TW202013410A - 用於具有一擴散障壁之電子發射器之金屬保護層 - Google Patents

用於具有一擴散障壁之電子發射器之金屬保護層 Download PDF

Info

Publication number
TW202013410A
TW202013410A TW108118026A TW108118026A TW202013410A TW 202013410 A TW202013410 A TW 202013410A TW 108118026 A TW108118026 A TW 108118026A TW 108118026 A TW108118026 A TW 108118026A TW 202013410 A TW202013410 A TW 202013410A
Authority
TW
Taiwan
Prior art keywords
emitter
protective cover
cover layer
transmitter
less
Prior art date
Application number
TW108118026A
Other languages
English (en)
Inventor
法蘭斯 希爾
吉爾達多 R 德爾加多
盧狄 F 賈西亞
葛瑞 洛普茲
麥克 E 羅密洛
卡特里納 艾歐凱密迪
西法姆 馬克思
Original Assignee
美商克萊譚克公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 美商克萊譚克公司 filed Critical 美商克萊譚克公司
Publication of TW202013410A publication Critical patent/TW202013410A/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J1/00Details of electrodes, of magnetic control means, of screens, or of the mounting or spacing thereof, common to two or more basic types of discharge tubes or lamps
    • H01J1/02Main electrodes
    • H01J1/30Cold cathodes, e.g. field-emissive cathode
    • H01J1/304Field-emissive cathodes
    • H01J1/3042Field-emissive cathodes microengineered, e.g. Spindt-type
    • H01J1/3044Point emitters
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J1/00Details of electrodes, of magnetic control means, of screens, or of the mounting or spacing thereof, common to two or more basic types of discharge tubes or lamps
    • H01J1/02Main electrodes
    • H01J1/30Cold cathodes, e.g. field-emissive cathode
    • H01J1/304Field-emissive cathodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/02Details
    • H01J37/04Arrangements of electrodes and associated parts for generating or controlling the discharge, e.g. electron-optical arrangement, ion-optical arrangement
    • H01J37/06Electron sources; Electron guns
    • H01J37/073Electron guns using field emission, photo emission, or secondary emission electron sources
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2201/00Electrodes common to discharge tubes
    • H01J2201/28Heaters for thermionic cathodes
    • H01J2201/2892Coatings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2201/00Electrodes common to discharge tubes
    • H01J2201/30Cold cathodes
    • H01J2201/304Field emission cathodes
    • H01J2201/30403Field emission cathodes characterised by the emitter shape
    • H01J2201/30407Microengineered point emitters
    • H01J2201/30411Microengineered point emitters conical shaped, e.g. Spindt type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2201/00Electrodes common to discharge tubes
    • H01J2201/30Cold cathodes
    • H01J2201/304Field emission cathodes
    • H01J2201/30403Field emission cathodes characterised by the emitter shape
    • H01J2201/30407Microengineered point emitters
    • H01J2201/30415Microengineered point emitters needle shaped
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2201/00Electrodes common to discharge tubes
    • H01J2201/30Cold cathodes
    • H01J2201/304Field emission cathodes
    • H01J2201/30403Field emission cathodes characterised by the emitter shape
    • H01J2201/30426Coatings on the emitter surface, e.g. with low work function materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2201/00Electrodes common to discharge tubes
    • H01J2201/30Cold cathodes
    • H01J2201/304Field emission cathodes
    • H01J2201/30446Field emission cathodes characterised by the emitter material
    • H01J2201/30449Metals and metal alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2201/00Electrodes common to discharge tubes
    • H01J2201/30Cold cathodes
    • H01J2201/304Field emission cathodes
    • H01J2201/30446Field emission cathodes characterised by the emitter material
    • H01J2201/3048Semiconductor materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2235/00X-ray tubes
    • H01J2235/06Cathode assembly
    • H01J2235/062Cold cathodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/06Sources
    • H01J2237/063Electron sources
    • H01J2237/06325Cold-cathode sources
    • H01J2237/06341Field emission

Landscapes

  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Cold Cathode And The Manufacture (AREA)
  • Electron Sources, Ion Sources (AREA)

Abstract

一種具有100 nm或更小之一直徑之發射器與一保護罩蓋層及介於該發射器與該保護罩蓋層之間之一擴散障壁一起使用。該保護罩蓋層安置於該發射器之外表面上。該保護罩蓋層包含鉬或銥。該發射器可產生一電子束。可脈送該發射器。

Description

用於具有一擴散障壁之電子發射器之金屬保護層
本發明係關於具有一塗層之電子發射器。
用於電子發射之具有小尖端直徑(例如,100 nm或更小)之發射器受真空條件影響。真空條件可使場發射效能退化。典型電子發射器不具有保護塗層來保護其免受氧化或積碳(carbon build up)。在超高真空(UHV)條件下,碳層在電子束發射期間在陰極尖端之表面上生長。在UHV環境中,亦有可能發生表面之氧化。先前設計對於例如氧化或碳層之清潔不穩健。來自真空之分子(例如,氫、一氧化碳、氧、氮及水)亦可吸附至陰極尖端上,且此可導致場發射電流之一下降及場發射電流之不穩定性。
由於完善的矽微加工技術,矽係用於製作待用作電子發射器之奈米尖端之一良好候選材料。然而,矽發射器極易氧化,此將發射器尖端轉換為矽氧化物。歸因於矽氧化物之高功函數,矽氧化物將使尖端無法操作用於電子發射。穩定性亦受發射器上之矽氧化物之存在影響。不存在防止此在系統壽命內發生之明確方法。
因此,需要一種經改良電子發射器及操作方法。
在一第一實施例中,提供一種設備。該設備包含具有100 nm或更小之一直徑之一發射器。一保護罩蓋層安置於該發射器之一外表面上。該保護罩蓋層包含鉬。該發射器可具有小於15 nm之一直徑。該保護罩蓋層可具有自1 nm至20 nm之一厚度。
一擴散障壁可安置於該發射器與該保護罩蓋層之間。該擴散障壁可包含TiN、碳、B4 C、硼或鈮。
該保護罩蓋層可在至少一發射區域中無針孔。
該保護罩蓋層可具有少於104 個雜質。該等雜質可包含碳、氧化物、作為一溶解氣體之氧氣、鈉或鉀。
該保護罩蓋層可具有小於或等於25%之一孔隙率。
該保護罩蓋層可具有大於或等於0.92之一堆積密度(packing density)。
一種系統可包含具有第一實施例之發射器之一電子源、一載物台及一偵測器。
在一第二實施例中,提供一種設備。該設備包含具有100 nm或更小之一直徑之一發射器。一保護罩蓋層安置於該發射器之一外表面上。該保護罩蓋層包含銥。該發射器可具有小於15 nm之一直徑。該保護罩蓋層可具有自1 nm至20 nm之一厚度。
一擴散障壁可安置於該發射器與該保護罩蓋層之間。該擴散障壁可包含TiN、碳、B4 C、硼或鈮。
該保護罩蓋層可在至少一發射區域中無針孔。
該保護罩蓋層可具有少於104 個雜質。該等雜質可包含碳、氧化物、作為一溶解氣體之氧氣、鈉或鉀。
該保護罩蓋層可具有小於或等於25%之一孔隙率。
該保護罩蓋層可具有大於或等於0.92之一堆積密度。
一種系統可包含具有第二實施例之發射器之一電子源、一載物台及一偵測器。
在一第三實施例中,提供一種方法。該方法包含提供一發射器,該發射器包含安置於該發射器之一外表面上之一保護罩蓋層。該發射器具有100 nm或更小之一直徑。將一電場施加至該發射器。自該發射器產生一電子束。脈送該發射器而自該發射器移除被吸附物。
該保護罩蓋層可包含鉬、銥、釕或其他材料。
相關申請案之交叉參考
本申請案主張於2018年5月25日申請且讓與美國申請案第62/676,735號之臨時專利申請案之優先權,該案之揭示內容特此以引用的方式併入。
儘管將依據特定實施例描述所主張之標的物,然其他實施例(包含未提供本文中闡述之全部優點及特徵之實施例)亦在本發明之範疇內。可在不脫離本發明之範疇之情況下進行各種結構、邏輯、程序步驟及電子改變。因此,本發明之範疇僅參考隨附發明申請專利範圍定義。
本文中揭示之實施例提供一種具有高電子電流穩定性及壽命之發射器及發射器操作方法。如本文中揭示,發射器之尖端塗佈有鉬及/或銥之一保護罩蓋層。與n型矽發射器或p型矽發射器相比,鉬及銥塗佈之矽尖端產生較高發射電流且具有較佳發射電流穩定性。另外,可使用分子氫、加熱之分子氫、氫電漿或其他電漿來清除鉬及銥表面之碳污染及氧化。本文中揭示之實施例可改裝成現有系統,此降低重新設計成本。
保護罩蓋層經選擇使得可容易自金屬清除被吸附分子,且使得與沒有一保護罩蓋層相比,金屬表面更長時間保持清潔。可藉由加熱、紫外光、電子激發脫附或使用高電場來自尖端清除分子被吸附物。甚至在超高真空條件下,在電子束發射期間仍可發生碳層在不具有一保護罩蓋層之矽陰極尖端之表面上的生長,且亦有可能發生此等表面之氧化。保護罩蓋層抗氧化及積碳。
圖1係包含一發射器101及發射器安裝機構102之一電子發射系統100之一正視圖。電子發射系統100經組態以將電子發射至電子發射系統100周圍之環境或空間中。發射器101具有一第一區段103、一第二區段104及一經修圓尖端105。第一區段103可為圓柱形的。在不具有經修圓尖端105之情況下,第二區段104可為大致截頭圓錐形的。第二區段104可安置於一第一區段103之一末端上。第二區段104可在第一區段103與經修圓尖端105之間具有一漸縮寬度或直徑。雖然第一區段103及第二區段104可為大致圓形的,但第一區段103及第二區段104兩者可歸因於晶體結構而有小面。安置於第二區段104之一末端上之經修圓尖端105大致可為一截球體。經修圓尖端105可至少部分或完全經修圓。除本文中描述之形狀外之其他形狀係可行的。
第一區段103或第一區段103及第二區段104可被描述為發射器101之「軸」。發射器101之軸藉由發射器安裝機構102固持。
發射器101、第一區段103、第二區段104或經修圓尖端105之尺寸可變化。發射器101之軸或發射器101自身之長度及直徑兩者可為奈米尺度或微米尺度。
發射器101包含一發射器核心110及一保護罩蓋層111。保護罩蓋層111安置於發射器核心110之一外表面上。發射器核心110之整個或少於整個外表面可由保護罩蓋層111覆蓋。因此,發射器101之100%或少於100%之暴露表面可由保護罩蓋層111覆蓋。然而,發射器101之至少經修圓尖端105或發射器101之至少發射區域可由保護罩蓋層111覆蓋。
發射器核心110可為矽或其他材料。保護罩蓋層111可為鉬、銥或鉬及銥之一合金。其他材料亦可與鉬及/或銥形成合金。鉬或銥可為>90%純,諸如>99%純。在一例項中,使用一微加工程序構造矽冷場發射器。接著,將一經濺鍍鉬及/或銥薄膜沈積至矽冷場發射器上。
一選用擴散障壁112可安置於發射器101與保護罩蓋層111之間。擴散障壁112防止或減少發射器核心110與保護罩蓋層111之間之擴散。例如,擴散障壁112可為TiN、碳、B4 C、硼、鈮或其他材料。擴散障壁112之厚度可經選擇以防止或減少例如金屬擴散至發射器核心110之矽中。在一例項中,擴散障壁112具有自1 nm至2 nm之一厚度,但較厚層係可行的。一較厚擴散障壁112可導致較低亮度,但此對於某些應用可為可接受的。可控制擴散障壁112中之氧含量以最小化存在之氧之量。在一例項中,在施覆擴散障壁112之前使用氬電漿自發射器101移除一金屬氧化物。在一實例中,在不破壞真空之情況下在相同腔室中施覆氬電漿、擴散障壁112及保護罩蓋層111。
保護罩蓋層111亦可在不具有擴散障壁112之情況下直接施覆至發射器101。例如,在可接受效能之情況下在不具有一擴散障壁112之一發射器101上測試鉬保護罩蓋層111。
保護罩蓋層111可使發射器101抗氧化及積碳。保護罩蓋層111亦可具有相對較低濺鍍率(sputter yield)以耐離子侵蝕。可使用分子氫、加熱之分子氫、氫電漿或其他電漿來清除鉬及銥薄膜之積碳及氧化。保護罩蓋層111可具有低濺鍍率,因此其可耐離子侵蝕。鉬及銥亦具有低濺鍍率,此意謂此等薄膜可耐離子侵蝕。低濺鍍率使鉬及銥成為保護發射器尖端免受因回流離子引起之離子轟擊的良好候選者。
鉬及銥兩者具有高熔融溫度(對於鉬,大約2623o C,且對於銥,大約2446o C)。一高熔融溫度可使保護罩蓋層111能夠熱力學穩定。加熱期間之再結晶係保護罩蓋層111不期望的。保護罩蓋層111可需要發射高達數百微安之電流而未歸因於加熱(例如,在場發射期間之焦耳加熱及/或諾丁漢(Nottingham)效應)而對膜造成任何結構改變。當發射在暖場發射模式中運行(例如,將發射器加熱高達約500o C)且在一烘烤期間加熱真空室以達到10-11 托至10-10 托之真空位準(例如,升溫至300o C)時,經沈積保護罩蓋層111較佳應為穩定的。
發射器安裝機構102之組態可自圖1中繪示之組態變化。在一實例中,一發射器安裝機構102使用坐落於一陶瓷絕緣體上之一鎢髮針支撐發射器尖端,該陶瓷絕緣體具有用於髮針腿之電極。可加熱該髮針以提供瞬間清潔(flash cleaning)或將發射器溫度提升至熱場發射(TFE)值(例如,大約1800 K)。一接地參考電源供應器可對發射器提供偏壓電壓,其可為大約5 kV。在一例項中,使用自1 kV至2 kV之一偏壓電壓。
經修圓尖端105經組態以將自由電子發射至電子發射系統100周圍之一抽空空間中。可藉由將一電場施加至電子發射系統100或其周圍而產生電子。可使用帶電板或使用其他技術來施加電場。
發射器101可具有小於1 µm2 之一發射區域。例如,發射器101之發射區域可為100 nm2 或更小。此發射區域可為經修圓尖端105之外表面107之部分。
經修圓尖端105可經均勻修圓或非均勻修圓。經修圓尖端105可包含一平坦發射小面109。例如,可存在呈一小<100>定向奈米平坦部(nano-flat)之形式之一平坦發射小面109。此平坦發射小面109可用於產生一良好準直之電子束。在一實例中,平坦發射小面109可提供小於1 µm2 之一發射區域。
在其他實例中,經修圓尖端105具有一大致半球形或拋物面形狀(其可或可不包含一平坦發射小面)。此等形狀可更廣泛地分散電子發射,此可導致一更小、更亮之電子分率傳遞至電子光學器件中。
為提供所要經修圓尖端105,可控制表面結晶度。
可針對經改良電子發射設計鉬及銥膜之厚度。在塗佈保護罩蓋層111之後之發射器尖端直徑(諸如藉由圖1中之線113繪示)可較小,使得電子束具有高亮度。因此,保護罩蓋層111之厚度可較薄。可使用具有自1 nm至20 nm (包含至0.1 nm之全部值及介於其間之範圍)之厚度的鉬及/或銥塗層。確切厚度可取決於發射器101之初始尖端直徑。例如,厚度在自1 nm至20 nm之範圍內之鉬及銥保護罩蓋層可用於在自1 nm至50 nm之範圍內之一尖端半徑。若降低之亮度係可接受的,則較厚保護罩蓋層係可行的。在一例項中,運用一2 nm厚擴散障壁112測試一10 nm厚保護罩蓋層111。可藉由離子或磁控濺鍍、原子層沈積(ALD)或藉由容許一緻密、均勻的保護罩蓋層111之其他方法來沈積一緻密塗層。一緻密塗層可為例如均質的、均勻的且具有大於大約80%之一堆積密度。亦可使用比20 nm厚之一保護罩蓋層111,此係因為厚度可取決於發射器101之半徑。
可控制保護罩蓋層111之外表面處之直徑以調諧電子束之性質(例如,亮度、尖端處之電場、電流-電壓性質、電子間相互作用)。保護罩蓋層111之外表面處之直徑係由發射器核心110之直徑及在發射器101之一橫截面之兩側上的保護罩蓋層111及在發射器101之一橫截面之兩側上的選用擴散障壁112之厚度之總和組成。在選擇發射器核心110之直徑時,存在要考量之製造問題,諸如易製造性、可重複性及發射器之間之尺寸之可變性。在選擇保護罩蓋層111之厚度時,可控制膜之品質,諸如晶粒結構、晶界、不連續性、可覆蓋表面、針孔、膜密度或表面粗糙度。塗佈發射器之保護罩蓋層111係均勻的、緻密的、連續的且具有極低表面粗糙度(特別是在發射器101之尖端處)可為重要的。保護罩蓋層111在側壁上亦可為均勻的且保形的。為處置電場穿透,保護罩蓋層111厚度之下限可為一個單分子層。可選取超過一個單分子層之膜厚度以最佳化膜品質。可選取發射器核心110外加保護罩蓋層111之總直徑以最佳化電子束性質。
經修圓尖端105之發射區域可小於1 µm2 。經修圓尖端105之發射區域可對應於經修圓尖端105之整個表面區域或僅經修圓尖端105之表面區域之部分。例如,發射區域可對應於一平坦發射小面109。經修圓尖端105之發射區域可能不具有突出部且可為原子級平滑的。
全部或部分保護罩蓋層111可無針孔。例如,發射器101之至少發射區域可無針孔。發射區域可為尖端附近之5 nm至10 nm區或其他區域。可藉由牽拉電子束所需之高提取場來放大任何針孔之效應。
全部或部分保護罩蓋層111可無夾雜物。例如,發射器101之至少發射區域可無夾雜物。
保護罩蓋層111中之一最大缺陷直徑或長度尺寸可小於1 nm。缺陷包含經沈積膜中之過度結構,諸如可經由濺鍍參數控制之棒或塊。
保護罩蓋層111可具有少於103 或104 個雜質。雜質可包含碳、氧化物、作為一溶解氣體之氧氣、鈉、鉀或其他材料。雜質影響保護罩蓋層111之功函數,此將影響電子發射之均勻性。
保護罩蓋層111之孔隙率可小於或等於25%。保護罩蓋層111之堆積密度可大於或等於0.92。可運用以下方程式來使用折射率定義及量測孔隙率(P)
Figure 02_image001
方程式1 其中nf 係經沈積薄膜之折射率且nB 係塊體材料之折射率。
一膜之堆積密度(PD)使用以下方程式定義為平均膜密度(ρf )與體積密度(ρB )之一比。 PD =ρf / ρB 方程式2
可藉由以下方程式表達膜折射率與其堆積密度之間之相關性。
Figure 02_image003
方程式3
其中發生場發射之發射器101之表面可由金屬原子均質地製成。
保護罩蓋層111減少碳污染及氧化。可藉由分子氫、氫電漿或其他電漿清除鉬、銥或其等合金。因此,可使用例如加熱之H2 + 及/或氧移除保護罩蓋層111上之任何碳污染或氧化。
包含鉬或銥之一保護罩蓋層111對於電子場發射或在存在高電場之情況下係穩健的。此一保護罩蓋層111亦對離子濺鍍及清潔穩健。
可藉由離子或磁控濺鍍、ALD或藉由熟習此項技術者已知之其他方法沈積保護罩蓋層111。此等技術可能夠形成具有所要密度及均勻性之一保護罩蓋層111。
運用鉬薄膜塗佈矽可產生小直徑尖端陣列。可使用矽微加工技術製作具有小直徑(例如,15 nm直徑或更小)之發射器陣列。運用金屬薄膜塗佈矽以金屬化發射表面。塗佈技術可提供不具有結構缺陷之高密度、高純度塗層。為防止或減少矽擴散至金屬薄膜中,可在矽與金屬薄膜之間沈積一擴散障壁。此擴散障壁係選用的。
在一個測試中,將奈米尖端安裝於高的圓柱形矽柱之頂部上以提高場增強。奈米尖端及柱可為發射器之實例。矽奈米尖端塗佈有一金屬薄膜用於冷場發射。在矽與金屬薄膜之間添加一選用擴散障壁以減少或防止矽擴散至金屬薄膜中。此減少或防止矽擴散至其中其可能氧化且引起一非均勻功函數之發射表面。所得SiO2 亦可因其高功函數而限制電流。雖然經測試發射器係由矽製成,但發射器亦可由其他材料製成。
在矽發射器上測試之不同金屬塗層中,具有銥保護罩蓋層之發射器已顯示場發射穩定性之最有前景的結果。然而,鉬及銥之穩定性結果優於鉑、釕、硼或鎢薄膜。一塗層之均勻性可影響穩定性,但測試結果指示即使有均勻性差異,鉬與銥之間之效能仍大體上類似。因此,銥塗層與鉬塗層之間之任何均勻性差異可能不會影響效能。
圖2係根據本發明之一方法之一流程圖。在200,提供具有一外表面之一發射器。發射器具有100 nm或更小之一直徑。在201,將一保護罩蓋層施覆至發射器之外表面。保護罩蓋層包含鉬及/或銥。施覆可包含濺鍍沈積、ALD或離子濺鍍。濺鍍沈積及ALD可提供保護罩蓋層之所要保形性。特定言之,濺鍍沈積可減少保護罩蓋層中之孔隙率、空隙之存在及針孔之存在。
圖3係根據本發明之另一方法之一流程圖。在300,提供一發射器,該發射器包含安置於發射器之一外表面上之一保護罩蓋層。發射器具有100 nm或更小之一直徑。保護罩蓋層包含鉬及/或銥。在301,將一電場施加至發射器。在302,自發射器產生一電子束。發射器可在至少10-9 托(諸如自5x10-10 托至5x10-11 托)之一真空中操作。小於5x10-11 托(諸如10-1 2 托)係可行的。
在電子束產生期間可使用自大約0.1 kV至10 kV (包含至0.1 kv之間的全部範圍及值)之一提取電壓。例如,提取電壓可自大約0.5 kV至10 kV、自大約1 kV至10 kV、自大約1.5 kV至10 kV或自大約2.5 kV至10 kV。其他提取電壓係可行的。
用於具有一保護罩蓋層之一發射器之一電場可在自大約0.1 V/nm至5 V/nm之範圍內(包含至0.1 V/nm之間的全部範圍及值)。電場可取決於發射器之外徑(包含保護罩蓋層之厚度)而變化。大於5 V/nm之電場可用於高電流(例如,大於10 μA)。
本發明之實施例可用於倍縮光罩與晶圓檢測及度量系統中。該等系統可經組態以提供所要真空環境規格。此等系統之實例包含:使用單一或多個電子源之電子束晶圓或倍縮光罩檢測系統;使用單一或多個電子源之電子束晶圓或倍縮光罩檢視系統;使用單一或多個電子源之電子束晶圓或倍縮光罩度量系統;或需要至少一個電子源以使用單一或多個電子束產生x射線以於晶圓或倍縮光罩度量、檢視或檢測中使用之系統。來自發射器之電子流可經引導朝向一樣本,諸如一半導體晶圓或其他工件。電子流可行進通過提取及聚焦電極以形成具有一所要射束能量及射束電流之一電子束。一或多個透鏡可用於在樣本上產生一小的電子束光點。偏轉器可用於掃描電子束。樣本可放置於可能夠相對於電子束掃描之一載物台上。當電子束命中樣本時,可自樣本發射二次電子及反向散射電子(其等可經收集且加速朝向一偵測器)。
本文中描述之實施例可包含於一系統(諸如圖4之系統400)中或可在該系統中執行。系統400包含具有至少一能量源及一偵測器之一輸出獲取子系統。輸出獲取子系統可為一基於電子束之輸出獲取子系統。例如,在一項實施例中,引導至晶圓404之能量包含電子,且自晶圓404偵測之能量包含電子。以此方式,能量源可為一電子束源402。在圖4中展示之一個此實施例中,輸出獲取子系統包含耦合至電腦子系統407之電子柱401。
亦如圖4中展示,電子柱401包含經組態以產生藉由一或多個元件403聚焦至晶圓404之電子的電子束源402。電子束源402可包含一發射器(諸如圖1中之電子發射系統100之發射器101),且一或多個元件403可包含例如一槍透鏡、一陽極、一限束孔徑、一閘閥、一束電流選擇孔徑、一物鏡及/或一掃描子系統。電子柱401可包含此項技術中已知之任何其他適合元件。雖然僅繪示一個電子束源402,但系統400可包含多個電子束源402。
自晶圓404返回之電子(例如,二次電子)可藉由一或多個元件405聚焦至偵測器406。一或多個元件405可包含例如一掃描子系統,其可為包含於(若干)元件403中之相同掃描子系統。電子柱401可包含此項技術中已知之任何其他適合元件。
儘管圖4中將電子柱401展示為經組態使得電子以一傾斜入射角引導至晶圓404且以另一傾斜角自晶圓散射,然應瞭解,電子束可以任何適合角度引導至晶圓及自晶圓散射。另外,基於電子束之輸出獲取子系統可經組態以使用多個模式(例如,運用不同照明角、收集角等)產生晶圓404之影像。基於電子束之輸出獲取子系統之多個模式可在輸出獲取子系統之任何影像產生參數方面不同。
電腦子系統407可與偵測器406電子通信。偵測器406可偵測自晶圓404之表面返回之電子,藉此形成晶圓404之電子束影像。電子束影像可包含任何適合電子束影像。電腦子系統407可經組態以使用偵測器406之輸出及/或電子束影像執行其他功能或額外步驟。例如,電腦子系統407可經組態以執行圖3之方法或圖8之方法。
應注意,本文中提供圖4以大體上繪示一基於電子束之輸出獲取子系統之一組態。可更改本文中描述之基於電子束之輸出獲取子系統組態以最佳化輸出獲取子系統之效能,如在設計一商業輸出獲取系統時所通常執行。另外,可使用一現有系統(例如,藉由將本文中描述之功能性添加至一現有系統)來實施本文中描述之系統。對於一些此等系統,可將本文中描述之方法提供為系統之選用功能性(例如,除了系統之其他功能性之外)。
在一項實施例中,系統400係一檢測系統。例如,本文中描述之電子束輸出獲取子系統可組態為檢測系統。在另一實施例中,系統400係一缺陷檢視系統。例如,本文中描述之電子束輸出獲取子系統可組態為缺陷檢視系統。在另一實施例中,系統400係一度量系統。例如,本文中描述之電子束輸出獲取子系統可組態為度量系統。特定言之,在本文中描述且在圖4中展示之系統400之實施例可取決於其等將用於之應用而在一或多個參數方面修改以提供不同成像能力。在一個此實例中,圖4中展示之系統400可經組態以若將用於缺陷檢視或度量而非用於檢測則具有一較高解析度。換言之,圖4中展示之系統400之實施例描述用於一系統400之一些一般及各種組態,該等組態可依若干方式定製以產生具有或多或少適於不同應用之不同成像能力的輸出獲取子系統。
系統400或電子發射系統100之實施例可經組態用於樣品(諸如晶圓及倍縮光罩)之檢測、缺陷檢視及/或度量。例如,本文中描述之實施例可經組態以使用掃描電子顯微鏡(SEM)用於遮罩檢測、倍縮光罩檢測、倍縮光罩度量、晶圓檢測及晶圓度量之目的。系統400或電子發射系統100亦可組態為用於產生x射線之電子源以用於晶圓或倍縮光罩度量、檢視或檢測。
特定言之,本文中描述之實施例可與一電腦程式碼或電腦叢集(其係一輸出獲取子系統(諸如一電子束檢測器或缺陷檢視工具、一遮罩檢測器、一虛擬檢測器或其他裝置)之一組件或耦合至該輸出獲取子系統)一起使用。以此方式,本文中描述之實施例可產生可用於多種應用(包含但不限於晶圓檢測、遮罩檢測、電子束檢測及檢視、度量或其他應用)之輸出。可如上文描述般基於將針對其產生輸出之樣品修改圖4中展示之系統400之特性。
用於室溫場發射、暖溫場發射或光電陰極模式之發射器之操作的最佳總壓力可為10-9 托或更小,諸如自5x10-10 托至5x10-1 1 托。此操作壓力加總真空相關分子(例如,H2 O、H2 、CO、CO2 、O2 、N2 或碳氫化合物)之全部分壓。對於H2 ,分壓限制可為10-12 托,而對於任何其他分子,分壓可低於10-1 0 托。
操作壓力可隨操作模式變化。例如,操作壓力可隨發射機構及表面活化能量而變化。熱場發射模式可在10-9 托或更小下操作,諸如自5x10-10 托至5x10-1 1 托。小於5x10-11 托(諸如10-1 2 托)係可行的。
操作壓力或其他真空參數影響發射器之污染或侵蝕。發射器周圍之環境之高粒子計數(諸如因水分或其他粒子引起)可導致加速之質量損失。因為僅高功函數表面曝露於提取場,所以功函數發射區域可消失且發射可降至接近零。發射材料之任何孔蝕可在結晶學上被破壞,此影響功函數。
例如,當一薄碳層形成於電子流發射表面上時,可發生發射表面之碳污染(特別是在較低操作溫度下)。碳污染可因揮發性真空系統相關有機物(例如,油或潤滑劑)、來自拋光劑或清潔劑之殘餘物、來自棉簽或清潔布之殘餘纖維或其他來源引起。碳膜破壞具有一高功函數層之發射表面,此導致減小的發射電流。
在另一實例中,來自發射器之材料之氧化、昇華或蒸發可歸因於水分而發生。因此,耐火材料或介電材料可形成於其他表面(包含內表面、孔徑及陽極表面)上。
為避免碳污染、水分損壞或氧化,控制圍繞電子發射系統周圍之真空環境。環境之操作壓力可取決於操作模式。
圖5展示在具有矽發射器上之一5 nm厚鉬保護罩蓋層而不具有一擴散障壁之情況下的場發射之提取器電流及探針電流(例如,在一法拉第杯(Faraday cup)處)之實驗結果。圖6展示具有矽發射器上之一5 nm厚銥保護罩蓋層與保護罩蓋層同發射器之間之B4 C擴散障壁的另一實例中之提取器電流及探針電流(例如,在一法拉第杯處)的實驗結果。在此等實驗結果中,證明60 μA至120 μA之最大電流不具有壽命問題。發射器可靠地運行且在無穩定時間之情況下立即開啟。
圖7展示其中一5 nm鉬膜沈積於一1 nm鈮膜上之矽發射器之一明場影像。圖14繪示具有沈積於其上之銥膜之矽發射器之一明場影像。
圖8係另一方法之一流程圖。在500,提供一發射器,該發射器包含安置於發射器之一外表面上之一保護罩蓋層及一選用擴散障壁。發射器具有100 nm或更小之一直徑。保護罩蓋層可包含鉬及/或銥,但其他材料(如釕或硼)係可行的。在501,將一電場施加至發射器。在502,自發射器產生一電子束。發射器可在至少10-9 托(諸如自5x10-10 托至5x10-1 1 托)或甚至小於5x10-1 1 托(諸如10-1 2 托)之一真空下操作。在503,脈送發射器。例如,圖9展示每三十秒具有500 ms寬度脈衝之隨時間之提取器電流之圖表。FC電流指代一探針(諸如一法拉第杯(FC))處之電流。提取器電流及探針電流可因電壓脈衝而改變值,但接著電流在脈衝之間之30秒期間保持穩定。結果為脈衝之間之一系列電流「步階」。可用電壓回饋校正系統來校正「步階」之間之探針電流變化以獲得一穩定射束電流。
圖10係比較穩定發射與脈衝發射之間之雜訊之一圖表。可藉由週期性地脈送發射器以獲得在脈衝之間具有小於1%之雜訊位準的射束電流而穩定化發射電流。
在一短時段內運用一大電流週期性地脈送一發射器以清潔尖端之表面改良在脈衝之間之時間期間的場發射電流之穩定性。可以穩定發射及高電流之一交替序列週期性地施加脈衝。可在高電流時期(其可自100微秒高達500毫秒)期間中斷對一晶圓之檢測或度量量測。脈衝可自例如100微秒至500微秒或自50毫秒至500毫秒。脈送發射器可因移除發射器上之分子而改良穩定性。此可能是透過加熱或脫附。
在一實例中,可每30秒脈送電流500 ms。電流位準在脈衝之間以一階梯函數方式波動,但脈衝之間之電流係穩定的,且在脈送資料集中之提取器電流與法拉第電流兩者中皆可見小於1%之雜訊。
在一實驗中,自在1 nm B4 C上塗佈有5 nm釕之一發射器收集資料集以交替地量測穩定場發射持續8小時,其後接著8小時之脈衝場發射(每30秒500 ms之20 µA至50 µA脈衝)。觀察脈衝發射對比穩定發射之穩定性改良,且發射不穩定性在脈衝關閉之後恢復。圖15中展示在8小時穩定場發射其後接著8小時脈衝場發射期間之相鄰電流資料點之間的相對提取器電流變化ΔI/I百分比之每小時計數的一圖表。
當已穩定地發射數小時之一發射器被單次脈送至一高電流達一短時段時,整體穩定性改良。對於塗佈有釕或其他材料之發射器,一單一脈衝引起發射電流增加高達13倍,此對應於發射表面處之功函數之高達0.6 eV之一下降。在脈衝之後,電流平均花費5小時恢復至原始電流,此可為被吸附物再次吸附至發射器尖端之表面上之時間。來自脈衝之效應係暫態的且因此可需要週期性地施加脈衝以保持發射表面清潔。一般而言,在較低真空壓力下觀察到更穩定發射,且在具有經改良真空之情況下可需要較不頻繁地或以較低脈衝電流施加脈衝。
額外實驗已顯示脈衝對發射穩定性之效應隨著較長脈衝及及較高脈衝電流而改良。
展示兩個實驗之結果。圖11針對矽上之1 nm鈮擴散障壁上之一5 nm鉬塗層比較穩定場發射與脈衝場發射之穩定性。圖12針對矽上之一5 nm鉬塗層比較穩定場發射與脈衝場發射之穩定性。
圖13繪示脈衝場發射。階梯函數電流在脈衝之間改變,但電流在脈衝之間穩定。
方法之步驟之各者可如本文中描述般執行。方法亦可包含可藉由本文中描述之控制器及/或(若干)電腦子系統或系統執行之(若干)任何其他步驟。可藉由可根據本文中描述之實施例之任一者組態之一或多個電腦系統執行步驟。另外,上文描述之方法可藉由本文中描述之系統實施例之任一者執行。
儘管已參考一或多個特定實施例描述本發明,然將瞭解,可在不脫離本發明之範疇之情況下作出本發明之其他實施例。因此,本發明被視為僅受隨附發明申請專利範圍及其合理解釋限制。
100:電子發射系統 101:發射器 102:發射器安裝機構 103:第一區段 104:第二區段 105:經修圓尖端 107:經修圓尖端之外表面 109:平坦發射小面 110:發射器核心 111:保護罩蓋層 112:擴散障壁 113:線 200:提供具有外表面之發射器 201:將保護罩蓋層施覆至發射器之外表面 300:提供發射器 301:將電場施加至發射器 302:自發射器產生電子束 400:系統 401:電子柱 402:電子束源 403:元件 404:晶圓 405:元件 406:偵測器 407:電腦子系統 500:提供發射器 501:將電場施加至發射器 502:自發射器產生電子束 503:脈送發射器
為充分理解本發明之性質及目的,應參考結合隨附圖式獲得之以下詳細描述,其中: 圖1係根據本發明之一電子發射系統之一實施例之一正視圖; 圖2係根據本發明之一方法之一流程圖; 圖3係根據本發明之另一方法之一流程圖; 圖4係根據本發明之一系統之一實施例; 圖5展示提取器(extractor)電流及探針電流之實驗結果; 圖6展示另一實例中之提取器電流及探針電流之實驗結果; 圖7展示其中一5 nm鉬膜沈積於一1 nm鈮膜上之矽發射器的一明場影像; 圖8係根據本發明之另一方法之一流程圖; 圖9係每三十秒具有500 ms寬度脈衝之隨時間之提取器電流之圖表; 圖10係比較穩定發射與脈衝發射之間之雜訊之一圖表; 圖11針對矽上之1 nm鈮擴散障壁上之一5 nm鉬塗層比較穩定場發射與脈衝場發射之穩定性; 圖12針對矽上之一5 nm鉬塗層比較穩定場發射與脈衝場發射之穩定性; 圖13繪示脈衝場發射; 圖14繪示具有沈積於其上之銥膜之矽發射器之一明場影像;及 圖15係針對在1 nm B4 C上塗佈有5 nm釕之發射器比較8小時穩定場發射其後接著8小時脈衝場發射期間之相鄰收集資料點之間的相對提取器電流變化ΔI/I百分比之每小時計數的一圖表。
100:電子發射系統
101:發射器
102:發射器安裝機構
103:第一區段
104:第二區段
105:經修圓尖端
107:經修圓尖端之外表面
109:平坦發射小面
110:發射器核心
111:保護罩蓋層
112:擴散障壁
113:線

Claims (20)

  1. 一種設備,其包括: 一發射器,其中該發射器具有100 nm或更小之一直徑;及 一保護罩蓋層,其安置於該發射器之一外表面上,其中該保護罩蓋層包含鉬。
  2. 如請求項1之設備,其中該發射器具有小於15 nm之一直徑。
  3. 如請求項1之設備,其中該保護罩蓋層具有自1 nm至20 nm之一厚度。
  4. 如請求項1之設備,其進一步包括在該發射器與該保護罩蓋層之間之一擴散障壁。
  5. 如請求項4之設備,其中該擴散障壁包含TiN、碳、B4 C、硼或鈮。
  6. 如請求項1之設備,其中該保護罩蓋層具有少於104 個雜質,且其中該等雜質包含碳、氧化物、作為一溶解氣體之氧氣、鈉或鉀。
  7. 如請求項1之設備,其中該保護罩蓋層具有小於或等於25%之一孔隙率。
  8. 如請求項1之設備,其中該保護罩蓋層具有大於或等於0.92之一堆積密度。
  9. 一種系統,其包括包含如請求項1之發射器之一電子源、一載物台及一偵測器。
  10. 一種設備,其包括: 一發射器,其中該發射器具有100 nm或更小之一直徑;及 一保護罩蓋層,其安置於該發射器之一外表面上,其中該保護罩蓋層包含銥。
  11. 如請求項10之設備,其中該發射器具有小於15 nm之一直徑。
  12. 如請求項10之設備,其中該保護罩蓋層具有自1 nm至20 nm之一厚度。
  13. 如請求項10之設備,其進一步包括在該發射器與該保護罩蓋層之間之一擴散障壁。
  14. 如請求項13之設備,其中該擴散障壁包含TiN、碳、B4 C、硼或鈮。
  15. 如請求項10之設備,其中該保護罩蓋層具有少於104 個雜質,且其中該等雜質包含碳、氧化物、作為一溶解氣體之氧氣、鈉或鉀。
  16. 如請求項10之設備,其中該保護罩蓋層具有小於或等於25%之一孔隙率。
  17. 如請求項10之設備,其中該保護罩蓋層具有大於或等於0.92之一堆積密度。
  18. 一種系統,其包括包含如請求項10之發射器之一電子源、一載物台及一偵測器。
  19. 一種方法,其包括: 提供一發射器,該發射器包含安置於該發射器之一外表面上之一保護罩蓋層,其中該發射器具有100 nm或更小之一直徑; 將一電場施加至該發射器; 自該發射器產生一電子束;及 脈送該發射器,藉此自該發射器移除被吸附物。
  20. 如請求項19之方法,其中該保護罩蓋層包含鉬或銥。
TW108118026A 2018-05-25 2019-05-24 用於具有一擴散障壁之電子發射器之金屬保護層 TW202013410A (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US201862676735P 2018-05-25 2018-05-25
US62/676,735 2018-05-25
US16/419,184 2019-05-22
US16/419,184 US10714294B2 (en) 2018-05-25 2019-05-22 Metal protective layer for electron emitters with a diffusion barrier

Publications (1)

Publication Number Publication Date
TW202013410A true TW202013410A (zh) 2020-04-01

Family

ID=68614037

Family Applications (1)

Application Number Title Priority Date Filing Date
TW108118026A TW202013410A (zh) 2018-05-25 2019-05-24 用於具有一擴散障壁之電子發射器之金屬保護層

Country Status (7)

Country Link
US (1) US10714294B2 (zh)
EP (1) EP3766092A4 (zh)
JP (1) JP2021524650A (zh)
KR (1) KR20210002112A (zh)
CN (1) CN112088417A (zh)
TW (1) TW202013410A (zh)
WO (1) WO2019226966A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI815145B (zh) * 2020-08-25 2023-09-11 埃爾思科技股份有限公司 增強離子電流之發射極結構

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3940740A1 (en) * 2020-07-16 2022-01-19 ASML Netherlands B.V. Emitter for emitting charged particles
US11848169B1 (en) * 2023-01-21 2023-12-19 Dazhi Chen Field-emission type electron source and charged particle beam device using the same

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3239038B2 (ja) 1995-04-03 2001-12-17 シャープ株式会社 電界放出型電子源の製造方法
US6052267A (en) * 1996-12-24 2000-04-18 Okaya Electric Industries Co., Ltd. Electric field discharge surge absorbing element and method for making same
KR100223057B1 (ko) 1997-07-25 1999-10-15 이계철 전계방출소자의 제조방법
JP2000021287A (ja) * 1998-06-30 2000-01-21 Sharp Corp 電界放出型電子源及びその製造方法
JP2000221936A (ja) * 1999-01-29 2000-08-11 Futaba Corp 電界放出型発光素子の駆動装置
US7459839B2 (en) 2003-12-05 2008-12-02 Zhidan Li Tolt Low voltage electron source with self aligned gate apertures, and luminous display using the electron source
US7465210B2 (en) 2004-02-25 2008-12-16 The Regents Of The University Of California Method of fabricating carbide and nitride nano electron emitters
CN100561633C (zh) 2004-09-10 2009-11-18 鸿富锦精密工业(深圳)有限公司 场发射发光照明光源
JP2010157490A (ja) * 2008-12-02 2010-07-15 Canon Inc 電子放出素子および該電子放出素子を用いた表示パネル
WO2017112937A1 (en) * 2015-12-23 2017-06-29 Massachusetts Institute Of Technology Electron transparent membrane for cold cathode devices
US9984846B2 (en) 2016-06-30 2018-05-29 Kla-Tencor Corporation High brightness boron-containing electron beam emitters for use in a vacuum environment
US10141155B2 (en) * 2016-12-20 2018-11-27 Kla-Tencor Corporation Electron beam emitters with ruthenium coating
US10607806B2 (en) * 2017-10-10 2020-03-31 Kla-Tencor Corporation Silicon electron emitter designs
US10535493B2 (en) 2017-10-10 2020-01-14 Kla-Tencor Corporation Photocathode designs and methods of generating an electron beam using a photocathode
US10395884B2 (en) 2017-10-10 2019-08-27 Kla-Tencor Corporation Ruthenium encapsulated photocathode electron emitter

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI815145B (zh) * 2020-08-25 2023-09-11 埃爾思科技股份有限公司 增強離子電流之發射極結構

Also Published As

Publication number Publication date
US10714294B2 (en) 2020-07-14
KR20210002112A (ko) 2021-01-06
WO2019226966A1 (en) 2019-11-28
EP3766092A4 (en) 2021-11-24
US20190362927A1 (en) 2019-11-28
EP3766092A1 (en) 2021-01-20
CN112088417A (zh) 2020-12-15
JP2021524650A (ja) 2021-09-13

Similar Documents

Publication Publication Date Title
TWI731202B (zh) 用以電子發射的設備,方法及系統
JP5301168B2 (ja) 冷電界エミッタ
US9984846B2 (en) High brightness boron-containing electron beam emitters for use in a vacuum environment
US10714294B2 (en) Metal protective layer for electron emitters with a diffusion barrier
US20080284332A1 (en) Gun chamber, charged particle beam apparatus and method of operating same
JP2011124099A (ja) 荷電粒子線装置のエミッタ、その製造方法、および当該エミッタを備える荷電粒子線装置
CN109804450B (zh) 电子束装置
Ul-Hamid et al. Components of the SEM
JP2009301920A (ja) ナノチップエミッタ作製方法
US20200090897A1 (en) Charged particle beam device
US10607806B2 (en) Silicon electron emitter designs
US9697983B1 (en) Thermal field emitter tip, electron beam device including a thermal field emitter tip and method for operating an electron beam device
US8314403B2 (en) Gas field ion source with coated tip
JPWO2004073010A1 (ja) 電子銃
JP5592136B2 (ja) チップ先端構造検査方法