JP2015535547A - チオフェンピロリジンユニットを含有するベンゾジチオフェン系共重合体、製造方法、及び、その使用方法 - Google Patents

チオフェンピロリジンユニットを含有するベンゾジチオフェン系共重合体、製造方法、及び、その使用方法 Download PDF

Info

Publication number
JP2015535547A
JP2015535547A JP2015544299A JP2015544299A JP2015535547A JP 2015535547 A JP2015535547 A JP 2015535547A JP 2015544299 A JP2015544299 A JP 2015544299A JP 2015544299 A JP2015544299 A JP 2015544299A JP 2015535547 A JP2015535547 A JP 2015535547A
Authority
JP
Japan
Prior art keywords
group
same
alkyl group
thiophene
reaction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015544299A
Other languages
English (en)
Other versions
JP6096314B2 (ja
Inventor
チョウ,ミンジェ
グアン,ロン
リ,マンユエン
ホワン,ジャラ
リ,ナイユエン
Original Assignee
オーシャンズ キング ライティング サイエンス アンド テクノロジー シーオー.,エルティーディー
オーシャンズ キング ライティング サイエンス アンド テクノロジー シーオー.,エルティーディー
シェンチェン オーシャンズ キング ライティング エンジニアリング シーオー.,エルティーディー
シェンチェン オーシャンズ キング ライティング エンジニアリング シーオー.,エルティーディー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by オーシャンズ キング ライティング サイエンス アンド テクノロジー シーオー.,エルティーディー, オーシャンズ キング ライティング サイエンス アンド テクノロジー シーオー.,エルティーディー, シェンチェン オーシャンズ キング ライティング エンジニアリング シーオー.,エルティーディー, シェンチェン オーシャンズ キング ライティング エンジニアリング シーオー.,エルティーディー filed Critical オーシャンズ キング ライティング サイエンス アンド テクノロジー シーオー.,エルティーディー
Publication of JP2015535547A publication Critical patent/JP2015535547A/ja
Application granted granted Critical
Publication of JP6096314B2 publication Critical patent/JP6096314B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G75/00Macromolecular compounds obtained by reactions forming a linkage containing sulfur with or without nitrogen, oxygen, or carbon in the main chain of the macromolecule
    • C08G75/02Polythioethers
    • C08G75/10Polythioethers from sulfur or sulfur-containing compounds and aldehydes or ketones
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y10/00Nanotechnology for information processing, storage or transmission, e.g. quantum computing or single electron logic
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D495/00Heterocyclic compounds containing in the condensed system at least one hetero ring having sulfur atoms as the only ring hetero atoms
    • C07D495/02Heterocyclic compounds containing in the condensed system at least one hetero ring having sulfur atoms as the only ring hetero atoms in which the condensed system contains two hetero rings
    • C07D495/04Ortho-condensed systems
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G61/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G61/12Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G61/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G61/12Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule
    • C08G61/122Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule derived from five- or six-membered heterocyclic compounds, other than imides
    • C08G61/123Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule derived from five- or six-membered heterocyclic compounds, other than imides derived from five-membered heterocyclic compounds
    • C08G61/126Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule derived from five- or six-membered heterocyclic compounds, other than imides derived from five-membered heterocyclic compounds with a five-membered ring containing one sulfur atom in the ring
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/06Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/12Light sources with substantially two-dimensional radiating surfaces
    • H05B33/14Light sources with substantially two-dimensional radiating surfaces characterised by the chemical or physical composition or the arrangement of the electroluminescent material, or by the simultaneous addition of the electroluminescent material in or onto the light source
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/10Organic polymers or oligomers
    • H10K85/111Organic polymers or oligomers comprising aromatic, heteroaromatic, or aryl chains, e.g. polyaniline, polyphenylene or polyphenylene vinylene
    • H10K85/113Heteroaromatic compounds comprising sulfur or selene, e.g. polythiophene
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/10Organic polymers or oligomers
    • H10K85/151Copolymers
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D519/00Heterocyclic compounds containing more than one system of two or more relevant hetero rings condensed among themselves or condensed with a common carbocyclic ring system not provided for in groups C07D453/00 or C07D455/00
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/10Definition of the polymer structure
    • C08G2261/12Copolymers
    • C08G2261/124Copolymers alternating
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/10Definition of the polymer structure
    • C08G2261/14Side-groups
    • C08G2261/141Side-chains having aliphatic units
    • C08G2261/1412Saturated aliphatic units
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/30Monomer units or repeat units incorporating structural elements in the main chain
    • C08G2261/32Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain
    • C08G2261/322Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain non-condensed
    • C08G2261/3223Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain non-condensed containing one or more sulfur atoms as the only heteroatom, e.g. thiophene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/30Monomer units or repeat units incorporating structural elements in the main chain
    • C08G2261/34Monomer units or repeat units incorporating structural elements in the main chain incorporating partially-aromatic structural elements in the main chain
    • C08G2261/344Monomer units or repeat units incorporating structural elements in the main chain incorporating partially-aromatic structural elements in the main chain containing heteroatoms
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/30Monomer units or repeat units incorporating structural elements in the main chain
    • C08G2261/36Oligomers, i.e. comprising up to 10 repeat units
    • C08G2261/364Oligomers, i.e. comprising up to 10 repeat units containing hetero atoms
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/40Polymerisation processes
    • C08G2261/41Organometallic coupling reactions
    • C08G2261/414Stille reactions
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/50Physical properties
    • C08G2261/52Luminescence
    • C08G2261/526Luminescence used as active layer in lasers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/90Applications
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/90Applications
    • C08G2261/91Photovoltaic applications
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/90Applications
    • C08G2261/92TFT applications
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/90Applications
    • C08G2261/95Use in organic luminescent diodes
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/14Macromolecular compounds
    • C09K2211/1441Heterocyclic
    • C09K2211/1483Heterocyclic containing nitrogen and sulfur as heteroatoms
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/04Processes or apparatus for excitation, e.g. pumping, e.g. by electron beams
    • H01S5/041Optical pumping
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/30Structure or shape of the active region; Materials used for the active region
    • H01S5/36Structure or shape of the active region; Materials used for the active region comprising organic materials
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K10/00Organic devices specially adapted for rectifying, amplifying, oscillating or switching; Organic capacitors or resistors having potential barriers
    • H10K10/40Organic transistors
    • H10K10/46Field-effect transistors, e.g. organic thin-film transistors [OTFT]
    • H10K10/462Insulated gate field-effect transistors [IGFETs]
    • H10K10/484Insulated gate field-effect transistors [IGFETs] characterised by the channel regions
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/30Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation comprising bulk heterojunctions, e.g. interpenetrating networks of donor and acceptor material domains
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/50Photovoltaic [PV] devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/20Carbon compounds, e.g. carbon nanotubes or fullerenes
    • H10K85/211Fullerenes, e.g. C60
    • H10K85/215Fullerenes, e.g. C60 comprising substituents, e.g. PCBM
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Nanotechnology (AREA)
  • Theoretical Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Mathematical Physics (AREA)
  • Physics & Mathematics (AREA)
  • Polyoxymethylene Polymers And Polymers With Carbon-To-Carbon Bonds (AREA)

Abstract

チオフェンピロリジンユニットを含有するベンゾジチオフェン系共重合体と、その製造方法、及び、それを用いたポリマー太陽電池、有機エレクトロルミネセンスデバイス、有機電界効果トランジスタ、有機光学メモリ、有機非線形材料、及び、有機レーザーにおける応用が提供される。

Description

本発明はベンゾジチオフェン系共重合体の分野に関し、特にチオフェンピロリジンユニットを含有するベンゾジチオフェン系共重合体と、その製造方法、及び、使用方法に関するものである。
発展性のある再生エネルギーとして、有機太陽電池は、無機太陽電池と比較していくつかの比較にならないほど利点を有しており、例えば、低コスト、シンプルな製造プロセス、軽量、広い面積でフレキシブルに製造できる、などといったことから、幅広い関心を集めいている。
過去10年間において、有機太陽電池の性能は向上し、エネルギー変換効率はおよそ10%に近いものとなった。
有機太陽電池のエネルギー変換効率は大いに向上したが、、
現時点において、有機太陽電池のエネルギー変換効率は無機太陽電池よりも遥かに低いものである。
このため、有機太陽電池を商業化を実現するためには、有機太陽電池の効率を高めるための新規な有機半導体の材料を開発することが重要となる。
近年、共役重合体の設計とデバイスの作製技術の進歩により、ポリマー太陽電池の効率は著しく向上した。
将来、ポリマー太陽電池において課題となるものの一つには、以下の特徴を有する新しいP形共役ポリマーを合成することである:
(a)
良好な溶解牲であり、溶剤加工に有利であり、工業化生産を実現する;
(b)
太陽光スペクトルの全範囲に対応する広くて強い吸収特性;
(c)
キャリア移動率が高く、キャリヤーの輸送に有利であること。
この中で、ポリマー材料の光吸収範囲をいかに広げ、その光吸収範囲を最大限において、全ての太陽光のスペクトルをカバーできるようにすることが、研究の重点となる。
半導体ポリマー骨格中に適したモノマの選択は、ポリマーの光吸収範囲を、赤外線と近赤外線に至るまで広げることに有利になる。
しかしながら、具体的に何を選択するかは、現時点で技術的に未解決な問題である。
現本発明の一つの目的は、ベンゾジチオフェンモノマーとチオフェンピロリジンモノマーを重合してなるチオフェンピロリジンユニットを含有するベンゾジチオフェン系共重合体を提供することであり、吸収バンドエッジを赤外線と近赤外線の領域に近づけるようにシフトすることで、日光の発光スペクトルによりマッチさせることとするものである。
また、本発明は、チオフェンピロリジンユニットを含有するベンゾジチオフェン系共重合体の製造方法を提供することも目的とする。
また、本発明は、ポリマー太陽電池、有機エレクトロルミネセンスデバイス、有機電界効果トランジスタ、有機光学メモリ、有機非線形材料、または有機レーザーについての、チオフェンピロリジンユニットを含有するベンゾジチオフェン系共重合体の応用についても提供するものである。
チオフェンピロリジンユニットを含有するベンゾジチオフェン系共重合体は以下の化学構造式1を有する:
Figure 2015535547
ここで、RとRは、H、又は、C〜C16のアルキル基からそれぞれ選択され、
とRは、H、C〜C16のアルキル基、C〜C16のアルコキシ基、又は、C〜C16のアルキル基で置換されたチェニルからそれぞれ選択され、
は、C〜C16のアルキル基であり、
nは、8〜82の自然数である。
ベンゾジチオフェン系共重合体においては、アルキル基は、直鎖アルキル基、分岐アルキル基、又はシクロアルキル基であり、
アルコキシ基は、直鎖アルコキシ基か分岐アルコキシ基である。
ベンゾジチオフェン系共重合体では、nは、9〜60の自然数とする。
ベンゾジチオフェン系共重合体では、RはRと同一であり、及び/又は、RはRと同一である。
ベンゾジチオフェン系共重合体では、R,R,R,R,およびRは、以下の組み合わせから選択される:
とRはHであり、RとRはメチルであり、Rはブチルである。
または、R,R,R,およびRはHであり、Rはメチルである。
または、Rはエチルであり、Rはペンチルであり、RはHであり、Rは3−メチルチェニルであり、Rは2−メチルブチルである。
または、RとRは同一のプロピルであり、Rは12アルキル基であり、Rがエトキシル基であり、Rは2,4−ジメチル−3−エチルヘプチルである。
または、Rはブチルであり、Rは12アルキル基であり、Rは14アルコキシ基であり、Rはオクチル基であり、Rは2,2,4−トリメチルペンチルである。
または、RとRは同一のHであり、Rはオクトキシ基であり、RはHであり、Rは16アルキルである。
または、Rはヘキシル基であり、RはHであり、Rは2−メチルチェニルであり、RはHであり、Rはオクチル基である。
または、Rは16アルキル基であり、RはHであり、Rはメトキシル基であり、RはHであり、Rはメチル基である。
または、RはHであり、Rはメチル基であり、Rは16アルコキシ基であり、RはHであり、Rはブチル基である。
または、RとRは同一のメチル基であり、Rは16アルコキシ基であり、RはHであり、Rはブチル基である。
または、RとRは同一のHであり、Rはヘキシルであり、RがHであり、Rはブチル基である。
または、RとRは同一のHであり、Rはメチル基であり、RはHであり、Rはブチル基である。
または、RとRは同一のHであり、RとRは同一のHであり、Rがブチル基である。
チオフェンピロリジンユニットを含有するベンゾジチオフェン系共重合体の製造方法は、以下のステップを含む:
無酸素環境において以下の式2に表されるM1とM2を溶媒に添加し、
Figure 2015535547
触媒存在下において以下の式3に示される環流反応を実行するステップ:
Figure 2015535547
ここで、RとRは、H、又は、C〜C16のアルキル基からそれぞれ選択され、
とRは、H、C〜C16のアルキル基、C〜C16のアルコキシ基、又は、C〜C16のアルキル基で置換されたチェニルからそれぞれ選択され、
は、C〜C16のアルキル基であり、
nは8〜82の自然数である。
M1とM2の間のモル比は1:1〜1.5:1であり、
溶媒は、トルエン、テトラヒドロフラン、ベンゼン、およびN,N−ジメチルホルムアミドの少なくとも一つから選択され、
触媒は、有機パラジウム、又は、有機パラジウムと有機ホスフィン配位子の混合物であり、触媒のモル量は、M2のモル量の0.01%〜5%であり、
有機パラジウムは、Pd(dba),Pd(PPh,Pd(PPhClであり、混合物の中の有機パラジウムと有機ホスフィンリガンドのモル比は、1:2〜1:20であり、
有機ホスフィンリガンドは、P(o−Tol),又は、トリシクロヘキシルホスフィンであり、
反応は、12〜72時間、60℃〜120℃の温度で実施される。
上記製造方法において、M1は以下のステップにて合成される:
ステップS1:化合物Aを適切な量のジクロロメタンに溶解させたものを、窒素雰囲気の下で、スポイトにより、1,3−ジシクロヘキシルカルボジイミドと4−ジメチルアミノピリジンを含む無水ジクロロメタンに滴下する。
ここで、化合物Aと、1,3−ジシクロヘキシルカルボジイミドと4−ジメチルアミノピリジンのモル比は3:3:1とし、以下の式4の反応を8時間〜24時間行い化合物Bを得る:
Figure 2015535547
ステップS2:エタノール又はプロパノールの溶媒に、モル比を1:1で化合物Bと化合物Cを加え、
78℃〜100℃に加熱して還流反応を実施し、さらに、還元剤を加え、還元剤は、水酸化カリウム又は水酸化ナトリウムとし、還元剤と化合物Bのモル比は5:1とする。
反応は、反応溶液が濃緑になった後、さらに10分間実行し、化合物Dを得る。式5:
Figure 2015535547
ステップS3:窒素雰囲気の下、化合物Dを無水ジクロロメタンに溶解し、−78℃に冷却する。
n−ブチルリチウムを含有するn−ヘキサン溶液をゆっくりと加え、ここで、n−ブチルリチウム(n−BuLi)と化合物Dのモル比は1:2.5とし、
−78℃の温度で攪拌しながら2時間反応させ、
その後、さらに、トリメチル塩化スズを加え、ここで、トリメチル塩化スズ(MeSnLi)と化合物Dのモル比は2.5:1とし、
温度を保って0.5時間反応を行った後に室温に戻し、
さらに24時間反応を継続し、化合物M1を得る。
化学反応式は以下の通りである。式6:
Figure 2015535547
上記の製造方法では、アルキル基は、直鎖アルキル基、分岐アルキル基、又はシクロアルキル基であり、
アルコキシ基は、直鎖アルコキシ基か分岐アルコキシ基であり、nは、9〜60の自然数とする。
上記の製造方法では、RはRと同一であり、及び/又は、RはRと同一とする。
或いは、R,R,R,R,およびRは、以下の組み合わせから選択される:
とRはHであり、RとRはメチルであり、Rはブチルである。
または、R,R,R,およびRはHであり、Rはメチルである。
または、Rはエチルであり、Rはペンチルであり、RはHであり、Rは3−メチルチェニルであり、Rは2−メチルブチルである。
または、RとRは同一のプロピルであり、Rは12アルキル基であり、Rがエトキシル基であり、Rは2,4−ジメチル−3−エチルヘプチルである。
または、Rはブチルであり、Rは12アルキル基であり、Rは14アルコキシ基であり、Rはオクチル基であり、Rは2,2,4−トリメチルペンチルである。
または、RとRは同一のHであり、Rはオクトキシ基であり、RはHであり、Rは16アルキルである。
または、Rはヘキシル基であり、RはHであり、Rは2−メチルチェニルであり、RはHであり、Rはオクチル基である。
または、Rは16アルキル基であり、RはHであり、Rはメトキシル基であり、RはHであり、Rはメチル基である。
または、RはHであり、Rはメチル基であり、Rは16アルコキシ基であり、RはHであり、Rはブチル基である。
または、RとRは同一のメチル基であり、Rは16アルコキシ基であり、RはHであり、Rはブチル基である。
または、RとRは同一のHであり、Rはヘキシルであり、RがHであり、Rはブチル基である。
または、RとRは同一のHであり、Rはメチル基であり、RはHであり、Rはブチル基である。
または、RとRは同一のHであり、RとRは同一のHであり、Rがブチル基である。
本発明の別の技術内容としては、ポリマー太陽電池、ポリマー有機エレクトロルミネセンスデバイス、ポリマー有機電界効果トランジスタ、ポリマー有機光学メモリ、ポリマー有機非線形材料、またはポリマー有機レーザーについて、チオフェンピロリジンユニットを含むベンゾジチオフェン系共重合体を応用するものである。
本発明により、適切なモノマを半導体重合体骨格に導入することで、赤外線と近赤外線の範囲まで光吸収範囲を広げることに有利になる。
本発明のチオフェンピロリジンユニットを含有するベンゾジチオフェン系共重合体では、電子リッチドナーユニットと電子不足受容体ユニットが重合体骨格に導入され、
共役重合体のエネルギーギャップはプッシュ−プル電子によるドナーと受容体の相互作用により低下され、吸収バンドは、赤外線と近赤外線の低エネルギーバンドに向けてシフトされる。
本発明によるベンゾジチオフェン誘導体では、2つのチオフェンが同一平面内の縮合環によって接続され、その平面性と剛性が強化され、共重合体は、高い光、熱、環境に対する安定性を備える。
中央のベンゼン環は両側に位置するチオフェン環の電子リッチの数を減少させ、その結果、共重合体はより低い最高被占軌道(HOMO)エネルギーレベルを備えることになる。
拡張した共役π結合システムを有することで、π結合の間のπ−π積層はより高い高いキャリヤ移動率を有し、
これにより、有機エレクトロニクスなどの分野で広く共重合体を応用することが可能となり、
低コストと高能率で有機太陽電池を開発することに利用できる。
本発明の主な有利な点は以下のものを含む:
I.
ベンゾジチオフェンモノマM1とチオフェンピロリジンモノマーM2の合成は、比較的簡単であり、かつ、成熟しており、アルキル基の導入により製品の溶解牲と分子量を改良することができ、スピンコーティングされたポリマー、或いは、オリゴマーを実現できる;
2.
ベンゾジチオフェンモノマM1は一種の非常に優れたドナー材料であり、チオフェンピロリジンモノマーM2は一種の非常に優れた受容体材料であり、モノマーM1,M2で構成されたポリマーは、一種の供与体−受容体構造を構成することができ、一方では、材料の安定性の改良に有利であり、さらには、材料のエネルギーギャップの減少に有利であり、これにより、太陽光の吸収範囲が拡大され、光電変換効率が高められる;
3.
シュティレカップリング反応は非常に成熟した重合反応であり、高収率で、条件が温和であり、制御が容易である。
図1は、実施例9による有機太陽電池の構造図である。
図2は、実施例10による有機エレクトロルミネセンスデバイスの構造図である。
図3は、実施例11による有機電界効果トランジスタの構造図である。
図面を参照し、本発明の好適な実施例について詳細に説明する。
チオフェンピロリジンユニットを含有するベンゾジチオフェン系共重合体について説明する。
まず、内側のケトン構造のシクロペンタジエニル環がベンゼン環の上に縮合され、縮合環システムの平面性と共役度が増強される。
これにより、ポリマーのキャリヤ移動率が高められる。
同時に、本発明では、チオフェン環はシクロペンタジエノンの両側に導入され、アルキル基はチオフェンの3と4の位置に導入され、その溶解性が高められる。
また、ベンゾチオフェンモノマが強い受容体であるチオフェンピロリジンモノマーで共重合され、「弱ドナー−強受容体」共重合体分子が形成され、光学的エネルギーギャップを減少させるのに有利であり、太陽光の吸収範囲が拡大され、材料の太陽光の利用率が高められる。
一つの実施例では、チオフェンピロリジンユニットを含有するベンゾジチオフェン系共重合体は、以下の式7の化学構造式を有する:
Figure 2015535547
ここで、RとRは同一、又は、非同一であり、又は、RとRはH又はC〜C16アルキル基、又は、直鎖アルキル又は分岐アルキル、又は、
シクロアルキル基等である。
とRは同一又は非同一であり、又は、RとRはH、又は、C〜C16アルキル基、又は、C〜C16アルコキシ基、又は、C〜C16アルキル基で置換したチェニルである。
はC〜C16の直鎖アルキル基、又は、分岐アルキル基、又は、RはC〜C16のシクロアルキル基などである。
例えば、Rは4−ヒドロキシシクロヘキシルとし、nは8〜82の自然数とする。
或いは、R,R,R,R,およびRは、同一のものとする。
或いは、R,R,R,R,およびRは、同一のものとし、H、CH,エチル基などのC〜C16アルキル基、などとする。
別の実施例として、チオフェンピロリジンユニットを含有するベンゾジチオフェン系共重合体の準備方法は、以下のごとくである。式8:
Figure 2015535547
製造方法は以下のステップを含む:
式9:無酸素環境において以上の式2に表されるM1とM2を溶媒に添加し、
Figure 2015535547
触媒存在下において還流反応を実施し、
チオフェンピロリジンユニットを含有するベンゾジチオフェン系共重合体を得る。
M1とM2の間のモル比は1:1〜1.5:1であり、
例えば、M1とM2のモル比は、1.12:1,1.2:1,1.3:1,1.35:1,1.4:1,1.48:1等とする。
M2は、例えば、1,3−ジブロモ−5−ブチル−4H−チオフェン[3,4−c]ピロリジンロール−4,5−ジオン、又は、1,3−ジブロモ−5−(2−エチルオクタン)−4H−チエノ[3,4−c]ピロール−4,5−ジオンなどであり、Rによって決定され、従来技術により製造される。参考文献として、J. Mater.Chem.,2012,22,14639ー14644がある。
好ましくは、無酸素環境下において、M1とM2が溶媒に加えられ、触媒の作用のもので環流反応が実施される。
例えば、窒素雰囲気下、または、不活性ガス雰囲気下において反応が実施される。例えば、窒素を充満させた雰囲気である。
とRは、H、又は、C〜C16のアルキル基からそれぞれ選択される。
例えば、RとRはH、又は、C〜C16の直鎖アルキル基、又は、分岐アルキル基からそれぞれ選択され、例えば、メチル、エチル、プロピル、n−ペンチル、2−メチルブチル、イソブチル、4−メチルヘプチル、などである。
括弧内の表示は、ベンゾジチオフェン系共重合体にて繰り返しの構造単位であり、「*」の符号は、次のユニットと接続される構成繰返しユニットを示すものである。
とRはH、又は、C〜C16アルキル基、又は、C〜C16アルコキシ基、又は、C〜C16アルキル基で置換したチェニル、からそれぞれ選択される。
例えば、RとRはH、又は、C〜C16の直鎖アルキル基、又は、分岐アルキル基、又は、C〜C16の直鎖アルコキシル基、又は、分岐アルコキシル基、又は、C〜C16の直鎖アルコキシル基で置換されたチエニル、又は、C〜C16の分岐アルコキシル基で置換されたチエニル、からそれぞれ選択される。
例えば、水素、n−ペンチル、イソブチル、4−メチルヘプチル、2−メチル4−エチルノニル、イソープロポキシ、n−ペンチルオキシ、チェニル、2−メチルチェニル、3−エチルーチェニルなどである。
は、C〜C16のアルキル基であり、
例えば、RはC〜C16の直鎖アルキル基、分岐アルキル基、又は、シクロアルキル基であり、メチル、エチル、n−ペンチル、イソブチル、4−メチルヘプチル、2−メチル4−エチルノニルなどである。
或いは、R,R,R,R,およびRは、同一のものとし、H、CH,エチル基などのC〜C16アルキル基、などとする。
nは、8〜82の自然数である。
例えば、nは8,9,10,11,15,55,60,65,72,81,82等とする。
あるいは、nは9〜60の自然数とする。
或いは、nは10〜50の自然数、又は、15〜45の自然数である。
例えば、nは18,20,24,25,26,27,29,31,33,35,36,38,42等とすることができる。
通常は、その後の製品への応用に応じて、反応物の比率、及び/又は反応時間が決定され、これによりその重合度が制御される。
溶媒は、トルエン、テトラヒドロフラン、ベンゼン、およびN,N−ジメチルホルムアミドの少なくとも一つから選択され、
溶媒の量は、完全に溶質を溶解でき、反応完全に行うものであれば十分である。
溶媒は、例えば、トルエン、テトラヒドロフラン、ベンゼン、N,N−ジメチルホルムアミドとし、
そのほかには、1:1〜1.5:1のモル比においてトルエンとテトラヒドロフランを混合したもの、
或いはまた、1:1:1〜2:1:2のモル比において、トルエン、テトラヒドロフラン、ベンゼンを混合したものなどとすることができる。
通常では、溶媒は、トルエン、テトラヒドロフラン、ベンゼン、N,N−ジメチルホルムアミドをモル比1:1:1:1とした混合溶媒、又は、トルエンとベンゼンをモル比1:1とした混合溶媒とする。
通常、反応は、無酸素環境で実施され、
例えば、窒素環境で反応が実施され、
あるいは、窒素又は不活性ガスで満たされた環境などで実施される。
触媒は、有機パラジウム、又は、有機パラジウムと有機ホスフィン配位子の混合物であり、触媒のモル量は、M2のモル量の0.01%〜5%とする。
有機パラジウムは、Pd(dba),Pd(PPh,Pd(PPhClであり、混合物の中の有機パラジウムと有機ホスフィンリガンドのモル比は、1:2〜20とする。
例えば、触媒は、有機パラジウム、又は、有機パラジウムと有機ホスフィン配位子の混合物であり、触媒のモル量は、M2のモル量の0.01%〜5%とし、
有機ホスフィンリガンドは、P(o−Tol),又は、トリシクロヘキシルホスフィン、又は、その組合せである。
例えば、触媒のモル量は、M2のモル量の0.1%、0.12%、0.2%、0.3%、0.45%、0.67%、0.8%、1.1%、2.3%とする。
有機パラジウムは、Pd(dba),Pd(PPh,Pd(PPhClであり、混合物の中の有機パラジウムと有機ホスフィンリガンドのモル比は、1:2〜1:20とする。
例えば、混合物の中の有機パラジウムと有機ホスフィンリガンドのモル比は、1:2.5,1:3,1:5,1:6.8,1:8,1:9,1:11,1:14,1:18,1:19.5とする。
例えば、Pd(dba)とP(o−Tol)のモル比は、1:3,又は、1:2とする。
反応は、12〜72時間、60℃〜120℃の温度で実施される。
反応温度は、例えば、61℃、65℃、72℃、78℃、80.5℃、87℃、91℃、105℃、119℃とする。
反応時間は、例えば、12.5時間、14時間、22時間、24時間、28時間、37時間、44時間、49時間、56時間、64時間、71時間とする。
好ましくは、反応温度と反応時間は相互関係において決定され、反応温度が高い場合には反応時間は比較的減少され、十分な反応の進行状況に応じて調整すればよい。
原料M1の合成ステップは以下のとおりである:
ステップ1:化合物Aを適切な量のジクロロメタンに溶解させたものを、窒素雰囲気の下で、スポイトにより、DCC(1,3−ジシクロヘキシルカルボジイミド)とDMPA(4−ジメチルアミノピリジン)を含む無水ジクロロメタンに滴下し、ここで、化合物A、DCC、DMAPのモル比を3:3:1とし、一晩反応を実施して化合物Bを得る。化学反応式は以下の通りである。式10:
Figure 2015535547
反応時間は、例えば、8〜24時間とし、
化合物A、DCC、DMAPのモル比は、3.5:3:1,3:3:1.5,又は、2:2.2:1とする。
あるいはまた、反応時間は、8.5時間、9時間、11時間、15.5時間、18時間、22時間等とする。
ステップ2:
化合物Bと化合物Cが、モル比を1.0:1.0として溶媒に加えられ、78℃〜100℃に加熱されて環流反応が実施され、適切な量の水酸化カリウム/水酸化ナトリウムが加えられ、ここで、水酸化カリウム/水酸化ナトリウムと化合物Bのモル比は、5:1とする。
反応溶液が濃緑になった後に、追加で8〜12分間、好ましくは10分間反応を加え、目的製品である化合物Dを得る。溶媒は、エタノール、プロパノールなどであり、
その反応式は以下のとおりである。式11:
Figure 2015535547
例えば、化合物Bと化合物Cのモル比は1:1とし、エタノール、プロパノール、又は、その混合物に加えられ、
例えば、エタノールとプロパノールのモル比は1:1,2:1,1:2などとする。
環流反応のために、78℃〜100℃まで加熱され、
例えば、一様に80℃、85℃、90℃、91℃、96℃、99℃まで加熱される。
加熱前、加熱中、或いは、78℃以上になる時に、還元剤が加えられる。
好ましくは、温度が78℃以上になった際に、さらに還元剤を加えることとし、
還元剤は水酸化ナトリウムとし、水酸化ナトリウムと化合物Bのモル比は5:1とする。
ステップ3:
窒素雰囲気の下、化合物Dの無水ジクロロメタン溶液が−78℃に冷却され、次に、n−BuLi(n−ブチルリチウム)溶液がゆっくりと加えられる.n−BuLiと化合物Dのモル比は1:2.5とする。
反応は、2時間、−78℃で攪拌して実行され、次に、トリメチルすず塩化物試薬が加えられ、MeSnClとDのモル比は2.5:1とし、温度を保って0.5時間反応を行った後に室温に戻し、さらに、24時間反応を実施して、以下の式12で示される製品、即ち、化合物M1を得る。
化学反応式は以下の通りである。式12:
Figure 2015535547
上記の各例において、RとRは同一であり、RとRは同一であり、
又は、RとRは同一であり、RとRは非同一であり、
又は、RとRは非同一であり、RとRは同一であり、
あるいはまた、R,R,R,R,Rは、以下の組合せから選択される:
とRはHであり、RとRはメチルであり、Rはブチルである。
,R,R,およびRはHであり、Rはメチルである。
または、Rはエチルであり、Rはペンチルであり、RはHであり、Rは3−メチルチェニルであり、Rは2−メチルブチルである。
または、RとRは同一のプロピルであり、Rは12アルキル基であり、Rがエトキシル基であり、Rは2,4−ジメチル−3−エチルヘプチルである。
または、Rはブチルであり、Rは12アルキル基であり、Rは14アルコキシ基であり、Rはオクチル基であり、Rは2,2,4−トリメチルペンチルである。
または、RとRは同一のHであり、Rはオクトキシ基であり、RはHであり、Rは16アルキルである。
または、Rはヘキシル基であり、RはHであり、Rは2−メチルチェニルであり、RはHであり、Rはオクチル基である。
または、Rは16アルキル基であり、RはHであり、Rはメトキシル基であり、RはHであり、Rはメチル基である。
または、RはHであり、Rはメチル基であり、Rは16アルコキシ基であり、RはHであり、Rはブチル基である。
または、RとRは同一のメチル基であり、Rは16アルコキシ基であり、RはHであり、Rはブチル基である。
または、RとRは同一のHであり、Rはヘキシルであり、RがHであり、Rはブチル基である。
または、RとRは同一のHであり、Rはメチル基であり、RはHであり、Rはブチル基である。
または、RとRは同一のHであり、RとRは同一のHであり、Rがブチル基である。
例えば、、チオフェンピロリジンユニットを含有するベンゾジチオフェン系共重合体は、以下の式13の化学構造式を有する:
Figure 2015535547
ここで、RとRは、同一又は非同一であり、又はRとRは、H、又は、C〜C16のアルキル基からそれぞれ選択され、
とRは、同一又は非同一であり、又は、RとRは、C〜C16のアルキル基、C〜C16のアルコキシ基、又は、C〜C16のアルキル基で置換されたチェニルからそれぞれ選択され、
はC〜C16の直鎖アルキル基、又は、分岐アルキル基である。
nは8〜60の自然数である。
例えば、RとRは、H、又は、C〜C16のアルキル基からそれぞれ選択される。
例えば、RとRは、H、又は、C〜C16の直鎖アルキル基、又は、分岐アルキル基からそれぞれ選択され、
例えば、メチル、エチル、プロピル、n−ペンチル、2−メチルブチル、イソブチル、4−メチルヘプチル、デシル、直鎖又は分岐の12アルキル基、又は、直鎖又は分岐の16アルキル基等である。
括弧内の表示は、ベンゾジチオフェン系共重合体にて繰り返しの構造単位であり、「*」の符号は、次のユニットと接続される構成繰返しユニットを示すものである。
とRは、H、C〜C16のアルキル基、C〜C16のアルコキシ基、又は、C〜C16のアルキル基で置換されたチェニルからそれぞれ選択され、
例えば、RとRはH、又は、C〜C16の直鎖アルキル基、又は、分岐アルキル基、又は、C〜C16の直鎖アルコキシル基、又は、分岐アルコキシル基、又は、C〜C16の直鎖アルコキシル基で置換されたチエニル、又は、C〜C16の分岐アルコキシル基で置換されたチエニル、からそれぞれ選択される。
例えば、水素、n−ペンチル、イソブチル、4−メチルヘプチル、2−メチル4−エチルノニル、イソープロポキシ、n−ペンチルオキシ、チェニル、2−メチルチェニル、3−エチルーチェニルなどである..
は、C〜C16のアルキル基であり、
例えば、RはC〜C16の直鎖アルキル基、又は、分岐アルキル基であり、メチル、エチル、n−ペンチル、イソブチル、4−メチルヘプチル、2−メチル4−エチルノニルなどである。
例えば、各実施例におけるアルキル基は、部分的または完全にフッ素置換化される。
例えば、nは、8〜82の自然数である。
通常は、その後の製品への応用に応じて、反応物の比率、及び/又は反応時間が決定され、これによりその重合度が制御される。
上記の各例において、RとRは同一であり、RとRは同一であり、
又は、RとRは同一であり、RとRは非同一であり、
又は、RとRは非同一であり、RとRは同一であり、
例えば、ベンゾジチオフェン系共重合体において、RとRはHであり、RとRはメチルであり、Rはn−ブチルとし、
または、R,R,R,およびRはHとし、Rをメチルとする。
例えば、Rはエチルであり、Rはペンチルであり、RはHであり、Rは3−メチルチェニルであり、Rは2−メチルブチルである。
例えば、Rはn−ペンチル、又は、イソペンチルであって、即ち、直鎖アルキル基又は分岐アルキル基が好ましく、以下の説明でも同様である。
例えば、RとRは同一のプロピルであり、Rは12アルキル基であり、Rがエトキシル基であり、Rは2,4−ジメチル−3−エチルヘプチルである。
例えば、Rはブチルであり、Rは12アルキル基であり、Rは14アルコキシ基であり、Rはオクチル基であり、Rは2,2,4−トリメチルペンチルである。
以下では、合成製造方法について、詳しい具体的な実施例を述べる。
実施例1
以下の式14のチオフェンピロリジンユニットを含有するベンゾジチオするベンゾジチオフェン系共重合体
Figure 2015535547
ここで、RとRは同一のHであり、Rはオクトキシ基であり、RはHであり、Rは図に示されるような2−ヘキシルデシルなどの16アルキル基であり、n=60である。
チオフェンピロリジンユニットを含有するベンゾジチオフェン系共重合体の製造方法は、以下のステップを含む:
ステップ1:以下の式15の1,3−ビス(2−チオフェン)アセトンの準備
Figure 2015535547
まず、反応溶液を形成するために無水形処理された70mLのジクロロメタンに、7.6g(36.8mmol)のDCCと1.23g(10mmol)のDMAPを溶解させて溶液とし、
窒素雰囲気下、5g(35.2mmol)の2−チオフェン酢酸を含む70mLのジクロロメタン溶液を上述の溶液に滴下して徐々に加え、一晩反応させる。
反応後、反応溶液はフィルターにかけられ、n−ヘキサンを用いて二度再結晶し、カラムクロマトグラフィで精製して製造物を得る。
MALDI−TOF−MS(Matrix−Assisted Laser Desorption/Ionization Time of Flight Mass Spectrometry)の質量電荷比(質量/電荷数)は222.3(M)である。
例えば、塩化カルシウム、又は、炭酸カリウムを使用してジクロロメタンに無水処理がされ、攪拌した後に夜通し放置し、その後、蒸留する。
ステップ2:以下の式16に示す2,7−ジオクチルオキシベンゾ[1,2−b:4,3−b´]ジチオフェン−4,5−ジケトンの準備:
Figure 2015535547
25.4g(すなわち、60mmol)の4,4´−ビス(2−オクチルオキシ)チオフェンを、400mLの乾燥1,2−ジクロロエタンに加える、即ち、400mLの1,2−ジクロロエタン中、或いは、400mLの乾燥処理された1,2−ジクロロエタン中、に加える。以下同様とする。
さらに、3mL(すなわち、34.5mmol)のオキサリル塩化物が、5日以内に3回、反応フラスコに加えられ、アルゴン雰囲気において15日の間、環流反応が実行される。
反応が終わった後、反応溶液は室温に冷却され、夜通し、冷凍庫で冷凍され、
次にフィルターにかけられて、赤色固体を得て、n−ヘキサンとエタノールで順番に洗浄して製品を得る。
MALDI−TOF−MS(質量/電荷数)は477.0(M)である。
例えば、1mLのオキサリル塩化物が初日に加えられ、1mLのオキサリル塩化物が3日目に加えられ、1mLのオキサリル塩化物が5日目に加えられる。
或いは、1mLのオキサリル塩化物が初日で加え、0.5mLのオキサリル塩化物が2日目に加えられ、1.5mLのオキサリル塩化物が5日目に加えられる。
或いは、0.5mLのオキサリル塩化物が初日に加えられ、1mLのオキサリル塩化物が3日目に加えられ、1.5mLのオキサリル塩化物が5日目に加えられる。
ステップ3:以下の式17で示される2,5−(ジオクチルオキシ−7,9−ビス(2−チオフェン)−8H−シクロペンタジエンベンゾ[1,2−b:4,3−b´]ジチオフェン−8−ケトンの準備:
Figure 2015535547
1.2g(5.4mmol)の1,3−ビス(2−チオフェン)アセトン、2.7g(5.4mmol)の2,7−ジオクチルオキシ−4,5−ジケトン、40mLのエタノールが順番に250mLの一口フラスコに加えられ、加熱して還流させる。
少量の水酸化カリウムが2mLのエタノールに溶かされ、反応フラスコにシリンジで滴下される。
反応溶液が濃緑に変色した後、さらに、10分間反応実行後、停止させる。
反応溶液は氷水浴中に移される。
反応溶液は、濾過され、エタノール、加熱されたn−ヘキサンで多数回洗浄され、乾燥して固体生成物を得る。
例えば、n−ヘキサンの温度は反応温度と同じとするか、或いは、n−ヘキサンの温度は、反応温度のプラスマイナス5℃とする。
或いは、水酸化カリウムと1,3−ビス(2−チオフェン)アセトンのモル比は、5:1とする。
MALDI−TOF−MS(質量/電荷数):679.0(M
ステップ4:以下の式18で示す2,5−ジオクチルオキシ−7,9−ビス(2−トリメチルすず−5−チオフェン)−8H−シクロペンタジエンベンゾ[1,2−b:4,3−b´]ジチオフェン−8−ケトンの製造:
Figure 2015535547
窒素雰囲気において、6.79g(10mmol)の2,5−ジオクチルオキシ−7,9−ビス(2−チオフェン)−8H−シクロペンタジエンベンゾ[1,2−b:4,3−b´]ジチオフェン−8−ケトンと、120mLの無水THFが−78℃まで冷却される。
次に、2.5Mヘキサン溶液の5mL(12mmol)のn−ブチルリチウムがゆっくり加えられ、その後、2時間、−78℃で保温して反応させる。
次に、4.5mL(15mmol)のトリメチル塩化すずが加えられ、0.5時間、保温して反応させた後、自然に室温に戻し、続いて、24時間反応させた後、反応を停止させる。
50mLのヘキサンを加え希釈し、反応液をゆっくりと氷水浴に移し、析出した有機相を、それぞれ5%のNaHCOと、飽和NaCl溶液を用いてそれぞれ洗浄し、無水硫酸マグネシウムで乾燥させ、ろ過し、旋回蒸発し、減圧下で蒸留し、余分なトリメチル塩化スズを蒸留して除き、製品を得る。
MALDI−TOF−MS(質量/電荷数):1004.6(M)。
ステップ5:以下の式19に示すチオフェンピロリジンユニットを含有するベンゾジチオフェン系共重合体の製造:
Figure 2015535547
窒素雰囲気下で、0.5g(0.5mmol)の2,5−ジオクチルオキシ−7,9−ビス(2−トリメチルスズ−5−チオフェン)−8H−シクロペンタジエンベンゾ[1,2−b:4,3−b´]ジチオフェン−8−ケトンと、0.27g(0.5mmol)の1,3−ジブロモ−5−(2−エチルデシル)−4H−チオフェン[3,4−c]ピロール−4,5−ジオン(本明細書の上述した反応式と同様の化学構造式に対応する、以下同じ)が10mLの乾燥トルエンを含む反応フラスコに加えられ、反応溶液を15分間窒素を通じて攪拌し、素早くPd(dba)とP(o−Tol)の触媒が反応フラスコに加えられる。ここで、Pd(dba)は23mg(0.025mmol、5%mol)であり、P(o−Tol)は152mg(0.5mmol)であり、Pd(dba)とP(o−Tol)のモル比は1:20である。
15分間窒素を通じて攪拌した後、反応混合物は、80℃に加熱され還流され、72時間攪拌反応させ、反応を停止させた後、反応溶液が室温まで冷めるのをまって、減圧蒸留により約5mLとなるまで反応溶液を乾燥させ、次いで、300mLの乾燥メタノールを滴下し、約4時間連続的に攪拌し、徐々に固体が沈殿し、吸引ろ過し、焙り乾燥して固体粉末を得る。
固体粉末はクロロフォルムに溶解され、中性アルミナカラムクロマトグラフィに架けてPd(dba)の触媒を除去し、ポリマー溶液を約5mLとなるまで蒸発させ、5mLの溶液をメタノール溶媒に滴下し、数時間攪拌し、次にポリマーが収集され、焙り乾燥され、次にポリマーがソックスレー抽出器で抽出され、これにより、ポリマ分子量の単分散性が改良された。
分子量はGPC(ゲル浸透クロマトグラフ)(Gel Permeation Chromatography:GPC)を通してテストされた。
GPC(ゲル浸透クロマトグラフ):Mn=67320,PDI=1.5。
実施例2
以下の式20のチオフェンピロリジンユニットを含有するベンゾジチオするベンゾジチオフェン系共重合体
Figure 2015535547
ここで、Rはヘキシル基であり、RはHであり、Rは2−メチルチェニルであり、RはHであり、Rはオクチル基であり、例えば1−n−オクチルなどのオクチル基であり、n=55である。
チオフェンピロリジンユニットを含有するベンゾジチオフェン系共重合体の製造方法は、以下のステップを含む:
ステップ1:以下の式21のビス(4−ジヘキシル−2−チオフェン)アセトンの準備:
Figure 2015535547
まず、反応溶液を形成するために無水形処理された70mLのジクロロメタンに、7.6gのDCCと1.23gのDMAPを溶解させて、
窒素雰囲気下、7.6gの4−ヘキシル−2−チオフェン酢酸を含む60mLのジクロロメタン溶液を上述の溶液に滴下して徐々に加え、一晩反応させる。
反応後、反応溶液はフィルターにかけられ、n−ヘキサンを用いて二度再結晶し、カラムクロマトグラフィで精製して製造物を得る。
MALDI−TOF−MS(質量/電荷数):391(M
ステップ2:以下の式22に示す2,7−ビス(2−メチル−5−チオフェン)ベンゾ[1,2−b:4,3−b´]ジチオフェン−4,5−ジケトンの準備:
Figure 2015535547
21.5g(60mmol)の4,4´−ビス[2−(2−メチル−5−チオフェン)]チオフェンが350mLの乾燥1,2−ジクロロエタンに加えられ、3mL(すなわち、34.5mmol)のオキサリル塩化物が、5日以内に3回、反応フラスコに加えられ、アルゴン雰囲気において15日の間、環流反応が実行される。
反応が終わった後、反応溶液は室温に冷却され、夜通し、冷凍庫で冷凍され、
次にフィルターにかけられて、赤色固体を得て、n−ヘキサンとエタノールで順番に洗浄して製品を得る。
MALDI−TOF−MS(質量/電荷数):413.0(M
ステップ3:以下の式23で示す2,5−ビス(2−メチル−5−チオフェン)−7,9−ビス(4−ヘキシル−2−チオフェン)−8H−シクロペンタジエンベンゾ[1,2−b:4,3−b´]ジチオフェン−8−ケトンの製造
Figure 2015535547
2.1g(5.4mmol)のビス(4−ヘキシル−2−チオフェン)アセトン、2.2g(5.4mmol)の2,7−ビス(2−メチル−5−チオフェン)ベンゾ[1,2−b:4,3−b´]ジチオフェン−4,5−ジケトン、60mLのエタノールが順番に250mLの一口フラスコに加えられ、加熱して還流させる。
少量の水酸化カリウムが2mLのエタノールに溶かされ、反応フラスコにシリンジで滴下される。
反応溶液が濃緑に変色した後、さらに、10分間反応実行後、停止させる。
反応溶液は氷水浴に移され、反応溶液は、濾過され、エタノール、加熱されたn−ヘキサンで多数回洗浄され、乾燥して固体生成物を得る。
MALDI−TOF−MS(質量/電荷数):765.0(M
ステップ4:以下の式24で示す2,5−ビス(2−メチル−5−チオフェン)−7,9−ビス(4−ヘキシル−2−トリメチルすず−5−チオフェン)−8H−シクロペンタジエンベンゾ[1,2−b:4,3−b´]ジチオフェン−8−ケトンの製造:
Figure 2015535547
窒素雰囲気において、7.65g(10mmol)の2,5−ビス(2−メチル−5−チオフェン)−7,9−ビス(4−ヘキシル−2−チオフェン)−8H−シクロペンタジエンベンゾ[1,2−b:4,3−b´]ジチオフェン−8−ケトンと、150mLの無水THFが−78℃まで冷却される。
次に、2.5Mヘキサン溶液の5mL(12mmol)のn−ブチルリチウムがゆっくり加えられ、その後、2時間、−78℃で保温して反応させる。
次に、4.5mL(15mmol)のトリメチル塩化すずが加えられ、0.5時間、保温して反応させた後、自然に室温に戻し、続いて、24時間反応させた後、反応を停止させる。
50mLのヘキサンを加え希釈し、反応液をゆっくりと氷水浴に移し、析出した有機相を、それぞれ5%のNaHCOと、飽和NaCl溶液を用いてそれぞれ洗浄し、無水硫酸マグネシウムで乾燥させ、ろ過し、旋回蒸発し、減圧下で蒸留し、余分なトリメチル塩化スズを蒸留して除き、製品を得る。
MALDI−TOF−MS(質量/電荷数):1093(M)。
ステップ5:以下の式25に示すチオフェンピロリジンユニットを含有するベンゾジチオフェン系共重合体の製造:
Figure 2015535547
窒素雰囲気下で、0.82g(0.75 mmol)の2,5−ビス(2−メチル−5−チオフェン)−7,9−ビス(4−ヘキシル−2−トリメチルスズ−5−チオフェン)−8H−シクロペンタジエンベンゾ[1,2−b:4,3−b´]ジチオフェン−8−ケトンと、0.21g(0.5 mmol)の1,3−ジブロモ−5−オクチル−4H−チオフェン[3,4−c]ピロール−4,5−ジオンが10mLの乾燥テトラヒドロフランを含む反応フラスコ、即ち、10mLの無水テトラヒドロフランを含む反応フラスコ、又は、乾燥処理された10mLの無水テトラヒドロフランを含む反応フラスコに加えられ、反応溶液を15分間窒素を通じて攪拌し、素早く14mg(0.015 mmol、3%mol)のPd(dba)と68 mg(0.225 mmol)のP(o−Tol)の触媒が反応フラスコに加えられる。ここで、Pd(dba)とP(o−Tol)のモル比は1:15である。
15分間窒素を通じて攪拌した後、反応混合物は、60℃に加熱され還流され、60時間攪拌反応させ、反応を停止させた後、反応溶液が室温まで冷めるのをまって、減圧蒸留により約5mLとなるまで反応溶液を乾燥させ、次いで、300mLの乾燥メタノールを滴下し、約4時間連続的に攪拌し、徐々に固体が沈殿し、吸引ろ過し、焙り乾燥して固体粉末を得る。
固体粉末はクロロフォルムに溶解され、中性アルミナカラムクロマトグラフィに架けてPd(dba)の触媒を除去し、ポリマー溶液を約5mLとなるまで蒸発させ、5mLの溶液をメタノール溶媒に滴下し、数時間攪拌し、次にポリマーが収集され、焙り乾燥され、次にポリマーがソックスレー抽出器で抽出され、これにより、ポリマ分子量の単分散性が改良された。
GPC(ゲル浸透クロマトグラフ):Mn=56540,PDI=1.8
実施例3
以下の式26のチオフェンピロリジンユニットを含有するベンゾジチオするベンゾジチオフェン系共重合体
Figure 2015535547
ここで、Rは16アルキル基であり、RはHであり、Rはメトキシル基であり、RはHであり、Rはメチル基であり、n=35である。
以下の式27で示す2,5−ジメトキシベンゼン−7,9−ビス(4−ヘキサデシル−5−トリメチルすず−2−チオフェン)−8H−シクロペンタジエンベンゾ[1,2−b:4,3−b´]ジチオフェン−8−ケトンの製造:
Figure 2015535547
合成法は実施例1のステップ1〜4が参照される。
MALDI−TOF−MS(質量/電荷数):1241(M
ステップ2:以下の式28に示すチオフェンピロリジンユニットを含有するベンゾジチオフェン系共重合体の製造
Figure 2015535547
窒素雰囲気下で、0.74g(0.6 mmol)の2,5−ジメトキシベンゼン−7,9−ビス(4−ヘキサデシル−5−トリメチルスズ−2−チオフェン)−8H−シクロペンタジエンベンゾ[1,2−b:4,3−b´]ジチオフェン−8−ケトンと、0.16g(0.5 mmol)の1,3−ジブロモ−5−メチル−4H−チオフェン[3,4−c]ピロール−4,5−ジオンが10mLの乾燥DMFを含む反応フラスコに加えられ、反応溶液を15分間窒素を通じて攪拌し、素早くPd(dba)とP(o−Tol)の触媒が反応フラスコに加えられる。ここで、Pd(dba)は0.046 mg(0.00005 mmol、0.01%mol)であり、P(o−Tol)は0.0304 mg(0.0001 mmol)であり、Pd(dba)とP(o−Tol)のモル比は1:2である。
室温で15分間窒素を通じて攪拌した後、反応混合物は、120℃に加熱され還流され、48時間攪拌反応させ、反応を停止させた後、反応溶液が室温まで冷めるのをまって、減圧蒸留により約5mLとなるまで反応溶液を乾燥させ、次いで、300mLの乾燥メタノールに滴下し、約4時間連続的に攪拌し、徐々に固体が沈殿し、吸引ろ過し、焙り乾燥して固体粉末を得る。
固体粉末はクロロフォルムに溶解され、中性アルミナカラムクロマトグラフィに架けてPd(dba)の触媒を除去し、ポリマー溶液を約5mLとなるまで蒸発させ、5mLの溶液をメタノール溶媒に滴下し、数時間攪拌し、次にポリマーが収集され、焙り乾燥され、次にポリマーがソックスレー抽出器で抽出され、これにより、ポリマ分子量の単分散性が改良された。
GPC(ゲル浸透クロマトグラフ):Mn=37905,PDI=1.8
実施例4
以下の式29のチオフェンピロリジンユニットを含有するベンゾジチオするベンゾジチオフェン系共重合体。
Figure 2015535547
ここで、RはHであり、Rはメチル基であり、Rは16アルコキシ基であり、RはHであり、Rは2−エチルオクチルであり、n=30である。
ステップ1:以下の式30で示す2,5−ビス(ヘキアデシルオキシ)−7,9−ビス(3−メチル−5−トリメチルすず−2−チオフェン)−8H−シクロペンタジエンベンゾ[1,2−b:4,3−b´]ジチオフェン−8−ケトンの製造:
Figure 2015535547
合成法は実施例1のステップ1〜4が参照される。
MALDI−TOF−MS(質量/電荷数):1241(M)。
ステップ2:以下の式31に示すチオフェンピロリジンユニットを含有するベンゾジチオフェン系共重合体の製造:
Figure 2015535547
窒素雰囲気下で、0.62g(0.5 mmol)の2,5−ビス(ヘキシルオキシ)−7,9−ビス(3−メチル−5−トリメチルスズ−2−チオフェン)−8H−シクロペンタジエンベンゾ[1,2−b:4,3−b´]ジチオフェン−8−ケトンと、0.23g(0.5 mmol)の1,3−ジブロモ−5−(2−エチルオクチル)−4H−チオフェン[3,4−c]ピロール−4,5−ジオンが10mLの乾燥DMFを含む反応フラスコに加えられ、反応溶液を15分間窒素を通じて攪拌し、素早く0.046 mg(0.00005 mmol、0.01%mol)のPd(dba)と0.0304 mg(0.0001 mmol)のP(o−Tol)の触媒が反応フラスコに加えられる。ここで、Pd(dba)とP(o−Tol)のモル比は1:2である。
室温で15分間窒素を通じて攪拌した後、反応混合物は、120℃に加熱され還流され、48時間攪拌反応させ、反応を停止させた後、反応溶液が室温まで冷めるのをまって、減圧蒸留により約5mLとなるまで反応溶液を乾燥させ、次いで、300mLの乾燥メタノールに滴下し、約4時間連続的に攪拌し、徐々に固体が沈殿し、吸引ろ過し、焙り乾燥して固体粉末を得る。
固体粉末はクロロフォルムに溶解され、中性アルミナカラムクロマトグラフィに架けてPd(dba)の触媒を除去し、ポリマー溶液を約5mLとなるまで蒸発させ、5mLの溶液をメタノール溶媒に滴下し、数時間攪拌し、次にポリマーが収集され、焙り乾燥され、次にポリマーがソックスレー抽出器で抽出され、これにより、ポリマ分子量の単分散性が改良された。
GPC(ゲル浸透クロマトグラフ):Mn=36150,PDI=1.8
実施例5
以下の式32のチオフェンピロリジンユニットを含有するベンゾジチオするベンゾジチオフェン系共重合体
Figure 2015535547
ここで、RとRは同一のメチル基であり、Rは16アルコキシ基であり、RはHであり、Rはエチル基であり、n=20である。
ステップ1:以下の式33で示す2,5−ビス(ヘキサデシル)−7,9−ビス(3,4−ジメチル−5−トリメチルすず−2−チオフェン)−8H−シクロペンタジエンベンゾ[1,2−b:4,3−b´]ジチオフェン−8−ケトンの製造:
Figure 2015535547
合成法は実施例1のステップ1〜4が参照される。
MALDI−TOF−MS(質量/電荷数):1237(M)。
ステップ2:以下の式34に示すチオフェンピロリジンユニットを含有するベンゾジチオフェン系共重合体の製造:
Figure 2015535547
窒素雰囲気下で、0.62g(0.5 mmol)の2,5−ビス(ヘキシルオキシ)−7,9−ビス(3,4−ジメチル−5−トリメチルスズ−2−チオフェン)−8H−シクロペンタジエンベンゾ[1,2−b:4,3−b´]ジチオフェン−8−ケトンと、0.17g(0.5 mmol)の1,3−ジブロモ−5−エチル−4H−チオフェン[3,4−c]ピロール−4,5−ジオンが10mLの乾燥ベンゼンを含む反応フラスコに加えられ、反応溶液を15分間窒素を通じて攪拌し、素早く28.9 mg(0.025 mmol、5%mol)のテトラキス(トリフェニルホスフィン)パラジウムの触媒が反応フラスコに加えられる。
室温で15分間窒素を通じて攪拌した後、反応混合物は、80℃に加熱され還流され、24時間攪拌反応させ、反応を停止させた後、反応溶液が室温まで冷めるのをまって、減圧蒸留により約5mLとなるまで反応溶液を乾燥させ、次いで、300mLの乾燥メタノールに滴下し、約4時間連続的に攪拌し、徐々に固体が沈殿し、吸引ろ過し、焙り乾燥して固体粉末を得る。
固体粉末はクロロフォルムに溶解され、中性アルミナカラムクロマトグラフィに架けてテトラキス(トリフェニルホスフィン)パラジウムの触媒を除去し、ポリマー溶液を約5mLとなるまで蒸発させ、5mLの溶液をメタノール溶媒に滴下し、数時間攪拌し、次にポリマーが収集され、焙り乾燥され、次にポリマーがソックスレー抽出器で抽出され、これにより、ポリマ分子量の単分散性が改良された。
GPC(ゲル浸透クロマトグラフ):Mn=21780,PDI=2.2
実施例6
以下の式35のチオフェンピロリジンユニットを含有するベンゾジチオするベンゾジチオフェン系共重合体
Figure 2015535547
または、RとRは同一のHであり、Rはヘキシルであり、RがHであり、Rはブチル基であり、n=15である。
ステップ1:以下の式36で示す2,5−ジヘキシル−7,9−ビス(5−トリメチルすず−2−チオフェン)−8H−シクロペンタジエンベンゾ[1,2−b:4,3−b´]ジチオフェン−8−ケトンの製造:
Figure 2015535547
合成法は実施例1のステップ1〜4が参照される。
MALDI−TOF−MS(質量/電荷数):900(M
ステップ2:以下の式37に示すチオフェンピロリジンユニットを含有するベンゾジチオフェン系共重合体の製造:
Figure 2015535547
窒素雰囲気下で、0.45g(0.5 mmol)の2,5−ジヘキシル−7,9−ビス(5−トリメチルスズ−2−チオフェン)−8H−シクロペンタジエンベンゾ[1,2−b:4,3−b´]ジチオフェン−8−ケトンと、0.18g(0.5 mmol)の1,3−ジブロモ−5−ブチル−4H−チオフェン[3,4−c]ピロール−4,5−ジオンが10mLの乾燥メチルベンゼンを含む反応フラスコに加えられ、反応溶液を15分間窒素を通じて攪拌し、素早く3.5mg(0.005mmol、1%mol)のPd(PPhClの触媒が反応フラスコに加えられる。
室温で15分間窒素を通じて攪拌した後、反応混合物は、110℃に加熱され還流され、24時間攪拌反応させ、反応を停止させた後、反応溶液が室温まで冷めるのをまって、減圧蒸留により約5mLとなるまで反応溶液を乾燥させ、次いで、300mLの乾燥メタノールに滴下し、約4時間連続的に攪拌し、徐々に固体が沈殿し、吸引ろ過し、焙り乾燥して固体粉末を得る。
固体粉末はクロロフォルムに溶解され、中性アルミナカラムクロマトグラフィに架けてPd(PPhClの触媒を除去し、ポリマー溶液を約5mLとなるまで蒸発させ、5mLの溶液をメタノール溶媒に滴下し、数時間攪拌し、次にポリマーが収集され、焙り乾燥され、次にポリマーがソックスレー抽出器で抽出され、これにより、ポリマ分子量の単分散性が改良された。
GPC(ゲル浸透クロマトグラフ):Mn=11700,PDI=2.2
実施例7
以下の式38のチオフェンピロリジンユニットを含有するベンゾジチオするベンゾジチオフェン系共重合体
Figure 2015535547
ここで、RとRは同一のHであり、Rはメチルであり、RがHであり、Rはブチル基であり、n=10である。
ステップ1:以下の式39で示す2,5−ジメチル−7,9−ビス(5−トリメチルすず−2−チオフェン)−8H−シクロペンタジエンベンゾ[1,2−b:4,3−b´]ジチオフェン−8−ケトンの製造:
Figure 2015535547
合成法は実施例1のステップ1〜4が参照される。
MALDI−TOF−MS(質量/電荷数):760(M
ステップ2:以下の式40に示すチオフェンピロリジンユニットを含有するベンゾジチオフェン系共重合体の製造:
Figure 2015535547
窒素雰囲気下で、0.38g(0.5 mmol)の2,5−ジメチル−7,9−ビス(5−トリメチルスズ−2−チオフェン)−8H−シクロペンタジエンベンゾ[1,2−b:4,3−b´]ジチオフェン−8−ケトンと、0.18g(0.5 mmol)の1,3−ジブロモ−5−ブチル−4H−チオフェン[3,4−c]ピロール−4,5−ジオンが10mLの乾燥メチルベンゼンを含む反応フラスコに加えられ、反応溶液を15分間窒素を通じて攪拌し、素早く11.6mg(0.01mmol、2%mol)のテトラキス(トリフェニルホスフィン)パラジウムの触媒が反応フラスコに加えられる。
室温で15分間窒素を通じて攪拌した後、反応混合物は、110℃に加熱され還流され、24時間攪拌反応させ、反応を停止させた後、反応溶液が室温まで冷めるのをまって、減圧蒸留により約5mLとなるまで反応溶液を乾燥させ、次いで、300mLの乾燥メタノールに滴下し、約4時間連続的に攪拌し、徐々に固体が沈殿し、吸引ろ過し、焙り乾燥して固体粉末を得る。
固体粉末はクロロフォルムに溶解され、中性アルミナカラムクロマトグラフィに架けてテトラキス(トリフェニルホスフィン)パラジウムの触媒を除去し、ポリマー溶液を約5mLとなるまで蒸発させ、5mLの溶液をメタノール溶媒に滴下し、数時間攪拌し、次にポリマーが収集され、焙り乾燥され、次にポリマーがソックスレー抽出器で抽出され、これにより、ポリマ分子量の単分散性が改良された。
GPC(ゲル浸透クロマトグラフ):Mn=12680,PDI=2.2
実施例8
以下の式41のチオフェンピロリジンユニットを含有するベンゾジチオするベンゾジチオフェン系共重合体
Figure 2015535547
ここで、RとRは同一のHであり、RとRは同一のHであり、Rがブチル基であり、n=8である。
ステップ1:以下の式42で示す7,9−ビス(5−トリメチルすず−2−チオフェン)−8H−シクロペンタジエンベンゾ[1,2−b:4,3−b´]ジチオフェン−8−ケトンの製造:
Figure 2015535547
合成法は実施例1のステップ1〜4が参照される。
MALDI−TOF−MS(質量/電荷数):732(M
ステップ2:以下の式43に示すチオフェンピロリジンユニットを含有するベンゾジチオフェン系共重合体の製造:
Figure 2015535547
窒素雰囲気下で、0.37g(0.5 mmol)の7,9−ビス(5−トリメチルスズ−2−チオフェン)−8H−シクロペンタジエンベンゾ[1,2−b:4,3−b´]ジチオフェン−8−ケトンと、0.18g(0.5 mmol)の1,3−ジブロモ−5−ブチル−4H−チオフェン[3,4−c]ピロール−4,5−ジオンが10mLの乾燥ベンゼンを含む反応フラスコに加えられ、反応溶液を15分間窒素を通じて攪拌し、素早く0.29 mg(0.00025 mmol、0.05%mol)のテトラキス(トリフェニルホスフィン)パラジウムの触媒が反応フラスコに加えられる。
室温で15分間窒素を通じて攪拌した後、反応混合物は、80℃に加熱され還流され、12時間攪拌反応させ、反応を停止させた後、反応溶液が室温まで冷めるのをまって、減圧蒸留により約5mLとなるまで反応溶液を乾燥させ、次いで、300mLの乾燥メタノールに滴下し、約4時間連続的に攪拌し、徐々に固体が沈殿し、吸引ろ過し、焙り乾燥して固体粉末を得る。
固体粉末はクロロフォルムに溶解され、中性アルミナカラムクロマトグラフィに架けてテトラキス(トリフェニルホスフィン)パラジウムの触媒を除去し、ポリマー溶液を約5mLとなるまで蒸発させ、5mLの溶液をメタノール溶媒に滴下し、数時間攪拌し、次にポリマーが収集され、焙り乾燥され、次にポリマーがソックスレー抽出器で抽出され、これにより、ポリマ分子量の単分散性が改良された。
GPC(ゲル浸透クロマトグラフ):Mn=4896,PDI=2.3
また、本発明では、ポリマー太陽電池、ポリマー有機エレクトロルミネセンスデバイス、ポリマー有機電界効果トランジスタ、ポリマー有機光学メモリ、ポリマー有機非線形材料、またはポリマー有機レーザーについて、上述した実施例のチオフェンピロリジンユニットを含むベンゾジチオフェン系共重合体の応用についても提供される。
以下、具体的な実施例を説明する。
実施例9
実施例1の共重合体を用いた有機太陽電池デバイス、即ち、チオフェンピロリジンユニットを含有するベンゾジチオフェン系共重合体を活性層の材料として用いた有機太陽電池デバイスの構造を図1に示す。
有機太陽電池デバイスの製造:
デバイスの構造は以下の通りである:
ガラス/ITO/PEDOT:PSS/活性層/Al、ここで、ITO(インジウムすず酸化物)は、シート抵抗が10〜20Ω/平方のインジウムすず酸化物であり、PEDOTは、ポリ(3,4−エチレンジオキシチオフェン)であり、PSSはポリ(スチレンスルホン酸)である。
ITOガラスは超音波掃除され、酸素プラズマにて処理され、ITOガラスの上に、PEDOT:PSSがスピンコーティングされる。
実施例1の共重合体は電子ドナー材料として用いられ、PCBMが電子受容体材料として用いられ、これらがスピンコーティング技術で設けられ、金属アルミニウム電極が真空蒸着法で設けられ、有機太陽電池デバイスが得られる。
実施例10
実施例2の共重合体を用いた有機エレクトロルミネセンスデバイス、即ち、チオフェンピロリジンユニットを含有するベンゾジチオフェン系共重合体を発光層の材料として用いた有機エレクトロルミネセンスデバイスの構造を図2に示す。
有機エレクトロルミネセンスデバイスの製造:

ITO/本発明の共重合体/LiF/Al
ガラス基板の上にシート抵抗を10〜20Ω/平方とするインジウムすず酸化物(ITO)が沈積され、透明陽極を形成し、ITOの上に、実施例2の共重合体をスピンコーティングして発光層を形成し、発光層にLiFを真空蒸発により蒸着してバッファ層を形成し、バッファ層に最後に金属Alを真空蒸発によって蒸着して陰極を形成する。
実施例11
実施例3の共重合体を用いた有機電界効果トランジスタ、即ち、チオフェンピロリジンユニットを含有するベンゾジチオフェン系共重合体を有機半導体の材料として用いた有機電界効果トランジスタの構造を図3に示す。
有機電界効果トランジスタの製造:
高ドープシリコン(Si)ウエハースが基板として使用され、厚さ450nmのSiO層が絶縁層として使用され、ソース電極(S)とドレイン電極(D)が金で作られ、実施例3の共重合体が有機半導体層として使用され、オクタデシルトリクロロシラン(OTS)で改質されたSiO層の上にスピンコートされる。
出願人は、本技術領域の技術者が本明細書に依拠し、本発明をいかに実施するかを理解し、さらに、権利請求範囲が限定する範囲内で実施して上述の効果を得ることの判断に十分に足りるものであり、本技術領域の技術者は、この判断と証明に基づいて、上述の各例のチオフェンピロリジンユニットを含有するベンゾジチオフェン系共重合体を上述の各用途において用いることができる。
以上の実施例は、本願のいくつかの実施方式を表すものであり、これは比較的具体的で詳細を説明するものであるが、これにより本発明の特許の権利範囲を制限するものではない。しかも、上述のように列挙した各技術特性は、その相互の組合せは各実施方法を形成することができ、本発明の明細書の記載範囲に属するものと理解されるべきである。本発明の当業者によれば、本発明の思想の離れない範囲において、若干の変形や改良が可能であり、これらも全て本発明の技術範囲に属する。従って、本発明の権利範囲は、特許請求の範囲の記載に基くものである。

Claims (10)

  1. 以下の式44を有するチオフェンピロリジンユニットを含有するベンゾジチオフェン系共重合体:
    Figure 2015535547
    ここで、RとRは、H、又は、C〜C16のアルキル基からそれぞれ選択され、
    とRは、H、C〜C16のアルキル基、C〜C16のアルコキシ基、又は、C〜C16のアルキル基で置換されたチェニルからそれぞれ選択され、
    は、C〜C16のアルキル基であり、
    nは、8〜82の自然数である。
  2. 前記アルキル基は、直鎖アルキル基、又は、分岐アルキル基であり、
    アルコキシ基は、直鎖アルコキシ基か分岐アルコキシ基である、ことを特徴とする請求項1に記載のチオフェンピロリジンユニットを含有するベンゾジチオフェン系共重合体。
  3. nは、9〜60の自然数である、ことを特徴とする請求項2に記載のチオフェンピロリジンユニットを含有するベンゾジチオフェン系共重合体。
  4. とRは同一であり、及び/又は、RとRは同一である、ことを特徴とする請求項3に記載のベンゾジチオフェン系共重合体。
  5. ,R,R,R,Rは、以下の組合せからなる、ことを特徴とする請求項3に記載のベンゾジチオフェン系共重合体:
    とRはHであり、RとRはメチルであり、Rはブチルである、
    または、R,R,R,およびRはHであり、Rはメチルである、
    または、Rはエチルであり、Rはペンチルであり、RはHであり、Rは3−メチルチェニルであり、Rは2−メチルブチルである、
    または、RとRは同一のプロピルであり、Rは12アルキル基であり、Rがエトキシル基であり、Rは2,4−ジメチル−3−エチルヘプチルである、
    または、Rはブチルであり、Rは12アルキル基であり、Rは14アルコキシ基であり、Rはオクチル基であり、Rは2,2,4−トリメチルペンチルである、
    または、RとRは同一のHであり、Rはオクトキシ基であり、RはHであり、Rは16アルキルである、
    または、Rはヘキシル基であり、RはHであり、Rは2−メチルチェニルであり、RはHであり、Rはオクチル基である、
    または、Rは16アルキル基であり、RはHであり、Rはメトキシル基であり、RはHであり、Rはメチル基である、
    または、RはHであり、Rはメチル基であり、Rは16アルコキシ基であり、RはHであり、Rはブチル基である、
    または、RとRは同一のメチル基であり、Rは16アルコキシ基であり、RはHであり、Rはブチル基である、
    または、RとRは同一のHであり、Rはヘキシルであり、RがHであり、Rはブチル基である、
    または、RとRは同一のHであり、Rはメチル基であり、RはHであり、Rはブチル基である、
    または、RとRは同一のHであり、RとRは同一のHであり、Rがブチル基である。
  6. 以下のステップを含む、チオフェンピロリジンユニットを含有するベンゾジチオフェン系共重合体の製造方法:
    無酸素環境において以下の式45に表されるM1とM2を溶媒に添加し、
    Figure 2015535547
    触媒存在下において以下の式46に示される環流反応を実行するステップ、
    化学反応式は以下の通りである。式46:
    Figure 2015535547
    ここで、RとRは、H、又は、C〜C16のアルキル基からそれぞれ選択され、
    とRは、H、C〜C16のアルキル基、C〜C16のアルコキシ基、又は、C〜C16のアルキル基で置換されたチェニルからそれぞれ選択され、
    は、C〜C16のアルキル基であり、
    nは、8〜82の自然数である、
    M1とM2の間のモル比は1:1〜1.5:1であり、
    溶媒は、トルエン、テトラヒドロフラン、ベンゼン、およびN,N−ジメチルホルムアミドの少なくとも一つから選択され、
    触媒は、有機パラジウム、又は、有機パラジウムと有機ホスフィン配位子の混合物であり、触媒のモル量は、M2のモル量の0.01%〜5%であり、
    有機パラジウムは、Pd(dba),Pd(PPh,Pd(PPhClであり、混合物の中の有機パラジウムと有機ホスフィンリガンドのモル比は、1:2〜1:20であり、
    有機ホスフィンリガンドは、P(o−Tol),又は、トリシクロヘキシルホスフィンであり、
    反応は、12〜72時間、60℃〜120℃の温度で実施される。
  7. 前記M1を以下のステップで準備する、ことを特徴とする請求項6に記載のチオフェンピロリジンユニットを含有するベンゾジチオフェン系共重合体の製造方法:
    ステップS1:化合物Aを適切な量のジクロロメタンに溶解させたものを、窒素雰囲気の下で、スポイトにより、1,3−ジシクロヘキシルカルボジイミドと4−ジメチルアミノピリジンを含む無水ジクロロメタンに滴下するステップであって、
    化合物Aと、1,3−ジシクロヘキシルカルボジイミドと4−ジメチルアミノピリジンのモル比は3:3:1とし、以下の式47の反応を8時間〜24時間行い化合物Bを得るステップ:
    Figure 2015535547
    ステップS2:エタノール又はプロパノールの溶媒に、モル比を1:1で化合物Bと化合物Cを加え、
    78℃〜100℃に加熱して還流反応を実施し、さらに、還元剤を加え、還元剤は、水酸化カリウム又は水酸化ナトリウムとし、還元剤と化合物Bのモル比は5:1とし、反応液が濃緑色に変色した後にさらに10分間反応を実施し、化合物Dを得ることとするステップ、
    Figure 2015535547
    ステップS3:窒素雰囲気の下、化合物Dを無水ジクロロメタンに溶解し、−78℃に冷却する、
    n−ブチルリチウムを含有するn−ヘキサン溶液をゆっくりと加え、ここで、n−ブチルリチウムと化合物Dのモル比は1:2.5とし、
    −78℃の温度で攪拌しながら2時間反応させ、
    その後、さらに、トリメチル塩化スズを加え、ここで、トリメチル塩化スズと化合物Dのモル比は2.5:1とし、
    温度を保って0.5時間反応を行った後に室温に戻し、
    さらに24時間反応を継続し、化合物M1を得る、
    化学反応式は以下の通りである、式49:
    Figure 2015535547
  8. 前記アルキル基は、直鎖アルキル基か分岐アルキル基、又は、シクロアルキル基であり、
    アルコキシ基は、直鎖アルコキシ基か分岐アルコキシ基であり、nは、9〜60の自然数である、ことを特徴とする請求項7に記載のチオフェンピロリジンユニットを含有するベンゾジチオフェン系共重合体の製造方法。
  9. とRは同一であり、及び/又は、RとRは同一である、
    或いは、R,R,R,R,およびRは、以下の組み合わせから選択される:
    とRはHであり、RとRはメチルであり、Rはブチルである、
    または、R,R,R,およびRはHであり、Rはメチルである、
    または、Rはエチルであり、Rはペンチルであり、RはHであり、Rは3−メチルチェニルであり、Rは2−メチルブチルである、
    または、RとRは同一のプロピルであり、Rは12アルキル基であり、Rがエトキシル基であり、Rは2,4−ジメチル−3−エチルヘプチルである、
    または、Rはブチルであり、Rは12アルキル基であり、Rは14アルコキシ基であり、Rはオクチル基であり、Rは2,2,4−トリメチルペンチルである、
    または、RとRは同一のHであり、Rはオクトキシ基であり、RはHであり、Rは16アルキルである、
    または、Rはヘキシル基であり、RはHであり、Rは2−メチルチェニルであり、RはHであり、Rはオクチル基である、
    または、Rは16アルキル基であり、RはHであり、Rはメトキシル基であり、RはHであり、Rはメチル基である、
    または、RはHであり、Rはメチル基であり、Rは16アルコキシ基であり、RはHであり、Rはブチル基である、
    または、RとRは同一のメチル基であり、Rは16アルコキシ基であり、RはHであり、Rはブチル基である、
    または、RとRは同一のHであり、Rはヘキシルであり、RがHであり、Rはブチル基である、
    または、RとRは同一のHであり、Rはメチル基であり、RはHであり、Rはブチル基である、
    または、RとRは同一のHであり、RとRは同一のHであり、Rがブチル基である、ことを特徴とする請求項8に記載のチオフェンピロリジンユニットを含有するベンゾジチオフェン系共重合体の製造方法。
  10. 請求項1乃至請求項5のいずれか一項に記載のチオフェンピロリジンユニットを含有するベンゾジチオフェン系共重合体を用いた、ポリマー太陽電池に、ポリマー有機エレクトロルミネセンスデバイス、ポリマー有機電界効果トランジスタ、ポリマー有機光学メモリ、ポリマー有機非線形材料、及び、ポリマー有機レーザー。
JP2015544299A 2012-11-30 2012-11-30 チオフェンピロリジンユニットを含有するベンゾジチオフェン系共重合体、製造方法、及び、その使用方法 Active JP6096314B2 (ja)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2012/085685 WO2014082310A1 (zh) 2012-11-30 2012-11-30 含噻吩并吡咯二酮单元的苯并二噻吩类共聚物及其制备方法与应用

Publications (2)

Publication Number Publication Date
JP2015535547A true JP2015535547A (ja) 2015-12-14
JP6096314B2 JP6096314B2 (ja) 2017-03-15

Family

ID=50827095

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015544299A Active JP6096314B2 (ja) 2012-11-30 2012-11-30 チオフェンピロリジンユニットを含有するベンゾジチオフェン系共重合体、製造方法、及び、その使用方法

Country Status (5)

Country Link
US (1) US9328204B2 (ja)
EP (1) EP2927259B1 (ja)
JP (1) JP6096314B2 (ja)
CN (1) CN104769005B (ja)
WO (1) WO2014082310A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015535546A (ja) * 2012-11-30 2015-12-14 オーシャンズ キング ライティング サイエンス アンド テクノロジー シーオー.,エルティーディー ピリジノ[2,1,3]チアジアゾールユニットを含有するベンゾジチオフェン系共重合体、製造方法、及び、その使用方法
JP2016501294A (ja) * 2012-11-30 2016-01-18 オーシャンズ キング ライティング サイエンス アンド テクノロジー シーオー.,エルティーディー チエノ[3,4−b]チオフェンユニットを含有するベンゾジチオフェン系共重合体、製造方法、及びその使用方法

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105098596B (zh) * 2015-09-14 2019-04-16 深圳硅基传感科技有限公司 一种降低氧化铟锡/金属电极对有机激光增益层产生的光损耗的方法
CN105957964A (zh) * 2016-05-03 2016-09-21 南京邮电大学 一种柔性有机半导体激光器及其制作方法
JP2018174279A (ja) * 2017-03-31 2018-11-08 国立大学法人九州大学 有機半導体レーザー素子
CN114507336B (zh) * 2022-01-18 2023-08-22 常州大学 一种含氟近红外吸收共轭聚合物及其制备方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011168747A (ja) * 2010-02-22 2011-09-01 Kyoto Univ 共役系高分子、該共役系高分子を用いた有機薄膜太陽電池
WO2012124627A1 (ja) * 2011-03-11 2012-09-20 株式会社クラレ π電子共役系ブロック共重合体および光電変換素子
JP2012207104A (ja) * 2011-03-29 2012-10-25 Mitsubishi Chemicals Corp ヨウ素化縮合チオフェン化合物を用いたコポリマーの製造方法、及びヨウ素化ジオキソピロロチオフェン化合物
WO2012156022A1 (en) * 2011-05-16 2012-11-22 Merck Patent Gmbh Conjugated polymers
JP2013504209A (ja) * 2009-09-04 2013-02-04 プレックストロニクス インコーポレーティッド 光電池およびジケトンベースのポリマーを含む、有機電子素子およびポリマー
JP2015535546A (ja) * 2012-11-30 2015-12-14 オーシャンズ キング ライティング サイエンス アンド テクノロジー シーオー.,エルティーディー ピリジノ[2,1,3]チアジアゾールユニットを含有するベンゾジチオフェン系共重合体、製造方法、及び、その使用方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101128943B1 (ko) * 2007-04-13 2012-03-27 주식회사 엘지화학 디옥시피롤기를 포함하는 헤테로고리 화합물 및 이를이용한 유기 전자 소자
CN102460758B (zh) * 2009-04-06 2015-04-01 肯塔基州研究基金会大学 半导体化合物和包含该半导体化合物的设备
US8729220B2 (en) * 2010-03-31 2014-05-20 Basf Se Annellated dithiophene copolymers
CN102344550B (zh) 2010-07-30 2013-03-27 海洋王照明科技股份有限公司 含噻吩并吡咯二酮单元苝四羧酸二酰亚胺共聚物及其制备方法和应用

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013504209A (ja) * 2009-09-04 2013-02-04 プレックストロニクス インコーポレーティッド 光電池およびジケトンベースのポリマーを含む、有機電子素子およびポリマー
JP2011168747A (ja) * 2010-02-22 2011-09-01 Kyoto Univ 共役系高分子、該共役系高分子を用いた有機薄膜太陽電池
WO2012124627A1 (ja) * 2011-03-11 2012-09-20 株式会社クラレ π電子共役系ブロック共重合体および光電変換素子
JP2012207104A (ja) * 2011-03-29 2012-10-25 Mitsubishi Chemicals Corp ヨウ素化縮合チオフェン化合物を用いたコポリマーの製造方法、及びヨウ素化ジオキソピロロチオフェン化合物
WO2012156022A1 (en) * 2011-05-16 2012-11-22 Merck Patent Gmbh Conjugated polymers
JP2015535546A (ja) * 2012-11-30 2015-12-14 オーシャンズ キング ライティング サイエンス アンド テクノロジー シーオー.,エルティーディー ピリジノ[2,1,3]チアジアゾールユニットを含有するベンゾジチオフェン系共重合体、製造方法、及び、その使用方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015535546A (ja) * 2012-11-30 2015-12-14 オーシャンズ キング ライティング サイエンス アンド テクノロジー シーオー.,エルティーディー ピリジノ[2,1,3]チアジアゾールユニットを含有するベンゾジチオフェン系共重合体、製造方法、及び、その使用方法
JP2016501294A (ja) * 2012-11-30 2016-01-18 オーシャンズ キング ライティング サイエンス アンド テクノロジー シーオー.,エルティーディー チエノ[3,4−b]チオフェンユニットを含有するベンゾジチオフェン系共重合体、製造方法、及びその使用方法

Also Published As

Publication number Publication date
EP2927259A1 (en) 2015-10-07
WO2014082310A1 (zh) 2014-06-05
EP2927259B1 (en) 2018-08-01
CN104769005A (zh) 2015-07-08
US20150307663A1 (en) 2015-10-29
JP6096314B2 (ja) 2017-03-15
EP2927259A4 (en) 2016-08-24
CN104769005B (zh) 2016-09-07
US9328204B2 (en) 2016-05-03

Similar Documents

Publication Publication Date Title
JP6096312B2 (ja) チエノ[3,4−b]チオフェンユニットを含有するベンゾジチオフェン系共重合体、製造方法、及びその使用方法
CN102725331B (zh) 环戊二烯二噻吩-喹喔啉共聚物、其制备方法和应用
JP6096314B2 (ja) チオフェンピロリジンユニットを含有するベンゾジチオフェン系共重合体、製造方法、及び、その使用方法
JP6096313B2 (ja) ピリジノ[2,1,3]チアジアゾールユニットを含有するベンゾジチオフェン系共重合体、製造方法、及び、その使用方法
JP5501526B2 (ja) 縮合環チオフェン単位を含むキノキサリン共役重合体、該共役重合体の製造方法及びその応用
KR20100126334A (ko) 디티에노피롤 단위를 포함하는 교호 공중합체를 포함하는 신규한 조성물 및 방법
WO2012124627A1 (ja) π電子共役系ブロック共重合体および光電変換素子
Sahu et al. Synthesis and application of H-Bonded cross-linking polymers containing a conjugated pyridyl H-Acceptor side-chain polymer and various carbazole-based H-Donor dyes bearing symmetrical cyanoacrylic acids for organic solar cells
WO2012133794A1 (ja) ブロック共重合体および光電変換素子
JP2013527285A (ja) ジチエノピロール−キノキサリンを含む共役重合体、該共役重合体の製造方法及びその応用
EP2586810A1 (en) Conjugated polymer based on benzodithiophene and thienopyrazine, preparation method and uses thereof
WO2013047858A1 (ja) 高分子化合物及び有機光電変換素子
Ong et al. Design and synthesis of benzothiadiazole–oligothiophene polymers for organic solar cell applications
Medlej et al. Effect of spacer insertion in a commonly used dithienosilole/benzothiadiazole-based low band gap copolymer for polymer solar cells
Hong et al. A novel small molecule based on dithienophosphole oxide for bulk heterojunction solar cells without pre-or post-treatments
WO2014038526A1 (ja) ブロック共重合体およびそれを用いた光電変換素子
JP6096315B2 (ja) イソインドリン−1,3−ジケトンユニットを含有するベンゾジチオフェン系共重合体、製造方法、及び、その使用方法
Kang et al. Synthesis and photovoltaic properties of conjugated copolymers with benzo [1, 2-b: 4, 5-b′] dithiophene and thiadiazolo [3, 4-c] pyridine moieties
KR20140114712A (ko) 유기 반도체 화합물 및 제조방법과 이를 포함하는 유기전자소자
Weng et al. Regular terpolymers with benzothiadiazole side groups for improving the performances of polymer solar cells
Tamilavan et al. Thiadiazoloquinoxaline-Based Low Band Gap Polymer for Solar Cell Applications

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150618

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160720

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160727

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160818

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20161104

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20161110

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170209

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170215

R150 Certificate of patent or registration of utility model

Ref document number: 6096314

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250