JP2016010288A - 無停電電源装置 - Google Patents

無停電電源装置 Download PDF

Info

Publication number
JP2016010288A
JP2016010288A JP2014131191A JP2014131191A JP2016010288A JP 2016010288 A JP2016010288 A JP 2016010288A JP 2014131191 A JP2014131191 A JP 2014131191A JP 2014131191 A JP2014131191 A JP 2014131191A JP 2016010288 A JP2016010288 A JP 2016010288A
Authority
JP
Japan
Prior art keywords
voltage
power supply
battery unit
external power
charging
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014131191A
Other languages
English (en)
Other versions
JP6296608B2 (ja
Inventor
原田 卓哉
Takuya Harada
卓哉 原田
孝 椛澤
Takashi Kabasawa
孝 椛澤
仁一 坂本
Jinichi Sakamoto
仁一 坂本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
FDK Corp
Original Assignee
FDK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by FDK Corp filed Critical FDK Corp
Priority to JP2014131191A priority Critical patent/JP6296608B2/ja
Priority to PCT/JP2015/061245 priority patent/WO2015198687A1/ja
Priority to EP15812581.5A priority patent/EP3163712B1/en
Priority to US15/316,457 priority patent/US10097035B2/en
Priority to CN201580034667.6A priority patent/CN106464006B/zh
Publication of JP2016010288A publication Critical patent/JP2016010288A/ja
Application granted granted Critical
Publication of JP6296608B2 publication Critical patent/JP6296608B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J9/00Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting
    • H02J9/04Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting in which the distribution system is disconnected from the normal source and connected to a standby source
    • H02J9/06Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting in which the distribution system is disconnected from the normal source and connected to a standby source with automatic change-over, e.g. UPS systems
    • H02J9/061Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting in which the distribution system is disconnected from the normal source and connected to a standby source with automatic change-over, e.g. UPS systems for DC powered loads
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0068Battery or charger load switching, e.g. concurrent charging and load supply
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/02Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries for charging batteries from ac mains by converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2207/00Indexing scheme relating to details of circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J2207/20Charging or discharging characterised by the power electronics converter
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0083Converters characterised by their input or output configuration
    • H02M1/0093Converters characterised by their input or output configuration wherein the output is created by adding a regulated voltage to or subtracting it from an unregulated input
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • H02M3/325Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
    • H02M3/335Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Business, Economics & Management (AREA)
  • Emergency Management (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Stand-By Power Supply Arrangements (AREA)

Abstract

【課題】発熱が少なく短時間で充電が可能な無停電電源装置を提供する。
【解決手段】本発明の無停電電源装置10は、外部電源20から負荷装置30へ電力を供給する電源ライン21に並列に接続される入出力端子11と、定格電圧が外部電源20の電圧V1と同じ電圧である電池ユニット12と、外部電源20の電圧V1を電池ユニット12の定格電圧と電池ユニット12の充電電圧との差分に相当する電圧V3に変換するDC/DCコンバータ13と、外部電源20の電圧V1にDC/DCコンバータ13の出力電圧V3を加算した電圧で、電池ユニット12を充電する充電回路14と、外部電源20の停電時に、入出力端子11を通じて電池ユニット12から負荷装置30へ放電する放電回路15と、を備える。
【選択図】図1

Description

本発明は、無停電電源装置に関する。
無停電電源装置は、停電等によって外部電源から負荷装置へ電力が供給されない状態になったときに、負荷装置の動作を継続するために、予め充電した二次電池から負荷装置へ電力を供給する電源装置である。無停電電源装置の二次電池は、通常時に外部電源の電力で充電されるのが一般的である。無停電電源装置に用いられる二次電池の一例として、例えばニッケル水素二次電池等のアルカリ二次電池が公知である。
アルカリ二次電池は、その性質上、定格電圧よりも高い電圧で充電を行う必要がある。しかし一般的に無停電電源装置において、アルカリ二次電池の定格電圧は、外部電源の電圧と同じである。そのため、そのままでは外部電源の電力でアルカリ二次電池を満充電状態まで充電することができない。
このようなことから外部電源の電圧を昇圧する補助電源(DC/DCコンバータ)を備える無停電電源装置が公知である。より具体的にはアルカリ二次電池の充電時には、外部電源の電圧を補助電源で昇圧し、その昇圧した電圧でアルカリ二次電池を充電する。それによって外部電源の電圧と同じ定格電圧のアルカリ二次電池であっても、そのアルカリ二次電池を定格電圧よりも高い電圧で満充電状態まで充電することができる。また無停電電源装置ではないが、補助電源を用いた技術の一例として、電動モータの電力需要が一時的に増加したときに、電動モータに供給可能な電力量を補助電源によって増加させるモータ制御装置が公知である(例えば特許文献1を参照)。
しかし補助電源で外部電源の電圧を昇圧し、その昇圧した電圧でアルカリ二次電池を充電する従来技術は、充電時に大きな電力損失が生ずるという課題がある。またこのような従来技術は、その電力損失によって生ずる補助電源の発熱が無停電電源装置の信頼性等の面で問題となる場合がある。このような課題に対し、例えば直列接続された複数の単位セルを含む二次電池を充電する際に、その複数の単位セルの一部を選択的に電力変換器に接続する分割充電制御を行う充電制御装置が公知である(例えば特許文献2を参照)。この分割充電制御を行う充電制御装置は、二次電池を構成する複数の単位セルに選択的に充電するため、より小型の電力変換器を用いることができる。それによって分割充電制御を行う充電制御装置は、電力変換器における電力損失を小さくすることができるので、電力変換器の発熱を低減することができる。
特開2013−110899号公報 特開2009−296820号公報
しかしながら上記の分割充電制御を行う充電制御装置は、二次電池を構成する複数の単位セルに選択的に充電する時分割充電であるため、二次電池を満充電状態まで充電するのに長い時間を要することになる虞がある。
このような状況に鑑み本発明はなされたものであり、その目的は、発熱が少なく短時間で充電が可能な無停電電源装置を提供することにある。
<本発明の第1の態様>
本発明の第1の態様は、外部電源から負荷装置へ電力を供給する電源ラインに並列に接続される入出力端子と、定格電圧が前記外部電源の電圧と同じ電圧である電池ユニットと、前記外部電源の電圧を前記電池ユニットの定格電圧と前記電池ユニットの充電電圧との差分に相当する電圧に変換する電圧変換装置と、前記外部電源の電圧に前記電圧変換装置の出力電圧を加算した電圧で、前記電池ユニットを充電する充電回路と、前記外部電源の停電時に、前記入出力端子を通じて前記電池ユニットから前記負荷装置へ放電する放電回路と、を備える無停電電源装置である。
ここで電池ユニットの充電電圧は、電池ユニットの定格電圧より高い電圧であり、電池ユニットを満充電状態まで充電するのに必要な電圧である。他方、外部電源の電圧は、電池ユニットの定格電圧と同じ電圧である。そのため外部電源の電圧でそのまま電池ユニットを充電することはできない。
電圧変換装置は、外部電源の電圧を電池ユニットの定格電圧と電池ユニットの充電電圧との差分に相当する電圧に変換する。そして充電回路は、外部電源の電圧に電圧変換装置の出力電圧を加算した電圧で電池ユニットを充電する。それによって電池ユニットの充電電圧で電池ユニットを充電することができるので、従来のように時分割充電制御をする必要がない。したがって短時間で電池ユニットを満充電状態まで充電することができる。
そして本発明において電圧変換装置は、外部電源の電圧を電池ユニットの定格電圧と電池ユニットの充電電圧との差分に相当する電圧に変換するので、外部電源の電圧を昇圧する従来技術に比べて、電圧変換装置で生ずる電力損失を大幅に低減することができる。それによって電圧変換装置の発熱を従来よりも大幅に低減することができる。
これにより本発明の第1の態様によれば、発熱が少なく短時間で充電が可能な無停電電源装置を提供できるという作用効果が得られる。
<本発明の第2の態様>
本発明の第2の態様は、外部電源から負荷装置へ電力を供給する電源ラインに並列に接続される入出力端子と、直列に接続された第1電池パック及び第2電池パックを含み、定格電圧が前記外部電源の電圧と同じ電圧である電池ユニットと、前記外部電源の電圧を前記電池ユニットの定格電圧と前記電池ユニットの充電電圧との差分に相当する電圧に変換する電圧変換装置と、前記電圧変換装置の出力電圧で前記第1電池パックを充電し、前記外部電源の電圧で前記第2電池パックを充電する充電回路と、前記外部電源の停電時に、前記入出力端子を通じて前記電池ユニットから前記負荷装置へ放電する放電回路と、を備える無停電電源装置である。
電圧変換装置は、外部電源の電圧を電池ユニットの定格電圧と電池ユニットの充電電圧との差分に相当する電圧に変換する。そして充電回路は、電圧変換装置の出力電圧で第1電池パックを充電し、外部電源の電圧で第2電池パックを充電する。それによって電池ユニットの第1電池パック及び第2電池パックをそれぞれの充電電圧(定格電圧より高い電圧)で充電することができる。そして第1電池パックの充電と第2電池パックの充電は、並行して同時に行うことができるので、従来のように時分割充電制御をする必要がない。したがって短時間で電池ユニットを満充電状態まで充電することができる。
そして本発明において電圧変換装置は、外部電源の電圧を電池ユニットの定格電圧と電池ユニットの充電電圧との差分に相当する電圧に変換するので、外部電源の電圧を昇圧する従来技術に比べて、電圧変換装置で生ずる電力損失を大幅に低減することができる。それによって電圧変換装置の発熱を従来よりも大幅に低減することができる。
これにより本発明の第2の態様によれば、発熱が少なく短時間で充電が可能な無停電電源装置を提供できるという作用効果が得られる。
本発明によれば、発熱が少なく短時間で充電が可能な無停電電源装置を提供することができる。
本発明に係る無停電電源装置の第1実施例を図示した回路図。 本発明に係る無停電電源装置の第2実施例を図示した回路図。
以下、本発明の実施の形態について図面を参照しながら説明する。
尚、本発明は、以下説明する実施例に特に限定されるものではなく、特許請求の範囲に記載された発明の範囲内で種々の変形が可能であることは言うまでもない。
<第1実施例>
本発明の第1実施例について、図1を参照しながら説明する。
図1は、本発明に係る無停電電源装置10の第1実施例を図示した回路図である。
無停電電源装置10は、停電等によって外部電源20から負荷装置30へ電力を供給できない状態になったときに、負荷装置30の動作を継続するために、負荷装置30へ電力を供給する電源装置である。
第1実施例の無停電電源装置10は、入出力端子11、電池ユニット12、DC/DCコンバータ13、充電回路14、放電回路15、制御装置16を備える。
入出力端子11は、外部電源20から負荷装置30へ電力を供給する電源ライン21に並列に接続される。ここで外部電源20は、例えば商用交流電力を電圧V1の直流電力に変換する電源装置である。また負荷装置30は、電圧V1の直流電力で動作する電子機器である。
電池ユニット12は、定格電圧が外部電源20の電圧V1と同じ電圧の電池電源である。電池ユニット12は、ニッケル水素二次電池等のアルカリ二次電池を直列乃至並列に接続することによって構成された電池パック120を含む。また電池ユニット12は、電池パック120の電圧及び温度を検出する回路を含む(図示省略)。
「電圧変換装置」としてのDC/DCコンバータ13は、外部電源20の電圧V1を電池ユニット12の定格電圧と電池ユニット12の充電電圧との差分に相当する電圧V3に変換する。より具体的にはDC/DCコンバータ13は、外部電源20の電圧V1を電圧V3に降圧する入出力絶縁型の降圧型DC/DCコンバータである。DC/DCコンバータ13の入力側は、+端子が入出力端子11に接続されており、−端子がグランドに接続されている。またDC/DCコンバータ13の出力側は、+端子が充電回路14のスイッチSW1の一端側に接続されており、−端子が入出力端子11に接続されている。
充電回路14は、スイッチSW1、ダイオードD1を含む。より具体的には充電回路14は、スイッチSW1の一端側がDC/DCコンバータ13の出力側の+端子に接続されており、スイッチSW1の他端側がダイオードD1のアノードに接続されている。ダイオードD1のカソードは、電池ユニット12の正極端子に接続されている。このような構成の充電回路14において電池ユニット12は、スイッチSW1をオンすることによって、外部電源20の電圧V1にDC/DCコンバータ13の出力電圧V3を加算した電圧で充電される。
放電回路15は、スイッチSW2、ダイオードD2を含む。より具体的には放電回路15は、スイッチSW2の一端側が電池ユニット12の正極端子に接続されており、スイッチSW2の他端側がダイオードD2のアノードに接続されている。ダイオードD2のカソードは、入出力端子11に接続されている。このような構成の放電回路15は、外部電源の停電時にスイッチSW2をオンすることによって、入出力端子11を通じて電池ユニット12から負荷装置30へ放電することができる。
制御装置16は、公知のマイコン制御装置である。制御装置16は、電池ユニット12の電圧V2や温度等に基づいて、スイッチSW1及びスイッチSW2のオン/オフ等の制御を実行する。
次に第1実施例の無停電電源装置10の動作について、引き続き図1を参照しながら説明する。
制御装置16は、通常時、つまり外部電源20から負荷装置30へ電力が供給されている状態では、外部電源20の電力で電池ユニット12を満充電状態まで充電する。より具体的には、スイッチSW1をオンし、スイッチSW2をオフすることによって、外部電源20の電圧V1にDC/DCコンバータ13の出力電圧V3を加算した電圧で電池ユニット12を充電する(符合A)。そして電池ユニット12が満充電状態まで充電された後、スイッチSW1をオフする。他方、制御装置16は、停電時にはスイッチSW2をオンすることによって、入出力端子11を通じて電池ユニット12の電力を負荷装置30へ放電する(符合B)。
電池ユニット12の充電電圧は、電池ユニット12の定格電圧より高い電圧であり、電池ユニット12を満充電状態まで充電するのに必要な電圧である。前述したように、DC/DCコンバータ13の出力電圧V3は、電池ユニット12の定格電圧と電池ユニット12の充電電圧との差分に相当する。また電池ユニット12の定格電圧は、外部電源20の電圧V1と同じ電圧である。
例えば定格電圧が1.35Vのニッケル水素二次電池の電池セルを満充電状態まで充電するのに必要な充電電圧は、約1.5Vとなる。ここで外部電源20の電圧V1を54Vとする。また定格電圧が1.35Vのニッケル水素二次電池の電池セルを40個直列に接続して、定格電圧が外部電源20の電圧V1と同じ54Vとなる電池ユニット12を構成する。この場合、電池ユニット12を満充電状態まで充電するのに必要な充電電圧は、約60V(1.5V×40)となる。したがってDC/DCコンバータ13の出力電圧V3を約6Vとすればよい。
本発明に係る無停電電源装置10は、スイッチSW1をオンすることによって、その充電電圧(電圧V1+V3)で電池ユニット12が充電されることになるので、電池ユニット12を満充電状態まで充電することができる。それによって本発明に係る無停電電源装置10は、従来のように時分割充電制御をする必要がないので、短時間で電池ユニット12を満充電状態まで充電することができる。
またDC/DCコンバータ13は、外部電源20の電圧V1を電池ユニット12の定格電圧と電池ユニット12の充電電圧との差分に相当する電圧V3に降圧する。そのため本発明に係る無停電電源装置10は、外部電源20の電圧V1を昇圧する従来技術に比べて、DC/DCコンバータ13で生ずる電力損失を大幅に低減することができる。それによって本発明に係る無停電電源装置10は、DC/DCコンバータ13の発熱を従来よりも大幅に低減することができる。
このようにして本発明によれば、発熱が少なく短時間で充電が可能な無停電電源装置10を提供することができる。
<第2実施例>
本発明の第2実施例について、図2を参照しながら説明する。
図2は、本発明に係る無停電電源装置10の第2実施例を図示した回路図である。
第2実施例の無停電電源装置10は、第1実施例と同様に、入出力端子11、電池ユニット12、DC/DCコンバータ13、充電回路14、放電回路15、制御装置16を備える。そして第2実施例の無停電電源装置10は、電池ユニット12の構成と充電回路14の構成が第1実施例と異なる。それ以外の構成要素については、第1実施例と同様であるため、同一の構成要素には同一の符合を付して詳細な説明を省略する。
第2実施例の電池ユニット12は、直列に接続された第1電池パック121及び第2電池パック122を含み、定格電圧が外部電源20の電圧V1と同じ電圧である。第2実施例においては、第1電池パック121の電圧と第2電池パック122の電圧とを合算した電圧が電池ユニット12の電圧V2となる。
第2実施例の充電回路14は、スイッチSW1、ダイオードD1に加えて、さらにスイッチSW3とダイオードD3を含む。より具体的には充電回路14は、スイッチSW1の一端側がDC/DCコンバータ13の出力側の+端子に接続されており、スイッチSW1の他端側がダイオードD1のアノードに接続されている。ダイオードD1のカソードは、第1電池パック121の正極端子に接続されている。DC/DCコンバータ13の出力側の−端子は、第1電池パック121の負極端子に接続されている。また充電回路14は、スイッチSW3の一端側が入出力端子11に接続されており、スイッチSW3の他端側がダイオードD3のアノードに接続されている。ダイオードD3のカソードは、第2電池パック122の正極端子に接続されている。
このような構成の充電回路14は、DC/DCコンバータ13の出力電圧V3で第1電池パック121を充電し、外部電源20の電圧V1で第2電池パック122を充電することができる。より具体的には充電回路14は、スイッチSW1をオンすることによって、DC/DCコンバータ13の出力電圧V3で第1電池パック121が充電される。また充電回路14は、スイッチSW3をオンすることによって、外部電源20の電圧V1で第2電池パック122が充電される。
制御装置16は、通常時、つまり外部電源20から負荷装置30へ電力が供給されている状態では、外部電源20の電力で電池ユニット12を満充電状態まで充電する。より具体的には、スイッチSW1及びスイッチSW3をオンし、スイッチSW2をオフすることによって、DC/DCコンバータ13の出力電圧V3で第1電池パック121を充電し(符合C)、外部電源20の電圧V1で第2電池パック122を充電する(符合D)。そして第1電池パック121が満充電状態まで充電された後、スイッチSW1をオフする。また第2電池パック122が満充電状態まで充電された後、スイッチSW3をオフする。他方、制御装置16は、停電時にはスイッチSW2をオンすることによって、入出力端子11を通じて電池ユニット12の電力を負荷装置30へ放電する(符合E)。
例えば定格電圧が1.35Vのニッケル水素二次電池の電池セルを満充電状態まで充電するのに必要な充電電圧は、約1.5Vとなる。ここで外部電源20の電圧V1を54Vとする。また定格電圧が1.35Vのニッケル水素二次電池の電池セルを40個直列に接続して、定格電圧が外部電源20の電圧V1と同じ54Vとなる電池ユニット12を構成する。この場合、電池ユニット12を満充電状態まで充電するのに必要な充電電圧は、約60V(1.5V×40)となる。したがってDC/DCコンバータ13の出力電圧V3を約6Vとすればよい。
そして電池ユニット12の第1電池パック121は、定格電圧が1.35Vのニッケル水素二次電池の電池セルを4個直列に接続して構成すれば、その定格電圧は5.4Vとなる。また電池ユニット12の第2電池パック122は、残りのニッケル水素二次電池の電池セル36個を直列に接続して構成すれば、その定格電圧は48.6Vとなる。定格電圧を5.4Vの第1電池パック121は、満充電状態まで充電するのに必要な充電電圧が6V(1.5V×4)であるから、DC/DCコンバータ13の出力電圧V3(約6V)で満充電状態まで充電することができる。また定格電圧を48.6Vの第2電池パック122は、満充電状態まで充電するのに必要な充電電圧が54V(1.5V×36)であるから、第1電池パック121の充電と並行して同時に、外部電源20の電圧V1(54V)で満充電状態まで充電することができる。
このように第2実施例の無停電電源装置10は、スイッチSW1及びスイッチSW3をオンすることによって、第1電池パック121及び第2電池パック122をそれぞれの充電電圧(定格電圧より高い電圧)で充電することができる。そして第1電池パック121の充電と第2電池パック122の充電は、並行して同時に行うことができる。それによって本発明に係る無停電電源装置10は、従来のように時分割充電制御をする必要がないので、短時間で電池ユニット12を満充電状態まで充電することができる。
またDC/DCコンバータ13は、外部電源20の電圧V1を電池ユニット12の定格電圧と電池ユニット12の充電電圧との差分に相当する電圧V3に降圧する。そのため本発明に係る無停電電源装置10は、外部電源20の電圧V1を昇圧する従来技術に比べて、DC/DCコンバータ13で生ずる電力損失を大幅に低減することができる。それによって本発明に係る無停電電源装置10は、DC/DCコンバータ13の発熱を従来よりも大幅に低減することができる。
このようにして本発明によれば、発熱が少なく短時間で充電が可能な無停電電源装置10を提供することができる。
10 無停電電源装置
11 入出力端子
12 電池ユニット
13 DC/DCコンバータ
14 充電回路
15 放電回路
16 制御装置
20 外部電源
21 電源ライン
30 負荷装置

Claims (2)

  1. 外部電源から負荷装置へ電力を供給する電源ラインに並列に接続される入出力端子と、
    定格電圧が前記外部電源の電圧と同じ電圧である電池ユニットと、
    前記外部電源の電圧を前記電池ユニットの定格電圧と前記電池ユニットの充電電圧との差分に相当する電圧に変換する電圧変換装置と、
    前記外部電源の電圧に前記電圧変換装置の出力電圧を加算した電圧で、前記電池ユニットを充電する充電回路と、
    前記外部電源の停電時に、前記入出力端子を通じて前記電池ユニットから前記負荷装置へ放電する放電回路と、を備える無停電電源装置。
  2. 外部電源から負荷装置へ電力を供給する電源ラインに並列に接続される入出力端子と、
    直列に接続された第1電池パック及び第2電池パックを含み、定格電圧が前記外部電源の電圧と同じ電圧である電池ユニットと、
    前記外部電源の電圧を前記電池ユニットの定格電圧と前記電池ユニットの充電電圧との差分に相当する電圧に変換する電圧変換装置と、
    前記電圧変換装置の出力電圧で前記第1電池パックを充電し、前記外部電源の電圧で前記第2電池パックを充電する充電回路と、
    前記外部電源の停電時に、前記入出力端子を通じて前記電池ユニットから前記負荷装置へ放電する放電回路と、を備える無停電電源装置。
JP2014131191A 2014-06-26 2014-06-26 無停電電源装置 Active JP6296608B2 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2014131191A JP6296608B2 (ja) 2014-06-26 2014-06-26 無停電電源装置
PCT/JP2015/061245 WO2015198687A1 (ja) 2014-06-26 2015-04-10 無停電電源装置
EP15812581.5A EP3163712B1 (en) 2014-06-26 2015-04-10 Uninterruptible power-supply system
US15/316,457 US10097035B2 (en) 2014-06-26 2015-04-10 Uninterruptible power supply unit
CN201580034667.6A CN106464006B (zh) 2014-06-26 2015-04-10 不间断供电电源装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014131191A JP6296608B2 (ja) 2014-06-26 2014-06-26 無停電電源装置

Publications (2)

Publication Number Publication Date
JP2016010288A true JP2016010288A (ja) 2016-01-18
JP6296608B2 JP6296608B2 (ja) 2018-03-20

Family

ID=54937787

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014131191A Active JP6296608B2 (ja) 2014-06-26 2014-06-26 無停電電源装置

Country Status (5)

Country Link
US (1) US10097035B2 (ja)
EP (1) EP3163712B1 (ja)
JP (1) JP6296608B2 (ja)
CN (1) CN106464006B (ja)
WO (1) WO2015198687A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022034656A (ja) * 2020-08-19 2022-03-04 矢崎総業株式会社 給電制御装置、給電システム、給電制御方法、及びプログラム

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10483791B2 (en) 2016-05-25 2019-11-19 Milwaukee Electric Tool Corporation Series-connected battery packs, system and method
KR102500690B1 (ko) * 2017-09-18 2023-02-17 삼성전자주식회사 배터리 상태를 기반으로 충전을 제어하는 방법 및 장치
US20200287400A1 (en) * 2017-10-09 2020-09-10 Shenzhen Royole Technologies Co. Ltd. Battery control circuit and electronic device
CN107863802B (zh) * 2017-11-23 2024-02-20 杰华特微电子股份有限公司 电池充放电电路
US11489356B2 (en) * 2019-07-02 2022-11-01 Abb Schweiz Ag MVDC link-powered battery chargers and operation thereof
US11237610B2 (en) * 2019-11-20 2022-02-01 Intel Corporation Handling loss of power for uninterruptible power supply efficiency
JP2022020442A (ja) * 2020-07-20 2022-02-01 Fdk株式会社 制御装置、電池パック及び電源装置
GB202116919D0 (en) * 2021-11-24 2022-01-05 Rolls Royce Plc Electrical power system
CN114243820A (zh) * 2021-12-06 2022-03-25 上海电气国轩新能源科技有限公司 不间断供电的电源电路及其供电方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002199620A (ja) * 2000-12-28 2002-07-12 Fuji Electric Co Ltd 無停電電源装置
JP2005204421A (ja) * 2004-01-16 2005-07-28 Mitsubishi Electric Corp 電源装置
JP2007306662A (ja) * 2006-05-09 2007-11-22 Sanyo Electric Co Ltd 電源装置
JP2012044801A (ja) * 2010-08-20 2012-03-01 Tokyo Institute Of Technology Dcdcコンバータ

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2776493B2 (ja) * 1994-08-12 1998-07-16 インターナショナル・ビジネス・マシーンズ・コーポレイション 電子機器用電源装置及びその制御方法
JP3324930B2 (ja) * 1996-05-31 2002-09-17 富士通株式会社 電源装置
JPH11234915A (ja) * 1998-02-20 1999-08-27 Fujitsu Ltd 充電可能な電池を備えた電源装置、および複数の電池の充電/放電方法
US6525666B1 (en) * 1998-12-16 2003-02-25 Seiko Instruments Inc. Power circuit
TW439342B (en) * 1999-02-01 2001-06-07 Mitac Int Corp An external charging/discharging device
TW521468B (en) * 2001-06-14 2003-02-21 Quanta Comp Inc Charging apparatus capable of dynamically adjusting charging power
KR100793194B1 (ko) * 2001-07-05 2008-01-10 엘지전자 주식회사 다중 배터리 충전방법 및 충전장치
US7064521B2 (en) * 2001-08-17 2006-06-20 O2Micro International Limited Charging circuit for parallel charging in multiple battery systems
US7202634B2 (en) * 2001-08-17 2007-04-10 O2Micro International Limited Voltage mode, high accuracy battery charger
AU2002356561A1 (en) * 2001-10-12 2003-04-22 Proton Energy Systems, Inc. Method and system for bridging short duration power interruptions
JP4709497B2 (ja) 2004-04-08 2011-06-22 日立コンピュータ機器株式会社 電源バックアップ装置
JP4783644B2 (ja) * 2006-02-07 2011-09-28 富士通株式会社 電力制御装置、サーバ装置、および電力制御方法
US8080900B2 (en) * 2007-07-18 2011-12-20 Exaflop Llc Direct-coupled IT load
KR100934956B1 (ko) * 2007-09-13 2010-01-06 한국과학기술연구원 광에너지에 의한 자가충전형 이차전지
US8450977B2 (en) * 2007-12-20 2013-05-28 O2Micro, Inc. Power management systems with charge pumps
JP2009296820A (ja) 2008-06-06 2009-12-17 Toyota Motor Corp 二次電池の充電制御装置および充電制御方法ならびに電動車両
US8324758B2 (en) * 2009-03-30 2012-12-04 Encell Technology, Inc. Parallel power back-up system
US20110089886A1 (en) * 2009-10-21 2011-04-21 Stephen Dubovsky Maximum Power Point Tracking Bidirectional Charge Controllers for Photovoltaic Systems
US8450976B2 (en) * 2010-10-29 2013-05-28 O2Micro, Inc. Power topology with battery charging and discharge current protection capabilities
JP2013110899A (ja) 2011-11-23 2013-06-06 Bbj Hitech Kk 補助電源の付いた電動モータ制御機構
JP3183220U (ja) * 2013-02-19 2013-05-09 株式会社アイケイエス 電源装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002199620A (ja) * 2000-12-28 2002-07-12 Fuji Electric Co Ltd 無停電電源装置
JP2005204421A (ja) * 2004-01-16 2005-07-28 Mitsubishi Electric Corp 電源装置
JP2007306662A (ja) * 2006-05-09 2007-11-22 Sanyo Electric Co Ltd 電源装置
JP2012044801A (ja) * 2010-08-20 2012-03-01 Tokyo Institute Of Technology Dcdcコンバータ

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022034656A (ja) * 2020-08-19 2022-03-04 矢崎総業株式会社 給電制御装置、給電システム、給電制御方法、及びプログラム
JP7136855B2 (ja) 2020-08-19 2022-09-13 矢崎総業株式会社 給電制御装置、給電システム、給電制御方法、及びプログラム

Also Published As

Publication number Publication date
EP3163712A4 (en) 2018-01-10
US20170155276A1 (en) 2017-06-01
CN106464006B (zh) 2020-06-02
EP3163712A1 (en) 2017-05-03
JP6296608B2 (ja) 2018-03-20
EP3163712B1 (en) 2022-03-23
CN106464006A (zh) 2017-02-22
WO2015198687A1 (ja) 2015-12-30
US10097035B2 (en) 2018-10-09

Similar Documents

Publication Publication Date Title
JP6296608B2 (ja) 無停電電源装置
KR101530821B1 (ko) 축전 장치 및 축전 시스템
EP2903124A1 (en) System and method supporting hybrid power/battery scheme
JP2011120447A (ja) エネルギー貯蔵システム
JP2012130158A (ja) 電源装置
JP6410299B2 (ja) 無停電電源装置
JP2013078242A (ja) 電源装置
JP2015195674A (ja) 蓄電池集合体制御システム
JP2009247145A (ja) 電源システム
JP2010110124A (ja) 電源システム
US20090278408A1 (en) Integrated dc power system with one or more fuel cells
JP2009148110A (ja) 充放電器とこれを用いた電源装置
JP2009296719A (ja) 直流バックアップ電源システムおよびその充電方法
WO2017195484A1 (ja) 電力供給装置および電力供給方法
US20160111899A1 (en) Alternating current linked power converting apparatus
JP2009219336A (ja) 直流電源システムおよびその充電方法
JP2013099093A (ja) 電源装置
CN107453452B (zh) 一种基于负载开关的多电芯串联锂电池
JP2007244097A (ja) 電源装置
JP2016182014A (ja) パワーコンディショナ
WO2016157740A1 (ja) 蓄電池ユニット及び蓄電システム
JP2013233007A (ja) バッテリ充電装置
JP5755967B2 (ja) 無停電電源装置
JP6923121B2 (ja) 電力供給装置
CN107294381B (zh) 提供差分电压的装置和方法以及直流-直流转换器

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170424

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20170424

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20171108

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180109

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180214

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180216

R150 Certificate of patent or registration of utility model

Ref document number: 6296608

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250