JP2015518245A5 - - Google Patents

Download PDF

Info

Publication number
JP2015518245A5
JP2015518245A5 JP2015504841A JP2015504841A JP2015518245A5 JP 2015518245 A5 JP2015518245 A5 JP 2015518245A5 JP 2015504841 A JP2015504841 A JP 2015504841A JP 2015504841 A JP2015504841 A JP 2015504841A JP 2015518245 A5 JP2015518245 A5 JP 2015518245A5
Authority
JP
Japan
Prior art keywords
emitter
tip
thin film
needle
oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015504841A
Other languages
English (en)
Other versions
JP2015518245A (ja
JP6458727B2 (ja
Filing date
Publication date
Priority claimed from CN201210107766.0A external-priority patent/CN102629538B/zh
Application filed filed Critical
Publication of JP2015518245A publication Critical patent/JP2015518245A/ja
Publication of JP2015518245A5 publication Critical patent/JP2015518245A5/ja
Application granted granted Critical
Publication of JP6458727B2 publication Critical patent/JP6458727B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

通常、酸化物はそれを構成する金属元素と比較して、より化学的惰性が大きいと知られている。しかし、酸化物自身は低温電界エミッタとすることはできない。理由は、それらの導電性は電子伝導にとって低すぎるからである。低仕事関数の酸化物薄膜を導電基盤に被覆するといった構造により、よりよい電子の伝導を実現でき、酸化物表面の低温電界放出を実現することができる。一種の安定的な構造を形成するために、当該酸化物層は導電基板上にしっかりと固定されなければいけなく、これにより電界放出プロセスの中で、引出電圧が発生する巨大静電力に耐えることができる。酸化膜の振動或いは剥離は電界放出電流の変動と減衰をもたらす。通常、一種の特定基板材料にとって、それは一種類或いは多種類の特定された結晶表面と一種の特定された酸化物にとがしっかりと結合することができる。したがって、針状の基板は一本の特定結晶方位に沿った単結晶に作られる必要があり、これにより頂点部の表面は酸化物薄膜としっかりとした結合を実現できる。このような構造は同時に集束ビーム形状のメリットを有しており、理由としては、電子放出が当該特定結晶表面に集中しており、当該結晶表面のみが低仕事関数を有するためである。従来の技術で、人々はジルコニウムZrの酸化物は、Wの(100)表面に結合されることが多いため、選択的に的にW(100)面の仕事関数を低減させた。1本の先端が(100)結晶表面のとがったW針が基板に使用され、且つZrOメッキを施した場合、一つの低仕事関数(2.6電子ボルト)を有する電界エミッタができあがった。(アメリカ特許3374386)一般論によると、ZrOがW(100)の表面に安定的な薄膜を形成する理由は、Zr原子とW(100)の表面格子構造の格子のサイズがマッチングするからである。更に、Wの酸化物はW(110)と(112)面の上に薄膜を形成することができる。頂点部がW原子の高遷移率を保証できる温度まで加熱された場合、この薄膜はW原子が(100)或いは(111)を軸方向とした頂点部に沈殿することを促進する。このような沈殿後の頂点部は、従来の沈殿前Wの頂点部より惰性が高い。(アメリカ特許3817592、7888654 B2)この二つの状況の中、W酸化物は頂点部先端面の表面仕事関数を低下させるものではない。アルカリ土類酸化物、希土類酸化物、酸化トリウム、酸化ハフニウムは安定的な化合物であり、またZrOとW酸化物と比較し、より低い仕事関数を有する。従来知られている技術からみれば、これらの酸化物と安定的な結合ができる基板材料はないため、我々はこれらの酸化物を基に、より低い仕事関数及びより高い表面惰性を有する電界エミッタを作り出すことができる。
突起がある頂点をもつ頂点部の外観を作ることについては、上記の沈殿法のほか、もうひとつの従来の技術(アメリカ特許7431856 B2)によっても実現できる。方法としては、一つの電界を施す中で、腐蝕性気体は、頂点の区域ではなく、頂点部の上面の円柱状の区域に腐蝕が偏るため、こういった腐蝕方法を利用して突起がある頂点を持つ頂点部の外観を作る方法に関しては、頂点部の形状と関係があり、頂点部の材料の結晶性或いは結晶方位とは関係ない。
本発明によれば、当該酸化物薄膜は金属酸化物から構成され、且つ当該酸化物薄膜の中で、酸素元素以外の金属元素は、カルシウム、ストロンチウム、バリウム、スカンジウム、イッテルウム或いはランタン系元素、トリウム、チタン、ジルコニウム及びハフニウムの内の一種類或いは多種類の組合せである。
更に、当該化合物基材の中の金属元素は、当該酸化物薄膜の中の金属元素と同じ構造であることが好ましい。これにより、酸化物薄膜の中の酸素元素以外の元素は、直接エミッタ自体から提供でき、別の蒸発源或いは蓄積源構造を省くことができる。
望ましくは、特に本発明の電極材料が電子ビーム装置の電子源に利用される場合、エミッタは針状であり、また酸化物薄膜層は当該針状エミッタの頂点部位置に設けられる。
更に、当該針状エミッタの先端は、当該針状エミッタ軸方向と垂直となる先端平面を形成し、当該酸化物薄膜層は少なくとも、当該先端平面区域を被覆するもの。当該針状エミッタの頂点部は、十分に小さいサイズを有することにより、電界放出メカニズムが必要とする電界を生み出す。また、頂点部の軸方向は特定の結晶方位と平行となり、当該結晶方位と垂直となる結晶表面は酸化物薄膜としっかりと結合し、当該結晶表面は先端平面の結晶表面となるもの。
更に、当該針状のエミッタの先端は、軸方向がエミッタの軸方向に対して平行或いは重なる形の円柱を形成し、円柱の上面はエミッタの軸方向と垂直となる先端平面である、円柱の設置は高電界を先端平面に集中することを実現でき、この電界の分布は電子放出が先端平面エリアに集中することに有利であり、また先端平面周辺近隣区域の物質の、先端平面エリアへの構造的沈殿を低減することができ、電子放出の安定性をアップできる。
本発明のもう一つの目的としては、一種の真空電界電子エミッタを提供することであり、当該エミッタは以下部分を有する:絶縁ブロック、絶縁ブロック上にそれぞれ設けられた2本の金属柱、両端が当該2本の金属柱の末端にそれぞれ溶接されたフィラメント1本、及び当該フィラメントの中央部に溶接された針状の基体;当該針状基体の先端平面頂点部に形成され、当該真空電界電子エミッタは、結合層を経由し当該針状基体の頂点部位置に設けられた円筒形の放出ブロック、及び当該円筒形の放出ブロックの先端部分に設けられた電子放出層;当該円柱型放出ブロックはシリンダゾーンがあり、当該シリンダゾーンの上辺は当該放出ブロックの軸方向に向けて、内側に収縮しコーンゾーンを形成、当該コーンゾーンの先端部分は当該放出ブロック軸方向と垂直となる先端平面を形成し、当該電子放出層は当該先端平面に設けられるもの;当該放出ブロックは化合物基材から作られ、当該電子放出層の材質は酸化物薄膜である。
望ましくは、当該酸化物薄膜は金属酸化物から構成され、当該酸化物薄膜の中、酸素元素以外の金属元素はカルシウム、ストロンチウム、バリウム、スカンジウム、イットリウム、ランタン系元素、トリウム、チタン、ジルコニウム和ハフニウムの内の一種類或いは多種類の組合せであるもの。
望ましくは、当該エミッタのコーンゾーンの上辺に、軸方向がエミッタの軸方向と平行或いは重なる形の円柱が形成され、当該円柱の上面は当該エミッタの軸方向と垂直となる先端平面である。
本発明の第三の目的としては、材質が金属六ホウ化物である針状或いは円柱状のエミッタ先端において円柱を作成する方法であり、手順としては以下のとおりである:a. 真空環境の中で、当該エミッタの先端を半球体の表面に形成させ、この半球面の先端が(100)結晶表面となる; b.一定的な腐蝕性気体の気圧の中で、当該エミッタと相対する近隣の電極が当該エミッタの上に正電圧を印加する; c. 半球型の表面が腐蝕性気体により腐蝕される時、先端の(100)結晶表面の腐蝕速度は他の結晶表面の腐蝕速度より遅いため、当該半球型表面がエミッタの軸方向と垂直となる円柱型を形成する際に、加圧された正電圧および腐蝕性気体を撤去すれば、当該円柱が形成される。
本発明の第四の目的としては、もう一種の真空電界電子エミッタを提供することであり、当該真空電界電子エミッタは以下部分を含む:絶縁ブロック、絶縁ブロック上にそれぞれ設けられた2本の金属柱、当該2本の金属柱の末端とそれぞれ溶接される2本のフィラメント、当該2本のフィラメントの間に溶接される2つのグラファイト加熱板、及び当該2つのグラファイト加熱板の間に挟まれたブロック状の基体;当該ブロック状基体の中央は上方向に向けて突起し、先端に頂点部を有する針状のエミッタを形成し、当該針状エミッタの先端の位置は、当該針状エミッタ軸方向と垂直となる先端平面を形成し、当該真空電界電子エミッタは、当該針状エミッタ先端に設けられる電子放出層を含む。当該針状エミッタは化合物基材から形成され、当該電子放出層の材質は酸化物薄膜である。
望ましくは、当該酸化物薄膜は金属酸化物により構成され、当該酸化物薄膜の内、酸素元素以外の金属元素は、カルシウム、ストロンチウム、バリウム、スカンジウム、イットリウム、ランタン系元素、トリウム、チタン、ジルコニウム及びハフニウムの内の一種類或いは多種類の組合せである。
本発明の第五の目的としては、一種の針状或いは円柱状エミッタの先端平面の上に、酸化物薄膜層を設ける方法であり、手順は以下のとおり: a. エミッタの先端平面近隣表面に酸化物を設ける; b. 真空環境の中、先端平面の近隣電極が当該エミッタの上に電圧を印加し、酸化物を先端平面に拡散させる。 c. 先端平面が酸化物によって完全に被覆された後、電圧の印加を中止すれば、当該酸化物薄膜層はエミッタの先端平面に設置完了。
望ましくは、手順aは薄膜沈殿技術を利用して、先端平面の近隣表面に酸化物を沈殿することにより実現できる。
望ましくは、上記方法は手順dを含む:エミッタを酸化物薄膜蒸発温度より低い温度まで加熱することにより、酸化物薄膜層と先端平面のしっかりとした結合を実現させる。
望ましくは、手順dは以下の方法でも可能である:加熱或いは加熱しない場合、エミッタを一定時間内に、一定的の酸素を含む気体気圧の下におき、酸化物薄膜層と先端平面のしっかりとした結合を実現させる。
以下、図面及び具体的な実施方法に基づいて、本発明について更に詳しく説明していきたい:
図1は実施例1の真空電界エミッタの全体構造図; 図2は図1の頂点部の拡大図; 図3は図2の上面図; 図4は図2の先端平面の拡大図; 図5は実施例2の真空電界エミッタの頂点部拡大図; 図6は実施例3の真空電界エミッタの全体構造図; 図7は本発明の真空電界エミッタを作成する手順図; 図8は本発明の真空電界エミッタの中に酸化物薄膜層を設ける手順図; 図9は本発明の真空電界エミッタを利用した電子ビーム装置の構造図。
図1が示す通り、本実施例の真空電界電子エミッタ100は、1つの基体針104がフィラメント106の上に溶接されている。フィラメント106の両端はそれぞれ二つの金属柱108に溶接されている。当該2つの金属柱108は1つの絶縁ブロック110により機械的に連結され、また電気絶縁を提供。基体針104は小曲率半径の頂点部102を有し、当該曲率半径は10ミクロンより小さく、100ナノより大きい。フィラメント106は一定の電流を通じて、ジュール加熱の方式により基体針104を加熱するもの。基体針104は高融点導電材料から作られる。これらの材料はC、W、Re、Ta、及びMoを含むが、これらに限られない。基体針104の材料は当該真空電界電子エミッタの洗浄温度と作動温度より、より高い融点を有するべきである。一つの具体的な実施例の中では、洗浄温度と作動温度は1300kまで高まる。基体針104は単結晶或いは多結晶であることが可能。その頂点部102は任意の晶体構造取向であることが可能。
図2は基体針104の頂点部102の拡大図を表示し、基体針104は一つの平面に切断され、もう二つの部分は、この平面の上に設けられる:円柱型放出ブロック200と結合層208。放出ブロック200は少なくとも以下3つの部分を有することを求められる:1つの先端平面202、1つのコーンゾーン204及び1つのシリンダゾーン206。少なくとも、先端平面202は酸化物薄膜に被覆され、電子の放出に用いられる。先端平面202の半径は500ナノより小さいことが望ましく、更に100ナノより小さいことが望ましく、一番望ましいのは10ナノより小さいことである。いくつかの実例の中で、先端平面202はいくつかの原子或いは1つの単一原子から構成される。シリンダゾーン206の半径は先端平面202の半径と等しい或いはより大きい。基本針104の再生過程の中、元の先端平面202とコーンゾーン204が除去される状況の中、シリンダゾーン206は新しい先端平面と新しいコーンゾーンの形成に利用できる。しかし、シリンダゾーンの長さは1つの臨界値を超えてはいけない。この臨界値を超えれば、振動がひどくなり、放射パターンの安定性に影響をもたらす。本領域のプロフェッショナル各位は、この長さの臨界値は放出ブロック200の材料と半径により変化するものと認識できるであろう。図3は図2の上面図であり、よりはっきりと放出ブロック200の3つの構成部分を見ることに役立つ。
放出ブロック200は電気伝導する金属ホウ化物、炭化物或いは窒化物から作られることが望ましい。その内の金属元素は以下元素中の一種類或いは多種類の組合せである:Ca、Sr及びBaを含む第二族元素;Sc、Y及びランタン系元素を含む第三族元素;Zr、Hf及びThを含む第四族元素。例えば、放出ブロック200はCa、Sr、Ba、Y、La、Ceの六ホウ化物或いはTi、Zr、Hf、Ta、Thの単炭化物から構成される。放出ブロック200は単結晶であることが望ましい。この単結晶の軸方向は、選択的に酸化物薄膜層と結合ができる結晶表面と垂直となる。いくつかの実例では、当該単結晶の方向は<100>、<110>或いは<111>であることが望ましい。頂点部先端に単結晶粒を有する多結晶放出ブロックも自然と同様の作用を発揮する。
図4は放出ブロック200の先端平面202の拡大図である。酸化物薄膜層402が先端平面202に被覆され電子放出層となる。当該酸化物薄膜層の内、酸素元素以外の元素は以下元素のうち、1種類或いは多種類の組合せである:Ca、Sr、Baを含む第二族元素;或いはSc、Y及びランタン系元素を含む第三族元素;或いはZr、HfとThを含む第四族元素。酸化物薄膜層402は放出ブロック200と同様の金属部分がを有することが望ましい。これにより、界面マッチング差を小さくし、また放出ブロック200と酸素が直接反応することにより、当該酸化物薄膜を形成することができる。組合せ金属が違うにもかかわらず、酸化物薄膜層402とその下の放出ブロック200が小さな界面マッチング差を形成することができ、放出ブロック200とのしっかりとした結合を保つ場合、酸化物薄膜層402は放出ブロック200と違う組合せ金属を使用することも可能である。例えば、LaとCeは似通ったサイズと科学性質を有する。したがって、我々はLaB6の上にCeOx(Xは未知)の薄膜層或いはCeB6の上にLaOx(Xは未知)の薄膜層を付着させることができる。同じく、我々は混合化合物基板、例えばLazCe1-zB6の上に混合した酸化物薄膜層、例えばLaxCeyOを付着させることができる。混合組合せがよりよい界面結合を提供できれば、どの組合せも利用可能である。本領域のプロフェッショナル各位は、酸化物薄膜層402と放出ブロックが同様の金属元素を有しても、その界面マッチング差、それらが違う元素である状況より大きい可能性があることを認識できるであろう。例えば、ホウ化物を放出ブロック200の材料とした場合、OとBのサイズ違いがもたらすサイズ差はこのような状態をもたらす。この状況の中、酸化物薄膜層402の形成利便性よりは、結合強度がもっと必要であり、酸化物薄膜層402の中の金属元素は、放出ブロック200が含む金属元素と異なる元素を利用することが望ましい。放出ブロック200の先端平面は、完全に少なくとも1層の単分子層厚さの酸化物薄膜に被覆されることが望ましい。酸化物薄膜層402の厚さは臨界値を超えてはいけない。この臨界値を超えた場合、当該真空電界電子エミッタの構造の安定性は悪くなり、或いは酸化物薄膜層402の電気抵抗が大きくなり、電子放出性能に影響をもたらす。
本実施例はもう1種類の実施例1製品とは異なる真空電界電子エミッタを提供。この種類の真空電界電子エミッタと実施例1製品の区別は、放出ブロックの構造が違うところである。図5に示されるように、本実施例の放出ブロック500は少なくとも4つの部分によって形成される:先端平面502、円柱504、コーンゾーン506及びシリンダゾーン508。円柱504のほか、本実施例の放出ブロック500の他の部分は実施例1のうちの頂点部102と同様の構造と機能を有する。円柱504の作用は、コーンゾーン506の電界強度を弱め、高電界を先端平面502に集中させるためである。これにより構成される電界分布は電子放出が先端平面502に集中することに有利であり、またコーンゾーン506上の物質が先端平面502上に構造性沈殿することを削減することに有利である。このような構造は、より一層本実施例真空電界電子エミッタの放出安定性を高める。本実施例の内円柱を有する放出ブロックは以下の原則により製造される:化合物基材エミッタの中で、異なった方位の結晶表面の間では、腐蝕スピードは異なる。例えば、酸素元素を含む気体が腐蝕剤に利用される場合、金属六ホウ化物構造の(100)結晶表面は他の結晶表面より低い腐蝕スピードを有する。このような構造を形成する手順は以下の通り:まず、1つの真空容器の中で、エミッタ頂点部表面に(100)結晶表面を形成する;次に、エミッタの上の相対する近隣の電極に正電圧を印加し、同時に酸素を含む気体を当該真空に導入する。放出ブロックの先端平面502が(100)結晶表面となった場合、先端平面502はもっとも低い腐蝕率を有する。周辺が(100)ではない結晶表面はより高い材料除去率により、円柱504を形成する。金属六ホウ化物の頂点部先端表面に(100)結晶表面を形成するには、電界協力水素腐蝕、真空電界蒸発、または熱アニールなどの技術が利用できる。二番目の手順では、より高い電圧の印加、より強い腐蝕剤のタイプ、より高い腐蝕剤気体の圧力及びより高い温度とより長い時間は先端平面502周囲エリアのより速い材料の除去を実現できる。第二番手順の実施例の中で、以下のパラメーターにより、上記円柱504を含む先端平面502を作成した。印加する電圧は2000Vから8000Vの間であり、腐蝕気体の圧力は1×10-8トル~1×10-5トルの間であり、腐蝕気体は酸素或いは水、温度は室温。以上により、本領域のプロフェッショナル各位にとっては、通常の技術を用いれば、異なる電圧、腐蝕剤のタイプ、圧力、温度と作動時間によれば、上記円柱504が形成できる。
本実施例はもう一つの真空電界電子エミッタを提供し、これも絶縁ブロック、当該絶縁ブロックに設けられる2本の金属柱と2本の金属柱と溶接されたフィラメントを有する。図6が示すように、本実施例の真空電界電子エミッタ600は、ブロック状エミッタ601を含み、ブロック状エミッタ601は2つの部分を含む:ブロック状エミッタ601上の表面中央部の突起である放出先端602と基体604。2本のフィラメント608の端部分はそれぞれ加熱板606と溶接されており、ブロック状エミッタ601は2つの加熱板606の間に設けられる。加熱板606の作用としては二つである:一つは機械的にブロック状エミッタ601を支えること;もう一つは電流が流れたときに熱を発することである。加熱板606はグラファイトから作成されることが望ましい。本実施例では、ブロック状エミッタ601は電気伝導する金属ホウ化物、金属炭化物或いは金属窒化物によって作成されることが望ましい、これらの化合物の金属構成元素は:Ca、Sr、Baを含む第二族元素;或いはSc、Yとランタン系元素を含む第三族元素;或いはZr、HfとThを含む第四族元素;或いはこれらの元素の組合せである。例えば、ブロック状エミッタ601はCa、Sr、Ba、Y、La、Ceの六ホウ化物或いはTi、Zr、Hf、Ta、Thの単炭化物から構成される。ブロック状エミッタ601は単結晶であることが望ましい、また晶体軸方向は、選択的に酸化物薄膜層と結合する結晶表面と垂直となる。いくつかの実例の中で、晶体軸方向は<100>、<110> 或いは <111> 方向であることが望ましい。1つの放出先端単結晶晶粒を有する多結晶ブロック状エミッタも同様の目的が実現できる。放出先端602的頂点部先端の構造は図2及び図5で示される原則を基とする。放出先端602はマイクロ加工にて作成できる。例えば、1つの単結晶はまず基体604の形状に切断され、その後利用集束イオンビーム(FIB)フライス加工を利用して、基体604周囲の材料を除去し、最終的に放出先端602を形成させる。
本実施例では本発明の真空電界電子エミッタを作成する方法と手順を提供する。図7が示すように、手順704の中で、基体線材の一部はフィラメント構造の中央部分に溶接されている。このフィラメント構造の両端はそれぞれ1つの金属ピン柱と溶接されている。ピン柱は1つの絶縁ブロックの中にはめられている(図1参照)。手順712では、基体線材の先端部分は腐蝕剤溶液の中に導入されており、また近隣のPt輪に電圧を印加する。腐蝕剤の種類、濃度及び印加された電圧のタイプは基体線材の種類によって異なる。基体線材は電化学腐蝕過程の中で基体針になるよう腐蝕される。本領域の技術者にとって、当該基体針の上に10ミクロン曲率半径より小さい頂点部を形成することは容易である。基体針の頂点部平面形式にするかどうかは必須ではないが、頂点部平面状になることが一番望ましい、そのほうが放出ブロックを設けやすくなるからである。当該平面はマイクロ加工技術によって作成でき、例えば集束イオンビームフライス加工等である。手順716では、基体の頂点部は保護層を1層被覆させることにより、頂点部材料と、続いて当該基体頂点部上に設けようとする放出ブロック材料との反応を防ぐことができる。ひとつの例では、上記保護層はCから作成される。多くの技術が当該基体針にこういった保護層を被覆させることが可能であり、例えば化学蒸着、エポキシ樹脂熱降解或いは荷電粒子ビーム誘起沈殿等である。ひとつの平行手順708では、放出ブロックを作成する。放出ブロックを作る具体的な手順は以下の通り:1つの放出ブロック材料的単結晶体を用意;当該単結晶体が必要である三次元サイズを満たさない場合、集束イオンビームフライス加工技術を利用して当該単結晶を横長、厚み、縦長三つの必要とする三次元サイズのブロックあるいは円柱に加工する。当該ブロック状或いは円柱の横長および厚みは10ナノ~10ミクロンの間であり、縦長は500ナノ~50ミクロンの間である。手順720では、作成された所定サイズの放出ブロックを、保護層を隔てて基体頂点部近隣に置き、放出ブロックの高さと基体針の軸方向が並行重なるようにする。例えば電気駆動の機械操作装置などを用いて、精密に重ねることができる。続いて、放出ブロックと基体頂点部の接合所に結合層を被覆し、この構造を機械的に固定し、且つ電気伝導を提供する。結合層の厚みが十分であり、且つ放出ブロックが基体針と直接接触しない場合では、手順716で記述した保護層は省くことができる。手順724では、放出ブロックの先端は小さい曲率半径の頂点部に加工され、当該頂点部的曲率半径は5ナノ~200ナノの間であることが望ましい。手順708で直接作成した放出ブロックが当該サイズを満たさない場合、集束イオンビームフライス加工を用いて、頂点部曲率半径を小さくし、所定サイズまで加工すればいい。手順728では、図2と図5が示すように、放出ブロックの先端を先端平面に改造し、当該平面の面積は400平方ナノより小さいことが望ましい。この平面を作成する技術は以下を含む:集束イオンビームフライス加工、電界協力水素、窒素或いは酸素腐蝕、真空或いは惰性気体電界蒸発及び熱アニール等。放出ブロックは密沈殿原子面と垂直の結晶方位と平行であることが望ましい、これらの結晶方位は<100>, <110>及び<111>方向を含む。電界腐蝕、電界蒸発或いは熱アニールによる表面の小平面化は密沈殿面を形成し、これらの密沈殿面は頂点部先端的平面とすることができる。手順732では、放出ブロックの先端平面上に、酸化物薄膜層を形成し電子放出層とする。この酸化物薄膜層は多くの技術によって作ることができる。MOxを例とした実例の中で、Mは必要とする金属元素をあらわし、xは未知の化学計量を表し、Mを含む源材料を蒸発温度まで加熱し、この蒸発源はM元素を含んだ蒸気の提供に利用する、酸素は源材料に含まれることができ、または他の酸素として導入することも可能である。同時に、M蒸気が沈殿する時に酸素を導入しMOxを形成することも可能、また後続的な酸化によりM沈殿層をMOx層に変化させることも可能である。MOxを当該真空電界電子エミッタ以外の部分で、表面拡散により、頂点部平面まで拡散する方法によっても、当該酸化物薄膜層を作ることができる。この方法の具体的記述は図8の枠図中に示される。
図8が示すとおり、本実施例では放出ブロックの先端平面上に酸化物薄膜層を形成し、また荷電粒子装置で使用する実例を提供する。手順804では、図2或いは図5が示す放出ブロックの電界電子エミッタを作成、また放出ブロックの先端に先端平面を作成。本実施例の放出ブロックはMB6材質が望ましい、即ち金属元素Mの六ホウ化物である。金属元素MはCa、Sr、Ba、Y、La、或いはCeであることが望ましい。MB6放出ブロックの方向は晶体<100>方向であることが望ましい。これにより、先端平面は当該六ホウ化物MB6の(100)結晶表面である。手順808では、当該電界電子エミッタを荷電粒子装置に設置し、電子放出源とし、その後当該装置の腔体から真空排気をする。本発明中の的電界電子エミッタが作動する真空環境の真空度は1×10-7トルよりよいことが望ましい。手順812では、放出ブロックは洗浄温度まで加熱され、この洗浄温度の高さは、当該電界電子エミッタ表面が吸着する蒸発可能の物質を除去する温度であり、当該蒸発可能物質は基本的に水と有機分子である。一つの実例では、この洗浄温度は1000Kを超えていない。また、洗浄温度は構成部分である金属の酸化物が蒸発する温度を超えてはならない。1つの実例では、洗浄温度は1300Kを超えなく、更に望ましいのは、1200Kを超えなかった。異なる金属元素の酸化物は蒸発点が異なるため、異なる放出ブロック材料を使用する場合、洗浄温度は異なる上限を持つ。また、加熱洗浄時間も変わる、これは電界エミッタ上の吸着物数量及び洗浄温度によって決まる。一つの実例では、所用洗浄時間は1分間を超えていない。手順816では、必要とする酸化物薄膜層が放出ブロックの先端平面上で形成されたかどうかを検査し、酸化物薄膜層が形成された結果としては、即ち先端平面仕事関数の低下である。したがって、仕事関数の数値或いは仕事関数の変化を測定できる手段は、このテストに使える。例えば、放出電流が引出電圧の変化によりI-V曲線を形成することを記録すること。I-V曲線から、所謂フォーラ・ノウデン(fowler-nordheim)の図が作成できる。その後、この図のスロープはエミッタの仕事関数を測定できる。一つの実例では、酸化物被覆処理の前に仕事関数を測定し、また、被覆処理後の仕事関数と比較することに用いられる。もう一つの測定方法が利用する現象は、電界放出電流がエミッタ仕事関数の低下に伴い急激敵に上昇することである。この方法では、被覆処理の前に固定した引出電圧が対応する放出電流を記録できる。特定的処理の後で、もう一度同じ引出電圧が相対する放出電流を測定する。特定的被覆処理を実施した後、もう一度比較的安定的な放出電流値を得ることができ、且つその数値が被覆処理を経ていない電流値を超えるとき、酸化物層が形成されたという結論に至ることができる。もう一つの方法が基づく現象とは、酸化物薄膜層がエミッタ先端部平面に選択的に被覆することは、先端平面上の仕事関数の低下をもたらし、これにより30度発散角より小さい的集束型的電界放射パターンを形成する。例えば、蛍光スクリーン的撮像装置でこの電界放射パターンを記録できる。我々が繰り返し安定した小発散角の電界放射パターンを得られた時、酸化物薄膜層が形成されたという結論に至ることができる。酸化物薄膜層が先端平面上に被覆形成していない場合、手順820に進む。手順820では、酸素を含む気体をMB6放出ブロック附近に導入することにより、放出ブロックの表面にMOx(xは未知)酸化物を形成。酸素暴露の後、或いは酸素暴露の際に、放出ブロックを反応温度まで加熱し、MとOが反応することを確保。反応温度は当該含酸素体が利用する圧力下の酸化物MOx(x未知)の蒸発点より低い。反応時間は酸化物MOxが生成する時間が必要。通常では、より高い酸素暴露圧力は、より低い反応温度及びより短い反応時間が必要である。一つの実例では、使用した酸素圧力は1×10-7トルから1大气圧の間であり、反応温度は600Kから1400Kの間で、反応時間は10秒から5分間の間であった。本領域の技術者にとっては、他の酸素を含む気体の種類、気圧、反応温度と反応時間の組合せはすべて本発明の範囲内であることと認識する必要がある。いくつかの状況では、酸化物は放出ブロックが真空腔体に装填される前に、作成或いは処理過程で、既に放出ブロック表面に形成されていた。これらの情况では、手順820は選択可能な項目であり、必須項目ではない。手順824では、酸化物が拡散する過程により、選択的に先端平面上に酸化物薄膜層を形成する。電界が存在する中、放出ブロックの表面酸化物はMB6の(100)面まで拡散することができ、本実施例では、この面が先端平面の所在面である。一つの好ましい実例では、放出ブロックに印加される電圧は、その隣近電極にとって負バイアスであり、且つ強度が10ナノアンペア~10マイクロアンペアの放出電流に対応できる。同時に、電圧の増加に伴い、エミッタを所定温度まで加熱すれば、この拡散過程を促進することができ、(100)面が完全に酸化物に被覆されるまでの時間をより短くできる。一つの好ましい実例では、この加熱温度は600K~1000Kの間である。もう一つの発見とは、酸化物が電界で拡散し始めた後、加熱或いは加熱しなくても、エミッタを酸素を含む気体に暴露することにより、無電圧の老化処理によって、酸化物が(100)面上での完全被覆を実現できる。一つの例では、この酸素圧力は1×10-8トルから1×10-9トルの間であり、老化時間は20時間~60時間の間である。上記酸化物被覆の処理過程の後、手順816に進み、酸化物薄膜層が完全に形成されたかどうかを測定する。手順816、手順820と手順824は酸化物薄膜層が完全に形成するまで、繰り返し利用するものである。いくつかの状況では、比如当蛍光スクリーンが電界放射パターンの測定に利用される場合、手順816は手順824と同時に実施できる。酸化物薄膜層の形成が確認できた場合、手順828まで進む。手順828では、引出電圧を当該電界電子エミッタに印加し、理想的な電界放出電流を生み出す。当該電界電子エミッタは400Kを超えない温度での作動が望ましい。理由としては、低温動作は最低限のエネルギー拡散をもたらす。より高い作動温度は本発明の電界電子エミッタがより長い時間安定的により高い剩余気体圧力の中で作動できる。作動温度は目前の剩余気体圧力の酸化物薄膜層MOx(x未知)の蒸発点を越えてはならない。一つの実例では、1300Kを超えてはならなかった。手順832で、当該電界電子エミッタの放出変動度を測定する。当電界放出電流が電流表によって監視される場合、この作業は手順828と同時進行できる。作動中、汚染物或いは余剰の酸化物資は酸化物薄膜層表面に形成され、放出電流の変動をもたらす。ここで、放出電流変動とは、1分間で、放出電流の変化と放出電流の平均値との比較である。一つの実例で、10%は放出変動の臨界値であった。放出電流変動がこの臨界値を超えた場合、手順812に進み、当該電界電子エミッタを洗浄温度まで加熱し、安定的な放出特性まで戻す。手順812と手順832の繰り返しを利用し、電子ビーム装置が実用できる安定的な電子放出を実現できる。
100 真空電界電子エミッタ
102 頂点部
104 基体針
106 フィラメント
108 金属柱
110 絶縁ブロック
200 放出ブロック
202 先端平面
204 コーンゾーン
206 シリンダゾーン
208 結合層
402 酸化物薄膜層
500 放出ブロック
502 先端平面
504 円柱
506 コーンゾーン
508 シリンダゾーン
600 真空電界電子エミッタ
601 ブロック状エミッタ
602 放出先端
604 基体
606 加熱板
608 フィラメント
704 基体線材をフィラメントに溶接
708 小サイズの放出体を作る
712 基体線材上に小半径の針先端を形成
716 基体針先端上に保護層を形成
720 放出体を基体針先端に接続
724 放出体上に小半径の針先端を形成
728 放出針先端部に平面を形成
732 放出針先端平面上にコーティング層を形成
804 <001>方向と1つの先端平面を有する放出針先端を形成
808 荷電粒子の機械の中に置き、真空排気を実施
812 1000Kで1分間加熱し、吸着物を取り除く
816 放出針先端の酸化物薄膜の形成をチェック
820 900kで酸素の中で放出体を1分間加熱することにより、近隣する表面に酸化物質を形成
824 電界で、放出体を700kまで加熱し、酸化物質を放出針先端まで拡散させ酸化物薄膜を形成
828 放出を稼動
832 放出波動>10%?をチェック
900 電界放出走査型電子顕微鏡
904 フィラメント電源
908 引出電圧電源
912 電子ビーム
916 引出電極
920 走査と集束システム
924 腔体
928 信号検出器
932 サンプル移動台
936 サンプル
940 酸素源
944 真空ポンプ
集束電子ビームをしようする装置は以下装置を含む:撮像装置-例えば走査型電子顕微鏡(SEM)及び透射透過型電子顕微鏡(TEM);製造機器-例えば電子ビームリソグラフィー機(EBL)、及び化学分析機器-例えばエネルギー拡散分光法装置、電子エネルギー損失分光法装置(EELS)、及びオージェ電子分光法装置。より高い性能を実現させるために、これらの装置、明るさがより高く、且つ電子ビームのエネルギー拡散がより狭い電子源の配備が必要となる。明るさについては、分析装置がより高い信号対雑音比を実現し、エッチングマシンに、より高い出力レートを産出させるためである;より狭いエネルギー拡散については、電磁レンズがよりよく集束するためであるもの。現在のレンズ生産レベルからすれば、一定的な色ぶれは避けられないもの。一つの電子源の明るさ及びエネルギー拡散は、電子原材料の種類によって決められ、また電子ビームの産出方式によっても決められる。
低仕事関数の酸化物薄膜層が含む金属部分は、通常低融点高反応活性である。したがって、これらの金属の金属部分的単質形態によりエミッタ基材、蒸発源或いは拡散蓄積源を作ることは非常に困難である。しかし、これらの金属と対応するホウ化物、炭化物或いは窒化物は高融点、高機械強度及び低反応活性を有し、それらは直接適合的なエミッタ基材とすることができる。これにより、我々は簡単に任意の低仕事関数を有する金属酸化物をエミッタの電子放出層とすることができ、金属の選択に制限されることはない。更にいえることは、本発明の電極材料は針状にすることにより真空電子放出源とする外に、他の運用もできる。例えば、本発明は板状或いはブロック状にして、有機または無機の発光ダイオードの電子注入電極、有機或いは無機の太陽電池、有機或いは無機トランジスタ及び電化額装置の陰極などにも利用できる。
もう一つの例の中、本申請者は1つの電界電子エミッタ製品をテストした: 500vより小さい引出電圧、1マイクロアンペアより小さい放出電流、800Kより低い加熱温度、5%より小さい電流波動及び2×10-10トルより悪い真空環境の中、当該電界電子エミッタ作動安定時間は30時間を越えた;
もう一つの例の中、本申請者は1つの電界電子エミッタ製品をテストした:1000vより小さい引出電圧、10マイクロアンペアより小さい放出電流、1100Kより低い加熱温度、5%より小さい電流波動と3×10-9トルより悪い真空環境の中、当該電界電子エミッタ作動安定時間は60時間を越えた;
もう一つの例の中、本申請者は1つの電界電子エミッタ製品をテストした:: 700vより小さい引出電圧、5マイクロアンペアより小さい放出電流、700Kより低い加熱温度、10%より小さい電流波動及び1×10-10トルより悪い真空環境の中、当該電界電子エミッタ作動安定時間は40時間を越えた。
本実施例では、本発明である真空電界電子エミッタを荷電粒子装置の中に装置した応用実例を提供する。図9が示すように、本実施例中的電子ビーム装置は電界放出走査型電子顕微鏡(SEM)900。本実施例の電界電子エミッタ100は図1が示す電界電子エミッタを利用し、当該エミッタをSEMの真空腔体924に設け、当該エミッタの2つのフィラメント電流ピン柱は腔体924の外部へ連結させた。一つのフィラメント電源904はフィラメントが使用する加熱電流を提供。1つの引出電極916は、当該電界電子エミッタ100の先端隣近に設けられ、放出ブロックに電子を放出させる。引出電極916は真空導入端子を経て腔体924の外界につながる。一つの引出電圧電源908は、当該電界電子エミッタ100と引出電極916の間の引出電圧差を維持する。引出電圧を印加することにより、当該エミッタ100上で電子ビーム912が生み出された。走査と集束システム920は、この電子ビーム912を小さな電子プローブまで集束し、且つサンプル936の表面を走査した。サンプル936は、サンプル検査補助用のサンプル移動台932に設けられている。一つの信号検出器は928サンプル936の付近に設けられ、電子プローブとサンプルの間に生み出される進行をキャッチする。一つの真空ポンプ944は腔体924内に必要とする真空を形成させる。一つの酸素源940は腔体924内に必要とする圧力の酸素を含む気体を導入する。酸素を含む気体は真空ポンプ944の抽出力を低下させて周囲の環境から提供させ、或いは腔体924の外部への漏出によって導入することも可能。したがって、この実例では、酸素源940は選択可能であり、必須ではない。

Claims (17)

  1. 一種の低仕事関数及び高い化学的安定性を備えた電極材料、その特徴は:当該電極材料は、電気伝導するエミッタ及び当該エミッタ表面に設けられた電子放出層を含み、その内、当該エミッタは化合物基材から作られており、当該電子放出層の材質は酸化物薄膜である。
  2. 特許請求1に記載される電極材料、その特徴は:当該化合物基材の材質は、単結晶金属ホウ化物、金属窒化物或いは金属炭化物であり、且つ、その内の金属元素はカルシウム、ストロンチウム、バリウム、スカンジウム、イットリウム、ランタン系元素、トリウム、チタン、ジルコニウム及びハフニウムの内の一種類、或いは多種類の組合せである。
  3. 特許請求2に記載される電極材料、その特徴は:当該単結晶金属ホウ化物は、カルシウム、ストロンチウム、バリウム、スカンジウム、イットリウム或いはランタン系元素の単結晶六ホウ化物の内から選出され、また当該金属ホウ化物の結晶方位は格子(100)、(110)或いは(111)の方位である。
  4. 特許請求3に記載される電極材料、その特徴は:当該エミッタは針状であり、当該針状のエミッタの先端は、軸方向がエミッタの軸方向に対して平行或いは重なる形の先端円柱を形成し、先端円柱の上面はエミッタの軸方向と垂直となる先端プラットフォームであり、当該酸化物薄膜は少なくとも先端プラットフォームの区域を被覆するもの。
  5. 一種の真空電界電子エミッタは絶縁ブロック及び当該絶縁ブロック上の二本の金属柱を含み、その特徴は:当該真空電界電子エミッタは、両端がそれぞれ当該2本の電子柱の末端に溶接されたフィラメント、及び当該フィラメントの中央部分に溶接された針状の基体を含み、当該針状の基体の先端にピンポイントが形成され、また当該真空電界電子エミッタは以下部分をも含む:結合層を経由して当該針状基体のピンポイント位置に設けられる円筒形の放出ブロック、及び当該円筒形の放出ブロックの先端部分に設けられた電子放出層;当該放出ブロックはシリンダゾーンを有し、当該シリンダゾーンの上辺は、当該放出ブロックの軸に向けて、内側に収縮しコーンゾーンを形成、当該コーンゾーンの上辺は、当該放出ブロック軸方向と垂直となる先端プラットフォームを形成し、よって当該電子放出層は当該先端プラットフォームに設けられる;当該放出ブロックは化合物基材から作られ、当該電子放出層の材質は酸化物薄膜である;当該化合物基材は、単結晶金属ホウ化物である。
  6. 特許請求5に記載される真空電界電子エミッタ、その特徴は:当該酸化物薄膜は金属酸化物から構成され、当該酸化物薄膜の中、酸元素以外の金属元素は、カルシウム、ストロンチウム、バリウム、スカンジウム、イットリウム、ランタン系元素、トリウム、チタン、ジルコニウム及びハフニウムの内の一種類或いは多種類の組合せである。
  7. 特許請求5に記載される真空電界電子エミッタ、その特徴は:当該針状基体は高融点の導電材料から作られ、当該高融点の導電材料は、カーボン、ウォルフラム、レニウム、タンタル或いはモリブデンから選出される。
  8. 特許請求5に記載される真空電界電子エミッタ、その特徴は:当該結合層はカーボン、プラチナ或いはウォルフラムから構成される。
  9. 特許申請5に記載される真空電界電子エミッタ、その特徴は:当該エミッタのコーンゾーンの上辺に、軸方向がエミッタの軸方向と平行或いは重なる形の先端円柱が形成され、当該先端円柱の上面は当該エミッタの軸方向と垂直となる先端プラットフォームである。
  10. 特許請求4に記載される電極材料の作成方法、その特徴は:当該電極材料は、電気伝導するエミッタ及び当該エミッタ表面に設けられる電子放出層を含み、その内、当該エミッタは化合物基材から作られ、当該電子放出層の材質は酸化物薄膜である;当該化合物基材が金属六ホウ化物で、当該エミッタの構造が針状或いは柱状で、且つ当該エミッタの先端は、軸方向が当該エミッタの軸方向と平行或いは重なる形の先端円柱を形成する場合、当該電極材料の作成方法は、当該先端円柱の作成手順を含み、先端円柱の作成手順は具体的には以下のとおりである:a. 真空環境において、当該エミッタの先端を半球体表面に形成させ、この半球面の先端が(100)結晶表面となる;b. 一定な腐蝕性気体の気圧の中で、当該エミッタと相対する近隣の電極が、当該エミッタの上に正電圧を印加する;c. 半球型の表面が腐蝕性気体により腐蝕される時、先端の(100)結晶表面の腐蝕速度は他の結晶表面の腐蝕速度より遅いため、当該半球型表面がエミッタの軸方向と垂直となる円柱型を形成する際に、加圧された正電圧および腐蝕性気体を撤去すれば、当該先端円柱が形成される。
  11. 特許請求10に記載される作成方法、その特徴は:当該腐蝕性気体は、酸素、窒素または水蒸気である。
  12. 一種の真空電界電子エミッタは絶縁ブロック及び当該絶縁ブロック上に設けられる2本の金属柱を含み、その特徴は:当該真空電界電子エミッタは以下部分を含む:当該2本の金属柱の末端と溶接される2本のフィラメントと、当該2本のフィラメントの間に溶接される2つのグラファイト加熱板、及び当該2つのグラファイト加熱板の間に挟まれたブロック状の基体;当該ブロック状基体の中央は上方に向けて突起し、針状の先端を有するエミッタを形成、当該針状エミッタの先端位置は、当該針状エミッタ軸方向と垂直となる先端プラットフォームを形成、また当該真空電界電子エミッタは、当該針状エミッタ先端の電子エミッタをも含む;当該針状エミッタは化合物基材から作られ、当該電子放出層の材質は酸化物薄膜である;当該化合物基材は、単結晶金属ホウ化物である。
  13. 特許請求12に記載された真空電界電子エミッタ、その特徴は:当該酸化物薄膜は金属酸化物により構成され、当該酸化物薄膜の内、酸元素以外の金属元素は、カルシウム、ストロンチウム、バリウム、スカンジウム、イットリウム、ランタン系元素、トリウム、チタン、ジルコニウム及びハフニウムの内の一種類或いは多種類の組合せである。
  14. 特許請求3に記載される電極材料の作成方法、その特徴は:電極材料は、電気導電するエミッタ及び当該エミッタ表面に設けられる電子放出層を含み、その内、当該エミッタは化合物基材から作られ、当該電子放出層の材質は酸化物薄膜である;当該化合物基材が単結晶金属ホウ化物であり、当該エミッタの構造が、先端に先端プラットフォームを有する針状或いは円柱状である場合、当該電極材料の作成方法の内、一つの手順はエミッタの先端プラットフォーム上に酸化物薄膜層を設けることであり、当該手順の具体的な実施方法は以下のとおり:a. エミッタの先端プラットフォームの近隣表面に酸化物を設ける;b. 真空環境の中、先端プラットフォームと相対する近隣電極は、当該エミッタ上に電圧を加圧し、酸化物を当該先端プラットフォームの上に拡散させる。c. 当該先端プラットフォームが酸化物により完全に被覆された後、電圧の加圧を中止、当該酸化物薄膜層は当該エミッタの先端プラットフォーム上に設置完了となる。
  15. 特許請求14に記載される作成方法、その特徴は:手順aは薄膜沈殿技術を利用し、先端プラットフォームの近隣表面に酸化物を沈殿することにより実現される。
  16. 特許請求14に記載される作成方法、その特徴は:手順bには、酸化物遷移率が増加する温度まで加熱することを含み、手順cに至れば、加熱を中止する。
  17. 特許請求14に記載される作成方法、その特徴は:手順cの後は手順dが続くもの:エミッタを酸化物薄膜蒸発点より低い温度まで加熱することにより、酸化物薄膜層と当該先端プラットフォームのしっかりとした結合を実現させる。
JP2015504841A 2012-04-13 2012-12-31 低仕事関数及び高い化学的安定性を備えた電極材料 Expired - Fee Related JP6458727B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
CN201210107766.0 2012-04-13
CN201210107766.0A CN102629538B (zh) 2012-04-13 2012-04-13 具有低逸出功和高化学稳定性的电极材料
PCT/CN2012/087966 WO2013152613A1 (zh) 2012-04-13 2012-12-31 具有低逸出功和高化学稳定性的电极材料

Publications (3)

Publication Number Publication Date
JP2015518245A JP2015518245A (ja) 2015-06-25
JP2015518245A5 true JP2015518245A5 (ja) 2017-09-28
JP6458727B2 JP6458727B2 (ja) 2019-01-30

Family

ID=46587777

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015504841A Expired - Fee Related JP6458727B2 (ja) 2012-04-13 2012-12-31 低仕事関数及び高い化学的安定性を備えた電極材料

Country Status (5)

Country Link
US (1) US9812279B2 (ja)
EP (1) EP2787522B1 (ja)
JP (1) JP6458727B2 (ja)
CN (1) CN102629538B (ja)
WO (1) WO2013152613A1 (ja)

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102629538B (zh) 2012-04-13 2014-03-19 吴江炀晟阴极材料有限公司 具有低逸出功和高化学稳定性的电极材料
WO2016140177A1 (ja) * 2015-03-02 2016-09-09 国立研究開発法人物質・材料研究機構 エミッタ、それを用いた電子銃、それを用いた電子機器、および、その製造方法
JP2016207319A (ja) * 2015-04-17 2016-12-08 株式会社日立ハイテクノロジーズ 電界放出型電子源及びその製造方法
CN104880579B (zh) * 2015-06-02 2019-02-12 苏州明志金科仪器有限公司 超高真空自旋极化扫描隧道显微镜探针的制备方法和装置
US10083812B1 (en) * 2015-12-04 2018-09-25 Applied Physics Technologies, Inc. Thermionic-enhanced field emission electron source composed of transition metal carbide material with sharp emitter end-form
JP6529920B2 (ja) * 2016-03-01 2019-06-12 株式会社日立ハイテクノロジーズ 電界放出電子源、その製造方法および電子線装置
US10545258B2 (en) * 2016-03-24 2020-01-28 Schlumberger Technology Corporation Charged particle emitter assembly for radiation generator
US9984846B2 (en) * 2016-06-30 2018-05-29 Kla-Tencor Corporation High brightness boron-containing electron beam emitters for use in a vacuum environment
KR20220026611A (ko) * 2016-08-08 2022-03-04 에이에스엠엘 네델란즈 비.브이. 전자 이미터 및 이의 제작 방법
KR102374925B1 (ko) * 2016-09-06 2022-03-16 주식회사 히타치하이테크 전자원 및 전자선 조사 장치
WO2018070010A1 (ja) 2016-10-13 2018-04-19 株式会社日立ハイテクノロジーズ 電子線装置
CN106783460A (zh) * 2017-01-05 2017-05-31 武汉科技大学 一种低逸出功阴极
US11417491B2 (en) 2017-11-29 2022-08-16 National Institute For Materials Science Emitter, electron gun in which same is used, electronic device in which same is used, and method for manufacturing same
CN111048372B (zh) 2018-10-12 2021-04-27 中国电子科技集团公司第三十八研究所 一种电子源工作方法
CN111048373B (zh) 2018-10-12 2021-04-27 中国电子科技集团公司第三十八研究所 一种电子源再生方法
CN111048383B (zh) * 2018-10-12 2021-01-15 中国电子科技集团公司第三十八研究所 电子源和电子枪
CN111048382B (zh) 2018-10-12 2021-03-23 中国电子科技集团公司第三十八研究所 电子源制造方法
WO2020206445A1 (en) * 2019-04-05 2020-10-08 Modern Electron, Inc Thermionic energy converter with thermal concentrating hot shell
GB2583359A (en) * 2019-04-25 2020-10-28 Aquasium Tech Limited Electron beam emitting assembly
US12081145B2 (en) 2019-10-09 2024-09-03 Modern Hydrogen, Inc. Time-dependent plasma systems and methods for thermionic conversion
WO2023137360A1 (en) * 2022-01-12 2023-07-20 Applied Physics Technologies, Inc. Monolithic heater for thermionic electron cathode

Family Cites Families (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3374386A (en) 1964-11-02 1968-03-19 Field Emission Corp Field emission cathode having tungsten miller indices 100 plane coated with zirconium, hafnium or magnesium on oxygen binder
GB1210007A (en) * 1968-07-05 1970-10-28 Mullard Ltd Cathode
US3817592A (en) 1972-09-29 1974-06-18 Linfield Res Inst Method for reproducibly fabricating and using stable thermal-field emission cathodes
JPS5617780B2 (ja) * 1973-03-26 1981-04-24
JPS53114660A (en) * 1977-03-16 1978-10-06 Jeol Ltd Cathode for thermal electron emission
US4137476A (en) * 1977-05-18 1979-01-30 Denki Kagaku Kogyo Kabushiki Kaisha Thermionic cathode
JPS5588233A (en) * 1978-12-26 1980-07-03 Denki Kagaku Kogyo Kk Hexaboride single crystal cathode
JPS57128436A (en) * 1981-02-02 1982-08-10 Koichi Kanetani Manufacture of lanthanum-boride thermionic emission electrode
US4468586A (en) * 1981-05-26 1984-08-28 International Business Machines Corporation Shaped electron emission from single crystal lanthanum hexaboride with intensity distribution
JPS5971232A (ja) * 1982-10-14 1984-04-21 Natl Inst For Res In Inorg Mater 表面酸化型炭化物フィールドエミッターの製造法
US6190579B1 (en) * 1997-09-08 2001-02-20 Integrated Thermal Sciences, Inc. Electron emission materials and components
JP2000021290A (ja) * 1998-07-03 2000-01-21 Canon Inc 電子放出素子、電子源、画像形成装置及びそれらの製造方法
US6680562B1 (en) * 1999-08-20 2004-01-20 Fei Company Schottky emitter having extended life
US6387717B1 (en) * 2000-04-26 2002-05-14 Micron Technology, Inc. Field emission tips and methods for fabricating the same
JP3996774B2 (ja) 2002-01-09 2007-10-24 株式会社日立ハイテクノロジーズ パターン欠陥検査方法及びパターン欠陥検査装置
US7431856B2 (en) 2005-05-18 2008-10-07 National Research Council Of Canada Nano-tip fabrication by spatially controlled etching
CN100372047C (zh) * 2005-09-09 2008-02-27 清华大学 一种薄膜场发射显示器件及其场发射阴极的制备方法
US7888654B2 (en) * 2007-01-24 2011-02-15 Fei Company Cold field emitter
JP2009146705A (ja) * 2007-12-13 2009-07-02 Sumitomo Electric Ind Ltd 電子放出素子、電子源、電子線装置、及び電子放出素子の製造方法
CN102394204B (zh) * 2008-03-19 2014-10-08 清华大学 场发射电子源
JP2010157490A (ja) * 2008-12-02 2010-07-15 Canon Inc 電子放出素子および該電子放出素子を用いた表示パネル
WO2010123007A1 (ja) * 2009-04-20 2010-10-28 独立行政法人物質・材料研究機構 希土類六ホウ化物冷陰極電界放出型電子源
CN102629538B (zh) 2012-04-13 2014-03-19 吴江炀晟阴极材料有限公司 具有低逸出功和高化学稳定性的电极材料

Similar Documents

Publication Publication Date Title
JP6458727B2 (ja) 低仕事関数及び高い化学的安定性を備えた電極材料
JP2015518245A5 (ja)
US6930313B2 (en) Emission source having carbon nanotube, electron microscope using this emission source, and electron beam drawing device
JP5301168B2 (ja) 冷電界エミッタ
US20100193687A1 (en) Field emission type electron gun comprising single fibrous carbon electron emitter and operating method for the same
CN109804450B (zh) 电子束装置
JP4792404B2 (ja) 電子源の製造方法
JP4210131B2 (ja) 電子源及び電子源の使用方法
JP2007287401A (ja) 導電性針およびその製造方法
EP2242084B1 (en) Method of manufacturing an electron source
TW202013410A (zh) 用於具有一擴散障壁之電子發射器之金屬保護層
JP4317779B2 (ja) 電界放出型電子銃およびそれを用いた電子ビーム応用装置
JP5363413B2 (ja) 電子源
JP2006049293A (ja) 電界放出型電子銃およびそれを用いた電子ビーム応用装置
Navitski Scanning field emission investigations of structured CNT and MNW cathodes, niobium surfaces and photocathodes
WO2021130837A1 (ja) 電子源、電子線装置および電子源の製造方法
Swartzentruber Microstructure and work function of dispenser cathode coatings: effects on thermionic emission
JPWO2004073010A1 (ja) 電子銃
Mousa et al. Field Electron Emission Characteristics of Uncoated Alumel Tips
JP2005332677A (ja) 電子源の製造方法と使用方法
JP2006059701A (ja) 荷電粒子ビーム装置およびそれを用いた狭ギャップ電極形成方法
CN115410886A (zh) 一种场发射电子源及其制备方法
Lysenkov Optimization of nanostructures for field emission cathodes