変化特性を説明する。なお、図3では、横軸が時間tを表し、縦軸が結晶粒径Dを表すものとする。まず、結晶粒径Dと、時間tとの関係を説明すると、図3において、結晶粒径Dは、時間tの経過と共に単調に増加する傾向を示す。
このとき、単位時間当たりの結晶粒径Dの増加量は、使用開始初期の方が、使用開始後期に比べて大きい。すなわち、結晶粒径Dと時間tのグラフ、いわゆる、結晶粒径Dの成長曲線は、使用開始初期の方が傾きが急であり、時間tが経過するに連れて傾きが緩やかになる。
ここで、結晶粒径Dと時間tの上記関係は、温度Tに関わらず成立するが、温度Tが高いほど結晶粒径Dは大きくなる傾向を示す。すなわち、温度T1,T2,T3をT1<T2<T3とすると、初期の結晶粒径がD0で同じ場合であっても、T1,T2,T3の順に結晶粒径Dが大きくなる成長曲線を示す。したがって、逆に、結晶粒径Dと、使用時間tが定まれば、その結晶粒径Dとその使用時間tに対応する成長曲線が一意に定まるため、温度Tが定まる。なお、実施例1では、図3に示す対応関係はオストワルド成長式に基づく構成を例示するが、これに限定されない。例えば、温度毎に、時間に対する粒径の変化を多数観測して、観測値を線でつないで温度毎のグラフを作成し、作成されたグラフから使用温度を推定することも可能である。
図4は実施例1の高温部材の説明図であり伝熱管の説明図である。図5は実施例1の高温部材の使用温度の推定方法の説明図であり、測定装置の説明図である。以下、本発明の実施例1における部材の使用温度の推定方法について具体的に説明する。
まず、本体部材の一例であり、粒径測定用の部材の一例としての温度推定したい高温部材1の表面に細粒層3を形成する。また、前記高温部材1と同材質の部材の表面にも、前記高温部材1と同様に細粒層を形成する。よって、高温部材1の表面と、同材質の部材の表面とには、同様の細粒層が形成される。ここで、前記同材質の部材については、高温部材が施工される条件と同様の施工条件のラボ試験で、予め初期の細粒組織の結晶粒径D0を測定する。なお、実施例1では、高温部材1としては図4に示す伝熱管1′を対象とする。よって、伝熱管1′に細粒層3を形成したり、伝熱管1′と同材質の部材の表面に細粒層3を形成する。
図4、図5において、実施例1では、結晶粒径D0はレプリカ法を用いて、部材の使用温度の推定装置の一例としての測定装置Sにより測定される。なお、レプリカ法とは、測定対象物の表面組織などをレプリカ膜(アセチルセルロースフィルムなど)に転写させて、測定対象物の代わりにレプリカ膜を観察することで、測定対象物の表面組織の粒径D0などを観察する方法をいう。すなわち、実施例1では、前記同材質の部材から採取されたレプリカ膜は、測定装置Sが有する顕微鏡S1にセットされる。顕微鏡S1には、図示しない撮像素子が備えられており、顕微鏡S1で観測した画像が撮像される。また、前記撮像素子は、コンピュータS2に電気的に接続されており、撮像した画像データはコンピュータS2に入力される。実施例1のコンピュータS2では、測定開始の入力があると、顕微鏡S1からレプリカ膜の画像データを取得して、画像解析が実行される。そして、解析された画像データに基づいて、細粒層3の平均粒径D0が算出される。
これにより、初期の結晶粒径D0が測定されて、コンピュータS2には、初期の結晶粒径D0が記憶される。初期の結晶粒径D0の測定が終了すると、ラボ試験において、短時間試験が行われる。短時間試験では、設定温度Tの下で、設定した短時間t経過させて、細粒層3の粒径Dを測定する。前記粒径Dは、初期の粒径D0と同様に、測定装置Sで測定される。よって、短時間試験後の粒径Dも測定され、設定温度Tと、短時間tとがコンピュータS2に入力されると、値D0,D,T,tなどに基づいて、オストワルド成長式を表す式(1)が成立するように定数nが算出される。よって、高温部材1に対応した式(1)が算出され、算出された式(1)がコンピュータS2に記憶される。なお、式(1)中、拡散の活性化エネルギーQは、高温部材1の材質で定まり、また、Rは気体定数である。よって、式(1)中の値Q,Rは、コンピュータS2に予め入力されている。また、実施例1では、式(1)はコンピュータS2が処理算出する構成を例示したが、予め算出して式(1)をコンピュータに入力する構成も可能である。
一方、測定対象の高温部材1は、細粒層3が形成された後に、ボイラーや石炭ガス化プラントなどの実機に使用される。そして、予め設定された実機の温度領域で使用された後、検査時期になると、高温部材1からレプリカ膜が採取され、前記レプリカ膜が顕微鏡S1にセットされる。そして、コンピュータS2に測定開始の入力がされると、コンピュータS2では、顕微鏡S1で観測されたレプリカ膜の画像データが取得される。そして、粒径D0の算出時と同様に処理が行われ、高温部材1の使用後の表面細粒層の結晶粒径Dt1が算出、測定される。
そして、コンピュータS2に対し、使用開始から検査時期までの使用時間t1が入力されてコンピュータS2が使用時間t1を取得すると、使用前の結晶粒径D0と、使用後の結晶粒径Dt1と、使用時間t1とから、図3に示すように、記憶済みのオストワルド成長式に基づいて、実機の使用温度Tが算出、推定される。
よって、検査時期に到達する前に飽和状態に達したり、検査時期までに増減したりする析出量や硬さに基づいて使用温度を推定する従来の構成に比べて、実施例1では、精度良く使用温度Tが推定される。ここで、実施例1のコンピュータS2では、実機で使用中の高温部材1に作用する応力も入力可能に構成されており、使用温度Tが推定されると、作用応力、推定温度T、使用時間t1に基づいて、高温部材1に残された使用可能な時間、いわゆる、余寿命が算出される。
なお、実施例1の使用温度の推定方法に関し、初期の組織が微細であれば実機使用中の結晶粒径Dの変化量が時間に対して大きい。よって、特に、初期の細粒層の粒径D0を小さく形成することで、より高精度の温度推定を期待できる。なお、結晶粒の細粒化によりクリープ強度が低下する可能性も懸念されるが、本発明の実施例1における温度推定用の細粒層の深さは、高温部材1の表面から数百(μm)の範囲のみである。よって、高温部材1の全体強度への影響は軽微と考えられる。
また、実施例1では、レプリカ法を用いて高温部材1の粒径D,D0を測定する構成を例示したが、これに限定されない。例えば、高温部材1の評価部位からサンプルを直接採取し、採取したサンプルを顕微鏡S1で組織観察して粒径D,D0を測定することも可能である。
以上のように、本発明によれば、材料の結晶粒成長に基づいた冶金的な組織変化を利用することにより、簡単に、高温で使用される高温部材の実機使用温度を推定できる。また、本発明の使用温度の推定方法を使用すれば、低コストで精度よく使用温度を推定でき、ボイラや石炭ガス化プラント等の高温部材に対する余寿命評価の信頼性を向上させられる。
図6は実施例2の高温部材の使用温度の推定方法の説明図であり、高温部材の表面に温度推定材を溶接して設置する場合の説明図である。前述の実施例1では、温度推定したい高温部材1の表面に細粒層3を直接形成して使用温度を推定する方法を例示したが、実施例2では、これに替えて、高温部材1とは別体である温度推定材4を使用する。すなわち、実施例2では、図6に示すように、粒径測定用の部材の一例としての細粒組織が形成された温度推定材4を、本体部材の一例としての温度推定したい高温部材1の表面に取り付ける。
この際に、実施例2では、溶接して溶接部5により温度推定材4を高温部材1に取り付ける。温度推定材4が取り付けられた高温部材1は、実機で使用され、検査時に、温度推定材4の細粒組織の粒径が測定される。つまり、実施例2では、高温部材1に替えて、温度推定材4の細粒組織の粒径変化に基づいて、高温部材1の使用温度Tを推定する点が、実施例1と異なっている。よって、実施例2では、基本的な要件は実施例1と同じものであり、実施例1と同様の効果を奏する。
特に、温度推定材4の材質は、測定対象の高温部材1と同一の材質に限定されるものではない。すなわち、実施例2では、温度推定材4は、実機で想定される温度変化の範囲において、結晶粒径の成長が敏感な材質を採用可能であり、高温部材1と異なる材質を採用することが可能である。よって、例えば、高温部材1のオストワルド成長式が未知の場合でも、オストワルド成長式が既知の材質を温度推定材4として採用することで、使用温度Tを推定することが可能である。
また、図3において、高温部材1のオストワルド成長式の場合に、温度T1,T2,T3が変わってもグラフの変化が小さい場合には、温度に対する変化が大きく検査時期t1における温度T1〜T3間の間隔が十分広い材質を温度推定材4として採用することで、使用温度Tを推定することも可能である。なお、温度推定材4の大きさは、現場の溶接施工・取り付けが可能であり、高温部材1の抜き取り後の組織観察が可能な程度の面積があれば十分である。よって、実施例2では、例えば、長方形の板状に形成し、縦30(mm)×横30(mm)×厚さ3(mm)の温度推定材4を用いることが可能である。
図7は実施例2の高温部材の使用温度の推定方法の説明図であり、高温部材の表面に温度推定材を固定具を用いて設置する場合の説明図である。前述の実施例2では、温度推定材4を高温部材1に溶接部5で取り付ける構成を例示したが、実施例3では、これに替えて、図7に示すように、固定具の一例としての、固定用金具6とボルト7を用いて、温度推定材4を高温部材1に取り付ける。そして、この点が実施例2とは異なり、ボルト7を緩めることで温度推定材4が高温部材1に対して着脱することも容易に構成されている。よって、実施例3でも、実施例2と同様に、温度推定材4の細粒組織の粒径変化に基づいて、使用温度Tが推定される。
前述の実施例2,3では、高温部材1に温度推定材4を溶接したり固定具で固定する構成を例示したが、実施例4では、これに替えて、高温部材1と共に設置される既存の部材を温度推定材4として利用する。具体的には、図4において、伝熱管(高温部材)1′の間隔を保持するスペーサ1″を温度推定材4として利用する。すなわち、実施例4では、スペーサ(高温部材)1″の細粒組織の粒径変化に基づいて、スペーサ1″の使用温度Tを推定する。また、予めスペーサ1″の温度と伝熱管1′の温度との伝熱による関係を測定しておき、推定されたスペーサ1″の使用温度から、伝熱管1′の使用温度Tも推定する。
なお、実機においては、一般に、スペーサ1″の方が伝熱管1′に比べて高温となり易い。よって、スペーサ1″の粒径を測定する実施例4では、伝熱管1′の粒径を測定する場合に比べて、単位時間あたりの変化が大きい粒径に基づいて使用温度Tが推定される。また、高温になる部材の方が劣化、損傷が早く、寿命が短くなり易い。したがって、実施例4では、寿命が短くなり易く問題となり易い部材の粒径に基づいて、使用温度Tが推定されている。
本発明は金属材料の温度履歴を推定する方法に係わり、特にボイラ,熱交換器,石炭ガス化プラント等で高温で使用される部材の損傷や寿命評価に必要な実機の使用温度を高精度に推定することが可能となる。より具体的には、Ni基系合金やオーステナイト鋼で構成された伝熱管や伝熱管のスペーサ、バーナーなどについて、損傷や寿命評価に必要な実機の使用温度を高精度に推定することが可能となる。
1,1′,1″…粒径測定用の部材、本体部材、
2…加工硬化処理された層、
3…細粒組織、
4…粒径測定用の部材、
5…溶接部、
6…固定部材、
7…ボルト、
t1…測定された粒径、
t1…高温で使用した時間、
S…部材の使用温度の測定装置、
T…部材の使用温度。

Claims (5)

  1. Ni基系合金またはオーステナイト鋼で構成され且つ表面に細粒組織が形成された粒径測定用の部材を予め設定された温度領域で使用した後に、前記粒径測定用の部材の細粒組織の粒径を測定する測定工程と、
    予め測定された細粒組織の粒径と温度と時間との対応関係に基づいて、前記粒径測定用の部材が使用された実際の時間と、前記測定工程で測定された粒径とから、前記粒径測定用の部材が使用された実際の温度を推定する推定工程とを実行する
    ことを特徴とする部材の使用温度の推定方法。
  2. 前記対応関係は、細粒組織の粒径と温度と時間との関数であるオストワルド成長式である
    ことを特徴とする請求項1に記載の部材の使用温度の推定方法。
  3. 前記粒径測定用の部材の表面に対して加工硬化処理を行った後に再結晶熱処理を行って形成された細粒組織の粒径を測定する前記測定工程を実行する
    ことを特徴とする請求項1または2に記載の部材の使用温度の推定方法。
  4. Ni基系合金またはオーステナイト鋼で構成された本体部材に対して、Ni基系合金またはオーステナイト鋼で構成され且つ表面に細粒組織が形成された粒径測定用の部材を取り付けて、前記本体部材および前記粒径測定用の部材を予め設定された温度領域で使用した後に、前記粒径測定用の部材の細粒組織の粒径を測定する測定工程と、
    予め測定された細粒組織の粒径と温度と時間との対応関係に基づいて、前記粒径測定用の部材が使用された実際の時間と、前記測定工程で測定された粒径とから、前記粒径測定用の部材が使用された実際の温度を推定して、前記本体部材が使用された実際の温度を推定する推定工程とを実行する
    ことを特徴とする部材の使用温度の推定方法。
  5. Ni基系合金またはオーステナイト鋼で構成され且つ表面に細粒組織が形成された粒径測定用の部材が予め設定された温度領域で使用された場合に、前記粒径測定用の部材の細粒組織の粒径を測定する測定手段と、
    前記粒径測定用の部材が使用された実際の時間を取得する取得手段と、
    予め測定された細粒組織の粒径と温度と時間との対応関係に基づいて、前記取得手段で取得された時間と、前記測定手段で測定された粒径とから、前記粒径測定用の部材が使用された実際の温度を算出して推定する推定手段とを備えた
    ことを特徴とする部材の使用温度の推定装置。
JP2014170226A 2014-08-25 2014-08-25 部材の使用温度の推定方法および部材の使用温度の推定装置 Active JP6469386B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014170226A JP6469386B2 (ja) 2014-08-25 2014-08-25 部材の使用温度の推定方法および部材の使用温度の推定装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014170226A JP6469386B2 (ja) 2014-08-25 2014-08-25 部材の使用温度の推定方法および部材の使用温度の推定装置

Publications (2)

Publication Number Publication Date
JP2016045106A true JP2016045106A (ja) 2016-04-04
JP6469386B2 JP6469386B2 (ja) 2019-02-13

Family

ID=55635791

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014170226A Active JP6469386B2 (ja) 2014-08-25 2014-08-25 部材の使用温度の推定方法および部材の使用温度の推定装置

Country Status (1)

Country Link
JP (1) JP6469386B2 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021250968A1 (ja) * 2020-06-08 2021-12-16 株式会社Ihi Ni合金部品のクリープ寿命評価方法
CN113916400A (zh) * 2021-09-01 2022-01-11 北京机电工程研究所 一种高温部件表面温度测量方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0288760A (ja) * 1988-09-27 1990-03-28 Mazda Motor Corp 耐衝撃性に優れた鋼部材およびその製造法
US5188457A (en) * 1992-03-11 1993-02-23 General Electric Company Measurement of the maximum temperature attained by an article
JP2006200962A (ja) * 2005-01-19 2006-08-03 Hitachi Ltd ガスタービン部品の損傷評価方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0288760A (ja) * 1988-09-27 1990-03-28 Mazda Motor Corp 耐衝撃性に優れた鋼部材およびその製造法
US5188457A (en) * 1992-03-11 1993-02-23 General Electric Company Measurement of the maximum temperature attained by an article
JP2006200962A (ja) * 2005-01-19 2006-08-03 Hitachi Ltd ガスタービン部品の損傷評価方法

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021250968A1 (ja) * 2020-06-08 2021-12-16 株式会社Ihi Ni合金部品のクリープ寿命評価方法
JPWO2021250968A1 (ja) * 2020-06-08 2021-12-16
JP7279860B2 (ja) 2020-06-08 2023-05-23 株式会社Ihi Ni合金部品のクリープ寿命評価方法
CN113916400A (zh) * 2021-09-01 2022-01-11 北京机电工程研究所 一种高温部件表面温度测量方法

Also Published As

Publication number Publication date
JP6469386B2 (ja) 2019-02-13

Similar Documents

Publication Publication Date Title
Narasimhachary et al. Crack growth behavior of 9Cr− 1Mo (P91) steel under creep–fatigue conditions
Shingledecker et al. Testing and analysis of full-scale creep-rupture experiments on inconel alloy 740 cold-formed tubing
JP6680900B2 (ja) Cu(銅)を含むオーステナイト系耐熱鋼の使用温度の推定方法、Cuを含むオーステナイト系耐熱鋼のクリープ損傷寿命の推定方法、Cuを含むオーステナイト系耐熱鋼製伝熱管の使用温度の推定方法及びCuを含むオーステナイト系耐熱鋼製伝熱管のクリープ損傷寿命の推定方法
JP6469386B2 (ja) 部材の使用温度の推定方法および部材の使用温度の推定装置
JP4865344B2 (ja) ボイラ伝熱管の熱疲労亀裂損傷診断法
Sahoo et al. Influence of temperature on multiaxial creep behaviour of 304HCu austenitic stainless steel
Pardal et al. Failure analysis of AISI 310S plate in an inert gas generator used in off-shore oil platform
JP5592685B2 (ja) ヘマタイトスケールの付着診断方法
Yeo et al. Remnant creep life estimation approach for Alloy 617 tubes of ultra-supercritical thermal power plants
Masuyama Advances in creep damage/life assessment technology for creep strength enhanced ferritic steels
Schmiedt et al. Characterisation of the corrosion fatigue behaviour of brazed AISI 304L/BNi-2 joints in synthetic exhaust gas condensate
JP2014228196A (ja) 伝熱管の使用温度推定方法および伝熱管の保守方法
Kumar et al. Effect of steamside oxidation and fireside corrosion degradation processes on creep life of service exposed boiler tubes
JP4968734B2 (ja) オーステナイト鋼の使用温度推定方法
Salman et al. Determination of correlation functions of the oxide scale growth and the temperature increase
JP2006258621A (ja) フェライト系耐熱鋼のクリープ損傷推定方法
JP6582753B2 (ja) 耐熱鋼材の寿命予測方法
JP5900888B2 (ja) Ni基合金の使用温度推定方法及び寿命評価方法
JP4688096B2 (ja) 耐熱部材の熱履歴推定方法
JP3892629B2 (ja) ボイラ水壁管の過熱損傷診断方法
JP2012137242A (ja) 高温部材の温度推定方法及び高温部材の寿命判定方法
Sanjay et al. A failure analysis and remaining life assessment of boiler water wall tube
Tahami et al. Effect of sediment thickness on the remaining creep lifetime of 9Cr1Mo refinery furnace tubes
Yamazaki et al. Creep-Fatigue Damage for Boiler Header Stub Mock-Up Specimen of 47Ni–23Cr–23Fe–7W Alloy
JP2021004787A (ja) 損傷リスク評価方法、システムの保守管理方法およびリスク評価装置

Legal Events

Date Code Title Description
A625 Written request for application examination (by other person)

Free format text: JAPANESE INTERMEDIATE CODE: A625

Effective date: 20170802

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180613

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180619

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180802

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20181225

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190116

R150 Certificate of patent or registration of utility model

Ref document number: 6469386

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350