JP7175037B2 - 高性能frcを形成し維持するシステムおよび方法 - Google Patents
高性能frcを形成し維持するシステムおよび方法 Download PDFInfo
- Publication number
- JP7175037B2 JP7175037B2 JP2021043371A JP2021043371A JP7175037B2 JP 7175037 B2 JP7175037 B2 JP 7175037B2 JP 2021043371 A JP2021043371 A JP 2021043371A JP 2021043371 A JP2021043371 A JP 2021043371A JP 7175037 B2 JP7175037 B2 JP 7175037B2
- Authority
- JP
- Japan
- Prior art keywords
- frc
- forming section
- diverter
- containment chamber
- plasma
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Classifications
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05H—PLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
- H05H1/00—Generating plasma; Handling plasma
- H05H1/02—Arrangements for confining plasma by electric or magnetic fields; Arrangements for heating plasma
- H05H1/04—Arrangements for confining plasma by electric or magnetic fields; Arrangements for heating plasma using magnetic fields substantially generated by the discharge in the plasma
- H05H1/08—Theta pinch devices, e.g. SCYLLA
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05H—PLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
- H05H1/00—Generating plasma; Handling plasma
- H05H1/02—Arrangements for confining plasma by electric or magnetic fields; Arrangements for heating plasma
- H05H1/10—Arrangements for confining plasma by electric or magnetic fields; Arrangements for heating plasma using externally-applied magnetic fields only, e.g. Q-machines, Yin-Yang, base-ball
- H05H1/14—Arrangements for confining plasma by electric or magnetic fields; Arrangements for heating plasma using externally-applied magnetic fields only, e.g. Q-machines, Yin-Yang, base-ball wherein the containment vessel is straight and has magnetic mirrors
-
- G—PHYSICS
- G21—NUCLEAR PHYSICS; NUCLEAR ENGINEERING
- G21B—FUSION REACTORS
- G21B1/00—Thermonuclear fusion reactors
- G21B1/05—Thermonuclear fusion reactors with magnetic or electric plasma confinement
- G21B1/052—Thermonuclear fusion reactors with magnetic or electric plasma confinement reversed field configuration
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05H—PLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
- H05H1/00—Generating plasma; Handling plasma
- H05H1/02—Arrangements for confining plasma by electric or magnetic fields; Arrangements for heating plasma
- H05H1/16—Arrangements for confining plasma by electric or magnetic fields; Arrangements for heating plasma using externally-applied electric and magnetic fields
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05H—PLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
- H05H3/00—Production or acceleration of neutral particle beams, e.g. molecular or atomic beams
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E30/00—Energy generation of nuclear origin
- Y02E30/10—Nuclear fusion reactors
Landscapes
- Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Plasma & Fusion (AREA)
- Spectroscopy & Molecular Physics (AREA)
- Optics & Photonics (AREA)
- High Energy & Nuclear Physics (AREA)
- General Engineering & Computer Science (AREA)
- Plasma Technology (AREA)
- Reinforced Plastic Materials (AREA)
- Moulding By Coating Moulds (AREA)
- Prostheses (AREA)
- Shaping Of Tube Ends By Bending Or Straightening (AREA)
- Pens And Brushes (AREA)
Description
本明細書に記載された実施形態は、一般に磁気プラズマ閉じ込めシステムに関し、より詳細には、優れた安定性ならびに粒子、エネルギーおよび磁束閉じ込めをもつ、磁場反転配位の形成および維持を促進するシステムおよび方法に関する。
磁場反転配位(FRC)は、コンパクト・トロイド(CT)として公知の磁気プラズマ閉じ込めトポロジーの分類に属する。FRCは、主にポロイダル磁場を示し、自然発生のトロイダル磁場がない、または少ない(M.Tuszewski、Nucl.Fusion 28、2033(1988)参照)。このような構造の魅力は、構築および維持が容易なその単純な形状、エネルギーの抽出および灰の除去を促進する無制限の自然ダイバータ、ならびに非常に高いβ(βはFRC内部の平均磁場圧力に対する平均プラズマ圧力の割合である)、すなわち、高出力密度である。高いβ特性は、経済運用、ならびにD-He3およびp-B11などの進化した非中性子燃料の使用に有利である。
は、基本的に過去のFRC実験における軸方向通過時間である。定常状態において、径方向の粒子損失と軸方向の粒子損失との間の均衡は、セパラトリックスの密度勾配長さδ、約
をもたらす。FRC粒子閉じ込め時間は、セパラトリックスで実質的な密度を有する過去のFRCに対して
と見積もられる(例えば、M.TUSZEWSKI、「Field Reversed Configurations(磁場反転配位)」、Nucl.Fusion 28、2033(1988)参照)。
本発明は、例えば、以下を提供する。
(項目1)
逆磁場構成(FRC)を伴う磁場を生成および維持するための方法であって、
閉じ込めチャンバ内にプラズマを中心としてFRCを形成するステップと、
前記閉じ込めチャンバの中央平面に向かってある角度において、高速中性原子のビームを中性ビーム注入器からFRCプラズマの中に注入することによって、減衰を伴わずに、前記FRCを一定またはほぼ一定値に維持し、コンパクト・トロイドプラズマを前記FRCの中に注入するステップと、
を含む、方法。
(項目2)
前記チャンバを中心として延在する準直流コイルを用いて、前記チャンバ内に磁場を生成するステップをさらに含む、項目1に記載の方法。
(項目3)
前記チャンバの対向する端部を中心として延在する準直流ミラーコイルを用いて、前記チャンバの対向する端部内にミラー磁場を生成するステップをさらに含む、項目1および2に記載の方法。
(項目4)
前記FRCを形成するステップは、前記閉じ込めチャンバの端部に結合される形成区分内に形成FRCを形成するステップと、前記形成FRCを前記チャンバの中央平面に向かって加速させ、前記FRCを形成するステップとを含む、項目1から3に記載の方法。
(項目5)
前記FRCを形成するステップは、前記閉じ込めチャンバの第2の端部に結合される第2の形成区分内に第2の形成FRCを形成するステップと、前記第2の形成FRCを前記チャンバの中央平面に向かって加速させるステップとを含み、2つの形成FRCは、前記FRCを形成するように融合する、項目4に記載の方法。
(項目6)
前記FRCを形成するステップは、前記形成FRCを前記チャンバの中央平面に向かって加速させながら、形成FRCを形成するステップと、形成FRCを形成し、次いで、前記形成FRCを前記チャンバの中央平面に向かって加速させるステップとのうちの1つを含む、項目4および5に記載の方法。
(項目7)
前記FRCの磁束面を前記形成区分の両端部に結合される複数のダイバータの中に誘導するステップをさらに含む、項目5に記載の方法。
(項目8)
前記FRCの磁束面を前記形成区分の一端に結合される1つのダイバータの中に誘導するステップをさらに含む、項目4に記載の方法。
(項目9)
前記FRCの磁束面を前記形成区分と反対の前記チャンバの端部に結合される第2のダイバータの中に誘導するステップをさらに含む、項目8に記載の方法。
(項目10)
前記形成区分およびダイバータを中心として延在する準直流コイルを用いて、前記形成区分およびダイバータ内に磁場を生成するステップをさらに含む、項目7から9に記載の方法。
(項目11)
準直流ミラーコイルを用いて、前記形成区分と前記ダイバータとの間にミラー磁場を生成するステップをさらに含む、項目7および10に記載の方法。
(項目12)
前記形成区分と前記ダイバータとの間の狭窄部を中心として延在する準直流ミラープラグコイルを用いて、前記形成区分と前記ダイバータとの間の狭窄部内にミラープラグ磁場を生成するステップをさらに含む、項目11に記載の方法。
(項目13)
前記チャンバに結合される鞍形コイルを用いて、前記チャンバ内に磁気双極子場および磁気四重極場のうちの1つを生成するステップをさらに含む、項目1から12に記載の方法。
(項目14)
ゲッタリングシステムを用いて、前記チャンバの内部表面、形成区分、およびダイバータを調整するステップをさらに含む、項目1から13に記載の方法。
(項目15)
前記ゲッタリングシステムは、チタン堆積システムおよびリチウム堆積システムのうちの1つを含む、項目14に記載の方法。
(項目16)
プラズマを軸方向に搭載されるプラズマガンから前記FRCの中に軸方向に注入するステップをさらに含む、項目1から15に記載の方法。
(項目17)
前記FRCの縁層内の半径方向電場プロファイルを制御するステップをさらに含む、項目1から16に記載の方法。
(項目18)
前記FRCの縁層内の半径方向電場プロファイルを制御するステップは、バイアス電極を用いて、前記FRCの開磁束面群に電位分布を印加するステップを含む、項目17に記載の方法。
(項目19)
逆磁場構成(FRC)を伴う磁場を生成および維持するためのシステムであって、
閉じ込めチャンバと、
前記閉じ込めチャンバに結合される第1および第2の直径方向に対向するFRC形成区分であって、FRCを生成し、前記FRCを前記閉じ込めチャンバの中央平面に向かって平行移動させるためのモジュール式形成システムを備える、形成区分と、
前記第1および第2の形成区分に結合される第1および第2のダイバータと、
前記第1および第2のダイバータ、前記第1および第2の形成区分、および前記閉じ込めチャンバに動作可能に結合される、第1および第2の軸方向プラズマガンと、
前記閉じ込めチャンバに結合され、前記閉じ込めチャンバの縦軸に対して直角未満の角度において、中性原子ビームを前記閉じ込めチャンバの中央平面に向かって注入するように配向される、複数の中性原子ビーム注入器と、
前記閉じ込めチャンバ、前記第1および第2の形成区分、ならびに前記第1および第2のダイバータの周囲に位置付けられる、複数の準直流コイルと、前記閉じ込めチャンバと前記第1および第2の形成区分との間に位置付けられる、第1および第2の準直流ミラーコイルのセットと、前記第1および第2の形成区分と前記第1および第2のダイバータとの間に位置付けられる、第1および第2のミラープラグとを備える、磁気システムと、
前記閉じ込めチャンバならびに前記第1および第2のダイバータに結合される、ゲッタリングシステムと、
生成されたFRCの開磁束面を電気的にバイアスするための1つまたはそれを上回るバイアス電極であって、前記閉じ込めチャンバ、前記第1および第2の形成区分、ならびに前記第1および第2のダイバータのうちの1つまたはそれを上回るもの内に位置付けられる、前記1つまたはそれを上回るバイアス電極と、
前記閉じ込めチャンバに結合される、2つまたはそれを上回る鞍形コイルと、
前記閉じ込めチャンバに結合される、CT注入器と、
を備える、システム。
(項目20)
前記システムは、FRCを生成し、中性原子ビームが前記FRCの中に注入される間、減衰を伴わずに、前記FRCを一定またはほぼ一定値に維持するように構成される、項目19に記載のシステム。
(項目21)
前記ミラープラグは、前記第1および第2の形成区分のそれぞれと前記第1および第2のダイバータとの間に第3および第4のミラーコイルのセットを備える、項目19に記載のシステム。
(項目22)
前記ミラープラグはさらに、前記第1および第2の形成区分のそれぞれと前記第1および第2のダイバータとの間の通路内の狭窄部の周囲に巻着されたミラープラグコイルのセットを備える、項目19および20に記載のシステム。
(項目23)
伸長管は、石英ライナを伴う石英管である、項目19-22に記載のシステム。
(項目24)
前記形成システムは、パルス式パワー形成システムである、項目19-23に記載のシステム。
(項目25)
前記形成システムは、複数のストラップアセンブリの個々の1つに結合され、前記第1および第2の形成区分の伸長管の周囲に巻着された前記複数のストラップアセンブリの個々の1つのコイルのセットを励起する、複数のパワーおよび制御ユニットを備える、項目19-24に記載のシステム。
(項目26)
前記複数のパワーおよび制御ユニットの個々の1つは、トリガおよび制御システムを備える、項目25に記載のシステム。
(項目27)
前記複数のパワーおよび制御ユニットの個々の1つの前記トリガおよび制御システムは、前記FRCが、形成され、次いで、注入される、静的FRC形成、または前記FRCが、同時に、形成および平行移動される、動的FRC形成を可能にするように同期可能である、項目26に記載のシステム。
(項目28)
前記複数の中性原子ビーム注入器は、1つまたはそれを上回るRFプラズマ源中性原子ビーム注入器と、1つまたはそれを上回るアーク源中性原子ビーム注入器とを備える、項目19-27に記載のシステム。(項目29)
前記複数の中性原子ビーム注入器は、前記FRCの区分線内に標的捕捉ゾーンを伴って、前記FRCに対して接線方向にある注入経路とともに配向される、項目19-28に記載のシステム。
(項目30)
前記ゲッタリングシステムは、前記閉じ込めチャンバならびに前記第1および第2のダイバータのプラズマに面した表面をコーティングする、チタン堆積システムおよびリチウム堆積システムのうちの1つまたはそれを上回るものを備える、項目19-29に記載のシステム。
(項目31)
バイアス電極は、開磁力線に接触するように前記閉じ込めチャンバ内に位置付けられる、1つまたはそれを上回る点電極、方位角的に対称方式において遠端磁束層を充電する、前記閉じ込めチャンバと前記第1および第2の形成区分との間の環状電極のセット、前記第1および第2のダイバータ内に位置付けられ、複数の同心磁束層を充電する、複数の同心積層電極、および開磁束を奪取する、前記プラズマガンのアノードのうちの1つまたはそれを上回るものを含む、項目19-30に記載のシステム。
(項目32)
逆磁場構成(FRC)を伴う磁場を生成および維持するためのシステムであって、
閉じ込めチャンバと、
前記閉じ込めチャンバに結合される第1および第2の直径方向に対向するFRC形成区分と、
前記第1および第2の形成区分に結合される第1および第2のダイバータと、
複数のプラズマガン、1つまたはそれを上回るバイアス電極、ならびに第1および第2のミラープラグのうちの1つまたはそれを上回るものであって、前記複数のプラズマガンは、前記第1および第2のダイバータ、前記第1および第2の形成区分、ならびに前記閉じ込めチャンバに動作可能に結合される、第1および第2の軸方向プラズマガンを含み、前記1つまたはそれを上回るバイアス電極は、前記閉じ込めチャンバ、前記第1および第2の形成区分、ならびに前記第1および第2のダイバータのうちの1つまたはそれを上回るもの内に位置付けられ、前記第1および第2のミラープラグは、前記第1および第2の形成区分と前記第1および第2のダイバータとの間に位置付けられる、複数のプラズマガン、1つまたはそれを上回るバイアス電極、ならびに第1および第2のミラープラグのうちの1つまたはそれを上回るものと、
前記閉じ込めチャンバならびに前記第1および第2のダイバータに結合される、ゲッタリングシステムと、
前記閉じ込めチャンバに結合され、前記閉じ込めチャンバの軸に対して直角に配向される、複数の中性原子ビーム注入器と、
前記閉じ込めチャンバ、前記第1および第2の形成区分、ならびに前記第1および第2のダイバータの周囲に位置付けられる、複数の準直流コイルと、前記閉じ込めチャンバと前記第1および第2の形成区分との間に位置付けられる、第1および第2の準直流ミラーコイルのセットとを備える、磁気システムと、
前記閉じ込めチャンバに結合されたCT注入器と、
を備え、
前記システムは、FRCを生成し、中性ビームがプラズマの中に注入される間、減衰を伴わず前記FRCを維持するように構成される、システム。
(項目33)
前記システムは、FRCを生成し、中性原子ビームが、前記FRCの中に注入される間、減衰を伴わずに、前記FRCを一定またはほぼ一定値に維持するように構成される、項目32に記載のシステム。
(項目34)
前記ミラープラグは、前記第1および第2の形成区分のそれぞれと前記第1および第2のダイバータとの間に第3および第4のミラーコイルのセットを備える、項目32および33に記載のシステム。
(項目35)
前記ミラープラグはさらに、前記第1および第2の形成区分のそれぞれと前記第1および第2のダイバータとの間の通路内の狭窄部の周囲に巻着される、ミラープラグコイルのセットを備える、項目32-34に記載のシステム。
(項目36)
前記第1および第2のダイバータと、前記第1および第2の形成区分と、前記閉じ込めチャンバとに動作可能に結合される、第1および第2の軸方向プラズマガンをさらに備える、項目32-35に記載のシステム。
(項目37)
前記閉じ込めチャンバに結合される、2つまたはそれを上回る鞍形コイルをさらに備える、項目32-36に記載のシステム。
(項目38)
前記形成区分は、FRCを生成し、それを前記閉じ込めチャンバの中央平面に向かって平行移動させるためのモジュール式形成システムを備える、項目32-37に記載のシステム。
(項目39)
バイアス電極は、開磁力線に接触するように前記閉じ込めチャンバ内に位置付けられる、1つまたはそれを上回る点電極、方位角的に対称方式において、遠端磁束層を充電する、前記閉じ込めチャンバと前記第1および第2の形成区分との間の環状電極のセット、複数の同心磁束層を充電するように前記第1および第2のダイバータ内に位置付けられる、複数の同心積層電極、および開磁束を奪取する、前記プラズマガンのアノードのうちの1つまたはそれを上回るものを含む、項目32-38に記載のシステム。
真空システム
図2および3は、本FRCシステム10の概略を示す。FRCシステム10は、2つの直径方向に対向する磁場反転シータピンチ形成部分200、およびその形成部分200を超えた、中性密度および不純物汚染を制御するための2つのダイバータ・チャンバ300によって包囲された中央閉じ込め容器100を含む。本FRCシステム10は、超高真空を収容するように構築されており、一般的な基準圧10~8トルで作動する。このような真空圧は、嵌合構成要素、金属Oリング、高純度の内壁の間のダブルポンプの嵌合フランジを使用し、ならびに物理的および化学的洗浄に続き、24時間250℃での真空焼成および水素グロー放電洗浄などの、組立て前にすべての部分を最初に慎重に表面調整する必要がある。
磁気システム400は、図2および3に示されている。図2は、他の特徴の中でとりわけ、FRCシステム10によって生産可能なFRC450に関する、FRC磁束および密度等高線(径方向および軸方向座標の関数として)を示す。これらの等高線は、FRCシステム10に対応するシステムおよび方法をシミュレーションするために開発されたコードを使用して、二次元抵抗性Hall-MHD数値シミュレーションによって獲得されたものであり、測定された実験データとよく合致する。図2に見られるように、FRC450は、セパラトリックス451の内側のFRC450の内部453で、閉じた磁力線のトーラス、およびセパラトリックス451のすぐ外側の開いた磁力線452上の環状縁層456からなる。縁層456は、FRCの長さを超えて集結してジェット454になり、自然ダイバータを提供する。
パルス電力形成システム210は、修正シータピンチ原理に基づいて作動する。それぞれが形成部分200の1つに電力を供給する、2つのシステムが存在する。図4~6は、形成システム210の主な構築ブロックおよび配置を示す。形成システム210は、個々のユニット(=スキッド)220からなるモジュラーパルス電力配置から構成され、スキッド220のそれぞれは、形成石英管240を中心に巻き付くストラップアセンブリ230(=ストラップ)のコイル232のサブセットを活性化する。各スキッド220は、コンデンサ221、インダクタ223、高速大電流スイッチ225および関連トリガー222ならびにダンプ回路224から構成される。全体で、各形成システム210は、350~400kJの容量エネルギーを保存し、この容量エネルギーは、最高35GWまでの電力を提供してFRCを形成し加速する。これらの構成要素の協調された作動は、最先端のトリガーおよび制御システム222および224を介して達成され、それによって各形成部分200上の形成システム210間のタイミングを同期することが可能になり、スイッチングジッタを数十ナノ秒に最小化する。このモジュラー設計の利点は、その柔軟な作動である。すなわち、FRCをその場で形成でき、次いで加速し照射する(=静的形成)、または形成し同時に加速する(=動的形成)ことができる。
中性原子ビーム600が、FRCシステム10上に展開され、加熱および電流駆動を提供し、高速粒子圧力を発生させる。図3A、3B、および8に示されるように、中性原子ビーム注入器システム610および640を構成する、個々のビーム線は、標的捕捉ゾーンが十分に区分線451(図2参照)の範囲内にあるように、衝突パラメータを用いて、中心閉じ込めチャンバ100の周囲に位置し、高速粒子をFRCプラズマに対して接線方向に(かつ、中心閉じ込め容器100内の対称長軸に対して垂直または直角である角度で)注入する。各注入器システム610および640は、20~40keVの粒子エネルギーを用いて、最大1MWの中性ビームパワーをFRCプラズマの中に注入可能である。システム610および640は、正イオン多開口抽出源に基づき、幾何学的集束、イオン抽出グリッドの慣性冷却、および差動ポンプを利用する。異なるプラズマ源の使用は別として、システム610および640は、主に、側方および上方注入能力をもたらす、その個別の搭載場所を満たすようなその物理的設計によって区別される。これらの中性ビーム注入器の典型的構成要素は、側方注入器システム610に関する図7に具体的に図示される。図7に示されるように、各個々の中性ビームシステム610は、端部を被覆する磁気遮蔽614とともに、入力端部(これは、システム640内のアーク源で代用される)にRFプラズマ源612を含む。イオン光学源および加速グリッド616は、プラズマ源612に結合され、ゲート弁620は、イオン光学源および加速グリッド616と中和装置622との間に位置付けられる。偏向磁石624およびイオンダンプ628は、中和装置622と出口端部における照準デバイス630との間に位置する。冷却システムは、2つの低温冷凍機634と、2つのクライオパネル636と、LN2シュラウド638とを備える。本柔軟性のある設計は、広範囲のFRCパラメータにわたる動作を可能にする。
新しい粒子を照射し、FRCの粒子インベントリをより良好に制御する手段を提供するために、12バレルペレット照射装置700(例えば、I.Vinyarら、「Pellet Injectors Developed at PELIN for JET, TAE, and HL-2A(JET、TAE、およびHL-2Aに対してPELINで開発されたペレット照射装置)」第26回Fusion Science and Technology Symposium(核融合科学技術シンポジウム)の報告書、9月27日~10月1日(2010)参照)がFRCシステム10上に利用される。図3は、FRCシステム10上のペレット照射装置700の配置を示す。円筒形ペレット(Dは約1mm、Lは約1~2mm)は、FRCに速度150~250km/sの範囲で照射される。個々のペレットはそれぞれ、約5×1019の水素原子を含み、これはFRCの粒子インベントリに匹敵する。
中性ハロガスは、すべての閉じ込めシステムにおいて深刻な問題であることは周知である。電荷交換および再利用(壁からの低温の不純物材料の放出)プロセスは、エネルギーおよび粒子閉じ込めに壊滅的な影響を与える可能性がある。加えて、縁部におけるまたは縁部付近のいかなる高濃度の中性ガスも、照射された大きい軌道(高エネルギー)の粒子(大きい軌道は、FRCトポロジーの規模の軌道、または少なくとも特性磁界勾配長さスケールよりはるかに大きい軌道半径を有する粒子を指す)の耐用期間を即座に喪失させる、または少なくとも大幅に短くする、すなわち、これは、補助ビーム加熱を介する融合を含め、すべてのエネルギープラズマの適用に弊害をもたらす。
上述のように、FRCシステム10は、図2および3に示したように、ミラーコイル420、430、および444のセットを利用する。ミラーコイル420の第1のセットは、閉じ込めチャンバ100の2つの軸方向端部に配置され、主磁気システム410の閉じ込めコイル412、414および416から単独に活性化される。ミラーコイル420の第1のセットは、主に融合中にFRC450を進め軸方向に包含する助けとなり、持続している間に平衡成形制御を提供する。第1のミラーコイルセット420は、中央閉じ込めコイル412によって生成された中央閉じ込め磁場より名目上高い磁場(約0.4~0.5T)を生成する。ミラーコイル430の第2のセットは、3つの小型の疑似直流ミラーコイル432、434および436を含み、形成部分200とダイバータ300との間に配置され、一般的なスイッチ電源によって駆動される。ミラーコイル432、434および436は、より小型のパルスミラープラグコイル444(容量電源によって供給される)および物理的収縮部442と一緒に、狭い低ガス伝導通路を非常に高い磁場(約10~20msの立上り時間で2~4T)で提供する、ミラープラグ440を形成する。最も小型のパルスミラーコイル444は、閉じ込めコイル412、414および416のメートルプラススケールの孔およびパンケーキ型設計に比べて、小型の径方向寸法、20cmの孔および同様の長さである。ミラープラグ440の目的は、以下のように多種多様である。(1)コイル432、434、436および444を堅く束ね、磁束表面452および端部に流れるプラズマジェット454を、遠隔ダイバータ・チャンバ300に導く。これは、排出粒子がダイバータ300に適切に到着し、中央FRC450の開いた磁力線452領域からダイバータ300までずっと追跡する、連続した磁束表面455が存在することを確実にする。(2)FRCシステム10における物理的収縮部442は、それを通ってコイル432、434、436および444が磁束表面452およびプラズマジェット454を通過することができ、ダイバータ300内に着座するプラズマガン350からの中性ガス流を妨げる。同じように、収縮部442は、形成部分200からダイバータ300へのガスの逆流を防止し、それによってFRCの起動を開始するときに、FRCシステム10全体に導入しなければならない中性粒子の数が低減する。(3)コイル432、434、436および444によって生成された強い軸方向のミラーは軸方向の粒子損失を低減し、それによって開いた磁力線上の平行な粒子拡散係数が低減する。
ダイバータ300のダイバータ・チャンバ310内に装着されたガン350からのプラズマ流は、安定性および中性ビーム性能を向上させることを意図する。ガン350は、図3および10に示したように、ダイバータ300のチャンバ310の内側の軸上に装着され、プラズマ流をダイバータ300内の開いた磁力線452に沿って、閉じ込めチャンバ100の中心に向かって生成する。ガン350は、ワッシャー積層チャネル内に高濃度ガス放出で作動し、5~10msに完全にイオン化されたプラズマを数キロアンペア生成するように設計されている。ガン350は、出力プラズマ流を閉じ込めチャンバ100内の所望のサイズのプラズマに一致させる、パルス磁気コイルを含む。ガン350の技術パラメータは、5~13cmの外径、および最高10cmまでの内径を有するチャネルを特徴とし、ガンの内部磁場は0.5~2.3Tで、400~600Vで10~15kAの放電電流を提供する。
開いた磁束表面の電気バイアスは、方位E×B運動を起こす径方向電位を提供することができ、方位E×B運動は、開いた磁力線プラズマの回転、ならびに速度シアを介して実際のFRCコア450を制御するための、ノブを回すのに類似した制御機構を提供する。この制御を達成させるために、FRCシステム10は、機械の様々な部分に配置された様々な電極を戦略的に利用する。図3は、FRCシステム10内の好ましい場所に位置付けられたバイアス電極を示す。
良好に開発された磁場反転シータピンチ技法の後に、FRCシステム10上の標準プラズマ形成が続く。FRCを開始するための通常のプロセスは、定常状態作動のために疑似直流コイル412、414、416、420、432、434および436を駆動することにより開始する。次いでパルス電力形成システム210のRFTPパルス電力回路は、パルス高速磁場反転コイル232を駆動して、形成部分200内に約-0.05Tの一時的な逆バイアスを生成する。この点で、9~20psiの所定の量の中性ガスを、形成部分200の外端上に配置されたフランジにおいて方位角に配向されたパフ弁のセットを介して、(北および南の)形成部分200の石英管チャンバ240によって画定された2つの形成容積の中に照射する。次に、小さいRF(約数百キロヘルツ)の磁場を、石英管240の表面上のアンテナのセットから生成して、中性ガス柱内に局所シードイオン化領域(local seed ionization region)の形でプレプレイオン化(pre-pre-ionization)を生成する。これに続いて、パルス高速磁場反転コイル232を駆動する電流上にシータリング変調を加え、これによりガス柱のより広範囲のプレイオン化がもたらされる。最後に、パルス電力形成システム210の主要パルスパワーバンクを燃やして、最高0.4Tまでの順方向バイアス磁場を生成するためにパルス高速磁場反転コイル232を駆動する。このステップは、順方向バイアス磁場が形成管240の全長に亘って均一に生成されるように(静的形成)、または連続蠕動磁場変調が、形成管240の軸に沿って達成されるように(動的形成)、時系列にすることができる。
図12は、FRC450のシータピンチ融合プロセスの力学を示すために、セパラトリックスの半径rsに近づく、排除磁束半径rΔФの通常の時間発展を示す。2つ(北および南)の個々のプラズモイドは、同時に生成され、次いでそれぞれの形成部分200から出て超音速vz約250km/sで加速され、中央平面近傍でz=0で衝突する。衝突中、プラズモイドは軸方向に圧迫し、続いて即座に径方向および軸方向に拡大し、最後に融合してFRC450を形成する。融合するFRC450の径方向および軸方向の力学の両方は、詳しく示した密度プロファイルの測定およびボロメータに基づいた断層撮影によって証明される。
図12~14における例は、いかなる持続もなしにFRCを減衰する特性である。しかし、いくつかの技法は、FRCシステム10に展開されて、さらにFRC閉じ込め(内部コアおよび縁層)をHPFレジームに向上させ、閉じ込めを持続させる。
まず、高速(H)中性を8個の中性ビーム照射装置600からビーム内のBzに垂直に照射する。高速中性のビームは、北および南の形成FRCが閉じ込めチャンバ100内で融合した瞬間から1つのFRC450の中に照射される。高速イオンは電荷交換によって主に生成され、FRC450の方位電流に加えるベータトロン軌道(FRCトポロジーのスケール上または特性磁場勾配長さスケールよりはるかに長い主要半径を有する)を有する。放出のわずか後(照射の0.5~0.8ms後)、充分に大きい高速イオン集団は、内部FRCの安定性および閉じ込め特性を著しく向上させる(例えば、M.W.BinderbauerおよびN.Rostoker、Plasma Phys.56、part 3、451(1996)参照)。さらに、持続の観点から、中性ビーム照射装置600からのビームも、電流を駆動しFRCプラズマを加熱する主な手段である。
電子がより高温でFRCの耐用期間がより長い、超高速イオン集団がFRC450内に構築される際、冷凍のHまたはDペレットは、ペレット照射装置700からFRC450の中に照射されて、FRC450のFRC粒子インベントリを持続させる。予想されるアブレーション時間スケールは充分に短いので、かなりのFRC粒子源を提供する。またこの速度は、個々のペレットをより小さい片に砕くことにより、照射された片の表面積を拡大することによって増大させることができるが、ペレット照射装置700のバレルまたは照射管内で、また閉じ込めチャンバ100に入る前に、閉じ込めチャンバ100の中に入る直前に照射管の最後の部分の曲げ半径を締め付けることにより、ペレットと照射管の壁との間の片を増加させることによってステップを達成できる。12バレル(照射管)の燃焼順序および速度、ならびに粉砕を変化させる恩恵により、ペレット照射システム700を調整して、まさに所望のレベルの粒子インベントリの持続を提供することができる。その結果、これはFRC450内の内部動圧ならびにFRC450の持続作動および耐用期間を維持する役に立つ。
ペレット注入器の代替として、主に磁場反転配位(FRC)プラズマに燃料補給するために、コンパクト・トロイド(CT)注入器が提供される。CT注入器720は、磁化同軸プラズマガン(MCPG)を含み、該プラズマガンは、図21に示されているように、同軸円筒形内側電極722および同軸円筒形外側電極724と、内側電極726に対して内部に配置されたバイアスコイルと、CT注入器720の放電部の反対側の端部上の電気遮断728とを含む。ガスは、内側電極722と外側電極724との間の空間の中にガス注入ポート730を通して注入され、スフェロマック状プラズマは、放電によってそこから発生させられ、ローレンツ力によってガンから押し出される。図22Aおよび22Bに示されているように、一対のCT注入器720は、閉じ込め容器100の中央平面の近くに、かつその両側で閉じ込め容器100に結合され、CTを閉じ込め容器100内の中央FRCプラズマの中に注入する。CT注入器720の放出端部は、中性子ビーム注入器615と同様に閉じ込め容器100の縦軸に対してある角度で、閉じ込め容器10の中央平面に向けられる。
定常状態の電流駆動を達成し、必要なイオン電流を維持するために、電子イオン摩擦力(衝突イオン電子運動量移動からもたらされる)に起因する電子スピンを防止するまたは著しく低減することが望ましい。FRCシステム10は、外部印加された静磁場双極子または四重極磁場を介して、電子遮断を提供する革新的な技法を利用する。これは、図15に示した外部サドルコイル460を介して実現される。サドルコイル460から横方向に印加された径方向の磁場は、回転するFRCプラズマ内の軸方向の電界を誘導する。得られる軸方向の電子電流は、径方向の磁場と相互作用して、電子上に方位遮断力Fθ=-σVeθ<|Br|2>を生成する。FRCシステム10における典型的な条件に対して、プラズマ内部に必要な印加された磁場双極子(または四重極磁場)は、適切な電子遮断を提供するために約0.001Tのみであることが必要である。約0.015Tの対応する外部磁場は充分に小さいので、多くの高速粒子損失あるいは閉じ込めに悪影響をもたらすことはない。事実、印加された磁場双極子(または四重極磁場)は、不安定性の抑制に寄与する。接線中性ビーム照射と軸方向プラズマ照射を組み合わせて、サドルコイル460は、電流の維持および安定性に関して追加レベルの制御を提供する。
ミラープラグ440内のパルスコイル444の設計により、適度(約100kJ)の容量エネルギーで高磁場(2~4T)の局所発生が可能になる。FRCシステム10のこの作動の通常の磁場形成に対して、形成容積内のすべての磁力線は、図2における磁力線によって示唆されたように、ミラープラグ440で収縮部442を通過し、プラズマ壁の接触は起きない。さらに、疑似直流ダイバータ磁気416と連動してミラープラグ440を、磁力線をダイバータ電極910の上に導く、または磁力線を端部カスプ配位(図示せず)内で燃焼させるように、調節することができる。後者は安定性を向上させ、平行な電子熱伝導を抑圧する。
は、最高10倍まで増加する。向上する
は、FRC粒子閉じ込めを容易に増加させる。
によって均衡がとられたと仮定すると、
が得られ、そこからセパラトリックス密度勾配長さを
と書き換えることができる。式中、rs、Lsおよびnsはそれぞれ、セパラトリックス半径、セパラトリックス長さおよびセパラトリックス密度である。FRC粒子閉じ込め時間は、
であり、式中、τ┴=a2/Dであり、a=rs/4である。物理的に、
が向上すると、δが増加し(セパラトリックス密度勾配およびドリフトパラメータが低減し)、したがってFRC粒子損失が低減する。FRC粒子閉じ込めにおける全体の向上は、nsが
と共に増加するので、概ね二次方程式より若干少ない。
における著しい向上はまた、縁層456が大幅な安定(すなわち、n=1のフルート、ファイアホース、または開放システムに特有の他のMHDの不安定性がない)を維持することも必要とする。プラズマガン350の使用は、この好ましい縁部の安定性を提供する。この意味では、ミラープラグ440およびプラズマガン350は、有効な縁部制御システムを形成する。
プラズマガン350は、磁力線短絡によりFRC排除ジェット454の安定性を向上させる。プラズマガン350からのガンプラズマは、方位角運動量なしに生成され、これはFRC回転不安定性の制御に有用であることがわかる。したがって、ガン350は、より古い四重極の安定化技術を必要としない、FRCの安定性を制御する有効な手段である。結果として、プラズマガン350は、高速粒子の有益な効果を利用する、または本開示に概要を述べたように、進化したハイブリッド運動FRCレジームに近づくことを可能にする。したがって、プラズマガン350により、FRCシステム10がまさに電子遮断に適切だが、FRCの不安定性を引き起こす、かつ/または劇的な高速粒子拡散をもたらすはずである閾値より低い、サドルコイル電流で作動されることが可能になる。
を著しく向上できる場合、供給されたガンプラズマは、縁層粒子損失速度(約1022/s)に匹敵するはずである。FRCシステム10内のガンを生成したプラズマの耐用期間は、ミリ秒の範囲である。実際には、密度ne約1013cm-3およびイオン温度約2
00eVのガンプラズマが、端部ミラープラグ440の間に閉じ込められるとみなしていただきたい。トラップ長さLおよびミラー率Rは、それぞれ約15mおよび20である。クーロン衝突によるイオン平均自由行程は、λii約6×103cmであり、λiiInR/R<Lであるので、イオンはガス動的レジーム内に閉じ込められる。このレジームにおけるプラズマ閉じ込め時間は、τgd約RL/2Vs約2msであり、式中、Vsはイオン音速である。比較のために、これらのプラズマパラメータに対する古典的イオン閉じ込め時間は、τc約0.5τii(lnR+(lnR)0.5)約0.7msであるはずである。異常横拡散は、原則としてプラズマ閉じ込め時間を短縮してもよい。しかし、FRCシステム10では、ボーム拡散速度を前提とする場合、ガンプラズマに対する見積もられた横閉じ込め時間は、τ⊥>τgd約2msである。それ故、ガンは、FRC縁層456の著しい燃料補給、および全体が改良されたFRC粒子閉じ込めを提供するはずである。
縁層456内の径方向電界の制御は、FRCの安定性および閉じ込めに様々な方法で有利である。FRCシステム10に展開した革新的なバイアス構成要素の恩恵により、電位の様々な意図的な分散を閉じ込めチャンバ100内の中央閉じ込め領域の充分に外側の領域から機械全体に亘って開いた磁束表面の群に印加することができる。このような方法で、径方向磁場を、FRC450のすぐ外側の縁層456を横切って生成することができる。次いでこれらの径方向電界は、縁層456の方位回転を修正し、E×B速度シアによってその閉じ込めをもたらす。次いで縁層456とFRCコア453との間のあらゆる差動回転を、シアによりFRCプラズマの内側に移動できる。結果として、縁層456を制御することは、FRCコア453に直接影響を与える。さらに、プラズマ回転における自由エネルギーも不安定性に関与できるので、この技法は、不安定性の開始および成長を制御する直接手段を提供する。FRCシステム10では、適切な縁バイアスは、開いた磁力線の移動および回転、ならびにFRCコア回転の有効な制御を提供する。様々な提供された電極900、905、910および920の場所および形状により、磁束表面455の異なる群の制御が異なる独立した電位で可能になる。このような方法で、多様な異なる電界構成および強度を認識でき、それぞれはプラズマ性能に対する異なる性質の影響をもつ。
中性ビームガン600からのビームによる高速粒子の照射は、HPFレジームを可能にする重要な役割を果たす。図16はこの事実を示す。示されているのは、FRCの耐用期間がビームパルスの長さにどのように関連するかを示す曲線のセットである。すべての他の作動条件は、この研究を含むすべての放出に対して一定に保たれる。データは、多くの照射に亘って平均し、したがって、通常の挙動を表す。ビーム期間が長いほど、より長く存続するFRCを生成させることが極めて明白である。この証拠ならびにこの研究中の他の診断を見ると、ビームは安定性を高め、損失を低減することを実証している。ビームパルス長さとFRCの耐用期間との間の相互関係は、ビームトラッピングがある種のプラズマサイズ未満で効力がないので、すなわち、照射されたビームのすべての物理的サイズにおけるFRC450の収縮が、捕捉されるまたはトラッピングされるわけではないので、完全ではない。FRCの収縮は、主に、放電の間のFRCプラズマからの正味エネルギー損失(放電のほぼ中間で約4MW)が、特定の実験設定に関して、中性ビーム(約2.5MW)を介してFRCの中に給送される総パワーより幾分大きいという事実に起因する。ビームを容器100の中央平面により近接する場所に位置させることは、これらの損失を低減させ、FRC寿命時間を延長させる傾向となるであろう。
かである。
Claims (45)
- 逆磁場構成(FRC)を有する磁場を生成および維持するためのシステムであって、前記システムは、
閉じ込めチャンバと、
前記閉じ込めチャンバに結合されている第1のFRC形成区分および第2のFRC形成区分であって、前記第1のFRC形成区分および前記第2のFRC形成区分は、互いに直径方向に対向している、第1のFRC形成区分および第2のFRC形成区分と、
前記第1のFRC形成区分および前記第2のFRC形成区分に結合されている第1のダイバータおよび第2のダイバータと、
前記第1のダイバータおよび前記第2のダイバータと、前記第1のFRC形成区分および前記第2のFRC形成区分と、前記閉じ込めチャンバとに動作可能に結合されている第1の軸方向プラズマガンおよび第2の軸方向プラズマガンと、
前記閉じ込めチャンバに結合されている複数の中性原子ビーム注入器であって、前記閉じ込めチャンバの中央平面に向かって配向されている複数の中性原子ビーム注入器と、
前記閉じ込めチャンバと、前記第1のFRC形成区分および前記第2のFRC形成区分と、前記第1のダイバータおよび前記第2のダイバータとに結合されている磁気システムであって、前記磁気システムは、前記第1のFRC形成区分および前記第2のFRC形成区分と前記第1のダイバータおよび前記第2のダイバータとの間に位置付けられている第1のミラープラグおよび第2のミラープラグを含む、磁気システムと、
前記閉じ込めチャンバの前記中央平面に向かってある角度で前記閉じ込めチャンバに結合されている第1のコンパクト・トロイド(CT)注入器および第2のコンパクト・トロイド(CT)注入器であって、前記第1のCT注入器および前記第2のCT注入器は、前記閉じ込めチャンバの前記中央平面の両側で直径方向に対向している、第1のCT注入器および第2のCT注入器と
を備え、
前記FRCは、包括的プラズマパラメータを特定する値を有し、前記包括的プラズマパラメータは、プラズマ熱エネルギーと、総粒子数と、プラズマ半径と、プラズマ長さと、磁束とを含む、システム。 - 前記磁気システムは、前記閉じ込めチャンバと、前記第1のFRC形成区分および前記第2のFRC形成区分と、前記第1のダイバータおよび前記第2のダイバータとに沿って適切な位置に軸方向に離間されている複数の疑似直流コイルを含む、請求項1に記載のシステム。
- 前記磁気システムは、前記閉じ込めチャンバの端部と前記第1のFRC形成区分および前記第2のFRC形成区分の端部との間に位置付けられている第1のミラーコイルのセットをさらに備える、請求項2に記載のシステム。
- 前記ミラープラグは、前記第1のFRC形成区分および前記第2のFRC形成区分のそれぞれと前記第1のダイバータおよび前記第2のダイバータとの間に第2のミラーコイルのセットを備える、請求項3に記載のシステム。
- 前記ミラープラグは、前記第1のFRC形成区分および前記第2のFRC形成区分のそれぞれと前記第1のダイバータおよび前記第2のダイバータとの間の通路内の狭窄部の周囲に巻着されているミラープラグコイルのセットをさらに備える、請求項4に記載のシステム。
- 前記ミラープラグコイルは、小型のパルスミラーコイルである、請求項5に記載のシステム。
- 前記システムは、前記閉じ込めチャンバと、前記第1のダイバータおよび第2のダイバータとに結合されているゲッタリングシステムをさらに備える、請求項1に記載のシステム。
- 前記システムは、生成されたFRCの開いた磁束表面を電気バイアスするための1つ以上のバイアス電極をさらに備え、前記1つ以上のバイアス電極は、前記閉じ込めチャンバ、前記第1のFRC形成区分および前記第2のFRC形成区分、前記第1のダイバータおよび前記第2のダイバータのうちの1つ以上の中に位置付けられている、請求項1に記載のシステム。
- 前記システムは、前記閉じ込めチャンバに結合されている2つ以上のサドルコイルをさらに備える、請求項1に記載のシステム。
- 前記システムは、前記閉じ込めチャンバに結合されているイオンペレット注入器をさらに備える、請求項1に記載のシステム。
- 前記第1のFRC形成区分および前記第2のFRC形成区分は、モジュール式形成システムを備え、前記モジュール式形成システムは、FRCを生成し、それを前記閉じ込めチャンバの前記中央平面に向かって平行移動させるためのものである、請求項1に記載のシステム。
- 逆磁場構成(FRC)を有する磁場を生成および維持するためのシステムであって、前記システムは、
閉じ込めチャンバと、
前記閉じ込めチャンバに結合されている第1のFRC形成区分および第2のFRC形成区分であって、前記第1のFRC形成区分および前記第2のFRC形成区分は、互いに直径方向に対向している、第1のFRC形成区分および第2のFRC形成区分と、
前記第1のFRC形成区分および前記第2のFRC形成区分に結合されている第1のダイバータおよび第2のダイバータと、
前記閉じ込めチャンバに結合されている複数の中性原子ビーム注入器であって、前記閉じ込めチャンバの中央平面に向かって配向されている複数の中性原子ビーム注入器と、
前記閉じ込めチャンバと、前記第1のFRC形成区分および前記第2のFRC形成区分と、前記第1のダイバータおよび前記第2のダイバータとに結合されている磁気システムと、
生成されたFRCの開いた磁束表面を電気バイアスするための1つ以上のバイアス電極であって、前記1つ以上のバイアス電極は、前記閉じ込めチャンバ、前記第1のFRC形成区分および前記第2のFRC形成区分、前記第1のダイバータおよび前記第2のダイバータのうちの1つ以上の中に位置付けられている、1つ以上のバイアス電極と、
前記閉じ込めチャンバの前記中央平面に向かってある角度で前記閉じ込めチャンバに結合されている第1のコンパクト・トロイド(CT)注入器および第2のコンパクト・トロイド(CT)注入器であって、前記第1のCT注入器および前記第2のCT注入器は、前記閉じ込めチャンバの前記中央平面の両側で直径方向に対向している、第1のCT注入器および第2のCT注入器と
を備え、
前記FRCは、包括的プラズマパラメータを特定する値を有し、前記包括的プラズマパラメータは、プラズマ熱エネルギーと、総粒子数と、プラズマ半径と、プラズマ長さと、磁束とを含む、システム。 - 前記バイアス電極は、開いた磁力線に接触させるための前記閉じ込めチャンバ内に位置付けられている1つ以上の点電極、方位が対称的な形で遠端磁束層に帯電させるための前記閉じ込めチャンバと前記第1のFRC形成区分および前記第2のFRC形成区分との間の環状電極のセット、複数の同心磁束層に帯電させるための前記第1のダイバータおよび前記第2のダイバータ内に位置付けられている複数の同心の積層電極、開いた磁束を遮断するためのプラズマガンのアノードのうちの1つ以上を含む、請求項12に記載のシステム。
- 前記磁気システムは、前記閉じ込めチャンバと、前記第1のFRC形成区分および前記第2のFRC形成区分と、前記第1のダイバータおよび前記第2のダイバータとに沿って適切な位置に軸方向に離間されている複数の疑似直流コイルを含む、請求項12に記載のシステム。
- 前記磁気システムは、前記閉じ込めチャンバの端部と前記第1のFRC形成区分および前記第2のFRC形成区分の端部との間に位置付けられている第1のミラーコイルのセットをさらに備える、請求項14に記載のシステム。
- 前記磁気システムは、第1のミラープラグおよび第2のミラープラグをさらに備え、前記第1のミラープラグおよび前記第2のミラープラグは、前記第1のFRC形成区分および前記第2のFRC形成区分と前記第1のダイバータおよび前記第2のダイバータとのそれぞれの間に第2のミラーコイルのセットを備える、請求項15に記載のシステム。
- 前記第1のミラープラグおよび前記第2のミラープラグは、前記第1のFRC形成区分および前記第2のFRC形成区分のそれぞれと前記第1のダイバータおよび前記第2のダイバータとの間の通路内の狭窄部の周囲に巻着されているミラープラグコイルのセットをさらに備える、請求項16に記載のシステム。
- 前記ミラープラグコイルは、小型のパルスミラーコイルである、請求項17に記載のシステム。
- 前記第1のFRC形成区分および前記第2のFRC形成区分は、細長い石英管を備える、請求項12に記載のシステム。
- 前記第1のFRC形成区分および前記第2のFRC形成区分は、前記細長い石英管に結合されているパルス式パワー形成システムを備える、請求項19に記載のシステム。
- 前記パルス式パワー形成システムは、複数のパワーおよび制御ユニットを備え、前記複数のパワーおよび制御ユニットは、複数のストラップアセンブリの個々の1つに結合されており、前記第1のFRC形成区分および前記第2のFRC形成区分の前記細長い石英管の周囲に巻着されている前記複数のストラップアセンブリの個々の1つのコイルのセットを励起する、請求項20に記載のシステム。
- 前記複数のパワーおよび制御ユニットの個々の1つは、トリガおよび制御システムを備える、請求項21に記載のシステム。
- 前記複数のパワーおよび制御ユニットの個々の1つの前記トリガおよび制御システムは、静的FRC形成または動的FRC形成を可能にするために同期可能であり、前記静的FRC形成では、前記FRCが形成されて次に注入され、前記動的FRC形成では、前記FRCが形成されて同時に平行移動される、請求項22に記載のシステム。
- 前記複数の中性原子ビーム注入器は、前記FRCの区分線内に標的捕捉ゾーンを伴って前記FRCに対して接線方向にある注入経路とともに配向されている、請求項12に記載のシステム。
- 前記システムは、前記閉じ込めチャンバに結合されているイオンペレット注入器をさらに備える、請求項12に記載のシステム。
- 前記システムは、前記閉じ込めチャンバに結合されている2つ以上のサドルコイルをさらに備える、請求項12に記載のシステム。
- 前記システムは、前記閉じ込めチャンバと前記第1のダイバータおよび第2のダイバータとに結合されているゲッタリングシステムをさらに備える、請求項12に記載のシステム。
- 前記システムは、前記第1のダイバータおよび前記第2のダイバータと、前記第1のFRC形成区分および前記第2のFRC形成区分と、前記閉じ込めチャンバとに動作可能に結合されている第1の軸方向プラズマガンおよび第2の軸方向プラズマガンをさらに備える、請求項12に記載のシステム。
- 逆磁場構成(FRC)を有する磁場を生成および維持するためのシステムであって、前記システムは、
閉じ込めチャンバと、
前記閉じ込めチャンバに結合されている第1のFRC形成区分および第2のFRC形成区分であって、前記第1のFRC形成区分および前記第2のFRC形成区分は、互いに直径方向に対向している、第1のFRC形成区分および第2のFRC形成区分と、
前記第1のFRC形成区分および前記第2のFRC形成区分に結合されている第1のダイバータおよび第2のダイバータと、
前記第1のダイバータおよび前記第2のダイバータと、前記第1のFRC形成区分および前記第2のFRC形成区分と、前記閉じ込めチャンバとに動作可能に結合されている第1の軸方向プラズマガンおよび第2の軸方向プラズマガンと、
前記閉じ込めチャンバに結合されている複数の中性原子ビーム注入器であって、前記閉じ込めチャンバの中央平面に向かって配向されている複数の中性原子ビーム注入器と、
前記閉じ込めチャンバと、前記第1のFRC形成区分および前記第2のFRC形成区分と、前記第1のダイバータおよび前記第2のダイバータとに結合されている磁気システムと、
前記閉じ込めチャンバの前記中央平面に向かってある角度で前記閉じ込めチャンバに結合されている第1のコンパクト・トロイド(CT)注入器および第2のコンパクト・トロイド(CT)注入器であって、前記第1のCT注入器および前記第2のCT注入器は、前記閉じ込めチャンバの前記中央平面の両側で直径方向に対向している、第1のCT注入器および第2のCT注入器と
を備え、
前記FRCは、包括的プラズマパラメータを特定する値を有し、前記包括的プラズマパラメータは、プラズマ熱エネルギーと、総粒子数と、プラズマ半径と、プラズマ長さと、磁束とを含む、システム。 - 前記第1のFRC形成区分および前記第2のFRC形成区分の個々の1つは、細長い管と、前記細長い管に結合されているパルス式パワー形成システムとを備える、請求項29に記載のシステム。
- 前記パルス式パワー形成システムは、複数のパワーおよび制御ユニットを備え、前記複数のパワーおよび制御ユニットは、複数のストラップアセンブリの個々の1つに結合されおり、前記第1のFRC形成区分および前記第2のFRC形成区分の前記細長い管の周囲に巻着されている前記複数のストラップアセンブリの個々の1つのコイルのセットを励起する、請求項30に記載のシステム。
- 前記複数のパワーおよび制御ユニットの個々の1つは、トリガおよび制御システムを備える、請求項31に記載のシステム。
- 前記複数のパワーおよび制御ユニットの個々の1つの前記トリガおよび制御システムは、静的FRC形成または動的FRC形成を可能にするために同期可能であり、前記静的FRC形成では、前記FRCが形成されて次に注入され、前記動的FRC形成では、前記FRCが形成されて同時に平行移動される、請求項32に記載のシステム。
- 前記システムは、生成されたFRCの開いた磁束表面を電気バイアスするための1つ以上のバイアス電極をさらに備える、請求項29に記載のシステム。
- 前記1つ以上のバイアス電極は、開いた磁力線に接触させるための前記閉じ込めチャンバ内に位置付けられている1つ以上の点電極、方位が対称的な形で遠端磁束層に帯電させるための前記閉じ込めチャンバと前記第1のFRC形成区分および前記第2のFRC形成区分との間の環状電極のセット、複数の同心磁束層に帯電させるための前記第1のダイバータおよび前記第2のダイバータ内に位置付けられている複数の同心の積層電極、開いた磁束を遮断するためのプラズマガンのアノードのうちの1つ以上を含む、請求項34に記載のシステム。
- 前記磁気システムは、前記閉じ込めチャンバと、前記第1のFRC形成区分および前記第2のFRC形成区分と、前記第1のダイバータおよび前記第2のダイバータと、前記閉じ込めチャンバの端部と前記第1のFRC形成区分および前記第2のFRC形成区分の端部との間に位置付けられている第1のミラーコイルのセットとに沿って適切な位置に軸方向に離間されている複数の疑似直流コイルを含む、請求項29に記載のシステム。
- 前記磁気システムは、第1のミラープラグおよび第2のミラープラグをさらに備え、前記第1のミラープラグおよび前記第2のミラープラグは、前記第1のFRC形成区分および前記第2のFRC形成区分のそれぞれと前記第1のダイバータおよび前記第2のダイバータとの間に第2のミラーコイルのセットを備える、請求項36に記載のシステム。
- 前記ミラープラグは、前記第1のFRC形成区分および前記第2のFRC形成区分のそれぞれと前記第1のダイバータおよび前記第2のダイバータとの間の通路内の狭窄部の周囲に巻着されている小型のパルスミラープラグコイルのセットをさらに備える、請求項37に記載のシステム。
- 前記複数の中性原子ビーム注入器は、前記FRCの区分線内に標的捕捉ゾーンを伴って前記FRCに対して接線方向にある注入経路とともに配向されている、請求項29に記載のシステム。
- 前記システムは、前記閉じ込めチャンバに結合されているイオンペレット注入器をさらに備える、請求項29に記載のシステム。
- 前記システムは、前記閉じ込めチャンバに結合されている2つ以上のサドルコイルをさらに備える、請求項29に記載のシステム。
- 前記システムは、前記閉じ込めチャンバならびに前記第1のダイバータおよび前記第2のダイバータの表面に面したプラズマをゲッタリング材料の層でコーティングするように構成されているゲッタリングシステムをさらに備える、請求項29に記載のシステム。
- 前記複数の中性原子ビーム注入器は、前記閉じ込めチャンバの縦軸に対して90°未満の角度で配向されており、前記複数の中性原子ビーム注入器は、前記複数の中性原子ビーム注入器の角度が15°~25°の範囲内で変更されることが可能であるように構成されている、請求項1、12、29のいずれか一項に記載のシステム。
- 前記第1のCT注入器および前記第2のCT注入器は、前記閉じ込めチャンバの縦軸に対してある角度で配向されており、前記第1のCT注入器および前記第2のCT注入器が前記閉じ込めチャンバの縦軸に対して配向されている角度は、前記複数の中性原子ビーム注入器が前記閉じ込めチャンバの縦軸に対して配向されている角度と同一である、請求項43に記載のシステム。
- 前記第1のCT注入器および前記第2のCT注入器は、注入CTプラズマを反復率モードのFRCプラズマにするように構成されている、請求項1、12、29のいずれか一項に記載のシステム。
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US201462072611P | 2014-10-30 | 2014-10-30 | |
US62/072,611 | 2014-10-30 | ||
JP2017521081A JP6855374B2 (ja) | 2014-10-30 | 2015-10-30 | 高性能frcを形成し維持するシステムおよび方法 |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2017521081A Division JP6855374B2 (ja) | 2014-10-30 | 2015-10-30 | 高性能frcを形成し維持するシステムおよび方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2021100003A JP2021100003A (ja) | 2021-07-01 |
JP7175037B2 true JP7175037B2 (ja) | 2022-11-18 |
Family
ID=55858430
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2017521081A Active JP6855374B2 (ja) | 2014-10-30 | 2015-10-30 | 高性能frcを形成し維持するシステムおよび方法 |
JP2021043371A Active JP7175037B2 (ja) | 2014-10-30 | 2021-03-17 | 高性能frcを形成し維持するシステムおよび方法 |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2017521081A Active JP6855374B2 (ja) | 2014-10-30 | 2015-10-30 | 高性能frcを形成し維持するシステムおよび方法 |
Country Status (33)
Country | Link |
---|---|
US (3) | US10440806B2 (ja) |
EP (2) | EP3589083B1 (ja) |
JP (2) | JP6855374B2 (ja) |
KR (1) | KR102590200B1 (ja) |
CN (2) | CN111511087B (ja) |
AR (1) | AR102474A1 (ja) |
AU (2) | AU2015338965B2 (ja) |
BR (1) | BR112017008768B1 (ja) |
CA (1) | CA2965682C (ja) |
CL (1) | CL2017001075A1 (ja) |
CY (1) | CY1122049T1 (ja) |
DK (2) | DK3213608T3 (ja) |
EA (2) | EA202191743A1 (ja) |
ES (2) | ES2746302T3 (ja) |
HR (2) | HRP20221278T1 (ja) |
HU (2) | HUE046413T2 (ja) |
IL (1) | IL251583B2 (ja) |
LT (2) | LT3589083T (ja) |
MX (2) | MX369532B (ja) |
MY (1) | MY181502A (ja) |
NZ (2) | NZ730979A (ja) |
PE (1) | PE20170743A1 (ja) |
PH (2) | PH12017500726B1 (ja) |
PL (2) | PL3589083T3 (ja) |
PT (2) | PT3213608T (ja) |
RS (2) | RS63672B1 (ja) |
SA (1) | SA517381392B1 (ja) |
SG (2) | SG11201703167UA (ja) |
SI (2) | SI3213608T1 (ja) |
TW (2) | TWI654908B (ja) |
UA (1) | UA126267C2 (ja) |
WO (1) | WO2016070126A1 (ja) |
ZA (1) | ZA201702384B (ja) |
Families Citing this family (41)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11000705B2 (en) * | 2010-04-16 | 2021-05-11 | W. Davis Lee | Relativistic energy compensating cancer therapy apparatus and method of use thereof |
SI2780913T1 (sl) | 2011-11-14 | 2017-08-31 | The Regents Of The University Of California | Sistem za tvorjenje in ohranjanje visokozmogljivega FRC |
DK3312843T3 (da) | 2013-09-24 | 2020-01-20 | Tae Tech Inc | Systemer til dannelse og opretholdelse af højydelses-frc |
CN109873621B (zh) | 2013-11-14 | 2023-06-16 | 鹰港科技有限公司 | 高压纳秒脉冲发生器 |
US10020800B2 (en) | 2013-11-14 | 2018-07-10 | Eagle Harbor Technologies, Inc. | High voltage nanosecond pulser with variable pulse width and pulse repetition frequency |
US11539352B2 (en) | 2013-11-14 | 2022-12-27 | Eagle Harbor Technologies, Inc. | Transformer resonant converter |
US10892140B2 (en) | 2018-07-27 | 2021-01-12 | Eagle Harbor Technologies, Inc. | Nanosecond pulser bias compensation |
US10978955B2 (en) | 2014-02-28 | 2021-04-13 | Eagle Harbor Technologies, Inc. | Nanosecond pulser bias compensation |
US10483089B2 (en) | 2014-02-28 | 2019-11-19 | Eagle Harbor Technologies, Inc. | High voltage resistive output stage circuit |
UA121318C2 (uk) | 2014-10-13 | 2020-05-12 | ТАЄ Текнолоджіс, Інк. | Системи і способи злиття і стискування компактних тороїдів |
EP3589083B1 (en) * | 2014-10-30 | 2022-08-24 | TAE Technologies, Inc. | Systems for forming and maintaining a high performance frc |
PE20180334A1 (es) | 2015-05-12 | 2018-02-16 | Tri Alpha Energy Inc | Sistemas y metodos para reducir las corrientes parasitas no deseadas |
MX2018005933A (es) | 2015-11-13 | 2018-11-09 | Tae Tech Inc | Sistemas y metodos para obtener estabilidad de la posicion del plasma de frc. |
US11004660B2 (en) | 2018-11-30 | 2021-05-11 | Eagle Harbor Technologies, Inc. | Variable output impedance RF generator |
US11430635B2 (en) | 2018-07-27 | 2022-08-30 | Eagle Harbor Technologies, Inc. | Precise plasma control system |
KR102606549B1 (ko) * | 2016-10-28 | 2023-11-24 | 티에이이 테크놀로지스, 인크. | 튜닝가능한 빔 에너지들을 갖는 중성 빔 인젝터들을 이용하는 고성능 frc 상승된 에너지들의 개선된 지속성을 위한 시스템들 및 방법들 |
EA201991117A1 (ru) | 2016-11-04 | 2019-09-30 | Таэ Текнолоджиз, Инк. | Системы и способы улучшенного поддержания высокоэффективной конфигурации с обращенным полем с вакуумированием с захватом многомасштабного типа |
UA126673C2 (uk) * | 2016-11-15 | 2023-01-11 | Тае Текнолоджіз, Інк. | Системи і способи поліпшеної підтримки високоефективної конфігурації з оберненим полем і нагрівання електронів за допомогою вищих гармонік швидких хвиль у високоефективній конфігурації з оберненим полем |
DE112017006014B4 (de) * | 2016-11-28 | 2024-09-12 | Magna Mirrors Of America, Inc. | Außenbeleuchtungs- und Symbolprojektionsmodul für Fahrzeuge |
WO2018148182A1 (en) | 2017-02-07 | 2018-08-16 | Eagle Harbor Technologies, Inc. | Transformer resonant converter |
EP3813259B1 (en) * | 2017-03-31 | 2022-10-26 | Eagle Harbor Technologies, Inc. | High voltage resistive output stage circuit |
CN107278010A (zh) * | 2017-06-14 | 2017-10-20 | 中国科学院合肥物质科学研究院 | 一种在等离子体强磁场位置注入中性束的磁镜装置 |
JP6902167B2 (ja) | 2017-08-25 | 2021-07-14 | イーグル ハーバー テクノロジーズ, インク.Eagle Harbor Technologies, Inc. | ナノ秒パルスを使用する任意波形の発生 |
CN107797137B (zh) * | 2017-10-30 | 2023-11-28 | 中国工程物理研究院流体物理研究所 | 一种直线感应电子加速器试验平台及双线圈探测结构 |
KR101886755B1 (ko) * | 2017-11-17 | 2018-08-09 | 한국원자력연구원 | 다중 펄스 플라즈마를 이용한 음이온 공급의 연속화 시스템 및 방법 |
US11222767B2 (en) | 2018-07-27 | 2022-01-11 | Eagle Harbor Technologies, Inc. | Nanosecond pulser bias compensation |
US11302518B2 (en) | 2018-07-27 | 2022-04-12 | Eagle Harbor Technologies, Inc. | Efficient energy recovery in a nanosecond pulser circuit |
US11532457B2 (en) | 2018-07-27 | 2022-12-20 | Eagle Harbor Technologies, Inc. | Precise plasma control system |
CN112805920A (zh) | 2018-08-10 | 2021-05-14 | 鹰港科技有限公司 | 用于rf等离子体反应器的等离子体鞘控制 |
CN113906677A (zh) | 2019-01-08 | 2022-01-07 | 鹰港科技有限公司 | 纳秒脉冲发生器电路中的高效能量恢复 |
US11672074B2 (en) | 2019-07-11 | 2023-06-06 | Lockheed Martin Corporation | Shielding structures in plasma environment |
TWI719616B (zh) * | 2019-09-02 | 2021-02-21 | 馬來西亞商愛億集團有限公司 | 鍍膜材料自動換料暨加熱汽化裝置及方法 |
TWI778449B (zh) | 2019-11-15 | 2022-09-21 | 美商鷹港科技股份有限公司 | 高電壓脈衝電路 |
KR20230150396A (ko) | 2019-12-24 | 2023-10-30 | 이글 하버 테크놀로지스, 인코포레이티드 | 플라즈마 시스템을 위한 나노초 펄서 rf 절연 |
WO2021146329A1 (en) * | 2020-01-13 | 2021-07-22 | Tae Technologies, Inc. | System and methods for forming and maintaining high energy and temperature frc plasma via spheromak merging and neutral beam injection |
JP7486738B2 (ja) * | 2020-03-31 | 2024-05-20 | 日本電子株式会社 | 物理パッケージ、光格子時計用物理パッケージ、原子時計用物理パッケージ、原子干渉計用物理パッケージ、及び、量子情報処理デバイス用物理パッケージ |
KR102478843B1 (ko) * | 2020-11-03 | 2022-12-19 | 울산과학기술원 | 스파크 플라즈마 소결을 이용한 고밀도 핵연료 소결체 제조방법 |
IL281747B2 (en) | 2021-03-22 | 2024-04-01 | N T Tao Ltd | System and method for creating plasma with high efficiency |
US20230245792A1 (en) * | 2022-01-28 | 2023-08-03 | Fusion Energy Associates LLC | Increasing energy gain in magnetically confined plasmas by increasing the edge temperature: the super-xt divertor |
CN114429827B (zh) * | 2022-04-07 | 2022-06-07 | 西南交通大学 | 一种仿星器线圈固定系统 |
CN116153532B (zh) * | 2023-04-23 | 2023-07-25 | 中国科学院合肥物质科学研究院 | 一种满足千秒长脉冲等离子体放电的协同加料系统及方法 |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2013074666A2 (en) | 2011-11-14 | 2013-05-23 | The Regents Of The University Of California | Systems and methods for forming and maintaining a high performance frc |
JP6876435B2 (ja) | 2013-09-24 | 2021-05-26 | ティーエーイー テクノロジーズ, インコーポレイテッド | 高性能frcを形成し維持するシステムおよび方法 |
Family Cites Families (151)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3120470A (en) | 1954-04-13 | 1964-02-04 | Donald H Imhoff | Method of producing neutrons |
US3170841A (en) | 1954-07-14 | 1965-02-23 | Richard F Post | Pyrotron thermonuclear reactor and process |
US3015618A (en) | 1958-06-30 | 1962-01-02 | Thomas H Stix | Apparatus for heating a plasma |
US3071525A (en) | 1958-08-19 | 1963-01-01 | Nicholas C Christofilos | Method and apparatus for producing thermonuclear reactions |
US3052617A (en) | 1959-06-23 | 1962-09-04 | Richard F Post | Stellarator injector |
US3036963A (en) | 1960-01-25 | 1962-05-29 | Nicholas C Christofilos | Method and apparatus for injecting and trapping electrons in a magnetic field |
BE591516A (ja) | 1960-02-26 | |||
US3182213A (en) | 1961-06-01 | 1965-05-04 | Avco Corp | Magnetohydrodynamic generator |
US3132996A (en) | 1962-12-10 | 1964-05-12 | William R Baker | Contra-rotating plasma system |
US3386883A (en) | 1966-05-13 | 1968-06-04 | Itt | Method and apparatus for producing nuclear-fusion reactions |
US3530036A (en) | 1967-12-15 | 1970-09-22 | Itt | Apparatus for generating fusion reactions |
US3530497A (en) | 1968-04-24 | 1970-09-22 | Itt | Apparatus for generating fusion reactions |
US3527977A (en) | 1968-06-03 | 1970-09-08 | Atomic Energy Commission | Moving electrons as an aid to initiating reactions in thermonuclear devices |
US3577317A (en) | 1969-05-01 | 1971-05-04 | Atomic Energy Commission | Controlled fusion reactor |
US3621310A (en) | 1969-05-30 | 1971-11-16 | Hitachi Ltd | Duct for magnetohydrodynamic thermal to electrical energy conversion apparatus |
US3664921A (en) | 1969-10-16 | 1972-05-23 | Atomic Energy Commission | Proton e-layer astron for producing controlled fusion reactions |
AT340010B (de) | 1970-05-21 | 1977-11-25 | Nowak Karl Ing | Einrichtung zur erzielung einer nuklearen reaktion mittels kunstlichem plasma vorzugsweise zur kontrollierten atomkernfusion |
US3668065A (en) | 1970-09-15 | 1972-06-06 | Atomic Energy Commission | Apparatus for the conversion of high temperature plasma energy into electrical energy |
US3663362A (en) | 1970-12-22 | 1972-05-16 | Atomic Energy Commission | Controlled fusion reactor |
LU65432A1 (ja) | 1972-05-29 | 1972-08-24 | ||
US4233537A (en) | 1972-09-18 | 1980-11-11 | Rudolf Limpaecher | Multicusp plasma containment apparatus |
US4182650A (en) | 1973-05-17 | 1980-01-08 | Fischer Albert G | Pulsed nuclear fusion reactor |
US5015432A (en) | 1973-10-24 | 1991-05-14 | Koloc Paul M | Method and apparatus for generating and utilizing a compound plasma configuration |
US5041760A (en) | 1973-10-24 | 1991-08-20 | Koloc Paul M | Method and apparatus for generating and utilizing a compound plasma configuration |
US4010396A (en) | 1973-11-26 | 1977-03-01 | Kreidl Chemico Physical K.G. | Direct acting plasma accelerator |
FR2270733A1 (en) | 1974-02-08 | 1975-12-05 | Thomson Csf | Magnetic field vehicle detector unit - receiver detects changes produced in an emitted magnetic field |
US4098643A (en) | 1974-07-09 | 1978-07-04 | The United States Of America As Represented By The United States Department Of Energy | Dual-function magnetic structure for toroidal plasma devices |
US4057462A (en) | 1975-02-26 | 1977-11-08 | The United States Of America As Represented By The United States Energy Research And Development Administration | Radio frequency sustained ion energy |
US4054846A (en) | 1975-04-02 | 1977-10-18 | Bell Telephone Laboratories, Incorporated | Transverse-excitation laser with preionization |
US4065351A (en) | 1976-03-25 | 1977-12-27 | The United States Of America As Represented By The United States Energy Research And Development Administration | Particle beam injection system |
US4166760A (en) * | 1977-10-04 | 1979-09-04 | The United States Of America As Represented By The United States Department Of Energy | Plasma confinement apparatus using solenoidal and mirror coils |
US4347621A (en) | 1977-10-25 | 1982-08-31 | Environmental Institute Of Michigan | Trochoidal nuclear fusion reactor |
US4303467A (en) | 1977-11-11 | 1981-12-01 | Branson International Plasma Corporation | Process and gas for treatment of semiconductor devices |
US4274919A (en) | 1977-11-14 | 1981-06-23 | General Atomic Company | Systems for merging of toroidal plasmas |
US4202725A (en) | 1978-03-08 | 1980-05-13 | Jarnagin William S | Converging beam fusion system |
US4189346A (en) | 1978-03-16 | 1980-02-19 | Jarnagin William S | Operationally confined nuclear fusion system |
US4246067A (en) | 1978-08-30 | 1981-01-20 | Linlor William I | Thermonuclear fusion system |
US4267488A (en) | 1979-01-05 | 1981-05-12 | Trisops, Inc. | Containment of plasmas at thermonuclear temperatures |
US4397810A (en) | 1979-03-16 | 1983-08-09 | Energy Profiles, Inc. | Compressed beam directed particle nuclear energy generator |
US4314879A (en) | 1979-03-22 | 1982-02-09 | The United States Of America As Represented By The United States Department Of Energy | Production of field-reversed mirror plasma with a coaxial plasma gun |
US4416845A (en) | 1979-08-02 | 1983-11-22 | Energy Profiles, Inc. | Control for orbiting charged particles |
JPS5829568B2 (ja) | 1979-12-07 | 1983-06-23 | 岩崎通信機株式会社 | 2ビ−ム1電子銃陰極線管 |
US4548782A (en) | 1980-03-27 | 1985-10-22 | The United States Of America As Represented By The Secretary Of The Navy | Tokamak plasma heating with intense, pulsed ion beams |
US4390494A (en) | 1980-04-07 | 1983-06-28 | Energy Profiles, Inc. | Directed beam fusion reaction with ion spin alignment |
US4350927A (en) | 1980-05-23 | 1982-09-21 | The United States Of America As Represented By The United States Department Of Energy | Means for the focusing and acceleration of parallel beams of charged particles |
US4317057A (en) | 1980-06-16 | 1982-02-23 | Bazarov Georgy P | Channel of series-type magnetohydrodynamic generator |
US4434130A (en) | 1980-11-03 | 1984-02-28 | Energy Profiles, Inc. | Electron space charge channeling for focusing ion beams |
US4584160A (en) | 1981-09-30 | 1986-04-22 | Tokyo Shibaura Denki Kabushiki Kaisha | Plasma devices |
US4543231A (en) | 1981-12-14 | 1985-09-24 | Ga Technologies Inc. | Multiple pinch method and apparatus for producing average magnetic well in plasma confinement |
US4560528A (en) | 1982-04-12 | 1985-12-24 | Ga Technologies Inc. | Method and apparatus for producing average magnetic well in a reversed field pinch |
JPH06105597B2 (ja) | 1982-08-30 | 1994-12-21 | 株式会社日立製作所 | マイクロ波プラズマ源 |
JPS5960899A (ja) | 1982-09-29 | 1984-04-06 | 株式会社東芝 | イオン・エネルギ−回収装置 |
US4618470A (en) | 1982-12-01 | 1986-10-21 | Austin N. Stanton | Magnetic confinement nuclear energy generator |
US4483737A (en) | 1983-01-31 | 1984-11-20 | University Of Cincinnati | Method and apparatus for plasma etching a substrate |
US4601871A (en) * | 1983-05-17 | 1986-07-22 | The United States Of America As Represented By The United States Department Of Energy | Steady state compact toroidal plasma production |
US4650631A (en) | 1984-05-14 | 1987-03-17 | The University Of Iowa Research Foundation | Injection, containment and heating device for fusion plasmas |
US4639348A (en) | 1984-11-13 | 1987-01-27 | Jarnagin William S | Recyclotron III, a recirculating plasma fusion system |
US4615755A (en) | 1985-08-07 | 1986-10-07 | The Perkin-Elmer Corporation | Wafer cooling and temperature control for a plasma etching system |
US4826646A (en) | 1985-10-29 | 1989-05-02 | Energy/Matter Conversion Corporation, Inc. | Method and apparatus for controlling charged particles |
US4630939A (en) | 1985-11-15 | 1986-12-23 | The Dow Chemical Company | Temperature measuring apparatus |
SE450060B (sv) | 1985-11-27 | 1987-06-01 | Rolf Lennart Stenbacka | Forfarande for att astadkomma fusionsreaktioner, samt anordning for fusionsreaktor |
US4687616A (en) | 1986-01-15 | 1987-08-18 | The United States Of America As Represented By The United States Department Of Energy | Method and apparatus for preventing cyclotron breakdown in partially evacuated waveguide |
US4894199A (en) | 1986-06-11 | 1990-01-16 | Norman Rostoker | Beam fusion device and method |
DK556887D0 (da) | 1987-10-23 | 1987-10-23 | Risoe Forskningscenter | Fremgangsmaade til fremstilling af en pille og injektor til injektion af saadan pille |
EP0438724B1 (en) | 1990-01-22 | 1996-05-08 | Werner K. Dipl.-Ing. Steudtner | Fusion reactor |
US5160695A (en) | 1990-02-08 | 1992-11-03 | Qed, Inc. | Method and apparatus for creating and controlling nuclear fusion reactions |
US5311028A (en) | 1990-08-29 | 1994-05-10 | Nissin Electric Co., Ltd. | System and method for producing oscillating magnetic fields in working gaps useful for irradiating a surface with atomic and molecular ions |
US5122662A (en) | 1990-10-16 | 1992-06-16 | Schlumberger Technology Corporation | Circular induction accelerator for borehole logging |
US5206516A (en) | 1991-04-29 | 1993-04-27 | International Business Machines Corporation | Low energy, steered ion beam deposition system having high current at low pressure |
US6488807B1 (en) | 1991-06-27 | 2002-12-03 | Applied Materials, Inc. | Magnetic confinement in a plasma reactor having an RF bias electrode |
US5207760A (en) | 1991-07-23 | 1993-05-04 | Trw Inc. | Multi-megawatt pulsed inductive thruster |
US5323442A (en) | 1992-02-28 | 1994-06-21 | Ruxam, Inc. | Microwave X-ray source and methods of use |
US5502354A (en) | 1992-07-31 | 1996-03-26 | Correa; Paulo N. | Direct current energized pulse generator utilizing autogenous cyclical pulsed abnormal glow discharges |
RU2056649C1 (ru) | 1992-10-29 | 1996-03-20 | Сергей Николаевич Столбов | Способ управляемого термоядерного синтеза и управляемый термоядерный реактор для его осуществления |
US5339336A (en) | 1993-02-17 | 1994-08-16 | Cornell Research Foundation, Inc. | High current ion ring accelerator |
FR2705584B1 (fr) | 1993-05-26 | 1995-06-30 | Commissariat Energie Atomique | Dispositif de séparation isotopique par résonance cyclotronique ionique. |
US5473165A (en) | 1993-11-16 | 1995-12-05 | Stinnett; Regan W. | Method and apparatus for altering material |
DE69421157T2 (de) | 1993-12-21 | 2000-04-06 | Sumitomo Heavy Industries, Ltd. | Plasmastrahl-Erzeugungsverfahren und Vorrichtung die einen Hochleistungsplasmastrahl erzeugen Kann |
US5537005A (en) | 1994-05-13 | 1996-07-16 | Hughes Aircraft | High-current, low-pressure plasma-cathode electron gun |
US5420425A (en) | 1994-05-27 | 1995-05-30 | Finnigan Corporation | Ion trap mass spectrometer system and method |
US5656519A (en) | 1995-02-14 | 1997-08-12 | Nec Corporation | Method for manufacturing salicide semiconductor device |
US5653811A (en) | 1995-07-19 | 1997-08-05 | Chan; Chung | System for the plasma treatment of large area substrates |
US20040213368A1 (en) | 1995-09-11 | 2004-10-28 | Norman Rostoker | Fusion reactor that produces net power from the p-b11 reaction |
ATE254333T1 (de) | 1995-09-25 | 2003-11-15 | Paul M Koloc | Vorrichtung zur erzeugung eines plasmas |
JP3385327B2 (ja) | 1995-12-13 | 2003-03-10 | 株式会社日立製作所 | 三次元四重極質量分析装置 |
US5764715A (en) | 1996-02-20 | 1998-06-09 | Sandia Corporation | Method and apparatus for transmutation of atomic nuclei |
KR100275597B1 (ko) | 1996-02-23 | 2000-12-15 | 나카네 히사시 | 플리즈마처리장치 |
US6000360A (en) | 1996-07-03 | 1999-12-14 | Tokyo Electron Limited | Plasma processing apparatus |
US5811201A (en) | 1996-08-16 | 1998-09-22 | Southern California Edison Company | Power generation system utilizing turbine and fuel cell |
US5923716A (en) | 1996-11-07 | 1999-07-13 | Meacham; G. B. Kirby | Plasma extrusion dynamo and methods related thereto |
JP3582287B2 (ja) | 1997-03-26 | 2004-10-27 | 株式会社日立製作所 | エッチング装置 |
JPH10335096A (ja) | 1997-06-03 | 1998-12-18 | Hitachi Ltd | プラズマ処理装置 |
US6894446B2 (en) | 1997-10-17 | 2005-05-17 | The Regents Of The University Of California | Controlled fusion in a field reversed configuration and direct energy conversion |
US6628740B2 (en) | 1997-10-17 | 2003-09-30 | The Regents Of The University Of California | Controlled fusion in a field reversed configuration and direct energy conversion |
US6271529B1 (en) | 1997-12-01 | 2001-08-07 | Ebara Corporation | Ion implantation with charge neutralization |
US6390019B1 (en) | 1998-06-11 | 2002-05-21 | Applied Materials, Inc. | Chamber having improved process monitoring window |
FR2780499B1 (fr) | 1998-06-25 | 2000-08-18 | Schlumberger Services Petrol | Dispositifs de caracterisation de l'ecoulement d'un fluide polyphasique |
DE19929278A1 (de) | 1998-06-26 | 2000-02-17 | Nissin Electric Co Ltd | Verfahren zum Implantieren negativer Wasserstoffionen und Implantierungseinrichtung |
US6255648B1 (en) | 1998-10-16 | 2001-07-03 | Applied Automation, Inc. | Programmed electron flux |
US6248251B1 (en) | 1999-02-19 | 2001-06-19 | Tokyo Electron Limited | Apparatus and method for electrostatically shielding an inductively coupled RF plasma source and facilitating ignition of a plasma |
US6572935B1 (en) * | 1999-03-13 | 2003-06-03 | The Regents Of The University Of California | Optically transparent, scratch-resistant, diamond-like carbon coatings |
US6755086B2 (en) | 1999-06-17 | 2004-06-29 | Schlumberger Technology Corporation | Flow meter for multi-phase mixtures |
US6322706B1 (en) | 1999-07-14 | 2001-11-27 | Archimedes Technology Group, Inc. | Radial plasma mass filter |
US6452168B1 (en) | 1999-09-15 | 2002-09-17 | Ut-Battelle, Llc | Apparatus and methods for continuous beam fourier transform mass spectrometry |
DE10060002B4 (de) | 1999-12-07 | 2016-01-28 | Komatsu Ltd. | Vorrichtung zur Oberflächenbehandlung |
US6593539B1 (en) | 2000-02-25 | 2003-07-15 | George Miley | Apparatus and methods for controlling charged particles |
US6408052B1 (en) | 2000-04-06 | 2002-06-18 | Mcgeoch Malcolm W. | Z-pinch plasma X-ray source using surface discharge preionization |
US6593570B2 (en) | 2000-05-24 | 2003-07-15 | Agilent Technologies, Inc. | Ion optic components for mass spectrometers |
CN101018444B (zh) * | 2001-02-01 | 2011-01-26 | 加州大学评议会 | 场反向配置中的等离子体的磁和静电约束 |
US6664740B2 (en) | 2001-02-01 | 2003-12-16 | The Regents Of The University Of California | Formation of a field reversed configuration for magnetic and electrostatic confinement of plasma |
US6611106B2 (en) | 2001-03-19 | 2003-08-26 | The Regents Of The University Of California | Controlled fusion in a field reversed configuration and direct energy conversion |
GB0131097D0 (en) | 2001-12-31 | 2002-02-13 | Applied Materials Inc | Ion sources |
WO2003087768A2 (en) * | 2002-04-12 | 2003-10-23 | Mitokor | Targets for therapeutic intervention identified in the mitochondrial proteome |
US7040598B2 (en) * | 2003-05-14 | 2006-05-09 | Cardinal Health 303, Inc. | Self-sealing male connector |
US8031824B2 (en) | 2005-03-07 | 2011-10-04 | Regents Of The University Of California | Inductive plasma source for plasma electric generation system |
US20060198485A1 (en) | 2005-03-07 | 2006-09-07 | Michl Binderbauer | Plasma electric generation and propulsion system |
EP1856702B1 (en) * | 2005-03-07 | 2012-07-18 | The Regents of The University of California | Plasma electric generation system |
US7115887B1 (en) | 2005-03-15 | 2006-10-03 | The United States Of America As Represented By The United States Department Of Energy | Method for generating extreme ultraviolet with mather-type plasma accelerators for use in Extreme Ultraviolet Lithography |
US20080226011A1 (en) | 2005-10-04 | 2008-09-18 | Barnes Daniel C | Plasma Centrifuge Heat Engine Beam Fusion Reactor |
JP2007198649A (ja) * | 2006-01-25 | 2007-08-09 | Daihen Corp | 燃料電池コージェネレーションシステムの温水温度制御方法 |
CN101320599A (zh) | 2007-06-06 | 2008-12-10 | 高晓达 | 通过极限环螺旋扇形注入区的束流连续注入方法 |
US8368636B2 (en) * | 2007-09-21 | 2013-02-05 | Point Somee Limited Liability Company | Regulation of wavelength shift and perceived color of solid state lighting with intensity variation |
GB2475634B (en) * | 2008-09-18 | 2013-04-10 | Craftsmen Corp E | Configurable LED driver/dimmer for solid state lighting applications |
WO2010089670A1 (en) * | 2009-02-04 | 2010-08-12 | General Fusion, Inc. | Systems and methods for compressing plasma |
EP3002761B1 (en) | 2009-02-12 | 2018-05-16 | Msnw, Llc | Method and apparatus for the generation, heating and/or compression of plasmoids and/or recovery of energy therefrom |
US8569956B2 (en) * | 2009-06-04 | 2013-10-29 | Point Somee Limited Liability Company | Apparatus, method and system for providing AC line power to lighting devices |
JP5363652B2 (ja) * | 2009-07-29 | 2013-12-11 | ジェネラル フュージョン インコーポレイテッド | プラズマを圧縮するためのシステム及びその方法 |
US8193738B2 (en) * | 2009-08-07 | 2012-06-05 | Phihong Technology Co., Ltd. | Dimmable LED device with low ripple current and driving circuit thereof |
US20110142185A1 (en) * | 2009-12-16 | 2011-06-16 | Woodruff Scientific, Inc. | Device for compressing a compact toroidal plasma for use as a neutron source and fusion reactor |
US9025717B2 (en) * | 2010-03-18 | 2015-05-05 | Brent Freeze | Method and apparatus for compressing plasma to a high energy state |
US8760078B2 (en) * | 2010-10-04 | 2014-06-24 | Earl W. McCune, Jr. | Power conversion and control systems and methods for solid-state lighting |
US8587215B2 (en) * | 2011-05-05 | 2013-11-19 | General Electric Company | Self-dimming OLED lighting system and control method |
WO2013070179A1 (en) * | 2011-11-09 | 2013-05-16 | Freeze Brent | Method and apparatus for compressing plasma to a high energy state |
US9078327B2 (en) * | 2012-03-05 | 2015-07-07 | Luxera, Inc. | Apparatus and method for dimming signal generation for a distributed solid state lighting system |
US20130249431A1 (en) * | 2012-03-05 | 2013-09-26 | Luxera, Inc. | Dimmable Hybrid Adapter for a Solid State Lighting System, Apparatus and Method |
CN104768285B (zh) * | 2012-05-17 | 2017-06-13 | 昂宝电子(上海)有限公司 | 用于利用系统控制器进行调光控制的系统和方法 |
EP2891389B1 (en) | 2012-08-29 | 2017-08-02 | General Fusion Inc. | Apparatus for accelerating and compressing plasma |
RU2638958C2 (ru) * | 2012-11-06 | 2017-12-19 | Филипс Лайтинг Холдинг Б.В. | Схемное устройство и сид лампа, содержащая это схемное устройство |
CN103024994B (zh) * | 2012-11-12 | 2016-06-01 | 昂宝电子(上海)有限公司 | 使用triac调光器的调光控制系统和方法 |
US9192002B2 (en) * | 2012-11-20 | 2015-11-17 | Isine, Inc. | AC/DC conversion bypass power delivery |
WO2014114986A1 (en) | 2013-01-25 | 2014-07-31 | L Ferreira Jr Moacir | Multiphase nuclear fusion reactor |
CN105122937B (zh) | 2013-02-11 | 2019-07-30 | 加州大学评议会 | 分数匝线圈绕组 |
US9591740B2 (en) | 2013-03-08 | 2017-03-07 | Tri Alpha Energy, Inc. | Negative ion-based neutral beam injector |
CN104066254B (zh) * | 2014-07-08 | 2017-01-04 | 昂宝电子(上海)有限公司 | 使用triac调光器进行智能调光控制的系统和方法 |
KR20160014379A (ko) * | 2014-07-29 | 2016-02-11 | 주식회사 실리콘웍스 | 조명 장치 |
KR102257718B1 (ko) * | 2014-10-01 | 2021-05-28 | 매그나칩 반도체 유한회사 | 발광 다이오드 구동 회로 및 이를 포함하는 발광 다이오드 조명 장치 |
UA121318C2 (uk) * | 2014-10-13 | 2020-05-12 | ТАЄ Текнолоджіс, Інк. | Системи і способи злиття і стискування компактних тороїдів |
EP3589083B1 (en) | 2014-10-30 | 2022-08-24 | TAE Technologies, Inc. | Systems for forming and maintaining a high performance frc |
TWI629916B (zh) * | 2014-12-10 | 2018-07-11 | 隆達電子股份有限公司 | 發光裝置與發光二極體電路 |
PE20180334A1 (es) * | 2015-05-12 | 2018-02-16 | Tri Alpha Energy Inc | Sistemas y metodos para reducir las corrientes parasitas no deseadas |
US10291130B2 (en) * | 2016-06-02 | 2019-05-14 | Semiconductor Components Industries, Llc | System and method for controlling output signal of power converter |
-
2015
- 2015-10-30 EP EP19187386.8A patent/EP3589083B1/en active Active
- 2015-10-30 NZ NZ730979A patent/NZ730979A/en unknown
- 2015-10-30 CN CN202010259302.6A patent/CN111511087B/zh active Active
- 2015-10-30 CA CA2965682A patent/CA2965682C/en active Active
- 2015-10-30 PT PT15854636T patent/PT3213608T/pt unknown
- 2015-10-30 RS RS20220978A patent/RS63672B1/sr unknown
- 2015-10-30 PL PL19187386.8T patent/PL3589083T3/pl unknown
- 2015-10-30 DK DK15854636.6T patent/DK3213608T3/da active
- 2015-10-30 BR BR112017008768-5A patent/BR112017008768B1/pt active IP Right Grant
- 2015-10-30 EA EA202191743A patent/EA202191743A1/ru unknown
- 2015-10-30 ES ES15854636T patent/ES2746302T3/es active Active
- 2015-10-30 SI SI201530904T patent/SI3213608T1/sl unknown
- 2015-10-30 HU HUE15854636A patent/HUE046413T2/hu unknown
- 2015-10-30 CN CN201580059262.8A patent/CN107006110B/zh active Active
- 2015-10-30 SG SG11201703167UA patent/SG11201703167UA/en unknown
- 2015-10-30 WO PCT/US2015/058473 patent/WO2016070126A1/en active Application Filing
- 2015-10-30 LT LTEP19187386.8T patent/LT3589083T/lt unknown
- 2015-10-30 DK DK19187386.8T patent/DK3589083T3/da active
- 2015-10-30 EP EP15854636.6A patent/EP3213608B1/en active Active
- 2015-10-30 SI SI201531897T patent/SI3589083T1/sl unknown
- 2015-10-30 MY MYPI2017701433A patent/MY181502A/en unknown
- 2015-10-30 SG SG10201907811Y patent/SG10201907811YA/en unknown
- 2015-10-30 HU HUE19187386A patent/HUE060221T2/hu unknown
- 2015-10-30 RS RSP20191246 patent/RS59350B1/sr unknown
- 2015-10-30 JP JP2017521081A patent/JP6855374B2/ja active Active
- 2015-10-30 HR HRP20221278TT patent/HRP20221278T1/hr unknown
- 2015-10-30 LT LTEP15854636.6T patent/LT3213608T/lt unknown
- 2015-10-30 KR KR1020177014776A patent/KR102590200B1/ko active IP Right Grant
- 2015-10-30 ES ES19187386T patent/ES2930583T3/es active Active
- 2015-10-30 PT PT191873868T patent/PT3589083T/pt unknown
- 2015-10-30 PE PE2017000720A patent/PE20170743A1/es unknown
- 2015-10-30 EA EA201790940A patent/EA038824B1/ru unknown
- 2015-10-30 TW TW104135958A patent/TWI654908B/zh active
- 2015-10-30 NZ NZ768700A patent/NZ768700A/en unknown
- 2015-10-30 AU AU2015338965A patent/AU2015338965B2/en active Active
- 2015-10-30 TW TW107114087A patent/TWI678950B/zh active
- 2015-10-30 MX MX2017005519A patent/MX369532B/es active IP Right Grant
- 2015-10-30 AR ARP150103516A patent/AR102474A1/es active IP Right Grant
- 2015-10-30 UA UAA201705187A patent/UA126267C2/uk unknown
- 2015-10-30 PL PL15854636T patent/PL3213608T3/pl unknown
-
2017
- 2017-04-04 ZA ZA2017/02384A patent/ZA201702384B/en unknown
- 2017-04-05 IL IL251583A patent/IL251583B2/en unknown
- 2017-04-20 PH PH12017500726A patent/PH12017500726B1/en unknown
- 2017-04-24 SA SA517381392A patent/SA517381392B1/ar unknown
- 2017-04-27 MX MX2019013295A patent/MX2019013295A/es unknown
- 2017-04-28 US US15/582,426 patent/US10440806B2/en active Active
- 2017-04-28 CL CL2017001075A patent/CL2017001075A1/es unknown
-
2019
- 2019-08-12 US US16/538,454 patent/US10743398B2/en active Active
- 2019-09-09 PH PH12019502043A patent/PH12019502043A1/en unknown
- 2019-09-18 CY CY20191100984T patent/CY1122049T1/el unknown
- 2019-09-30 HR HRP20191773TT patent/HRP20191773T1/hr unknown
-
2020
- 2020-07-01 US US16/918,716 patent/US11337294B2/en active Active
-
2021
- 2021-02-05 AU AU2021200748A patent/AU2021200748B2/en active Active
- 2021-03-17 JP JP2021043371A patent/JP7175037B2/ja active Active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2013074666A2 (en) | 2011-11-14 | 2013-05-23 | The Regents Of The University Of California | Systems and methods for forming and maintaining a high performance frc |
JP2015502532A (ja) | 2011-11-14 | 2015-01-22 | ザ リージェンツ オブ ザ ユニバーシティ オブ カリフォルニア | 高性能frcを形成し維持するシステムおよび方法 |
JP6876435B2 (ja) | 2013-09-24 | 2021-05-26 | ティーエーイー テクノロジーズ, インコーポレイテッド | 高性能frcを形成し維持するシステムおよび方法 |
Non-Patent Citations (4)
Title |
---|
BHATTACHARYAY R., et al.,"Effects of magnetic field and target plasma on the penetration behaviour of compact toroid plasma b,Nuclear Fusion,IOP publishing and International Atomic Energy Age,2008年08月28日,Volulme 48,105001 |
LIU Dazhi, et al.,"Enhancement of Performance of Compact Toroid Injector for LHD",J. Plasma Fusion Res. SERIES,日本,プラズマ・核融合学会,2009年,Volume 8,Page 999-1002,http://www.jspf.or.jp/JPFRS/PDF/Vol8/jpfrs2009_08-0999.pdf |
M. W. Binderbauer et al.,Dynamic Formation of a Hot Field Reversed Configuration with Improved Confinement by Supersonic Merging of Two Colliding High-β Compact Toroids,Phys. Rev. Lett.,米国,2010年06月22日,105,045003 |
RAMAN Roger,"Fuelling Requirements for Advanced Tokamak operation",32nd EPS Conference on Plasma Phys. Tarragona, 27 June - 1 July 2005 ECA,European Physical Society,2005年,Volume 29C,P-1.071,http://epsppd.epfl.ch/Tarragona/pdf/P1_071.pdf |
Also Published As
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP7175037B2 (ja) | 高性能frcを形成し維持するシステムおよび方法 | |
JP6738109B2 (ja) | 高性能frcを形成し維持するシステムおよび方法 | |
AU2019202825B2 (en) | Systems and methods for forming and maintaining a high performance frc | |
JP7207781B2 (ja) | Frcプラズマ位置安定性のため方法 | |
JP7266880B2 (ja) | 高性能frcの改良された持続性および高性能frcにおける高調高速波電子加熱のためのシステムおよび方法 | |
JP2022107774A (ja) | マルチスケール捕捉タイプ真空ポンピングを用いた高性能frcの改良された持続性のためのシステムおよび方法 | |
NZ717865B2 (en) | Systems and methods for forming and maintaining a high performance frc | |
NZ757525B2 (en) | Systems and methods for forming and maintaining a high performance frc |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20210317 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20210510 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20220124 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20220218 |
|
A601 | Written request for extension of time |
Free format text: JAPANESE INTERMEDIATE CODE: A601 Effective date: 20220517 |
|
A601 | Written request for extension of time |
Free format text: JAPANESE INTERMEDIATE CODE: A601 Effective date: 20220715 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20220818 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20221019 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20221031 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 7175037 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |