JP2015502532A - 高性能frcを形成し維持するシステムおよび方法 - Google Patents

高性能frcを形成し維持するシステムおよび方法 Download PDF

Info

Publication number
JP2015502532A
JP2015502532A JP2014541419A JP2014541419A JP2015502532A JP 2015502532 A JP2015502532 A JP 2015502532A JP 2014541419 A JP2014541419 A JP 2014541419A JP 2014541419 A JP2014541419 A JP 2014541419A JP 2015502532 A JP2015502532 A JP 2015502532A
Authority
JP
Japan
Prior art keywords
frc
forming portions
diverters
confinement chamber
confinement
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014541419A
Other languages
English (en)
Other versions
JP6186367B2 (ja
JP2015502532A5 (ja
Inventor
ミッシェル ツゼウスキ,
ミッシェル ツゼウスキ,
ミッチェル ビンダーバウアー,
ミッチェル ビンダーバウアー,
ダン バーンズ,
ダン バーンズ,
ユーセビオ ガレイト,
ユーセビオ ガレイト,
ホウヤン グオ,
ホウヤン グオ,
セルゲイ プトビンスキ,
セルゲイ プトビンスキ,
アーテム スミルノブ,
アーテム スミルノブ,
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of California
Original Assignee
University of California
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of California filed Critical University of California
Publication of JP2015502532A publication Critical patent/JP2015502532A/ja
Publication of JP2015502532A5 publication Critical patent/JP2015502532A5/ja
Application granted granted Critical
Publication of JP6186367B2 publication Critical patent/JP6186367B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21BFUSION REACTORS
    • G21B1/00Thermonuclear fusion reactors
    • G21B1/05Thermonuclear fusion reactors with magnetic or electric plasma confinement
    • G21B1/052Thermonuclear fusion reactors with magnetic or electric plasma confinement reversed field configuration
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21BFUSION REACTORS
    • G21B1/00Thermonuclear fusion reactors
    • G21B1/05Thermonuclear fusion reactors with magnetic or electric plasma confinement
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21BFUSION REACTORS
    • G21B1/00Thermonuclear fusion reactors
    • G21B1/11Details
    • G21B1/15Particle injectors for producing thermonuclear fusion reactions, e.g. pellet injectors
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H1/00Generating plasma; Handling plasma
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H1/00Generating plasma; Handling plasma
    • H05H1/02Arrangements for confining plasma by electric or magnetic fields; Arrangements for heating plasma
    • H05H1/10Arrangements for confining plasma by electric or magnetic fields; Arrangements for heating plasma using externally-applied magnetic fields only, e.g. Q-machines, Yin-Yang, base-ball
    • H05H1/14Arrangements for confining plasma by electric or magnetic fields; Arrangements for heating plasma using externally-applied magnetic fields only, e.g. Q-machines, Yin-Yang, base-ball wherein the containment vessel is straight and has magnetic mirrors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/10Nuclear fusion reactors

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • High Energy & Nuclear Physics (AREA)
  • General Engineering & Computer Science (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Optics & Photonics (AREA)
  • Plasma Technology (AREA)
  • Reinforced Plastic Materials (AREA)
  • Particle Accelerators (AREA)
  • Magnetic Resonance Imaging Apparatus (AREA)

Abstract

新しい高性能の磁場反転配位(FRC)の形成および維持を促進するシステムおよび方法が提供される。高性能のFRC(HPF)に対するFRCシステムは、2つの直径方向に対向する磁場反転シータピンチ形成部分、およびその形成部分を超えた、中性密度および不純物汚染を制御するための2つのダイバータ・チャンバによって包囲された中央閉じ込め容器を含む。磁気システムは、FRCシステムの構成要素に沿って軸方向に位置付けられた一連の疑似直流コイル、閉じ込めチャンバと隣接した形成部分との間の疑似直流ミラーコイル、ならびに形成部分とダイバータとの間のミラープラグを含む。形成部分は、FRCをその場で形成し、次いで加速し照射する(静的形成)、または形成し同時に加速する(動的形成)ことが可能な、モジュラーパルス電力形成システムを含む。【選択図】図2

Description

関連出願の相互参照
本出願は、2011年11月14日に出願された米国特許仮出願第61/559,154号の優先権を主張し、かつ2011年11月15日に出願された米国特許仮出願第61/559,721号の優先権を主張し、これらの出願が参照によって本明細書に組み込まれる。
本明細書に記載された実施形態は、一般に磁気プラズマ閉じ込めシステムに関し、より詳細には、優れた安定性ならびに粒子、エネルギーおよび磁束閉じ込めをもつ、磁場反転配位の形成および維持を促進するシステムおよび方法に関する。
磁場反転配位(FRC)は、コンパクト・トロイド(CT)として公知の磁気プラズマ閉じ込めトポロジーの分類に属する。FRCは、主にポロイダル磁場を示し、自然発生のトロイダル磁場がない、または少ない(M.Tuszewski、Nucl.Fusion 28、2033(1988)参照)。このような構造の魅力は、構築および維持が容易なその単純な形状、エネルギーの抽出および灰の除去を促進する無制限の自然ダイバータ、ならびに非常に高いβ(βはFRC内部の平均磁場圧力に対する平均プラズマ圧力の割合である)、すなわち、高出力密度である。高いβ特性は、経済運用、ならびにD−Heおよびp−B11などの進化した非中性子燃料の使用に有利である。
FRCを形成する従来の方法は、磁場反転シータピンチ技術を使用し、高温高密度のプラズマを生成する(A.L.HoffmanおよびJ.T.Slough、Nucl.Fusion 33、27(1993)(非特許文献1)参照)。この変形形態は、シータピンチ「源」内に生成されたプラズマが、概ね即座に一端から出て閉じ込めチャンバの中に放出される移動トラッピング方法である。次いで移動するプラズモイドは、チャンバの端部で2つの強いミラーの間に閉じ込められる(例えば、H.Himura、S.Okada、S.Sugimoto、およびS.Goto、Phys.Plasmas 2、191(1995)(非特許文献2)参照)。一旦閉じ込めチャンバに入ると、ビーム入射(中性または中和された)、回転磁場、RFまたはオーム加熱などの様々な加熱および電流駆動方法を適用してもよい。源と閉じ込め機能のこの分離は、潜在的な将来の核融合炉に対して重要な工学的利点を提供する。FRCは、非常に堅固であり、動的形成、移動、および激しい捕捉事象に耐性があることが判明している。さらに、FRCは、好ましいプラズマ状態を担う傾向を示す(例えば、H.Y.Guo、A.L.Hoffman、K.E.Miller、およびL.C.Steinhauer、Phys.Rev.Lett.92、245001(2004)(非特許文献3)参照)。他のFRCの形成方法、すなわち、逆向きのヘリシティをもつスフェロマックの融合(例えば、Y.Ono、M.Inomoto、Y.Ueda、T.Matsuyama、およびT.Okazaki、Nucl.Fusion 39、2001(1999)(非特許文献4)参照)、ならびにこれもさらに安定性を提供する、回転磁場(RMF)を用いて電流を駆動することによる(例えば、I.R.Jones、Phys.Plasmas 6、1950(1999)(非特許文献5)参照)発展が過去10年に著しく進歩を遂げた。
最近、かなり昔に提案された衝突融合技法(例えば、D.R.Wells、Phys.Fluids 9、1010(1966)(非特許文献6)参照)がさらに著しく発展した。すなわち、閉じ込めチャンバの対向する端部で2つの個別のシータピンチが、同時に2つのプラズモイドを生成し、プラズモイドを互いに向かって高速度で加速させ、次いでプラズモイドは、閉じ込めチャンバの中央で衝突し、複合FRCを形成するために融合する。今までで最大のFRC実験の1つの構築および成功した作動において、従来の衝突融合法は、安定して長持ちし、高磁束、高温のFRCを生成することを示した(例えば、M.Binderbauer、H.Y.Guo、M.Tuszewskiら、Phys.Rev.Lett.105、045003(2010)(非特許文献7)参照)。
FRCは、セパラトリックスの内側の閉じた磁力線のトーラス、およびセパラトリックスのすぐ外側の開いた磁力線上の環状縁層からなる。縁層は、FRCの長さを超えて集結してジェットになり、自然ダイバータを提供する。FRCトポロジーは、磁場反転ミラープラズマのトポロジーと一致する。しかし、著しい違いは、FRCプラズマが約10のβを有することである。固有の低い内部磁場は、FRCの短半径に匹敵する、若干の生来の動的粒子集団、すなわち、大きいラーモア半径をもつ粒子を提供する。これは、衝突融合実験において生成された安定性などの過去および現在のFRCの安定性の合計に、少なくとも部分的に寄与すると思われるこれらの強い動的効果である。
典型的な過去のFRC実験は、主に粒子移動によって決まるエネルギー閉じ込めをもつ、対流損失によって支配されてきた。粒子は、セパラトリックス体積から主に径方向外方に拡散し、次いで縁層において軸方向に損失される。したがって、FRC閉じ込めは、閉じた磁力線領域と開いた磁力線領域の両方の特性に依存する。セパラトリックスから出た粒子の拡散時間は、τは約a/D(aは約r/4であり、ここでrは中心セパラトリックスの半径である)と見積もられ、Dは、特性FRC拡散率であり(例えば、Dは約12.5ρieであり、ρieはイオンジャイロ半径を表し)、外部印加磁場で評価される。縁層の粒子閉じ込め時間
Figure 2015502532
は、基本的に過去のFRC実験における軸方向通過時間である。定常状態において、径方向の粒子損失と軸方向の粒子損失との間の均衡は、セパラトリックスの密度勾配長さδ、約
Figure 2015502532
をもたらす。FRC粒子閉じ込め時間は、セパラトリックスで実質的な密度を有する過去のFRCに対して
Figure 2015502532
と見積もられる(例えば、M.TUSZEWSKI、「Field Reversed Configurations(磁場反転配位)」、Nucl.Fusion 28、2033(1988)参照)。
先行のFRCシステム設計の別の短所は、急成長するn=2交換不安定性などの、回転不安定性を制御するために外部多極を使用する必要があったことである。このような方法で、通常の外部印加された四重極磁場は、これらの不安定モードの成長を抑えるために、必要な磁気を回復する圧力を提供した。この技法は熱バルクプラズマの安定制御に充分である一方で、高い動的大軌道の粒子集団が通常の熱プラズマと組み合わされる場合、この技法は、より動的なFRCまたは進化したハイブリッドのFRCに対して深刻な問題を有する。これらのシステムでは、このような多極磁場に起因する軸対称の磁場の歪みは、正準角運動量の保存を損失する結果、無衝突の確率的拡散を介して劇的に高速な粒子損失をもたらす。したがって、いかなる粒子の拡散も高めることなく、安定制御を提供する新規の解決策は、これらの今まで調査されなかった進歩したFRCの概念の、より高い潜在性能を利用するために重要である。
A.L.HoffmanおよびJ.T.Slough、Nucl.Fusion 33、27(1993) H.Himura、S.Okada、S.Sugimoto、およびS.Goto、Phys.Plasmas 2、191(1995) H.Y.Guo、A.L.Hoffman、K.E.Miller、およびL.C.Steinhauer、Phys.Rev.Lett.92、245001(2004) Y.Ono、M.Inomoto、Y.Ueda、T.Matsuyama、およびT.Okazaki、Nucl.Fusion 39、2001(1999) I.R.Jones、Phys.Plasmas 6、1950(1999) D.R.Wells、Phys.Fluids 9、1010(1966) M.Binderbauer、H.Y.Guo、M.Tuszewskiら、Phys.Rev.Lett.105、045003(2010)
したがって前述を考慮すると、(医療用同位体製造および核廃棄物処理のために)小型中性子源から質量分離および濃縮システムに、また次世代のエネルギーのために軽核の融合のための炉心に、広範囲の適用への手段として定常状態のFRCを使用するために、FRCの閉じ込めおよび安定性を向上させることが望ましい。
本明細書に提供された本実施形態は、新しい高性能の磁場反転配位(FRC)の形成および維持を促進するシステムおよび方法を対象とする。この新しい高性能のFRCパラダイムによれば、本システムは、多くの新規の発想と、粒子、エネルギーおよび磁束のFRC閉じ込めを劇的に向上させ、かつ負の副作用のない安定制御を提供する手段を組み合わせる。
本明細書に提供されたFRCシステムは、2つの直径方向に対向する磁場反転シータピンチ形成部分、およびその形成部分を超えた、中性密度および不純物汚染を制御するための2つのダイバータ・チャンバによって包囲された中央閉じ込め容器を含む。磁気システムは、FRCシステムの構成要素に沿って軸方向位置にある一連の疑似直流コイル、閉じ込めチャンバのいずれかの端部と隣接した形成部分との間の疑似直流ミラー、ならびに、各形成部分と、ダイバータに向かって磁束表面の焦点を合わせるために、追加のガイド磁場を生成するダイバータとの間に小型の疑似直流ミラーコイルを備えるミラープラグを含む。形成部分は、FRCをその場で形成し、次いで加速し入射する(静的形成)、または形成し同時に加速する(動的形成)ことが可能な、モジュラーパルス電力形成システムを含む。
FRCシステムは、中性原子ビーム照射装置およびペレット照射装置を含む。また、ゲッタリング・システムも、軸方向プラズマガンと同様に含まれる。また、バイアス電極は、開いた磁束表面の電気的バイアスに対して提供される。
本発明のシステム、方法、特徴および利点は、以下の図および詳述を検討すると、当業者には明らかであり、または明らかになろう。すべてのこのような追加の方法、特徴および利点は、本明細書に含まれ、本発明の範囲内であり、添付の特許請求の範囲によって保護されることが意図される。また、本発明は、例示的実施形態の詳細を必要とするように限定されないことも意図される。
添付図面は本明細書の一部として含まれ、この好ましい実施形態を示し、上に提供された概要および以下に提供される好ましい実施形態の詳述と共に、本発明の原理を説明し教示する働きをする。
高性能のFRCレジーム(HPF)下と従来のFRCレジーム(CR)下との関係、および他の従来のFRC実験との関係において、本FRCシステムにおける粒子閉じ込めを示す図である。 本FRCシステムの構成要素、および本FRCシステムにおけるFRCを生産可能な磁気トポロジーを示す図である。 中性ビーム、電極、プラズマガン、ミラープラグ、およびペレット照射装置の好ましい配置を含む、頂部から見た本FRCシステムの基本的配置を示す図である。 形成部分に対するパルス電力システムの構成要素の概略を示す図である。 個々のパルス電力形成スキッドのアイソメ図である。 形成管アセンブリのアイソメ図である。 中性ビームシステムおよび主要構成要素の部分断面アイソメ図である。 閉じ込めチャンバ上の中性ビーム配置のアイソメ図である。 TiおよびLiゲッタリング・システムの好ましい配置の部分断面アイソメ図である。 ダイバータ・チャンバに搭載されたプラズマガンの部分断面アイソメ図である。また、関連した磁気ミラープラグおよびダイバータ電極アセンブリも示す。 閉じ込めチャンバの軸方向端部における環状バイアス電極の好ましい配置を示す図である。 2つの磁場反転シータピンチ形成部分における一連の外部反磁性ループおよび中央金属閉じ込めチャンバ内に組み込んだ磁界プローブから獲得した、FRCシステムにおける排除磁束半径の展開を示す図である。時間は、形成源内の同期された磁場反転の瞬間から測定され、距離zは、機械の軸方向の中央平面に対して与えられる。 図13(a)は、本FRCシステム上の代表的な非HPFの非持続放出からのデータを示す図であり、中央平面における排除磁束半径が、時間関数として示されている。図13(b)は、本FRCシステム上の代表的な非HPFの非持続放出からのデータを示す図であり、中央平面CO2干渉計からの線集積密度の6つのコードが、時間関数として示されている。図13(c)は、本FRCシステム上の代表的な非HPFの非持続放出からのデータを示す図であり、CO2干渉計データからのアーベル逆変換密度半径の外形が、時間関数として示されている。図13(d)は、本FRCシステム上の代表的な非HPFの非持続放出からのデータを示す図であり、圧力平衡からの合計プラズマ温度が、時間関数として示されている。 図13に示された本FRCシステムの同じ放出に対して、選択された時間における排除磁束の軸方向の外形を示す図である。 閉じ込めチャンバの外側に装着されたサドルコイルのアイソメ図である。 FRCの耐用期間および入射された中性ビームのパルス長の相互関係を示す図である。示されたように、ビームパルスが長いほど、より長く耐用するFRCを生成する。 FRC性能のFRCシステムの異なる構成要素の個々の効果および組み合わせた効果、ならびにHPFレジームの達成を示す図である。 図18(a)は、本FRCシステム上の代表的なHPFの非持続放出からのデータを示す図であり、中央平面における排除磁束半径が、時間関数として示されている。図18(b)は、本FRCシステム上の代表的なHPFの非持続放出からのデータを示す図であり、中央平面CO2干渉計からの線集積密度の6つのコードが、時間関数として示されている。図18(c)は、本FRCシステム上の代表的なHPFの非持続放出からのデータを示す図であり、CO2干渉計データからのアーベル逆変換密度半径の外径が、時間関数として示されている。図18(d)は、本FRCシステム上の代表的なHPFの非持続放出からのデータを示す図であり、圧力平衡からの合計プラズマ温度が、時間関数として示されている。 電子温度(T)の関数として、磁束閉じ込めを示す図である。これは、HPF放出に対して新しく確立された優れたスケーリングレジームを表すグラフを示す。
図は必ずしも一定の縮尺で描かれてはおらず、同様の構造または機能の要素は、説明のために図を通して同じ参照番号で概ね表されていることに留意されたい。また図は、本明細書に記載された様々な実施形態の説明を容易にすることを意図するに過ぎないことにも留意されたい。図は、必ずしも本明細書に開示された教示のすべての態様を説明せず、特許請求の範囲を限定するものではない。
本明細書に提供されたこの実施形態は、優れた安定性ならびに従来のFRCを超える優れた粒子、エネルギーおよび磁束閉じ込めをもつ、高性能の磁場反転配位(FRC)の形成および維持を促進するシステムおよび方法を対象とする。様々な付随システムおよび作動モードが、FRC内に優れた閉じ込めレジームが存在するかどうかを評価するために調査されてきた。これらの努力は、本明細書に説明された高性能のFRCパラダイムの画期的な発見および発展をもたらした。この新しいパラダイムによれば、本システムおよび方法は、多くの新規の発想と、図1に示したように、FRC閉じ込めを劇的に向上させ、かつ負の副作用のない安定制御を提供する手段を組み合わせる。以下により詳細に論じるように、図1は、以下に説明する(図2および3参照)FRCシステム10における粒子閉じ込めを示し、FRCを形成し維持するために従来のレジームCRによる作動に対して、また他の実施形態で使用されるFRCを形成し維持するために従来のレジームによる粒子閉じ込めに対して、FRCを形成し維持するための高性能のFRCレジーム(HPF)により作動する。本開示は、FRCシステム10の革新的な個々の構成要素および方法、ならびにそれらの集合効果の概要を説明し詳述する。
(FRCシステムの説明)
真空システム
図2および3は、本FRCシステム10の概略を示す。FRCシステム10は、2つの直径方向に対向する磁場反転シータピンチ形成部分200、およびその形成部分200を超えた、中性密度および不純物汚染を制御するための2つのダイバータ・チャンバ300によって包囲された中央閉じ込め容器100を含む。本FRCシステム10は、超高真空を収容するように構築されており、一般的な基準圧10〜8トルで作動する。このような真空圧は、嵌合構成要素、金属Oリング、高純度の内壁の間のダブルポンプの嵌合フランジを使用し、ならびに物理的および化学的洗浄に続き、24時間250℃での真空焼成および水素グロー放電洗浄などの、組立て前にすべての部分を最初に慎重に表面調整する必要がある。
磁場反転シータピンチ形成部分200は、以下に詳しく論じる(図4〜6参照)進化したパルス電力形成システムを備えているが、標準磁場反転シータピンチ(FRTP)である。各形成部分200は、超高純度石英の2ミリメートルの内壁を特色とする、標準純度工業グレードの石英管から作成される。閉じ込めチャンバ100は、ステンレス鋼から作成されて、複数の径方向および接線方向のポートが可能になる。また閉じ込めチャンバ100は、以下に説明される実験の時間スケール上で磁束保存器として働き、高速過渡磁場を制限する。真空は、ドライスクロール粗引きポンプ、ターボ分子ポンプおよびクライオポンプのセットを備える、FRCシステム10内に生成され維持される。
磁気システム
磁気システム400は、図2および3に示されている。図2は、他の特徴の中でとりわけ、FRCシステム10によって生産可能なFRC450に関する、FRC磁束および密度等高線(径方向および軸方向座標の関数として)を示す。これらの等高線は、FRCシステム10に対応するシステムおよび方法をシミュレーションするために開発されたコードを使用して、二次元抵抗性Hall−MHD数値シミュレーションによって獲得されたものであり、測定された実験データとよく合致する。図2に見られるように、FRC450は、セパラトリックス451の内側のFRC450の内部453で、閉じた磁力線のトーラス、およびセパラトリックス451のすぐ外側の開いた磁力線452上の環状縁層456からなる。縁層456は、FRCの長さを超えて集結してジェット454になり、自然ダイバータを提供する。
主磁気システム410は、構成要素に沿って、すなわち、FRCシステム10の閉じ込めチャンバ100、形成部分200およびダイバータ300に沿って、特に軸方向位置にある一連の疑似直流コイル412、414、および416を含む。疑似直流コイル412、414、および416は、疑似直流スイッチング電源によって供給され、閉じ込めチャンバ100、形成部分200およびダイバータ300内に約0.1Tの基本磁気バイアス磁場を生成する。疑似直流コイル412、414、および416に加えて、主磁気システム410は、閉じ込めチャンバ100のいずれかの端部と隣接した形成部分200との間に疑似直流ミラーコイル420(スイッチング電源によって供給される)を含む。疑似直流ミラーコイル420は、最高5までの磁気ミラー比を提供し、平衡形状制御のために単独で活性化されることが可能である。加えて、ミラープラグ440は、それぞれの形成部分200とダイバータ300との間に位置付けられる。ミラープラグ440は、小型の疑似直流ミラーコイル430およびミラープラグコイル444を備える。疑似直流ミラーコイル430は、ミラープラグコイル444を通過して短い直径の通路442に向かって磁束表面455の焦点を合わせるために、追加のガイド磁場を生成する3つのコイル432、434および436(スイッチング電源によって供給される)を含む。ミラープラグコイル444は、短い直径の通路442を中心に巻き付き、LCパルス電力回路によって供給され、最高4Tまでの強いミラー磁場を生成する。このコイル配置全体の目的は、堅く束ね、磁束表面455および端部に流れるプラズマジェット454を、ダイバータ300の遠隔チャンバ310に導くことである。最後に、サドルコイル「アンテナ」460のセット(図15参照)は、中央平面の各側面上に2つずつ、閉じ込めチャンバ100の外側に配置され、直流電源によって供給される。サドルコイル・アンテナ460を、回転不安定性の制御および/または電子電流制御のために、約0.01Tの準静的磁気双極子または四重極磁場を提供するように構成することができる。サドルコイル・アンテナ460は、印加電流の方向に依存して、中央平面に対して対称または反対称のいずれかである、磁場を柔軟に提供できる。
パルス電力形成システム
パルス電力形成システム210は、修正シータピンチ原理に基づいて作動する。それぞれが形成部分200の1つに電力を供給する、2つのシステムが存在する。図4〜6は、形成システム210の主な構築ブロックおよび配置を示す。形成システム210は、個々のユニット(=スキッド)220からなるモジュラーパルス電力配置から構成され、スキッド220のそれぞれは、形成石英管240を中心に巻き付くストラップアセンブリ230(=ストラップ)のコイル232のサブセットを活性化する。各スキッド220は、コンデンサ221、インダクタ223、高速大電流スイッチ225および関連トリガー222ならびにダンプ回路224から構成される。全体で、各形成システム210は、350〜400kJの容量エネルギーを保存し、この容量エネルギーは、最高35GWまでの電力を提供してFRCを形成し加速する。これらの構成要素の協調された作動は、最先端のトリガーおよび制御システム222および224を介して達成され、それによって各形成部分200上の形成システム210間のタイミングを同期することが可能になり、スイッチングジッタを数十ナノ秒に最小化する。このモジュラー設計の利点は、その柔軟な作動である。すなわち、FRCをその場で形成でき、次いで加速し照射する(=静的形成)、または形成し同時に加速する(=動的形成)ことができる。
中性ビーム照射装置
中性原子ビームは、FRCシステム10上に配置されて、加熱および電流駆動を提供し、ならびに高速粒子圧力を増強させる。図3および8に示したように、中性原子ビーム照射システム610および640を備える個々のビーム線は、中央閉じ込めチャンバ100を中心に配置され、衝突パラメータをもつFRCプラズマに接線方向に(また閉じ込めチャンバ100の軸に垂直に)高速粒子を照射し、その結果、目標トラッピング領域は、セパラトリックス451内に良好に存在する(図2参照)。照射システム610および640のそれぞれは、最高1MWまでの中性ビーム出力を20〜40keVの粒子エネルギーでFRCプラズマに照射することができる。システム610および640は、陽イオンのマルチアパーチャ抽出源に基づき、幾何学的収束、イオン抽出グリッドの慣性冷却および差動排気を利用する。異なるプラズマ源の使用を別として、システム610および640は、それぞれの装着場所に嵌合するためにシステム610および640の物理的設計によって主に差別化され、側部および頂部の照射能力をもたらす。これらの中性ビーム照射装置の典型的な構成要素は、側部照射装置システム610に対して図7に具体的に示されている。図7に示したように、個々の中性ビームシステム610はそれぞれ、端部を被覆する磁気遮蔽614を備える入力端部にRFプラズマ源612を含む(これは、システム640ではアーク源に置き換えられる)。イオン光源および加速グリッド616は、プラズマ源612に連結され、仕切弁620は、イオン光源および加速グリッド616と中和装置622との間に位置付けられる。偏向磁気624およびイオンダンプ628は、中和装置622と出口端における照準装置630との間に配置される。冷却システムは、2つのクライオ冷凍機634、2つのクライオパネル636およびLN2シュラウド638を備える。この柔軟な設計により、FRCパラメータの広範囲に亘る作動が可能になる。
ペレット照射装置
新しい粒子を照射し、FRCの粒子インベントリをより良好に制御する手段を提供するために、12バレルペレット照射装置700(例えば、I.Vinyarら、「Pellet Injectors Developed at PELIN for JET, TAE, and HL−2A(JET、TAE、およびHL−2Aに対してPELINで開発されたペレット照射装置)」第26回Fusion Science and Technology Symposium(核融合科学技術シンポジウム)の報告書、9月27日〜10月1日(2010)参照)がFRCシステム10上に利用される。図3は、FRCシステム10上のペレット照射装置700の配置を示す。円筒形ペレット(Dは約1mm、Lは約1〜2mm)は、FRCに速度150〜250km/sの範囲で照射される。個々のペレットはそれぞれ、約5×1019の水素原子を含み、これはFRCの粒子インベントリに匹敵する。
ゲッタリング・システム
中性ハロガスは、すべての閉じ込めシステムにおいて深刻な問題であることは周知である。電荷交換および再利用(壁からの低温の不純物材料の放出)プロセスは、エネルギーおよび粒子閉じ込めに壊滅的な影響を与える可能性がある。加えて、縁部におけるまたは縁部付近のいかなる高濃度の中性ガスも、照射された大きい軌道(高エネルギー)の粒子(大きい軌道は、FRCトポロジーの規模の軌道、または少なくとも特性磁界勾配長さスケールよりはるかに大きい軌道半径を有する粒子を指す)の耐用期間を即座に喪失させる、または少なくとも大幅に短くする、すなわち、これは、補助ビーム加熱を介する融合を含め、すべてのエネルギープラズマの適用に弊害をもたらす。
表面調整は、それによって中性ガスおよび不純物の悪影響を、閉じ込めシステムにおいて制御または低減できる手段である。この目的を達成するために、本明細書に提供されたFRCシステム10は、チタニウム(Ti)およびリチウム(Li)成膜システム810および820を利用し、閉じ込めチャンバ(または容器)100およびダイバータ300のプラズマ対向面をTiおよび/またはLiの薄膜(厚さ数十マイクロメートル)で被覆する。被覆は蒸着技法により達成される。中実のLiおよび/またはTiは、被覆を形成するために近傍表面上に蒸着され、かつ/または昇華されまた噴霧される。源は、ガイドノズル(Liの場合)822を備える原子炉、またはガイドシュラウド(Tiの場合)812を備える中実の加熱球である。Li蒸着システムは、通常、連続モードで作動するが、Ti昇華装置は、普通はプラズマ作動の間に断続的に作動される。これらのシステムの作動温度は、速い蒸着速度を得るために600℃を超える。良好な壁被覆を達成するために、複数の戦略的に配置された蒸着/昇華システムが必要とされる。図9は、FRCシステム10におけるゲッタリング蒸着システム810および820の好ましい配置を詳しく示す。被覆は、ゲッタリング表面ならびに有効なポンプの原子および分子の水素種(HおよびD)として作用する。また被覆は、炭素および酸素などの他の通常の不純物をかなりの水準で低減する。
ミラープラグ
上述のように、FRCシステム10は、図2および3に示したように、ミラーコイル420、430、および444のセットを利用する。ミラーコイル420の第1のセットは、閉じ込めチャンバ100の2つの軸方向端部に配置され、主磁気システム410の閉じ込めコイル412、414および416から単独に活性化される。ミラーコイル420の第1のセットは、主に融合中にFRC450を進め軸方向に包含する助けとなり、持続している間に平衡成形制御を提供する。第1のミラーコイルセット420は、中央閉じ込めコイル412によって生成された中央閉じ込め磁場より名目上高い磁場(約0.4〜0.5T)を生成する。ミラーコイル430の第2のセットは、3つの小型の疑似直流ミラーコイル432、434および436を含み、形成部分200とダイバータ300との間に配置され、一般的なスイッチ電源によって駆動される。ミラーコイル432、434および436は、より小型のパルスミラープラグコイル444(容量電源によって供給される)および物理的収縮部442と一緒に、狭い低ガス伝導通路を非常に高い磁場(約10〜20msの立上り時間で2〜4T)で提供する、ミラープラグ440を形成する。最も小型のパルスミラーコイル444は、閉じ込めコイル412、414および416のメートルプラススケールの孔およびパンケーキ型設計に比べて、小型の径方向寸法、20cmの孔および同様の長さである。ミラープラグ440の目的は、以下のように多種多様である。(1)コイル432、434、436および444を堅く束ね、磁束表面452および端部に流れるプラズマジェット454を、遠隔ダイバータ・チャンバ300に導く。これは、排出粒子がダイバータ300に適切に到着し、中央FRC450の開いた磁力線452領域からダイバータ300までずっと追跡する、連続した磁束表面455が存在することを確実にする。(2)FRCシステム10における物理的収縮部442は、それを通ってコイル432、434、436および444が磁束表面452およびプラズマジェット454を通過することができ、ダイバータ300内に着座するプラズマガン350からの中性ガス流を妨げる。同じように、収縮部442は、形成部分200からダイバータ300へのガスの逆流を防止し、それによってFRCの起動を開始するときに、FRCシステム10全体に導入しなければならない中性粒子の数が低減する。(3)コイル432、434、436および444によって生成された強い軸方向のミラーは軸方向の粒子損失を低減し、それによって開いた磁力線上の平行な粒子拡散係数が低減する。
軸方向のプラズマガン
ダイバータ300のダイバータ・チャンバ310内に装着されたガン350からのプラズマ流は、安定性および中性ビーム性能を向上させることを意図する。ガン350は、図3および10に示したように、ダイバータ300のチャンバ310の内側の軸上に装着され、プラズマ流をダイバータ300内の開いた磁力線452に沿って、閉じ込めチャンバ100の中心に向かって生成する。ガン350は、ワッシャー積層チャネル内に高濃度ガス放出で作動し、5〜10msに完全にイオン化されたプラズマを数キロアンペア生成するように設計されている。ガン350は、出力プラズマ流を閉じ込めチャンバ100内の所望のサイズのプラズマに一致させる、パルス磁気コイルを含む。ガン350の技術パラメータは、5〜13cmの外径、および最高10cmまでの内径を有するチャネルを特徴とし、ガンの内部磁場は0.5〜2.3Tで、400〜600Vで10〜15kAの放電電流を提供する。
ガンプラズマ流は、ミラープラグ440の磁場を貫通し、形成部分200および閉じ込めチャンバ100に流入することができる。ミラープラグ440を通るプラズマ移動の効率は、ガン350とプラグ440との間の距離を低減し、プラグ440をより広く短くすることによって高まる。妥当な条件下で、ガン350はそれぞれ、約150〜300eVおよび約40〜50eVの高いイオン温度および電子温度で、2〜4Tのミラープラグ440を通り約1022プロトン/sを送達する。ガン350は、FRCの縁層456の著しい燃料補給および改良されたFRC全体の粒子閉じ込めを提供する。
プラズマ密度をさらに高めるために、ガスボックスを利用して、追加のガスをガン350からプラズマ流に吹き入れることが可能である。この技法により、照射されたプラズマ密度を数倍に高めることができる。FRCシステム10では、ミラープラグ440の側部のダイバータ300上に搭載されたガスボックスは、FRCの縁層456の燃料補給、FRC450の形成、およびプラズマ磁力線短絡を向上させる。
上に論じたすべての調整パラメータを所与とし、また、一方のみまたは両方のガンを備えた作動が可能であることを考慮すると、広いスペクトルの作動モードが利用可能であることがすぐにわかる。
バイアス電極
開いた磁束表面の電気バイアスは、方位E×B運動を起こす径方向電位を提供することができ、方位E×B運動は、開いた磁力線プラズマの回転、ならびに速度シアを介して実際のFRCコア450を制御するための、ノブを回すのに類似した制御機構を提供する。この制御を達成させるために、FRCシステム10は、機械の様々な部分に配置された様々な電極を戦略的に利用する。図3は、FRCシステム10内の好ましい場所に位置付けられたバイアス電極を示す。
原則として、以下の4つの分類の電極がある。(1)局所電荷を提供するために、FRC450の縁部において特定の開いた磁力線452に接触させる、閉じ込めチャンバ100内の点電極905、(2)方位が対称的な形で遠端磁束層456に帯電させるための、閉じ込めチャンバ100と形成部分200との間の環状電極900、(3)複数の同心磁束層455(それによって層の選択は、ダイバータ磁場を調節するためにコイル416を調節することによって制御可能であり、その結果、適切な電極910上で所望の磁束層456を終了する)に帯電させるための、ダイバータ300内の同心電極910の積層、および最後に(4)プラズマガン350自体(これは、FRC450のセパラトリックス付近で内部の開いた磁束表面455を遮断する)の陽極920(図10参照)。図10および11は、これらの一部に対するいくつかの典型的な設計を示す。
すべての場合において、これらの電極は、最高約800Vまでの電圧でパルスまたは直流電源によって駆動される。電極のサイズおよびどの磁束表面が交差しているかに依存して、電流をキロアンペア範囲で引くことができる。
(FRCシステムの非持続作動−従来のレジーム)
良好に開発された磁場反転シータピンチ技法の後に、FRCシステム10上の標準プラズマ形成が続く。FRCを開始するための通常のプロセスは、定常状態作動のために疑似直流コイル412、414、416、420、432、434および436を駆動することにより開始する。次いでパルス電力形成システム210のRFTPパルス電力回路は、パルス高速磁場反転コイル232を駆動して、形成部分200内に約−0.05Tの一時的な逆バイアスを生成する。この点で、9〜20psiの所定の量の中性ガスを、形成部分200の外端上に配置されたフランジにおいて方位角に配向されたパフ弁のセットを介して、(北および南の)形成部分200の石英管チャンバ240によって画定された2つの形成容積の中に照射する。次に、小さいRF(約数百キロヘルツ)の磁場を、石英管240の表面上のアンテナのセットから生成して、中性ガス柱内に局所シードイオン化領域(local seed ionization region)の形でプレプレイオン化(pre−pre−ionization)を生成する。これに続いて、パルス高速磁場反転コイル232を駆動する電流上にシータリング変調を加え、これによりガス柱のより広範囲のプレイオン化がもたらされる。最後に、パルス電力形成システム210の主要パルスパワーバンクを燃やして、最高0.4Tまでの順方向バイアス磁場を生成するためにパルス高速磁場反転コイル232を駆動する。このステップは、順方向バイアス磁場が形成管240の全長に亘って均一に生成されるように(静的形成)、または連続蠕動磁場変調が、形成管240の軸に沿って達成されるように(動的形成)、時系列にすることができる。
この形成プロセス全体で、プラズマ内の実際の磁場反転が約5μs内で急速に起きる。形成プラズマに容易に送達されたマルチギガワットのパルス電力は、高温のFRCを生成し、次いで高温のFRCは形成部分200から順方向磁場(磁場蠕動)の時系列の装着、または形成管210(閉じ込めチャンバ100に向かって軸方向を指す、軸方向の磁場勾配を形成する)の軸方向の外端近傍のコイルセット232の最後のコイル内の一時的に増加した電流のいずれかの適用によって、形成部分200から照射される。そのように形成され、加速された2つ(北および南)の形成FRCは、より大きい直径閉じ込めチャンバ100に拡大し、この場合、疑似直流コイル412は、順方向バイアス磁場を生成して、径方向の拡大を制御し平衡外部磁束を提供する。
一旦北および南の形成FRCが閉じ込めチャンバ100の中央平面近傍に到達すると、FRCは衝突する。衝突中、北および南の形成FRCの軸方向の運動エネルギーは、FRCが単一のFRC450に最終的に融合すると、大きく熱化される。プラズマ診断の大きいセットは、FRC450の平衡を調査するために閉じ込めチャンバ100の内で利用可能である。FRCシステム10内の通常の作動条件は、セパラトリックスの半径が約0.4mおよび軸方向に約3m延在する化合したFRCを生成する。さらなる特性は、約0.1Tの外部磁場、約5×1019−3のプラズマ密度および最高1keVまでの合計プラズマ温度である。いかなる持続もなしに、すなわち中性ビーム照射または他の補助手段によって加熱および/または電流駆動なしに、これらのFRCの耐用期間は、本来の特性構成減衰時間の約1msに制限される。
(非持続作動の実験データ−従来のレジーム)
図12は、FRC450のシータピンチ融合プロセスの力学を示すために、セパラトリックスの半径rに近づく、排除磁束半径rΔФの通常の時間発展を示す。2つ(北および南)の個々のプラズモイドは、同時に生成され、次いでそれぞれの形成部分200から出て超音速v約250km/sで加速され、中央平面近傍でz=0で衝突する。衝突中、プラズモイドは軸方向に圧迫し、続いて即座に径方向および軸方向に拡大し、最後に融合してFRC450を形成する。融合するFRC450の径方向および軸方向の力学の両方は、詳しく示した密度プロファイルの測定およびボロメータに基づいた断層撮影によって証明される。
FRCシステム10の代表的な非持続放出からのデータは、図13に時間関数として示されている。FRCは、t=0で開始される。機械の軸方向の中央平面における排除磁束半径は、図13(a)に示されている。このデータは、磁気プローブのアレイから得られ、閉じ込めチャンバのステンレス鋼壁のすぐ内側に配置され、これは軸方向磁場を測定する。鋼壁は、この放出の時間スケール上の良好な磁束保存器である。
線集積密度は、z=0に配置された6つのコードのCO/He−Ne干渉計から図13(b)に示されている。垂直(y)FRC変位を考慮すると、ボロメータの断層撮影によって測定されたように、アーベル逆変換は図13(c)の密度等高線をもたらす。初めの0.1ms間に一部の軸方向および径方向のスロッシング後、FRCは、中空密度プロファイルを有して定着する。このプロファイルは極めて平坦であり、必要に応じて通常の二次元FRC平衡により実質的な密度を軸上にもつ。
圧力平衡から得られ、トムソン散乱分光測定と完全に一致する、合計プラズマ温度が、図13(d)に示されている。
排除磁束アレイ全体からの分析は、FRCのセパラトリックス(排除磁束軸方向プロファイルによって見積もられる)の形状が、レーストラック型から楕円形に次第に進化することを示す。図14に示されたこの進化は、2つのFRCから単一のFRCへの段階的な磁気再結合に一致する。実際に、概算は、この特定の場合では、最初の2つのFRC磁束の約10%が、衝突中に再結合すると示唆している。
FRCの長さは、FRCの耐用期間中に3m〜約1mに確実に収縮する。この収縮は図14に見られ、ほとんどの対流エネルギー損失は、FRC閉じ込めより優先されることを示唆する。セパラトリックスの内側のプラズマ圧力は、外部磁気圧力より急速に低減するので、端部領域における磁力線張力は、FRCを軸方向に圧迫し、軸方向および径方向の平衡を回復する。図13および14に論じた放出に対して、FRCの磁束、粒子インベントリ、および熱エネルギー(それぞれ、約10mWb、7×1019粒子、および7kJ)は、FRC平衡が低下するように見えたとき、最初のミリ秒後におよそ1桁低減する。
(持続作動−HPFレジーム)
図12〜14における例は、いかなる持続もなしにFRCを減衰する特性である。しかし、いくつかの技法は、FRCシステム10に展開されて、さらにFRC閉じ込め(内部コアおよび縁層)をHPFレジームに向上させ、閉じ込めを持続させる。
中性ビーム
まず、高速(H)中性を8個の中性ビーム照射装置600からビーム内のBに垂直に照射する。高速中性のビームは、北および南の形成FRCが閉じ込めチャンバ100内で融合した瞬間から1つのFRC450の中に照射される。高速イオンは電荷交換によって主に生成され、FRC450の方位電流に加えるベータトロン軌道(FRCトポロジーのスケール上または特性磁場勾配長さスケールよりはるかに長い主要半径を有する)を有する。放出のわずか後(照射の0.5〜0.8ms後)、充分に大きい高速イオン集団は、内部FRCの安定性および閉じ込め特性を著しく向上させる(例えば、M.W.BinderbauerおよびN.Rostoker、Plasma Phys.56、part 3、451(1996)参照)。さらに、持続の観点から、中性ビーム照射装置600からのビームも、電流を駆動しFRCプラズマを加熱する主な手段である。
FRCシステム10のプラズマレジームでは、高速イオンはプラズマ電子上で主に減速する。放出の初期の間、高速イオンの通常の軌道の平均減速時間は0.3〜0.5msであり、これは著しいFRCの主に電子の加熱をもたらす。高速イオンは、内部FRC磁場が本質的に低いので(0.1Tの外部軸方向磁場に対して平均約0.03T)、セパラトリックスの外側の径方向の偏位を大きくする。高速イオンは、中性ガス濃度がセパラトリックスの外側で高過ぎた場合、電荷交換損失に対して弱いはずである。したがって、FRCシステム10上に展開した壁ゲッタリングおよび他の技法(とりわけガス制御に寄与するプラズマガン350およびミラープラグ440など)は、端中性を最小にし、高速イオン電流の必要な構築を可能にする。
ペレット照射
電子がより高温でFRCの耐用期間がより長い、超高速イオン集団がFRC450内に構築される際、冷凍のHまたはDペレットは、ペレット照射装置700からFRC450の中に照射されて、FRC450のFRC粒子インベントリを持続させる。予想されるアブレーション時間スケールは充分に短いので、かなりのFRC粒子源を提供する。またこの速度は、個々のペレットをより小さい片に砕くことにより、照射された片の表面積を拡大することによって増大させることができるが、ペレット照射装置700のバレルまたは照射管内で、また閉じ込めチャンバ100に入る前に、閉じ込めチャンバ100の中に入る直前に照射管の最後の部分の曲げ半径を締め付けることにより、ペレットと照射管の壁との間の片を増加させることによってステップを達成できる。12バレル(照射管)の燃焼順序および速度、ならびに粉砕を変化させる恩恵により、ペレット照射システム700を調整して、まさに所望のレベルの粒子インベントリの持続を提供することができる。その結果、これはFRC450内の内部動圧ならびにFRC450の持続作動および耐用期間を維持する役に立つ。
一旦、除去された原子がFRC450内で著しいプラズマに衝突すると、除去された原子は完全にイオン化される。次いで得られた低温のプラズマ構成要素は、本来のFRCプラズマにより衝突して加熱される。所望のFRC温度を維持するために必要なエネルギーは、ビーム照射装置600により最終的に供給される。この意味で、ペレット照射装置700は中性ビーム照射装置600と一緒に、定常状態を維持しFRC450を持続するシステムを形成する。
サドルコイル
定常状態の電流駆動を達成し、必要なイオン電流を維持するために、電子イオン摩擦力(衝突イオン電子運動量移動からもたらされる)に起因する電子スピンを防止するまたは著しく低減することが望ましい。FRCシステム10は、外部印加された静磁場双極子または四重極磁場を介して、電子遮断を提供する革新的な技法を利用する。これは、図15に示した外部サドルコイル460を介して実現される。サドルコイル460から横方向に印加された径方向の磁場は、回転するFRCプラズマ内の軸方向の電界を誘導する。得られる軸方向の電子電流は、径方向の磁場と相互作用して、電子上に方位遮断力Fθ=−σVeθ<|B>を生成する。FRCシステム10における典型的な条件に対して、プラズマ内部に必要な印加された磁場双極子(または四重極磁場)は、適切な電子遮断を提供するために約0.001Tのみであることが必要である。約0.015Tの対応する外部磁場は充分に小さいので、多くの高速粒子損失あるいは閉じ込めに悪影響をもたらすことはない。事実、印加された磁場双極子(または四重極磁場)は、不安定性の抑制に寄与する。接線中性ビーム照射と軸方向プラズマ照射を組み合わせて、サドルコイル460は、電流の維持および安定性に関して追加レベルの制御を提供する。
ミラープラグ
ミラープラグ440内のパルスコイル444の設計により、適度(約100kJ)の容量エネルギーで高磁場(2〜4T)の局所発生が可能になる。FRCシステム10のこの作動の通常の磁場形成に対して、形成容積内のすべての磁力線は、図2における磁力線によって示唆されたように、ミラープラグ440で収縮部442を通過し、プラズマ壁の接触は起きない。さらに、疑似直流ダイバータ磁気416と連動してミラープラグ440を、磁力線をダイバータ電極910の上に導く、または磁力線を端部カスプ配位(図示せず)内で燃焼させるように、調節することができる。後者は安定性を向上させ、平行な電子熱伝導を抑圧する。
またミラープラグ440自体も、中性ガス制御に寄与する。ミラープラグ440は、ダイバータ300の中へのガス逆流が、プラグの少量のガスコンダクタンス(わずか500L/s)によって著しく低減するので、FRC形成中に石英管に吹き入れられる重水素ガスのより良好な利用が可能になる。形成管210内部の残りの吹き入れられたガスのほとんどは、急速にイオン化される。加えて、ミラープラグ440を通って流れる高密度プラズマは、有効な中性イオン化、ひいては有効なガス障壁を提供する。結果として、FRC縁層456からダイバータ300内に再利用されたほとんどの中性は、閉じ込めチャンバ100に戻らない。加えて、プラズマガン350の作動に関連した中性は(以下に論じるように)、ダイバータ300に大部分が閉じ込められることになる。
最後に、ミラープラグ440は、FRC縁層閉じ込めを向上する傾向がある。ミラー比(プラグ/閉じ込め磁場)が20〜40の範囲で、北と南のミラープラグ440の間の長さが15mで、縁層粒子閉じ込め時間
Figure 2015502532
は、最高10倍まで増加する。向上する
Figure 2015502532
は、FRC粒子閉じ込めを容易に増加させる。
セパラトリックス容積453からの径方向の拡散(D)粒子損失が、縁層456からの軸方向損失
Figure 2015502532
によって均衡がとられたと仮定すると、
Figure 2015502532
が得られ、そこからセパラトリックス密度勾配長さを
Figure 2015502532
と書き換えることができる。式中、r、Lおよびnはそれぞれ、セパラトリックス半径、セパラトリックス長さおよびセパラトリックス密度である。FRC粒子閉じ込め時間は、
Figure 2015502532
であり、式中、τ=a/Dであり、a=r/4である。物理的に、
Figure 2015502532
が向上すると、δが増加し(セパラトリックス密度勾配およびドリフトパラメータが低減し)、したがってFRC粒子損失が低減する。FRC粒子閉じ込めにおける全体の向上は、n
Figure 2015502532
と共に増加するので、概ね二次方程式より若干少ない。
Figure 2015502532
における著しい向上はまた、縁層456が大幅な安定(すなわち、n=1のフルート、ファイアホース、または開放システムに特有の他のMHDの不安定性がない)を維持することも必要とする。プラズマガン350の使用は、この好ましい縁部の安定性を提供する。この意味では、ミラープラグ440およびプラズマガン350は、有効な縁部制御システムを形成する。
プラズマガン
プラズマガン350は、磁力線短絡によりFRC排除ジェット454の安定性を向上させる。プラズマガン350からのガンプラズマは、方位角運動量なしに生成され、これはFRC回転不安定性の制御に有用であることがわかる。したがって、ガン350は、より古い四重極の安定化技術を必要としない、FRCの安定性を制御する有効な手段である。結果として、プラズマガン350は、高速粒子の有益な効果を利用する、または本開示に概要を述べたように、進化したハイブリッド運動FRCレジームに近づくことを可能にする。したがって、プラズマガン350により、FRCシステム10がまさに電子遮断に適切だが、FRCの不安定性を引き起こす、かつ/または劇的な高速粒子拡散をもたらすはずである閾値より低い、サドルコイル電流で作動されることが可能になる。
上に論じたミラープラグで述べたように、
Figure 2015502532
を著しく向上できる場合、供給されたガンプラズマは、縁層粒子損失速度(約1022/s)に匹敵するはずである。FRCシステム10内のガンを生成したプラズマの耐用期間は、ミリ秒の範囲である。実際には、密度n約1013cm−3およびイオン温度約200eVのガンプラズマが、端部ミラープラグ440の間に閉じ込められるとみなしていただきたい。トラップ長さLおよびミラー率Rは、それぞれ約15mおよび20である。クーロン衝突によるイオン平均自由行程は、λii約6×10cmであり、λiiInR/R<Lであるので、イオンはガス動的レジーム内に閉じ込められる。このレジームにおけるプラズマ閉じ込め時間は、τgd約RL/2V約2msであり、式中、Vはイオン音速である。比較のために、これらのプラズマパラメータに対する古典的イオン閉じ込め時間は、τ約0.5τii(lnR+(lnR)0.5)約0.7msであるはずである。異常横拡散は、原則としてプラズマ閉じ込め時間を短縮してもよい。しかし、FRCシステム10では、ボーム拡散速度を前提とする場合、ガンプラズマに対する見積もられた横閉じ込め時間は、τ>τgd約2msである。それ故、ガンは、FRC縁層456の著しい燃料補給、および全体が改良されたFRC粒子閉じ込めを提供するはずである。
さらに、ガンプラズマ流を、約150〜200マイクロ秒後にオンすることができ、それによってFRCの起動、移動および閉じ込めチャンバ100への融合に使用可能になる。tが約0でオンする場合(FRC主要バンク開始)、ガンプラズマは、この動的に形成され融合されたFRC450を持続する役に立つ。形成FRCから、およびガンから組み合わせた粒子インベントリは、中性ビームの捕捉、プラズマの加熱、および長い持続に充分である。tが−1〜0msの範囲でオンする場合、ガンプラズマは、プラズマで石英管210を充填できる、または石英管の中に吹き入れたガスをイオン化でき、したがって、吹き入れたガスを低減する、または恐らく0でさえあるFRC形成が可能になる。後者は、逆バイアス磁場の高速拡散が可能になるために、充分に低温の形成プラズマが必要な場合がある。tが<−2msでオンする場合、プラズマ流は、形成の約1〜3mの磁力線容積ならびに形成部分200の閉じ込め領域および目標プラズマ密度がわずか1013cm−3である閉じ込めチャンバ100を充填することができ、FRCの到達前に中性ビームの構築が充分に可能である。次いで形成FRCを形成し、得られる閉じ込め容器プラズマの中に移動できる。このような方法で、プラズマガン350は、広範囲の作動条件およびパラメータレジームが可能である。
電気的バイアス
縁層456内の径方向電界の制御は、FRCの安定性および閉じ込めに様々な方法で有利である。FRCシステム10に展開した革新的なバイアス構成要素の恩恵により、電位の様々な意図的な分散を閉じ込めチャンバ100内の中央閉じ込め領域の充分に外側の領域から機械全体に亘って開いた磁束表面の群に印加することができる。このような方法で、径方向磁場を、FRC450のすぐ外側の縁層456を横切って生成することができる。次いでこれらの径方向電界は、縁層456の方位回転を修正し、E×B速度シアによってその閉じ込めをもたらす。次いで縁層456とFRCコア453との間のあらゆる差動回転を、シアによりFRCプラズマの内側に移動できる。結果として、縁層456を制御することは、FRCコア453に直接影響を与える。さらに、プラズマ回転における自由エネルギーも不安定性に関与できるので、この技法は、不安定性の開始および成長を制御する直接手段を提供する。FRCシステム10では、適切な縁バイアスは、開いた磁力線の移動および回転、ならびにFRCコア回転の有効な制御を提供する。様々な提供された電極900、905、910および920の場所および形状により、磁束表面455の異なる群の制御が異なる独立した電位で可能になる。このような方法で、多様な異なる電界構成および強度を認識でき、それぞれはプラズマ性能に対する異なる性質の影響をもつ。
すべてのこれらの革新的バイアス技法の主要な利点は、コアおよび縁部のプラズマ挙動が、FRCプラズマの充分に外側から影響を与えることができる、すなわち、いかなる物理的な構成要素も中央高温プラズマ(中央高温プラズマは、エネルギー、磁束および粒子の損失に深刻な影響をもつはずである)に接触させる必要がないという事実である。これは、HPFの概念の性能およびすべての潜在用途に対して主要な有利な影響を有する。
(実験データ−HPF作動)
中性ビームガン600からのビームによる高速粒子の照射は、HPFレジームを可能にする重要な役割を果たす。図16はこの事実を示す。示されているのは、FRCの耐用期間がビームパルスの長さにどのように関連するかを示す曲線のセットである。すべての他の作動条件は、この研究を含むすべての放出に対して一定に保たれる。データは、多くの照射に亘って平均し、したがって、通常の挙動を表す。ビーム期間が長いほど、より長く存続するFRCを生成させることが極めて明白である。この証拠ならびにこの研究中の他の診断を見ると、ビームは安定性を高め、損失を低減することを実証している。ビームパルス長さとFRCの耐用期間との間の相互関係は、ビームトラッピングがある種のプラズマサイズ未満で効力がないので、すなわち、照射されたビームのすべての物理的サイズにおけるFRC450の収縮が、捕捉されるまたはトラッピングされるわけではないので、完全ではない。FRCの収縮は、放出中のFRCプラズマからの総エネルギー損失(約4MW)は、特定の実験設定に対して、中性ビーム(約2.5MW)を介してFRCに供給された全電力より若干大きいという事実に主に起因する。容器100の中央平面に近接した場所にビームを配置することは、これらの損失を低減し、FRCの耐用期間を延ばす傾向があるはずである。
図17は、HPFレジームを達成するための異なる構成要素の効果を示す。図17は、時間関数としてFRC450の耐用期間を示す典型的な曲線族を示す。すべての場合において、ビーム電力の一定の適度の量(約2.5MW)が、各放出の全期間照射される。各曲線は、構成要素の異なる組合せを表す。例えば、ミラープラグ440、プラズマガン350またはゲッタリング・システム800からのゲッタリングのいずれもなしにFRCシステム10を作動させると、回転の不安定性の急激な発生およびFRCトポロジーの損失をもたらす。ミラープラグ440のみを加えると、不安定性の発生を遅らせ、閉じ込めを増加させる。ミラープラグ440とプラズマガン350の組合せを利用すると、さらに不安定性を低減し、FRCの耐用期間を増加させる。最後にガン350およびプラグ440の上にゲッタリング(この場合Ti)を加えると、最良の結果を得る、すなわち、得られるFRCは、不安定性がなく、最長の耐用期間を示す。構成要素の完全な組合せが最良の効果を生み出し、最良の目標条件をもつビームを提供することが、この実験証明から明らかである。
図1に示したように、最近発見されたHPFレジームは、劇的に改良された移動挙動を示す。図1は、従来のレジームとHPFレジームとの間のFRCシステム10における粒子閉じ込め時間の変化を示す。見てわかるように、これは、HPFレジームにおいて5倍をはるかに超えて改良されている。加えて、図1は、従来のFRC実験前の粒子閉じ込め時間に対して、FRCシステム10における粒子閉じ込め時間を詳しく示す。これらの他の機械に関して、FRCシステム10のHPFレジームは、5倍〜ほぼ20倍に閉じ込めを改良してきた。最後に最も重要なことだが、HPFレジームにおけるFRCシステム10の閉じ込めスケーリングの本質は、すべての以前の測定とは劇的に異なる。FRCシステム10におけるHPFレジームの確立前に、様々な実証的スケーリング則が、以前のFRC実験における閉じ込め時間を予測するためにデータから導き出された。これらのすべてのスケーリング則は、割合R/ρに主に依存する。式中、Rは磁場のない半径(機械の物理的スケールの粗測)であり、ρは外部印加磁場において評価されたイオン・ラーモア半径(印加磁場の粗測)である。従来のFRCにおける長い閉じ込めは、大型機械のサイズおよび/または高磁場のみで可能であることが図1から明らかである。従来のFRCレジームCRにおいてFRCシステム10を作動することは、図1に示したように、これらのスケーリング則に従う傾向がある。しかし、HPFレジームは非常に優れており、はるかに良好な閉じ込めが、大型機械のサイズまたは高磁場なしに達成可能である。より重要なことには、HPFレジームは、CRレジームに比べて低減したプラズマサイズをもつ、改良された閉じ込め時間をもたらすことも図1から明らかである。また、同様の傾向は、以下に説明するように磁束およびエネルギー閉じ込め時間にも見られ、その上、磁束およびエネルギー閉じ込め時間は、FRCシステム10において3〜8倍を超えて増加した。したがって、HPFレジームの進歩は、FRCシステム10におけるFRC平衡を持続し維持するために、わずかなビーム電力、より低い磁場およびより小さいサイズの使用、ならびに未来のより高エネルギーの機械の使用が可能になる。これらの改良に関連して、作動および構築費用を下げ、ならびに工学の複雑さを減らす。
さらなる比較のために、図18は、FRCシステム10における代表的なHPFレジーム放出からのデータを時間関数として示す。図18(a)は、中央平面での排除磁束半径を示す。これらのより長い時間スケールに対して、誘導鋼鉄壁は、もはや磁束保存器のように良好ではなく、壁の内部にある磁気プローブは、鋼鉄を通る磁束拡散を適切に構成する壁の外側のプローブで増大される。図13に示したように、従来のレジームCRにおける通常の性能と比較して、HPFレジームの作動モードは、400%を超える長い耐用期間を示す。
線集積密度追跡の代表的コードは、図18(c)におけるそのアーベル逆変換相補、密度等高線と共に、図18(b)に示されている。従来のFRCレジームCRと比較して、図13に示したように、プラズマは、非常に安定した作動を示し、パルス全体を通してより不活発である。またピーク濃度は、HPF照射においてわずかに低く、これは、図18(d)に示したように、より高い合計プラズマ温度(最高2倍まで)の結果である。
図18に示されたそれぞれの放出に対して、エネルギー、粒子および磁束閉じ込め時間はそれぞれ、0.5ms、1msおよび1msである。放出への基準時間1msで、保存されたプラズマエネルギーは2kJであるが、損失は約4MWであり、この目標を中性ビーム持続に非常に適合させる。
図19は、HPFレジームのすべての利点を最近確立された実験的HPFの磁束閉じ込めスケーリングの形で要約する。図19からわかるように、t=0.5msの前後、すなわち、t≦0.5msおよびt>0.5msで取った測定値に基づいて、閉じ込めスケールは電子温度のほぼ二乗に匹敵する。正電力T(および負電力ではない)をもつこの強いスケーリングは、従来のトカマクによって示されたスケーリングと正反対であり、この場合、閉じ込めは、通常、電子温度の一部の電力に反比例する。このスケーリングの発現は、HPFの状態および大軌道(すなわち、FRCトポロジーのスケール上の軌道および/または少なくとも特性磁場勾配長さスケール)イオン集団の直接的な結果である。基本的に、この新しいスケーリングは、実質的に高い作動温度を好み、比較的わずかなサイズのリアクターを可能にする。
本発明は様々な修正形態および代替形態の影響を受けやすいが、その具体例が図面に示され、本明細書に詳述された。しかし、本発明は開示された特定の形または方法に限定されないが、逆に、本発明は、添付の特許請求の範囲の精神および範囲に収まる、すべての修正形態、均等物および代替形態を網羅するものであることを理解されたい。
上述では、説明目的に過ぎず、具体的な用語は、本開示の完全な理解を提供するために説明されている。しかし、これらの具体的な詳述は、本開示の教示を実施するために必要とはされないことが、当業者には明らかになろう。
代表的な例および従属請求項の様々な特徴は、本教示の追加の有益な実施形態を提供するために、具体的にかつ明確に列挙されていないようなやり方で組み合わされていることがある。エンティティの群のすべての階級区分または表示は、本来の開示目的のため、ならびに特許請求の範囲の主題を限定する目的のために、あらゆる可能な中間値または中間エンティティを開示することも明白に留意されたい。
HPFレジームFRCを生成し維持するシステムおよび方法が開示されてきた。本明細書に記載された実施形態は、解明のためであり、本開示の主題を限定するとみなされるべきではないことを理解されたい。様々な修正形態、使用、置換、組合せ、改良、生産方法が、本発明の範囲または精神から逸脱することなく、当業者に明らかであるはずである。例えば、本明細書に記載されたプロセス行為の具体的な順序および組合せは、特定の指定がない限り例示に過ぎず、本発明を、異なるもしくは追加のプロセス行為、またはプロセス行為の異なる組合せもしくは順序を使用して実施することができることを、読者は理解するべきである。別の例として、一実施形態のそれぞれの特徴を、他の実施形態に示された他の特徴と混合または整合することができる。当業者に公知の特徴およびプロセスを、要望通りに同様に組み合わせてもよい。加えてまた明らかに、特徴を要望通りに加えてもよく、または差し引いてもよい。したがって、本発明は、添付された特許請求の範囲およびそれらの均等物を考慮する以外に限定されない。

Claims (99)

  1. 磁場反転配位(FRC)の磁場を生成し維持するシステムであって、
    閉じ込めチャンバと、
    前記閉じ込めチャンバに連結された第1および第2の直径方向に対向するFRC形成部分と、
    前記閉じ込めチャンバに連結された複数の中性原子ビーム照射装置であって、前記システムは、割合R/ρに実質的に依存する従来のFRC閉じ込めスケーリングより、少なくとも2倍の偏差だけ従来のFRCの粒子閉じ込めより大きい前記粒子閉じ込めを有する、FRCを生成するように構成される、複数の中性原子ビーム照射装置と
    を備える、システム。
  2. 前記第1および第2の形成部分に連結された、第1および第2のダイバータをさらに備える、請求項1に記載のシステム。
  3. 前記第1および第2のダイバータは、軸方向に向いたプラズマガンを含む、請求項2に記載のシステム。
  4. ミラープラグをさらに備える、請求項1に記載のシステム。
  5. 表面ゲッタリング・システムをさらに備える、請求項1に記載のシステム。
  6. 前記閉じ込めチャンバに連結された複数のサドルコイルをさらに備える、請求項1に記載のシステム。
  7. ペレット照射装置をさらに備える、請求項1に記載のシステム。
  8. 開いた磁束表面の電気的バイアスに対してバイアス電極をさらに備える、請求項1に記載のシステム。
  9. 磁場反転配位(FRC)の磁場を生成し維持するシステムであって、
    閉じ込めチャンバと、
    前記閉じ込めチャンバに連結された第1および第2の直径方向に対向するFRC形成部分であって、前記形成部分は、FRCを生成するためのモジュール化された形成システムを備え、前記FRCを前記閉じ込めチャンバの中央平面に向かって移動させる、第1および第2の直径方向に対向するFRC形成部分と、
    前記第1および第2の形成部分に連結された第1および第2のダイバータと、
    前記第1および第2のダイバータ、前記第1および第2の形成部分ならびに前記閉じ込めチャンバに作動可能に連結された第1および第2の軸方向プラズマガンと、
    前記閉じ込めチャンバに連結され、前記閉じ込めチャンバの前記軸に垂直に配向された複数の中性原子ビーム照射装置と、
    前記閉じ込めチャンバ、前記第1および第2の形成部分、ならびに前記第1および第2のダイバータに連結された磁気システムであって、前記磁気システムは、前記第1および第2の形成部分と前記第1および第2のダイバータとの間の位置に第1および第2のミラープラグを含む、磁気システムと、
    前記閉じ込めチャンバおよび前記第1および第2のダイバータに連結されたゲッタリング・システムと、
    生成されたFRCの電気的バイアスの開いた磁束表面に対する1つまたは複数のバイアス電極であって、前記1つまたは複数のバイアス電極は、前記閉じ込めチャンバ、前記第1および第2の形成部分、ならびに前記第1および第2のダイバータの1つまたは複数の内部に位置付けられる、1つまたは複数のバイアス電極と、
    前記閉じ込めチャンバに連結された2つ以上のサドルコイルと、
    前記閉じ込めチャンバに連結されたイオンペレット照射装置と
    を備える、システム。
  10. 前記システムは、割合R/ρに実質的に依存する従来のFRC閉じ込めスケーリングより、少なくとも2倍の偏差だけ従来のFRCの粒子閉じ込めより大きい前記粒子閉じ込めを有する、FRCを生成するように構成され、但し、Rは前記FRCの磁場のない半径であり、ρは外部印加磁場において評価されたイオン・ラーモア半径である、請求項9に記載のシステム。
  11. 前記システムは、約10−8トル以下の基準圧を有する真空を収容するように構築される、請求項9に記載のシステム。
  12. 前記磁気システムは、前記閉じ込めチャンバ、前記第1および第2の形成部分、ならびに前記第1および第2のダイバータに沿った位置に軸方向に離間された、複数の疑似直流コイルを含む、請求項9に記載のシステム。
  13. 前記磁気システムは、前記閉じ込めチャンバの端部と前記第1および第2の形成部分との間に位置付けられた、ミラーコイルの第1のセットをさらに備える、請求項12に記載のシステム。
  14. 前記ミラープラグは、前記第1および第2の形成部分と前記第1および第2のダイバータとのそれぞれの間にミラーコイルの第2のセットを備える、請求項13に記載のシステム。
  15. 前記ミラープラグは、前記第1および第2の形成部分と前記第1および第2のダイバータとのそれぞれの間の通路内の収縮部を中心に巻き付けられた、ミラープラグのセットをさらに備える、請求項14に記載のシステム。
  16. 前記ミラープラグコイルは、小型パルスミラーコイルである、請求項15に記載のシステム。
  17. 前記第1および第2の形成部分は、細長い管を備える、請求項9に記載のシステム。
  18. 前記細長い管は、ライナーを有する石英管である、請求項17に記載のシステム。
  19. 前記ライナーは、超高純度石英で形成される、請求項18に記載のシステム。
  20. 前記形成システムは、パルス電力形成システムである、請求項17に記載のシステム。
  21. 前記形成システムは、前記第1および第2の形成部分の前記細長い管を中心に巻き付けられた、前記ストラップアセンブリの個々のコイルのセットを活性化するために、複数のストラップアセンブリの個々に連結された、複数の電力および制御ユニットを備える、請求項17に記載のシステム。
  22. 前記複数の電力および制御ユニットのそれぞれは、トリガーおよび制御システムを備える、請求項21に記載のシステム。
  23. 前記複数の電力および制御ユニットの前記それぞれの前記トリガーおよび制御システムは、前記FRCが形成され次いで照射される、静的FRC形成、または前記FRCが形成され同時に移動される、動的FRC形成を可能にするために同期可能である、請求項22に記載のシステム。
  24. 前記複数の中性原子ビーム照射装置は、1つまたは複数のRFプラズマ源中性原子ビーム照射装置、および1つまたは複数のアーク源中性原子ビーム照射装置を備える、請求項9に記載のシステム。
  25. 前記複数の中性原子ビーム照射装置は、前記FRCのセパラトリックス内の目標トラッピング領域を備える前記FRCに接する照射通路で配向される、請求項9に記載のシステム。
  26. 前記ペレット照射装置は、前記閉じ込めチャンバに連結され、イオンペレットを前記FRCに直接配向する、12バレルペレット照射装置である、請求項25に記載のシステム。
  27. 前記ゲッタリング・システムは、前記閉じ込めチャンバおよび前記第1および第2のダイバータのプラズマ対向面を被覆する、チタニウム成膜システムおよびリチウム成膜システムの1つまたは複数を備える、請求項9に記載のシステム。
  28. 前記成膜システムは、蒸着技法を利用する、請求項27に記載のシステム。
  29. 前記リチウム成膜システムは、ガイドノズルを備える複数の原子炉を備える、請求項27に記載のシステム。
  30. 前記チタニウム成膜システムは、ガイドシュラウドを備える複数の中実の加熱球を備える、請求項27に記載のシステム。
  31. バイアス電極は、開いた磁力線に接触するために、前記閉じ込めチャンバ内に位置付けられた1つまたは複数の点電極、方位的に対称の形で遠端磁束層に帯電させるための、前記閉じ込めチャンバと前記第1および第2の形成部分との間の環状電極のセット、複数の同心磁束層に帯電させるための、前記第1および第2のダイバータ内に位置付けられた複数の同心積層電極、ならびに開いた磁束を遮断するための前記プラズマガンの陽極の1つまたは複数を含む、請求項9に記載のシステム。
  32. 磁場反転配位(FRC)の磁場を生成し維持するシステムであって、
    閉じ込めチャンバと、
    前記閉じ込めチャンバに連結された第1および第2の直径方向に対向するFRC形成部分と、
    前記第1および第2の形成部分に連結された第1および第2のダイバータと、
    前記第1および第2のダイバータ、前記第1および第2の形成部分ならびに前記閉じ込めチャンバに作動可能に連結された第1および第2の軸方向プラズマガンと、
    前記閉じ込めチャンバに連結され、前記閉じ込めチャンバの前記軸に垂直に配向された複数の中性原子ビーム照射装置と、
    前記閉じ込めチャンバ、前記第1および第2の形成部分、ならびに前記第1および第2のダイバータに連結された磁気システムであって、前記磁気システムは、前記第1および第2の形成部分と前記第1および第2のダイバータとの間の位置に第1および第2のミラープラグを含む、磁気システムと
    を備える、システム。
  33. 前記システムは、割合R/ρに実質的に依存する従来のFRC閉じ込めスケーリングより、少なくとも2倍の偏差だけ従来のFRCの粒子閉じ込めより大きい前記粒子閉じ込めを有する、FRCを生成するように構成され、但し、Rは前記FRCの磁場のない半径であり、ρは外部印加磁場において評価されたイオン・ラーモア半径である、請求項32に記載のシステム。
  34. 前記磁気システムは、前記閉じ込めチャンバ、前記第1および第2の形成部分、ならびに前記第1および第2のダイバータに沿った位置に軸方向に離間された、複数の疑似直流コイルを含む、請求項32に記載のシステム。
  35. 前記磁気システムは、前記閉じ込めチャンバの端部と前記第1および第2の形成部分との間に位置付けられた、ミラーコイルの第1のセットをさらに備える、請求項34に記載のシステム。
  36. 前記ミラープラグは、前記第1および第2の形成部分と前記第1および第2のダイバータとのそれぞれの間にミラーコイルの第2のセットを備える、請求項35に記載のシステム。
  37. 前記ミラープラグは、前記第1および第2の形成部分と前記第1および第2のダイバータとのそれぞれの間の通路内の収縮部を中心に巻き付けられた、ミラープラグのセットをさらに備える、請求項36に記載のシステム。
  38. 前記ミラープラグコイルは、小型パルスミラーコイルである、請求項37に記載のシステム。
  39. 前記閉じ込めチャンバに連結され、前記閉じ込めチャンバの前記軸に垂直に配向された複数の中性原子ビーム照射装置をさらに備える、請求項32に記載のシステム。
  40. 前記第1および第2のダイバータ、前記第1および第2の形成部分ならびに前記閉じ込めチャンバに作動可能に連結された第1および第2の軸方向プラズマガンをさらに備える、請求項39に記載のシステム。
  41. 前記閉じ込めチャンバおよび前記第1および第2のダイバータに連結されたゲッタリング・システムをさらに備える、請求項39に記載のシステム。
  42. 生成されたFRCの電気的バイアスの開いた磁束表面に対する1つまたは複数のバイアス電極であって、前記1つまたは複数のバイアス電極は、前記閉じ込めチャンバ、前記第1および第2の形成部分、ならびに前記第1および第2のダイバータの1つまたは複数の内部に位置付けられる、1つまたは複数のバイアス電極をさらに備える、請求項39に記載のシステム。
  43. 前記閉じ込めチャンバに連結された2つ以上のサドルコイルをさらに備える、請求項39に記載のシステム。
  44. 前記閉じ込めチャンバに連結されたイオンペレット照射装置をさらに備える、請求項39に記載のシステム。
  45. 前記形成部分は、FRCを生成するためのモジュール化された形成システムを備え、前記FRCを前記閉じ込めチャンバの中央平面に向かって移動させる、請求項39に記載のシステム。
  46. 磁場反転配位(FRC)の磁場を生成し維持するシステムであって、
    閉じ込めチャンバと、
    前記閉じ込めチャンバに連結された第1および第2の直径方向に対向するFRC形成部分と、
    前記第1および第2の形成部分に連結された第1および第2のダイバータと、
    前記閉じ込めチャンバに連結され、前記閉じ込めチャンバの前記軸に垂直に配向された複数の中性原子ビーム照射装置と、
    前記閉じ込めチャンバ、前記第1および第2の形成部分、ならびに前記第1および第2のダイバータに連結された磁気システムと、
    生成されたFRCの電気的バイアスの開いた磁束表面に対する1つまたは複数のバイアス電極であって、前記1つまたは複数のバイアス電極は、前記閉じ込めチャンバ、前記第1および第2の形成部分、ならびに前記第1および第2のダイバータの1つまたは複数の内部に位置付けられる、1つまたは複数のバイアス電極と
    を備える、システム。
  47. 前記システムは、割合R/ρに実質的に依存する従来のFRC閉じ込めスケーリングより、少なくとも2倍の偏差だけ従来のFRCの粒子閉じ込めより大きい前記粒子閉じ込めを有する、FRCを生成するように構成され、但し、Rは前記FRCの磁場のない半径であり、ρは外部印加磁場において評価されたイオン・ラーモア半径である、請求項46に記載のシステム。
  48. バイアス電極は、開いた磁力線に接触するために、前記閉じ込めチャンバ内に位置付けられた1つまたは複数の点電極、方位的に対称の形で遠端磁束層に帯電させるための、前記閉じ込めチャンバと前記第1および第2の形成部分との間の環状電極のセット、複数の同心磁束層に帯電させるための、前記第1および第2のダイバータ内に位置付けられた複数の同心積層電極、ならびに開いた磁束を遮断するための前記プラズマガンの陽極の1つまたは複数を含む、請求項46に記載のシステム。
  49. 前記磁気システムは、前記閉じ込めチャンバ、前記第1および第2の形成部分、ならびに前記第1および第2のダイバータに沿った位置に軸方向に離間された、複数の疑似直流コイルを含む、請求項46に記載のシステム。
  50. 前記磁気システムは、前記閉じ込めチャンバの端部と前記第1および第2の形成部分との間に位置付けられた、ミラーコイルの第1のセットをさらに備える、請求項49に記載のシステム。
  51. 前記磁気システムは、第1および第2のミラープラグをさらに備え、ミラープラグの前記第1および第2のセットは、前記第1および第2の形成部分と前記第1および第2のダイバータとのそれぞれの間にミラーコイルの第2のセットを備える、請求項50に記載のシステム。
  52. 前記第1および第2のミラープラグは、前記第1および第2の形成部分と前記第1および第2のダイバータとのそれぞれの間の通路内の収縮部を中心に巻き付けられた、ミラープラグのセットをさらに備える、請求項51に記載のシステム。
  53. 前記ミラープラグコイルは、小型パルスミラーコイルである、請求項52に記載のシステム。
  54. 前記第1および第2の形成部分は、細長い石英管を備える、請求項46に記載のシステム。
  55. 前記形成部分は、前記石英管に連結されたパルス電力形成システムを備える、請求項54に記載のシステム。
  56. 前記形成システムは、前記第1および第2の形成部分の前記細長い管を中心に巻き付けられた、前記ストラップアセンブリの個々のコイルのセットを活性化するために、複数のストラップアセンブリの個々に連結された、複数の電力および制御ユニットを備える、請求項55に記載のシステム。
  57. 前記複数の電力および制御ユニットのそれぞれは、トリガーおよび制御システムを備える、請求項56に記載のシステム。
  58. 前記複数の電力および制御ユニットの前記それぞれの前記トリガーおよび制御システムは、前記FRCが形成され次いで照射される、静的FRC形成、または前記FRCが形成され同時に移動される、動的FRC形成を可能にするために同期可能である、請求項57に記載のシステム。
  59. 前記複数の中性原子ビーム照射装置は、前記FRCのセパラトリックス内の目標トラッピング領域を備える前記FRCに接する照射通路で配向される、請求項46に記載のシステム。
  60. 前記閉じ込めチャンバに連結されたイオンペレット照射装置をさらに備える、請求項46に記載のシステム。
  61. 前記閉じ込めチャンバに連結された2つ以上のサドルコイルをさらに備える、請求項46に記載のシステム。
  62. 前記閉じ込めチャンバおよび前記第1および第2のダイバータに連結されたゲッタリング・システムをさらに備える、請求項46に記載のシステム。
  63. 前記第1および第2のダイバータ、前記第1および第2の形成部分ならびに前記閉じ込めチャンバに作動可能に連結された第1および第2の軸方向プラズマガンをさらに備える、請求項46に記載のシステム。
  64. 磁場反転配位(FRC)の磁場を生成し維持するシステムであって、
    閉じ込めチャンバと、
    前記閉じ込めチャンバに連結された第1および第2の直径方向に対向するFRC形成部分と、
    前記第1および第2の形成部分に連結された第1および第2のダイバータと、
    前記第1および第2のダイバータ、前記第1および第2の形成部分ならびに前記閉じ込めチャンバに作動可能に連結された第1および第2の軸方向プラズマガンと、
    前記閉じ込めチャンバに連結され、前記閉じ込めチャンバの前記軸に垂直に配向された複数の中性原子ビーム照射装置と、
    前記閉じ込めチャンバ、前記第1および第2の形成部分、ならびに前記第1および第2のダイバータに連結された磁気システムと
    を備える、システム。
  65. 前記システムは、割合R/ρに実質的に依存する従来のFRC閉じ込めスケーリングより、少なくとも2倍の偏差だけ従来のFRCの粒子閉じ込めより大きい前記粒子閉じ込めを有する、FRCを生成するように構成され、但し、Rは前記FRCの磁場のない半径であり、ρは外部印加磁場において評価されたイオン・ラーモア半径である、請求項64に記載のシステム。
  66. 前記第1および第2の形成部分のそれぞれは、細長い管、および前記細長い管に連結されたパルス電力形成システムを備える、請求項64に記載のシステム。
  67. 前記形成システムは、前記第1および第2の形成部分の前記細長い管を中心に巻き付けられた、前記ストラップアセンブリの個々のコイルのセットを活性化するために、複数のストラップアセンブリの個々に連結された、複数の電力および制御ユニットを備える、請求項66に記載のシステム。
  68. 前記複数の電力および制御ユニットのそれぞれは、トリガーおよび制御システムを備える、請求項67に記載のシステム。
  69. 前記複数の電力および制御ユニットの前記それぞれの前記トリガーおよび制御システムは、前記FRCが形成され次いで照射される、静的FRC形成、または前記FRCが形成され同時に移動される、動的FRC形成を可能にするために同期可能である、請求項68に記載のシステム。
  70. 生成されたFRCの電気的バイアスの開いた磁束表面に対する1つまたは複数のバイアス電極をさらに備える、請求項64に記載のシステム。
  71. 前記1つまたは複数のバイアス電極は、開いた磁力線に接触するために、前記閉じ込めチャンバ内に位置付けられた1つまたは複数の点電極、方位的に対称の形で遠端磁束層に帯電させるための、前記閉じ込めチャンバと前記第1および第2の形成部分との間の環状電極のセット、複数の同心磁束層に帯電させるための、前記第1および第2のダイバータ内に位置付けられた複数の同心積層電極、ならびに開いた磁束を遮断するための前記プラズマガンの陽極の1つまたは複数を含む、請求項70に記載のシステム。
  72. 前記磁気システムは、前記閉じ込めチャンバ、前記第1および第2の形成部分、ならびに前記第1および第2のダイバータに沿った位置に軸方向に離間された、複数の疑似直流コイル、ならびに前記閉じ込めチャンバの端部と前記第1および第2の形成部分との間に位置付けられた、ミラーコイルの第1のセットを含む、請求項64に記載のシステム。
  73. 前記磁気システムは、第1および第2のミラープラグをさらに備え、前記第1および第2の形成部分と前記第1および第2のダイバータとのそれぞれの間のミラーコイルの第2のセットを備える、請求項72に記載のシステム。
  74. 前記ミラープラグは、前記第1および第2の形成部分と前記第1および第2のダイバータとのそれぞれの間の通路内の収縮部を中心に巻き付けられた、小型パルスミラープラグコイルのセットをさらに備える、請求項73に記載のシステム。
  75. 前記複数の中性原子ビーム照射装置は、前記FRCのセパラトリックス内の目標トラッピング領域を備える前記FRCに接する照射通路で配向される、請求項64に記載のシステム。
  76. 前記閉じ込めチャンバに連結されたイオンペレット照射装置をさらに備える、請求項64に記載のシステム。
  77. 前記閉じ込めチャンバに連結された2つ以上のサドルコイルをさらに備える、請求項64に記載のシステム。
  78. 前記閉じ込めチャンバおよびゲッタリング材料の層を有する前記第1および第2のダイバータの前記プラズマ対向面を被覆するように構成されたゲッタリング・システムをさらに備える、請求項46に記載のシステム。
  79. 磁場反転配位(FRC)の磁場を生成し維持するシステムであって、
    閉じ込めチャンバと、
    前記閉じ込めチャンバに連結された第1および第2の直径方向に対向するFRC形成部分と、
    前記第1および第2の形成部分に連結された第1および第2のダイバータと、
    前記閉じ込めチャンバに連結され、前記閉じ込めチャンバの前記軸に垂直に配向された複数の中性原子ビーム照射装置と、
    前記閉じ込めチャンバ、前記第1および第2の形成部分、ならびに前記第1および第2のダイバータに連結された磁気システムと、
    前記閉じ込めチャンバおよびゲッタリング材料の層を有する前記第1および第2のダイバータの前記プラズマ対向面を被覆するように構成されたゲッタリング・システムと
    を備える、システム。
  80. 前記システムは、割合R/ρに実質的に依存する従来のFRC閉じ込めスケーリングより、少なくとも2倍の偏差だけ従来のFRCの粒子閉じ込めより大きい前記粒子閉じ込めを有する、FRCを生成するように構成され、但し、Rは前記FRCの磁場のない半径であり、ρは外部印加磁場において評価されたイオン・ラーモア半径である、請求項79に記載のシステム。
  81. 前記ゲッタリング・システムは、前記閉じ込めチャンバおよび前記第1および第2のダイバータのプラズマ対向面を被覆する、チタニウム成膜システムおよびリチウム成膜システムの1つまたは複数を備える、請求項79に記載のシステム。
  82. 前記成膜システムは、蒸着技法を利用する、請求項81に記載のシステム。
  83. 前記リチウム成膜システムは、ガイドノズルを備える複数の原子炉を備える、請求項81に記載のシステム。
  84. 前記チタニウム成膜システムは、ガイドシュラウドを備える複数の中実の加熱球を備える、請求項81に記載のシステム。
  85. 前記第1および第2のダイバータ、前記第1および第2の形成部分ならびに前記閉じ込めチャンバに作動可能に連結された第1および第2の軸方向プラズマガンをさらに備える、請求項79に記載のシステム。
  86. 前記第1および第2の形成部分のそれぞれは、細長い管、および前記細長い管に連結されたパルス電力形成システムを備える、請求項79に記載のシステム。
  87. 前記形成システムは、前記第1および第2の形成部分の前記細長い管を中心に巻き付けられた、前記ストラップアセンブリの個々のコイルのセットを活性化するために、複数のストラップアセンブリの個々に連結された、複数の電力および制御ユニットを備える、請求項86に記載のシステム。
  88. 生成されたFRCの電気的バイアスの開いた磁束表面に対する1つまたは複数のバイアス電極をさらに備える、請求項79に記載のシステム。
  89. 前記1つまたは複数のバイアス電極は、開いた磁力線に接触するために、前記閉じ込めチャンバ内に位置付けられた1つまたは複数の点電極、方位的に対称の形で遠端磁束層に帯電させるための、前記閉じ込めチャンバと前記第1および第2の形成部分との間の環状電極のセット、複数の同心磁束層に帯電させるための、前記第1および第2のダイバータ内に位置付けられた複数の同心積層電極、ならびに開いた磁束を遮断するための前記プラズマガンの陽極の1つまたは複数を含む、請求項88に記載のシステム。
  90. 前記磁気システムは、前記閉じ込めチャンバ、前記第1および第2の形成部分、ならびに前記第1および第2のダイバータに沿った位置に軸方向に離間された、複数の疑似直流コイル、前記閉じ込めチャンバの端部と前記第1および第2の形成部分との間に位置付けられた、ミラーコイルの第1のセット、ならびに前記第1および第2の形成部分と前記第1および第2のダイバータとのそれぞれの間のミラーコイルの第2のセットを含む、請求項79に記載のシステム。
  91. 前記第1および第2の形成部分と前記第1および第2のダイバータとのそれぞれの間の通路内の収縮部を中心に巻き付けられた、小型パルスミラーコイルのセットをさらに備える、請求項79に記載のシステム。
  92. 磁場反転配位(FRC)の磁場を生成し維持するシステムであって、
    閉じ込めチャンバと、
    前記閉じ込めチャンバに連結された第1および第2の直径方向に対向するFRC形成部分と、
    前記第1および第2の形成部分に連結された第1および第2のダイバータと、
    前記閉じ込めチャンバに連結され、前記閉じ込めチャンバの前記軸に垂直に配向された複数の中性原子ビーム照射装置と、
    前記閉じ込めチャンバ、前記第1および第2の形成部分、ならびに前記第1および第2のダイバータに連結された磁気システムであって、前記磁気システムは、前記閉じ込めチャンバの前記中央平面の各側面上に前記閉じ込めチャンバに連結された2つ以上のサドルコイルを備える、磁気システムと
    を備える、システム。
  93. 前記システムは、割合R/ρに実質的に依存する従来のFRC閉じ込めスケーリングより、少なくとも2倍の偏差だけ従来のFRCの粒子閉じ込めより大きい前記粒子閉じ込めを有する、FRCを生成するように構成され、但し、Rは前記FRCの磁場のない半径であり、ρは外部印加磁場において評価されたイオン・ラーモア半径である、請求項92に記載のシステム。
  94. 前記第1および第2のダイバータ、前記第1および第2の形成部分ならびに前記閉じ込めチャンバに作動可能に連結された第1および第2の軸方向プラズマガンをさらに備える、請求項92に記載のシステム。
  95. 前記第1および第2の形成部分のそれぞれは、細長い管、および前記細長い管に連結されたパルス電力形成システムを備える、請求項92に記載のシステム。
  96. 生成されたFRCの電気的バイアスの開いた磁束表面に対する1つまたは複数のバイアス電極をさらに備える、請求項92に記載のシステム。
  97. 前記1つまたは複数のバイアス電極は、開いた磁力線に接触するために、前記閉じ込めチャンバ内に位置付けられた1つまたは複数の点電極、方位的に対称の形で遠端磁束層に帯電させるための、前記閉じ込めチャンバと前記第1および第2の形成部分との間の環状電極のセット、複数の同心磁束層に帯電させるための、前記第1および第2のダイバータ内に位置付けられた複数の同心積層電極、ならびに開いた磁束を遮断するための前記プラズマガンの陽極の1つまたは複数を含む、請求項96に記載のシステム。
  98. 前記磁気システムは、前記閉じ込めチャンバ、前記第1および第2の形成部分、ならびに前記第1および第2のダイバータに沿った位置に軸方向に離間された、複数の疑似直流コイル、前記閉じ込めチャンバの端部と前記第1および第2の形成部分との間に位置付けられた、ミラーコイルの第1のセット、ならびに前記第1および第2の形成部分と前記第1および第2のダイバータとのそれぞれの間のミラーコイルの第2のセットを含む、請求項92に記載のシステム。
  99. 前記第1および第2の形成部分と前記第1および第2のダイバータとのそれぞれの間の通路内の収縮部を中心に巻き付けられた、小型パルスミラーコイルのセットをさらに備える、請求項98に記載のシステム。
JP2014541419A 2011-11-14 2012-11-14 高性能frcを形成し維持するシステム Active JP6186367B2 (ja)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
US201161559154P 2011-11-14 2011-11-14
US61/559,154 2011-11-14
US201161559721P 2011-11-15 2011-11-15
US61/559,721 2011-11-15
PCT/US2012/065071 WO2013074666A2 (en) 2011-11-14 2012-11-14 Systems and methods for forming and maintaining a high performance frc

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2017016553A Division JP2017075969A (ja) 2011-11-14 2017-02-01 高性能frcを形成し維持するシステムおよび方法

Publications (3)

Publication Number Publication Date
JP2015502532A true JP2015502532A (ja) 2015-01-22
JP2015502532A5 JP2015502532A5 (ja) 2016-01-14
JP6186367B2 JP6186367B2 (ja) 2017-08-23

Family

ID=47470104

Family Applications (3)

Application Number Title Priority Date Filing Date
JP2014541419A Active JP6186367B2 (ja) 2011-11-14 2012-11-14 高性能frcを形成し維持するシステム
JP2017016553A Withdrawn JP2017075969A (ja) 2011-11-14 2017-02-01 高性能frcを形成し維持するシステムおよび方法
JP2019152925A Active JP6738109B2 (ja) 2011-11-14 2019-08-23 高性能frcを形成し維持するシステムおよび方法

Family Applications After (2)

Application Number Title Priority Date Filing Date
JP2017016553A Withdrawn JP2017075969A (ja) 2011-11-14 2017-02-01 高性能frcを形成し維持するシステムおよび方法
JP2019152925A Active JP6738109B2 (ja) 2011-11-14 2019-08-23 高性能frcを形成し維持するシステムおよび方法

Country Status (33)

Country Link
US (2) US9997261B2 (ja)
EP (2) EP3223284B1 (ja)
JP (3) JP6186367B2 (ja)
KR (2) KR102043359B1 (ja)
CN (2) CN107068204B (ja)
AR (1) AR088865A1 (ja)
AU (2) AU2012340058B2 (ja)
BR (1) BR112014011619B1 (ja)
CA (1) CA2855698C (ja)
CL (2) CL2014001188A1 (ja)
CY (2) CY1119083T1 (ja)
DK (2) DK2780913T3 (ja)
EA (2) EA027454B1 (ja)
ES (2) ES2731836T3 (ja)
HK (1) HK1201977A1 (ja)
HR (2) HRP20171029T1 (ja)
HU (2) HUE034343T2 (ja)
IL (2) IL232548B (ja)
IN (1) IN2014CN03872A (ja)
LT (2) LT3223284T (ja)
MX (2) MX337413B (ja)
MY (1) MY173320A (ja)
PE (1) PE20142027A1 (ja)
PH (1) PH12017500784A1 (ja)
PL (2) PL3223284T3 (ja)
PT (2) PT2780913T (ja)
RS (2) RS58860B1 (ja)
SG (2) SG10201704299XA (ja)
SI (2) SI3223284T1 (ja)
TW (1) TWI669990B (ja)
UA (1) UA119027C2 (ja)
WO (1) WO2013074666A2 (ja)
ZA (1) ZA201403057B (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016537798A (ja) * 2013-09-24 2016-12-01 トライ アルファ エナジー, インコーポレイテッド 高性能frcを形成し維持するシステムおよび方法
JP2017532745A (ja) * 2014-10-30 2017-11-02 トライ アルファ エナジー, インコーポレイテッド 高性能frcを形成し維持するシステムおよび方法
KR20180081748A (ko) * 2015-11-13 2018-07-17 티에이이 테크놀로지스, 인크. Frc 플라즈마 위치 안정성을 위한 시스템 및 방법
JP2018523258A (ja) * 2015-05-12 2018-08-16 ティーエーイー テクノロジーズ, インコーポレイテッド 不所望の渦電流を低減するシステムおよび方法
JP2019537001A (ja) * 2016-11-04 2019-12-19 ティーエーイー テクノロジーズ, インコーポレイテッド マルチスケール捕捉タイプ真空ポンピングを用いた高性能frcの改良された持続性のためのシステムおよび方法
JP2019537002A (ja) * 2016-10-28 2019-12-19 ティーエーイー テクノロジーズ, インコーポレイテッド 調整可能ビームエネルギーを伴う中性ビーム注入器を利用する高性能frc上昇エネルギーの改良された持続性のためのシステムおよび方法

Families Citing this family (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150380113A1 (en) 2014-06-27 2015-12-31 Nonlinear Ion Dynamics Llc Methods, devices and systems for fusion reactions
US11000705B2 (en) * 2010-04-16 2021-05-11 W. Davis Lee Relativistic energy compensating cancer therapy apparatus and method of use thereof
KR102043359B1 (ko) * 2011-11-14 2019-11-12 더 리젠츠 오브 더 유니버시티 오브 캘리포니아 고성능 frc를 형성하고 유지하는 시스템 및 방법
US9959942B2 (en) 2013-04-03 2018-05-01 Lockheed Martin Corporation Encapsulating magnetic fields for plasma confinement
US9959941B2 (en) 2013-04-03 2018-05-01 Lockheed Martin Corporation System for supporting structures immersed in plasma
US10049773B2 (en) 2013-04-03 2018-08-14 Lockheed Martin Corporation Heating plasma for fusion power using neutral beam injection
US9934876B2 (en) 2013-04-03 2018-04-03 Lockheed Martin Corporation Magnetic field plasma confinement for compact fusion power
US9928926B2 (en) 2013-04-03 2018-03-27 Lockheed Martin Corporation Active cooling of structures immersed in plasma
EA039021B1 (ru) * 2014-05-21 2021-11-23 Таэ Текнолоджиз, Инк. Системы формирования и поддержания высокоэффективной конфигурации с обращенным полем
CN111683446B (zh) * 2014-10-13 2023-06-30 阿尔法能源技术公司 用于合并和压缩紧凑环的系统和方法
JP6429232B2 (ja) * 2014-12-11 2018-11-28 学校法人日本大学 ミューオン−プラズモイド複合核融合炉
CN105764228B (zh) * 2014-12-19 2018-04-24 中国科学院空间科学与应用研究中心 一种空间中性原子探测仪器的定标系统及方法
KR102492071B1 (ko) 2016-06-03 2023-01-25 티에이이 테크놀로지스, 인크. 고온 플라즈마에서의 저 자기장 및 비 자기장의 비 섭동적 측정
CA3041895A1 (en) * 2016-11-15 2018-05-24 Tae Technologies, Inc. Systems and methods for improved sustainment of a high performance frc and high harmonic fast wave electron heating in a high performance frc
CN106991271B (zh) * 2017-03-07 2020-10-30 中国科学院合肥物质科学研究院 一种适用于east偏滤器探针诊断数据处理的软件系统
CN107278010A (zh) * 2017-06-14 2017-10-20 中国科学院合肥物质科学研究院 一种在等离子体强磁场位置注入中性束的磁镜装置
KR101886755B1 (ko) * 2017-11-17 2018-08-09 한국원자력연구원 다중 펄스 플라즈마를 이용한 음이온 공급의 연속화 시스템 및 방법
US11930582B2 (en) * 2018-05-01 2024-03-12 Sunbeam Technologies, Llc Method and apparatus for torsional magnetic reconnection
WO2020101187A1 (ko) 2018-11-15 2020-05-22 주식회사 바이오앱 식물체에서 바이러스-유사 입자를 발현하는 재조합 벡터 및 이를 이용한 써코바이러스-유사 입자를 포함하는 백신 조성물의 제조방법
US11107592B2 (en) * 2019-01-21 2021-08-31 Daniel Prater Plasma confinement device with helical current and fluid flow
CN110232205B (zh) * 2019-04-28 2020-08-25 大连理工大学 用于托卡马克中共振磁扰动控制新经典撕裂模的模拟方法
CN112927820B (zh) * 2019-12-05 2024-07-16 核工业西南物理研究院 一种nnbi正负离子束偏及离子吞噬一体化结构
US11049619B1 (en) * 2019-12-23 2021-06-29 Lockheed Martin Corporation Plasma creation and heating via magnetic reconnection in an encapsulated linear ring cusp
MX2022008660A (es) * 2020-01-13 2022-08-10 Tae Tech Inc Sistema y metodos para formar y mantener plasma de configuracion de campo invertido (frc) de alta energia y temperatura por medio de fusion de spheromak e inyeccon de haz neutro.
US10966310B1 (en) * 2020-04-03 2021-03-30 Wisconsin Alumni Research Foundation High-energy plasma generator using radio-frequency and neutral beam power
CN111693556B (zh) * 2020-07-22 2022-09-27 中国工程物理研究院核物理与化学研究所 一种用于自旋回波小角中子散射谱仪的中子极化方向翻转装置
IL281747B2 (en) 2021-03-22 2024-04-01 N T Tao Ltd System and method for creating plasma with high efficiency
CA3216592A1 (en) 2021-05-28 2022-12-15 Uri Shumlak Apparatus and method for extended plasma confinement
US20230298771A1 (en) * 2022-03-15 2023-09-21 Wisconsin Alumni Research Foundation Direct Energy Converter for Axisymmetric Mirror Fusion Reactor
CN114883016B (zh) * 2022-05-10 2023-04-18 核工业西南物理研究院 一种托卡马克装置极向场线圈及柔性固定装置

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010243501A (ja) * 2001-02-01 2010-10-28 Regents Of The Univ Of California 磁場反転配位におけるプラズマの磁気的閉じ込めおよび静電気的閉じ込め

Family Cites Families (129)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3120470A (en) 1954-04-13 1964-02-04 Donald H Imhoff Method of producing neutrons
US3170841A (en) 1954-07-14 1965-02-23 Richard F Post Pyrotron thermonuclear reactor and process
US3015618A (en) 1958-06-30 1962-01-02 Thomas H Stix Apparatus for heating a plasma
US3071525A (en) 1958-08-19 1963-01-01 Nicholas C Christofilos Method and apparatus for producing thermonuclear reactions
US3052617A (en) 1959-06-23 1962-09-04 Richard F Post Stellarator injector
US3036963A (en) 1960-01-25 1962-05-29 Nicholas C Christofilos Method and apparatus for injecting and trapping electrons in a magnetic field
NL287706A (ja) 1960-02-26
US3182213A (en) 1961-06-01 1965-05-04 Avco Corp Magnetohydrodynamic generator
US3132996A (en) 1962-12-10 1964-05-12 William R Baker Contra-rotating plasma system
US3386883A (en) 1966-05-13 1968-06-04 Itt Method and apparatus for producing nuclear-fusion reactions
US3530036A (en) 1967-12-15 1970-09-22 Itt Apparatus for generating fusion reactions
US3530497A (en) 1968-04-24 1970-09-22 Itt Apparatus for generating fusion reactions
US3527977A (en) 1968-06-03 1970-09-08 Atomic Energy Commission Moving electrons as an aid to initiating reactions in thermonuclear devices
US3577317A (en) 1969-05-01 1971-05-04 Atomic Energy Commission Controlled fusion reactor
US3621310A (en) 1969-05-30 1971-11-16 Hitachi Ltd Duct for magnetohydrodynamic thermal to electrical energy conversion apparatus
US3664921A (en) 1969-10-16 1972-05-23 Atomic Energy Commission Proton e-layer astron for producing controlled fusion reactions
AT340010B (de) 1970-05-21 1977-11-25 Nowak Karl Ing Einrichtung zur erzielung einer nuklearen reaktion mittels kunstlichem plasma vorzugsweise zur kontrollierten atomkernfusion
US3668065A (en) 1970-09-15 1972-06-06 Atomic Energy Commission Apparatus for the conversion of high temperature plasma energy into electrical energy
US3663362A (en) 1970-12-22 1972-05-16 Atomic Energy Commission Controlled fusion reactor
LU65432A1 (ja) 1972-05-29 1972-08-24
US4233537A (en) 1972-09-18 1980-11-11 Rudolf Limpaecher Multicusp plasma containment apparatus
US4182650A (en) 1973-05-17 1980-01-08 Fischer Albert G Pulsed nuclear fusion reactor
US5041760A (en) 1973-10-24 1991-08-20 Koloc Paul M Method and apparatus for generating and utilizing a compound plasma configuration
US5015432A (en) 1973-10-24 1991-05-14 Koloc Paul M Method and apparatus for generating and utilizing a compound plasma configuration
US4010396A (en) 1973-11-26 1977-03-01 Kreidl Chemico Physical K.G. Direct acting plasma accelerator
FR2270733A1 (en) 1974-02-08 1975-12-05 Thomson Csf Magnetic field vehicle detector unit - receiver detects changes produced in an emitted magnetic field
US4098643A (en) 1974-07-09 1978-07-04 The United States Of America As Represented By The United States Department Of Energy Dual-function magnetic structure for toroidal plasma devices
US4057462A (en) 1975-02-26 1977-11-08 The United States Of America As Represented By The United States Energy Research And Development Administration Radio frequency sustained ion energy
US4054846A (en) 1975-04-02 1977-10-18 Bell Telephone Laboratories, Incorporated Transverse-excitation laser with preionization
US4065351A (en) 1976-03-25 1977-12-27 The United States Of America As Represented By The United States Energy Research And Development Administration Particle beam injection system
US4166760A (en) 1977-10-04 1979-09-04 The United States Of America As Represented By The United States Department Of Energy Plasma confinement apparatus using solenoidal and mirror coils
US4347621A (en) 1977-10-25 1982-08-31 Environmental Institute Of Michigan Trochoidal nuclear fusion reactor
US4303467A (en) 1977-11-11 1981-12-01 Branson International Plasma Corporation Process and gas for treatment of semiconductor devices
US4274919A (en) 1977-11-14 1981-06-23 General Atomic Company Systems for merging of toroidal plasmas
US4202725A (en) 1978-03-08 1980-05-13 Jarnagin William S Converging beam fusion system
US4189346A (en) 1978-03-16 1980-02-19 Jarnagin William S Operationally confined nuclear fusion system
US4246067A (en) 1978-08-30 1981-01-20 Linlor William I Thermonuclear fusion system
US4267488A (en) 1979-01-05 1981-05-12 Trisops, Inc. Containment of plasmas at thermonuclear temperatures
US4397810A (en) 1979-03-16 1983-08-09 Energy Profiles, Inc. Compressed beam directed particle nuclear energy generator
US4314879A (en) 1979-03-22 1982-02-09 The United States Of America As Represented By The United States Department Of Energy Production of field-reversed mirror plasma with a coaxial plasma gun
US4416845A (en) 1979-08-02 1983-11-22 Energy Profiles, Inc. Control for orbiting charged particles
JPS5829568B2 (ja) 1979-12-07 1983-06-23 岩崎通信機株式会社 2ビ−ム1電子銃陰極線管
US4548782A (en) 1980-03-27 1985-10-22 The United States Of America As Represented By The Secretary Of The Navy Tokamak plasma heating with intense, pulsed ion beams
US4390494A (en) 1980-04-07 1983-06-28 Energy Profiles, Inc. Directed beam fusion reaction with ion spin alignment
US4350927A (en) 1980-05-23 1982-09-21 The United States Of America As Represented By The United States Department Of Energy Means for the focusing and acceleration of parallel beams of charged particles
US4317057A (en) 1980-06-16 1982-02-23 Bazarov Georgy P Channel of series-type magnetohydrodynamic generator
US4434130A (en) 1980-11-03 1984-02-28 Energy Profiles, Inc. Electron space charge channeling for focusing ion beams
US4584160A (en) 1981-09-30 1986-04-22 Tokyo Shibaura Denki Kabushiki Kaisha Plasma devices
US4543231A (en) 1981-12-14 1985-09-24 Ga Technologies Inc. Multiple pinch method and apparatus for producing average magnetic well in plasma confinement
US4560528A (en) 1982-04-12 1985-12-24 Ga Technologies Inc. Method and apparatus for producing average magnetic well in a reversed field pinch
JPH06105597B2 (ja) 1982-08-30 1994-12-21 株式会社日立製作所 マイクロ波プラズマ源
JPS5960899A (ja) 1982-09-29 1984-04-06 株式会社東芝 イオン・エネルギ−回収装置
US4618470A (en) 1982-12-01 1986-10-21 Austin N. Stanton Magnetic confinement nuclear energy generator
US4483737A (en) 1983-01-31 1984-11-20 University Of Cincinnati Method and apparatus for plasma etching a substrate
US4601871A (en) 1983-05-17 1986-07-22 The United States Of America As Represented By The United States Department Of Energy Steady state compact toroidal plasma production
US4650631A (en) 1984-05-14 1987-03-17 The University Of Iowa Research Foundation Injection, containment and heating device for fusion plasmas
US4639348A (en) 1984-11-13 1987-01-27 Jarnagin William S Recyclotron III, a recirculating plasma fusion system
US4615755A (en) 1985-08-07 1986-10-07 The Perkin-Elmer Corporation Wafer cooling and temperature control for a plasma etching system
US4826646A (en) 1985-10-29 1989-05-02 Energy/Matter Conversion Corporation, Inc. Method and apparatus for controlling charged particles
US4630939A (en) 1985-11-15 1986-12-23 The Dow Chemical Company Temperature measuring apparatus
SE450060B (sv) 1985-11-27 1987-06-01 Rolf Lennart Stenbacka Forfarande for att astadkomma fusionsreaktioner, samt anordning for fusionsreaktor
US4687616A (en) 1986-01-15 1987-08-18 The United States Of America As Represented By The United States Department Of Energy Method and apparatus for preventing cyclotron breakdown in partially evacuated waveguide
US4894199A (en) 1986-06-11 1990-01-16 Norman Rostoker Beam fusion device and method
DK556887D0 (da) 1987-10-23 1987-10-23 Risoe Forskningscenter Fremgangsmaade til fremstilling af en pille og injektor til injektion af saadan pille
DE69026923T2 (de) 1990-01-22 1996-11-14 Werner K Steudtner Kernfusionsreaktor
US5160695A (en) 1990-02-08 1992-11-03 Qed, Inc. Method and apparatus for creating and controlling nuclear fusion reactions
US5311028A (en) 1990-08-29 1994-05-10 Nissin Electric Co., Ltd. System and method for producing oscillating magnetic fields in working gaps useful for irradiating a surface with atomic and molecular ions
US5122662A (en) 1990-10-16 1992-06-16 Schlumberger Technology Corporation Circular induction accelerator for borehole logging
US5206516A (en) 1991-04-29 1993-04-27 International Business Machines Corporation Low energy, steered ion beam deposition system having high current at low pressure
US6488807B1 (en) 1991-06-27 2002-12-03 Applied Materials, Inc. Magnetic confinement in a plasma reactor having an RF bias electrode
US5207760A (en) 1991-07-23 1993-05-04 Trw Inc. Multi-megawatt pulsed inductive thruster
US5323442A (en) 1992-02-28 1994-06-21 Ruxam, Inc. Microwave X-ray source and methods of use
US5502354A (en) 1992-07-31 1996-03-26 Correa; Paulo N. Direct current energized pulse generator utilizing autogenous cyclical pulsed abnormal glow discharges
RU2056649C1 (ru) 1992-10-29 1996-03-20 Сергей Николаевич Столбов Способ управляемого термоядерного синтеза и управляемый термоядерный реактор для его осуществления
RU2059297C1 (ru) * 1993-01-19 1996-04-27 Научно-исследовательский институт электрофизической аппаратуры им.Д.В.Ефремова Способ эксплуатации термоядерной установки типа токамак
US5339336A (en) 1993-02-17 1994-08-16 Cornell Research Foundation, Inc. High current ion ring accelerator
FR2705584B1 (fr) 1993-05-26 1995-06-30 Commissariat Energie Atomique Dispositif de séparation isotopique par résonance cyclotronique ionique.
US5473165A (en) 1993-11-16 1995-12-05 Stinnett; Regan W. Method and apparatus for altering material
US5557172A (en) 1993-12-21 1996-09-17 Sumitomo Heavy Industries, Ltd. Plasma beam generating method and apparatus which can generate a high-power plasma beam
US5537005A (en) 1994-05-13 1996-07-16 Hughes Aircraft High-current, low-pressure plasma-cathode electron gun
US5420425A (en) 1994-05-27 1995-05-30 Finnigan Corporation Ion trap mass spectrometer system and method
US5656519A (en) 1995-02-14 1997-08-12 Nec Corporation Method for manufacturing salicide semiconductor device
US5653811A (en) 1995-07-19 1997-08-05 Chan; Chung System for the plasma treatment of large area substrates
US20040213368A1 (en) 1995-09-11 2004-10-28 Norman Rostoker Fusion reactor that produces net power from the p-b11 reaction
AU7374896A (en) 1995-09-25 1997-04-17 Paul M. Koloc A compound plasma configuration, and method and apparatus for generating a compound plasma configuration
JP3385327B2 (ja) 1995-12-13 2003-03-10 株式会社日立製作所 三次元四重極質量分析装置
US5764715A (en) 1996-02-20 1998-06-09 Sandia Corporation Method and apparatus for transmutation of atomic nuclei
KR100275597B1 (ko) 1996-02-23 2000-12-15 나카네 히사시 플리즈마처리장치
US6000360A (en) 1996-07-03 1999-12-14 Tokyo Electron Limited Plasma processing apparatus
US5811201A (en) 1996-08-16 1998-09-22 Southern California Edison Company Power generation system utilizing turbine and fuel cell
US5923716A (en) 1996-11-07 1999-07-13 Meacham; G. B. Kirby Plasma extrusion dynamo and methods related thereto
JP3582287B2 (ja) * 1997-03-26 2004-10-27 株式会社日立製作所 エッチング装置
US6300720B1 (en) 1997-04-28 2001-10-09 Daniel Birx Plasma gun and methods for the use thereof
JPH10335096A (ja) 1997-06-03 1998-12-18 Hitachi Ltd プラズマ処理装置
US6894446B2 (en) * 1997-10-17 2005-05-17 The Regents Of The University Of California Controlled fusion in a field reversed configuration and direct energy conversion
US6628740B2 (en) * 1997-10-17 2003-09-30 The Regents Of The University Of California Controlled fusion in a field reversed configuration and direct energy conversion
US6271529B1 (en) 1997-12-01 2001-08-07 Ebara Corporation Ion implantation with charge neutralization
US6390019B1 (en) 1998-06-11 2002-05-21 Applied Materials, Inc. Chamber having improved process monitoring window
FR2780499B1 (fr) 1998-06-25 2000-08-18 Schlumberger Services Petrol Dispositifs de caracterisation de l'ecoulement d'un fluide polyphasique
US6335535B1 (en) 1998-06-26 2002-01-01 Nissin Electric Co., Ltd Method for implanting negative hydrogen ion and implanting apparatus
US6255648B1 (en) 1998-10-16 2001-07-03 Applied Automation, Inc. Programmed electron flux
US6248251B1 (en) 1999-02-19 2001-06-19 Tokyo Electron Limited Apparatus and method for electrostatically shielding an inductively coupled RF plasma source and facilitating ignition of a plasma
EP1173874A4 (en) * 1999-03-31 2007-04-11 Science Res Lab Inc PLASMA CANNON AND METHODS OF USE
US6755086B2 (en) 1999-06-17 2004-06-29 Schlumberger Technology Corporation Flow meter for multi-phase mixtures
US6322706B1 (en) 1999-07-14 2001-11-27 Archimedes Technology Group, Inc. Radial plasma mass filter
US6452168B1 (en) 1999-09-15 2002-09-17 Ut-Battelle, Llc Apparatus and methods for continuous beam fourier transform mass spectrometry
DE10060002B4 (de) 1999-12-07 2016-01-28 Komatsu Ltd. Vorrichtung zur Oberflächenbehandlung
US6593539B1 (en) 2000-02-25 2003-07-15 George Miley Apparatus and methods for controlling charged particles
US6408052B1 (en) 2000-04-06 2002-06-18 Mcgeoch Malcolm W. Z-pinch plasma X-ray source using surface discharge preionization
US6593570B2 (en) 2000-05-24 2003-07-15 Agilent Technologies, Inc. Ion optic components for mass spectrometers
US6611106B2 (en) 2001-03-19 2003-08-26 The Regents Of The University Of California Controlled fusion in a field reversed configuration and direct energy conversion
GB0131097D0 (en) 2001-12-31 2002-02-13 Applied Materials Inc Ion sources
JP2006032864A (ja) * 2004-07-21 2006-02-02 Sony Corp 多層配線構造と多層配線構造を有する半導体装置とこれらの製造方法
US8031824B2 (en) 2005-03-07 2011-10-04 Regents Of The University Of California Inductive plasma source for plasma electric generation system
SI1856702T1 (sl) * 2005-03-07 2012-11-30 Univ California Plazemski sistem za generiranje elektrike
CA2600421C (en) 2005-03-07 2016-05-03 The Regents Of The University Of California Plasma electric generation system
US7115887B1 (en) 2005-03-15 2006-10-03 The United States Of America As Represented By The United States Department Of Energy Method for generating extreme ultraviolet with mather-type plasma accelerators for use in Extreme Ultraviolet Lithography
US20080226011A1 (en) 2005-10-04 2008-09-18 Barnes Daniel C Plasma Centrifuge Heat Engine Beam Fusion Reactor
CN101320599A (zh) * 2007-06-06 2008-12-10 高晓达 通过极限环螺旋扇形注入区的束流连续注入方法
US20100020913A1 (en) * 2008-07-22 2010-01-28 Alexander Mozgovoy Method for obtainging plasma
WO2010093981A2 (en) * 2009-02-12 2010-08-19 Msnw, Llc Method and apparatus for the generation, heating and/or compression of plasmoids and/or recovery of energy therefrom
US20110142185A1 (en) * 2009-12-16 2011-06-16 Woodruff Scientific, Inc. Device for compressing a compact toroidal plasma for use as a neutron source and fusion reactor
KR102043359B1 (ko) * 2011-11-14 2019-11-12 더 리젠츠 오브 더 유니버시티 오브 캘리포니아 고성능 frc를 형성하고 유지하는 시스템 및 방법
EP2891389B1 (en) 2012-08-29 2017-08-02 General Fusion Inc. Apparatus for accelerating and compressing plasma
WO2014114986A1 (en) 2013-01-25 2014-07-31 L Ferreira Jr Moacir Multiphase nuclear fusion reactor
BR112015019181B1 (pt) 2013-02-11 2022-07-26 The Regents Of The University Of California Circuito multiplicador de tensão
US9591740B2 (en) * 2013-03-08 2017-03-07 Tri Alpha Energy, Inc. Negative ion-based neutral beam injector
CN109949948A (zh) * 2013-09-24 2019-06-28 阿尔法能源技术公司 用于形成和保持高性能frc的系统和方法
EA202191743A1 (ru) 2014-10-30 2021-12-31 Таэ Текнолоджиз, Инк. Системы и способы формирования и поддержания высокоэффективной конфигурации с обращенным полем

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010243501A (ja) * 2001-02-01 2010-10-28 Regents Of The Univ Of California 磁場反転配位におけるプラズマの磁気的閉じ込めおよび静電気的閉じ込め

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016537798A (ja) * 2013-09-24 2016-12-01 トライ アルファ エナジー, インコーポレイテッド 高性能frcを形成し維持するシステムおよび方法
JP7175037B2 (ja) 2014-10-30 2022-11-18 ティーエーイー テクノロジーズ, インコーポレイテッド 高性能frcを形成し維持するシステムおよび方法
JP2021100003A (ja) * 2014-10-30 2021-07-01 ティーエーイー テクノロジーズ, インコーポレイテッド 高性能frcを形成し維持するシステムおよび方法
JP2017532745A (ja) * 2014-10-30 2017-11-02 トライ アルファ エナジー, インコーポレイテッド 高性能frcを形成し維持するシステムおよび方法
JP2018523258A (ja) * 2015-05-12 2018-08-16 ティーエーイー テクノロジーズ, インコーポレイテッド 不所望の渦電流を低減するシステムおよび方法
KR20180081748A (ko) * 2015-11-13 2018-07-17 티에이이 테크놀로지스, 인크. Frc 플라즈마 위치 안정성을 위한 시스템 및 방법
KR102658978B1 (ko) * 2015-11-13 2024-04-18 티에이이 테크놀로지스, 인크. Frc 플라즈마 위치 안정성을 위한 시스템 및 방법
JP2019537002A (ja) * 2016-10-28 2019-12-19 ティーエーイー テクノロジーズ, インコーポレイテッド 調整可能ビームエネルギーを伴う中性ビーム注入器を利用する高性能frc上昇エネルギーの改良された持続性のためのシステムおよび方法
JP2022031482A (ja) * 2016-10-28 2022-02-18 ティーエーイー テクノロジーズ, インコーポレイテッド 調整可能ビームエネルギーを伴う中性ビーム注入器を利用する高性能frc上昇エネルギーの改良された持続性のためのシステムおよび方法
JP7075101B2 (ja) 2016-10-28 2022-05-25 ティーエーイー テクノロジーズ, インコーポレイテッド 調整可能ビームエネルギーを伴う中性ビーム注入器を利用する高性能frc上昇エネルギーの改良された持続性のための方法
JP7432576B2 (ja) 2016-10-28 2024-02-16 ティーエーイー テクノロジーズ, インコーポレイテッド 調整可能ビームエネルギーを伴う中性ビーム注入器を利用する高性能frc上昇エネルギーの改良された持続性のためのシステムおよび方法
JP2019537001A (ja) * 2016-11-04 2019-12-19 ティーエーイー テクノロジーズ, インコーポレイテッド マルチスケール捕捉タイプ真空ポンピングを用いた高性能frcの改良された持続性のためのシステムおよび方法
JP7365693B2 (ja) 2016-11-04 2023-10-20 ティーエーイー テクノロジーズ, インコーポレイテッド マルチスケール捕捉タイプ真空ポンピングを用いた高性能frcの改良された持続性のためのシステムおよび方法

Also Published As

Publication number Publication date
US20190139649A1 (en) 2019-05-09
HUE034343T2 (en) 2018-02-28
MY173320A (en) 2020-01-15
CY1121674T1 (el) 2020-07-31
MX351648B (es) 2017-10-23
SG11201402259YA (en) 2014-06-27
PT3223284T (pt) 2019-05-30
HK1201977A1 (en) 2015-09-11
WO2013074666A3 (en) 2013-07-11
EP3223284B1 (en) 2019-04-03
AU2016203851B2 (en) 2017-12-07
DK2780913T3 (en) 2017-07-10
AU2016203851A1 (en) 2016-06-30
DK3223284T3 (da) 2019-05-20
PT2780913T (pt) 2017-07-06
EP3223284A1 (en) 2017-09-27
ZA201403057B (en) 2015-12-23
JP6186367B2 (ja) 2017-08-23
IL232548A0 (en) 2014-06-30
RS56260B1 (sr) 2017-11-30
WO2013074666A2 (en) 2013-05-23
BR112014011619B1 (pt) 2021-04-06
PE20142027A1 (es) 2014-12-15
MX337413B (es) 2016-03-02
PL3223284T3 (pl) 2019-11-29
EA201790774A1 (ru) 2017-11-30
US20150187443A1 (en) 2015-07-02
AR088865A1 (es) 2014-07-16
KR20190127987A (ko) 2019-11-13
IN2014CN03872A (ja) 2015-10-16
AU2012340058B2 (en) 2016-03-10
TWI669990B (zh) 2019-08-21
CA2855698A1 (en) 2013-05-23
CL2014001188A1 (es) 2014-10-17
TW201332401A (zh) 2013-08-01
NZ624928A (en) 2016-03-31
CL2017001162A1 (es) 2018-01-12
KR102043359B1 (ko) 2019-11-12
CN103918034B (zh) 2017-03-08
AU2012340058A1 (en) 2014-06-05
SI2780913T1 (sl) 2017-08-31
CN103918034A (zh) 2014-07-09
CN107068204B (zh) 2019-07-02
LT3223284T (lt) 2019-05-10
IL232548B (en) 2018-05-31
EA027454B1 (ru) 2017-07-31
HRP20190738T1 (hr) 2019-06-28
LT2780913T (lt) 2017-06-26
ES2632589T3 (es) 2017-09-14
US10446275B2 (en) 2019-10-15
BR112014011619A2 (pt) 2017-05-02
UA119027C2 (uk) 2019-04-25
KR20140101781A (ko) 2014-08-20
CY1119083T1 (el) 2018-01-10
EA201490775A1 (ru) 2014-09-30
CA2855698C (en) 2020-03-10
EA034282B1 (ru) 2020-01-24
SI3223284T1 (sl) 2019-08-30
EP2780913A2 (en) 2014-09-24
MX2014005773A (es) 2014-05-30
CN107068204A (zh) 2017-08-18
SG10201704299XA (en) 2017-06-29
HUE043986T2 (hu) 2019-09-30
EP2780913B1 (en) 2017-05-10
RS58860B1 (sr) 2019-07-31
ES2731836T3 (es) 2019-11-19
JP6738109B2 (ja) 2020-08-12
JP2019215370A (ja) 2019-12-19
US9997261B2 (en) 2018-06-12
HRP20171029T1 (hr) 2017-10-06
IL258792A (en) 2018-06-28
PH12017500784A1 (en) 2019-01-28
IL258792B (en) 2021-08-31
PL2780913T3 (pl) 2017-10-31
KR102276959B1 (ko) 2021-07-12
JP2017075969A (ja) 2017-04-20

Similar Documents

Publication Publication Date Title
JP6738109B2 (ja) 高性能frcを形成し維持するシステムおよび方法
JP7175037B2 (ja) 高性能frcを形成し維持するシステムおよび方法
AU2019202825B2 (en) Systems and methods for forming and maintaining a high performance frc
JP7207781B2 (ja) Frcプラズマ位置安定性のため方法
JP2022107774A (ja) マルチスケール捕捉タイプ真空ポンピングを用いた高性能frcの改良された持続性のためのシステムおよび方法
NZ624928B2 (en) Systems and methods for forming and maintaining a high performance frc
NZ717865B2 (en) Systems and methods for forming and maintaining a high performance frc
NZ757525B2 (en) Systems and methods for forming and maintaining a high performance frc

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151113

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20151113

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20161101

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170201

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170703

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170731

R150 Certificate of patent or registration of utility model

Ref document number: 6186367

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250