JP2019537001A - マルチスケール捕捉タイプ真空ポンピングを用いた高性能frcの改良された持続性のためのシステムおよび方法 - Google Patents
マルチスケール捕捉タイプ真空ポンピングを用いた高性能frcの改良された持続性のためのシステムおよび方法 Download PDFInfo
- Publication number
- JP2019537001A JP2019537001A JP2019522247A JP2019522247A JP2019537001A JP 2019537001 A JP2019537001 A JP 2019537001A JP 2019522247 A JP2019522247 A JP 2019522247A JP 2019522247 A JP2019522247 A JP 2019522247A JP 2019537001 A JP2019537001 A JP 2019537001A
- Authority
- JP
- Japan
- Prior art keywords
- frc
- forming
- plasma
- chamber
- vacuum pumps
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000000034 method Methods 0.000 title claims abstract description 97
- 238000005086 pumping Methods 0.000 title claims abstract description 22
- 230000002688 persistence Effects 0.000 title description 8
- 230000005291 magnetic effect Effects 0.000 claims abstract description 147
- 230000004907 flux Effects 0.000 claims abstract description 55
- 230000007935 neutral effect Effects 0.000 claims description 83
- 239000010936 titanium Substances 0.000 claims description 27
- 229910052719 titanium Inorganic materials 0.000 claims description 21
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 claims description 20
- 238000005247 gettering Methods 0.000 claims description 17
- 230000008021 deposition Effects 0.000 claims description 9
- 230000005684 electric field Effects 0.000 claims description 8
- 229910052744 lithium Inorganic materials 0.000 claims description 4
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 claims description 3
- 238000009826 distribution Methods 0.000 claims description 2
- 238000003491 array Methods 0.000 claims 3
- 208000031481 Pathologic Constriction Diseases 0.000 claims 1
- 208000037804 stenosis Diseases 0.000 claims 1
- 230000036262 stenosis Effects 0.000 claims 1
- 239000000758 substrate Substances 0.000 claims 1
- 239000002245 particle Substances 0.000 abstract description 82
- 230000015572 biosynthetic process Effects 0.000 abstract description 32
- 238000012423 maintenance Methods 0.000 abstract description 8
- 230000001174 ascending effect Effects 0.000 abstract description 2
- 230000001737 promoting effect Effects 0.000 abstract 1
- 210000002381 plasma Anatomy 0.000 description 177
- 239000007789 gas Substances 0.000 description 54
- 238000005755 formation reaction Methods 0.000 description 29
- 230000006870 function Effects 0.000 description 27
- 150000002500 ions Chemical class 0.000 description 24
- 230000000875 corresponding effect Effects 0.000 description 22
- 239000008188 pellet Substances 0.000 description 19
- 230000004927 fusion Effects 0.000 description 15
- 238000002347 injection Methods 0.000 description 11
- 239000007924 injection Substances 0.000 description 11
- 230000008569 process Effects 0.000 description 11
- 125000004429 atom Chemical group 0.000 description 10
- 230000008901 benefit Effects 0.000 description 10
- 238000000151 deposition Methods 0.000 description 10
- 238000002474 experimental method Methods 0.000 description 10
- 239000010408 film Substances 0.000 description 10
- 230000000694 effects Effects 0.000 description 8
- 238000010438 heat treatment Methods 0.000 description 8
- 239000010453 quartz Substances 0.000 description 8
- 230000002829 reductive effect Effects 0.000 description 8
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 8
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 8
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 7
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 7
- 230000001276 controlling effect Effects 0.000 description 7
- 238000009792 diffusion process Methods 0.000 description 7
- 229910000986 non-evaporable getter Inorganic materials 0.000 description 7
- 238000013461 design Methods 0.000 description 6
- 229910052739 hydrogen Inorganic materials 0.000 description 6
- 238000005259 measurement Methods 0.000 description 6
- 230000002459 sustained effect Effects 0.000 description 6
- YZCKVEUIGOORGS-OUBTZVSYSA-N Deuterium Chemical compound [2H] YZCKVEUIGOORGS-OUBTZVSYSA-N 0.000 description 5
- 238000000576 coating method Methods 0.000 description 5
- 230000008602 contraction Effects 0.000 description 5
- 229910052805 deuterium Inorganic materials 0.000 description 5
- 239000001257 hydrogen Substances 0.000 description 5
- 239000012535 impurity Substances 0.000 description 5
- 230000033001 locomotion Effects 0.000 description 5
- 239000000523 sample Substances 0.000 description 5
- 230000000903 blocking effect Effects 0.000 description 4
- 239000011248 coating agent Substances 0.000 description 4
- 238000010276 construction Methods 0.000 description 4
- 238000001816 cooling Methods 0.000 description 4
- 230000008878 coupling Effects 0.000 description 4
- 238000010168 coupling process Methods 0.000 description 4
- 238000005859 coupling reaction Methods 0.000 description 4
- 230000005292 diamagnetic effect Effects 0.000 description 4
- 230000006872 improvement Effects 0.000 description 4
- 230000010354 integration Effects 0.000 description 4
- 230000000670 limiting effect Effects 0.000 description 4
- 238000004088 simulation Methods 0.000 description 4
- 229910000831 Steel Inorganic materials 0.000 description 3
- 238000009825 accumulation Methods 0.000 description 3
- 238000000605 extraction Methods 0.000 description 3
- 238000011068 loading method Methods 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- 229910052751 metal Inorganic materials 0.000 description 3
- 239000002184 metal Substances 0.000 description 3
- 230000036961 partial effect Effects 0.000 description 3
- 239000000843 powder Substances 0.000 description 3
- 238000007493 shaping process Methods 0.000 description 3
- 239000000243 solution Substances 0.000 description 3
- 230000003068 static effect Effects 0.000 description 3
- 239000010959 steel Substances 0.000 description 3
- 238000006467 substitution reaction Methods 0.000 description 3
- 238000013268 sustained release Methods 0.000 description 3
- 239000012730 sustained-release form Substances 0.000 description 3
- 238000003325 tomography Methods 0.000 description 3
- 238000012546 transfer Methods 0.000 description 3
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 2
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- 206010028980 Neoplasm Diseases 0.000 description 2
- 230000001133 acceleration Effects 0.000 description 2
- 230000002411 adverse Effects 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 2
- 201000011510 cancer Diseases 0.000 description 2
- 230000008859 change Effects 0.000 description 2
- 238000004140 cleaning Methods 0.000 description 2
- 239000006185 dispersion Substances 0.000 description 2
- 238000010304 firing Methods 0.000 description 2
- 239000001307 helium Substances 0.000 description 2
- 229910052734 helium Inorganic materials 0.000 description 2
- SWQJXJOGLNCZEY-UHFFFAOYSA-N helium atom Chemical compound [He] SWQJXJOGLNCZEY-UHFFFAOYSA-N 0.000 description 2
- 230000000977 initiatory effect Effects 0.000 description 2
- 230000002045 lasting effect Effects 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 230000013011 mating Effects 0.000 description 2
- 230000007246 mechanism Effects 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000010248 power generation Methods 0.000 description 2
- 230000002441 reversible effect Effects 0.000 description 2
- 238000000926 separation method Methods 0.000 description 2
- 239000007787 solid Substances 0.000 description 2
- 239000010935 stainless steel Substances 0.000 description 2
- 229910001220 stainless steel Inorganic materials 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- YZCKVEUIGOORGS-UHFFFAOYSA-N Hydrogen atom Chemical compound [H] YZCKVEUIGOORGS-UHFFFAOYSA-N 0.000 description 1
- QCWXUUIWCKQGHC-UHFFFAOYSA-N Zirconium Chemical compound [Zr] QCWXUUIWCKQGHC-UHFFFAOYSA-N 0.000 description 1
- 238000002679 ablation Methods 0.000 description 1
- 230000004913 activation Effects 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 230000002547 anomalous effect Effects 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 229910052786 argon Inorganic materials 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 230000004888 barrier function Effects 0.000 description 1
- 238000005452 bending Methods 0.000 description 1
- 230000002457 bidirectional effect Effects 0.000 description 1
- 239000003990 capacitor Substances 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 238000012993 chemical processing Methods 0.000 description 1
- 238000012824 chemical production Methods 0.000 description 1
- 230000005495 cold plasma Effects 0.000 description 1
- 230000002301 combined effect Effects 0.000 description 1
- 230000000295 complement effect Effects 0.000 description 1
- 238000013329 compounding Methods 0.000 description 1
- 238000009833 condensation Methods 0.000 description 1
- 230000005494 condensation Effects 0.000 description 1
- 230000001143 conditioned effect Effects 0.000 description 1
- 230000003750 conditioning effect Effects 0.000 description 1
- 238000011109 contamination Methods 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 230000002596 correlated effect Effects 0.000 description 1
- 230000001934 delay Effects 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000006073 displacement reaction Methods 0.000 description 1
- 230000008030 elimination Effects 0.000 description 1
- 238000003379 elimination reaction Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000001747 exhibiting effect Effects 0.000 description 1
- 230000002349 favourable effect Effects 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- 239000000446 fuel Substances 0.000 description 1
- 238000007499 fusion processing Methods 0.000 description 1
- 150000002431 hydrogen Chemical class 0.000 description 1
- 125000004435 hydrogen atom Chemical group [H]* 0.000 description 1
- 239000007943 implant Substances 0.000 description 1
- 238000002513 implantation Methods 0.000 description 1
- 238000011065 in-situ storage Methods 0.000 description 1
- 230000006698 induction Effects 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 230000005923 long-lasting effect Effects 0.000 description 1
- 230000005012 migration Effects 0.000 description 1
- 238000013508 migration Methods 0.000 description 1
- 238000003801 milling Methods 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 238000010943 off-gassing Methods 0.000 description 1
- 238000007500 overflow downdraw method Methods 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 230000003071 parasitic effect Effects 0.000 description 1
- 238000005192 partition Methods 0.000 description 1
- 230000008855 peristalsis Effects 0.000 description 1
- 230000002572 peristaltic effect Effects 0.000 description 1
- 238000000746 purification Methods 0.000 description 1
- 238000002601 radiography Methods 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 238000001179 sorption measurement Methods 0.000 description 1
- 238000004611 spectroscopical analysis Methods 0.000 description 1
- 238000001228 spectrum Methods 0.000 description 1
- 230000002269 spontaneous effect Effects 0.000 description 1
- 230000006641 stabilisation Effects 0.000 description 1
- 238000011105 stabilization Methods 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 238000000859 sublimation Methods 0.000 description 1
- 230000008022 sublimation Effects 0.000 description 1
- 230000001629 suppression Effects 0.000 description 1
- 230000008961 swelling Effects 0.000 description 1
- 230000001360 synchronised effect Effects 0.000 description 1
- 239000010409 thin film Substances 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
- 230000001052 transient effect Effects 0.000 description 1
- 238000013519 translation Methods 0.000 description 1
- 238000001926 trapping method Methods 0.000 description 1
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 1
- 229910052721 tungsten Inorganic materials 0.000 description 1
- 239000010937 tungsten Substances 0.000 description 1
- 229910052720 vanadium Inorganic materials 0.000 description 1
- LEONUFNNVUYDNQ-UHFFFAOYSA-N vanadium atom Chemical compound [V] LEONUFNNVUYDNQ-UHFFFAOYSA-N 0.000 description 1
- 238000007740 vapor deposition Methods 0.000 description 1
- 239000002699 waste material Substances 0.000 description 1
- 229910052726 zirconium Inorganic materials 0.000 description 1
Classifications
-
- G—PHYSICS
- G21—NUCLEAR PHYSICS; NUCLEAR ENGINEERING
- G21B—FUSION REACTORS
- G21B1/00—Thermonuclear fusion reactors
- G21B1/05—Thermonuclear fusion reactors with magnetic or electric plasma confinement
-
- G—PHYSICS
- G21—NUCLEAR PHYSICS; NUCLEAR ENGINEERING
- G21B—FUSION REACTORS
- G21B1/00—Thermonuclear fusion reactors
- G21B1/05—Thermonuclear fusion reactors with magnetic or electric plasma confinement
- G21B1/052—Thermonuclear fusion reactors with magnetic or electric plasma confinement reversed field configuration
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04B—POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
- F04B37/00—Pumps having pertinent characteristics not provided for in, or of interest apart from, groups F04B25/00 - F04B35/00
- F04B37/06—Pumps having pertinent characteristics not provided for in, or of interest apart from, groups F04B25/00 - F04B35/00 for evacuating by thermal means
- F04B37/08—Pumps having pertinent characteristics not provided for in, or of interest apart from, groups F04B25/00 - F04B35/00 for evacuating by thermal means by condensing or freezing, e.g. cryogenic pumps
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04B—POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
- F04B37/00—Pumps having pertinent characteristics not provided for in, or of interest apart from, groups F04B25/00 - F04B35/00
- F04B37/10—Pumps having pertinent characteristics not provided for in, or of interest apart from, groups F04B25/00 - F04B35/00 for special use
- F04B37/14—Pumps having pertinent characteristics not provided for in, or of interest apart from, groups F04B25/00 - F04B35/00 for special use to obtain high vacuum
-
- G—PHYSICS
- G21—NUCLEAR PHYSICS; NUCLEAR ENGINEERING
- G21B—FUSION REACTORS
- G21B1/00—Thermonuclear fusion reactors
- G21B1/11—Details
- G21B1/15—Particle injectors for producing thermonuclear fusion reactions, e.g. pellet injectors
-
- G—PHYSICS
- G21—NUCLEAR PHYSICS; NUCLEAR ENGINEERING
- G21B—FUSION REACTORS
- G21B1/00—Thermonuclear fusion reactors
- G21B1/11—Details
- G21B1/17—Vacuum chambers; Vacuum systems
-
- G—PHYSICS
- G21—NUCLEAR PHYSICS; NUCLEAR ENGINEERING
- G21B—FUSION REACTORS
- G21B1/00—Thermonuclear fusion reactors
- G21B1/11—Details
- G21B1/19—Targets for producing thermonuclear fusion reactions, e.g. pellets for irradiation by laser or charged particle beams
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J7/00—Details not provided for in the preceding groups and common to two or more basic types of discharge tubes or lamps
- H01J7/24—Cooling arrangements; Heating arrangements; Means for circulating gas or vapour within the discharge space
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05H—PLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
- H05H1/00—Generating plasma; Handling plasma
- H05H1/02—Arrangements for confining plasma by electric or magnetic fields; Arrangements for heating plasma
- H05H1/04—Arrangements for confining plasma by electric or magnetic fields; Arrangements for heating plasma using magnetic fields substantially generated by the discharge in the plasma
- H05H1/08—Theta pinch devices, e.g. SCYLLA
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05H—PLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
- H05H1/00—Generating plasma; Handling plasma
- H05H1/02—Arrangements for confining plasma by electric or magnetic fields; Arrangements for heating plasma
- H05H1/10—Arrangements for confining plasma by electric or magnetic fields; Arrangements for heating plasma using externally-applied magnetic fields only, e.g. Q-machines, Yin-Yang, base-ball
- H05H1/14—Arrangements for confining plasma by electric or magnetic fields; Arrangements for heating plasma using externally-applied magnetic fields only, e.g. Q-machines, Yin-Yang, base-ball wherein the containment vessel is straight and has magnetic mirrors
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05H—PLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
- H05H1/00—Generating plasma; Handling plasma
- H05H1/02—Arrangements for confining plasma by electric or magnetic fields; Arrangements for heating plasma
- H05H1/16—Arrangements for confining plasma by electric or magnetic fields; Arrangements for heating plasma using externally-applied electric and magnetic fields
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04B—POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
- F04B41/00—Pumping installations or systems specially adapted for elastic fluids
- F04B41/06—Combinations of two or more pumps
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E30/00—Energy generation of nuclear origin
- Y02E30/10—Nuclear fusion reactors
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Plasma & Fusion (AREA)
- General Engineering & Computer Science (AREA)
- High Energy & Nuclear Physics (AREA)
- Optics & Photonics (AREA)
- Spectroscopy & Molecular Physics (AREA)
- Mechanical Engineering (AREA)
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Plasma Technology (AREA)
- Producing Shaped Articles From Materials (AREA)
- Reinforced Plastic Materials (AREA)
- Treatment Of Steel In Its Molten State (AREA)
- Processing And Handling Of Plastics And Other Materials For Molding In General (AREA)
- Moulding By Coating Moulds (AREA)
- Powder Metallurgy (AREA)
- Physical Or Chemical Processes And Apparatus (AREA)
- Solid-Sorbent Or Filter-Aiding Compositions (AREA)
- Casting Or Compression Moulding Of Plastics Or The Like (AREA)
Abstract
Description
磁場反転配位(FRC)は、コンパクト・トロイド(CT)として公知の磁気プラズマ閉じ込めトポロジーの分類に属する。FRCは、主にポロイダル磁場を示し、自然発生のトロイダル磁場がない、または少ない(M.Tuszewski、Nucl.Fusion 28、2033(1988)参照)。このような構造の魅力は、構築および維持が容易なその単純な形状、エネルギーの抽出および灰の除去を促進する無制限の自然ダイバータ、ならびに非常に高いβ(βはFRC内部の平均磁場圧力に対する平均プラズマ圧力の割合である)、すなわち、高出力密度である。高いβ特性は、経済運用、ならびにD−He3およびp−B11などの進化した非中性子燃料の使用に有利である。
本明細書に提供される本実施形態は、半径方向および軸方向の両方におけるFRCプラズマの安定性と、FRCプラズマの平衡の軸方向安定性性質から独立して、FRCプラズマ閉じ込めチャンバの対称軸に沿ったFRCプラズマの軸方向位置制御とを促進する、システムおよび方法を対象とする。別個および組み合わせの両方において、これらの付加的特徴および教示の多くを利用する、本明細書に説明される実施形態の代表的実施例が、ここで、添付の図面を参照して説明される。この詳細な説明は、単に、当業者に、本教示の好ましい側面を実践するためのさらなる詳細を教示することを意図し、本発明の範囲を限定することを意図するものではない。したがって、以下の詳細な説明に開示される特徴およびステップの組み合わせは、最も広義には、本発明を実践するために必要ではなくてもよく、代わりに、本教示の代表的実施例を特に説明するためだけに教示される。
真空システム
図2および3は、本FRCシステム10の概略を示す。FRCシステム10は、2つの直径方向に対向する磁場反転シータピンチ形成部分200、およびその形成部分200を超えた、中性密度および不純物汚染を制御するための2つのダイバータ・チャンバ300によって包囲された中央閉じ込め容器100を含む。本FRCシステム10は、超高真空を収容するように構築されており、一般的な基準圧10−8トルで作動する。このような真空圧は、嵌合構成要素、金属Oリング、高純度の内壁の間のダブルポンプの嵌合フランジを使用し、ならびに物理的および化学的洗浄に続き、24時間250℃での真空焼成および水素グロー放電洗浄などの、組立て前にすべての部分を最初に慎重に表面調整する必要がある。
磁気システム400は、図2および3に示されている。図2は、他の特徴の中でとりわけ、FRCシステム10によって生産可能なFRC450に関する、FRC磁束および密度等高線(径方向および軸方向座標の関数として)を示す。これらの等高線は、FRCシステム10に対応するシステムおよび方法をシミュレーションするために開発されたコードを使用して、二次元抵抗性Hall−MHD数値シミュレーションによって獲得されたものであり、測定された実験データとよく合致する。図2に見られるように、FRC450は、セパラトリックス451の内側のFRC450の内部453で、閉じた磁力線のトーラス、およびセパラトリックス451のすぐ外側の開いた磁力線452上の環状縁層456からなる。縁層456は、FRCの長さを超えて集結してジェット454になり、自然ダイバータを提供する。
パルス電力形成システム210は、修正シータピンチ原理に基づいて作動する。それぞれが形成部分200の1つに電力を供給する、2つのシステムが存在する。図4〜6は、形成システム210の主な構築ブロックおよび配置を示す。形成システム210は、個々のユニット(=スキッド)220からなるモジュラーパルス電力配置から構成され、スキッド220のそれぞれは、形成石英管240を中心に巻き付くストラップアセンブリ230(=ストラップ)のコイル232のサブセットを活性化する。各スキッド220は、コンデンサ221、インダクタ223、高速大電流スイッチ225および関連トリガー222ならびにダンプ回路224から構成される。全体で、各形成システム210は、350〜400kJの容量エネルギーを保存し、この容量エネルギーは、最高35GWまでの電力を提供してFRCを形成し加速する。これらの構成要素の協調された作動は、最先端のトリガーおよび制御システム222および224を介して達成され、それによって各形成部分200上の形成システム210間のタイミングを同期することが可能になり、スイッチングジッタを数十ナノ秒に最小化する。このモジュラー設計の利点は、その柔軟な作動である。すなわち、FRCをその場で形成でき、次いで加速し照射する(=静的形成)、または形成し同時に加速する(=動的形成)ことができる。
中性原子ビーム600が、FRCシステム10上に展開され、加熱および電流駆動を提供し、高速粒子圧力を発生させる。図3A、3B、および8に示されるように、中性原子ビーム注入器システム610および640を構成する、個々のビーム線は、標的捕捉ゾーンが十分に区分線451(図2参照)の範囲内にあるように、衝突パラメータを用いて、中心閉じ込めチャンバ100の周囲に位置し、高速粒子をFRCプラズマに対して接線方向に(かつ、中心閉じ込め容器100内の対称長軸に対して垂直または直角である角度で)注入する。各注入器システム610および640は、20〜40keVの粒子エネルギーを用いて、最大1MWの中性ビームパワーをFRCプラズマの中に注入可能である。システム610および640は、正イオン多開口抽出源に基づき、幾何学的集束、イオン抽出グリッドの慣性冷却、および差動ポンプを利用する。異なるプラズマ源の使用は別として、システム610および640は、主に、側方および上方注入能力をもたらす、その個別の搭載場所を満たすようなその物理的設計によって区別される。これらの中性ビーム注入器の典型的構成要素は、側方注入器システム610に関する図7に具体的に図示される。図7に示されるように、各個々の中性ビームシステム610は、端部を被覆する磁気遮蔽614とともに、入力端部(これは、システム640内のアーク源で代用される)にRFプラズマ源612を含む。イオン光学源および加速グリッド616は、プラズマ源612に結合され、ゲート弁620は、イオン光学源および加速グリッド616と中和装置622との間に位置付けられる。偏向磁石624およびイオンダンプ628は、中和装置622と出口端部における照準デバイス630との間に位置する。冷却システムは、2つの低温冷凍機634と、2つのクライオパネル636と、LN2シュラウド638とを備える。本柔軟性のある設計は、広範囲のFRCパラメータにわたる動作を可能にする。
新しい粒子を照射し、FRCの粒子インベントリをより良好に制御する手段を提供するために、12バレルペレット照射装置700(例えば、I.Vinyarら、「Pellet Injectors Developed at PELIN for JET,
TAE, and HL−2A(JET、TAE、およびHL−2Aに対してPELINで開発されたペレット照射装置)」第26回Fusion Science and Technology Symposium(核融合科学技術シンポジウム)の報告書、9月27日〜10月1日(2010)参照)がFRCシステム10上に利用される。図3は、FRCシステム10上のペレット照射装置700の配置を示す。円筒形ペレット(Dは約1mm、Lは約1〜2mm)は、FRCに速度150〜250km/sの範囲で照射される。個々のペレットはそれぞれ、約5×1019の水素原子を含み、これはFRCの粒子インベントリに匹敵する。
中性ハロガスは、すべての閉じ込めシステムにおいて深刻な問題であることは周知である。電荷交換および再利用(壁からの低温の不純物材料の放出)プロセスは、エネルギーおよび粒子閉じ込めに壊滅的な影響を与える可能性がある。加えて、縁部におけるまたは縁部付近のいかなる高濃度の中性ガスも、照射された大きい軌道(高エネルギー)の粒子(大きい軌道は、FRCトポロジーの規模の軌道、または少なくとも特性磁界勾配長さスケールよりはるかに大きい軌道半径を有する粒子を指す)の耐用期間を即座に喪失させる、または少なくとも大幅に短くする、すなわち、これは、補助ビーム加熱を介する融合を含め、すべてのエネルギープラズマの適用に弊害をもたらす。
上述のように、FRCシステム10は、図2および3に示したように、ミラーコイル420、430、および444のセットを利用する。ミラーコイル420の第1のセットは、閉じ込めチャンバ100の2つの軸方向端部に配置され、主磁気システム410のDC閉じ込め、形成、およびダイバータコイル412、414および416から単独に活性化される。ミラーコイル420の第1のセットは、主に融合中にFRC450を進め軸方向に包含する助けとなり、持続している間に平衡成形制御を提供する。第1のミラーコイルセット420は、中央閉じ込めコイル412によって生成された中央閉じ込め磁場より名目上高い磁場(約0.4〜0.5T)を生成する。ミラーコイル430の第2のセットは、3つの小型の疑似直流ミラーコイル432、434および436を含み、形成部分200とダイバータ300との間に配置され、一般的なスイッチ電源によって駆動される。ミラーコイル432、434および436は、より小型のパルスミラープラグコイル444(容量電源によって供給される)および物理的収縮部442と一緒に、狭い低ガス伝導通路を非常に高い磁場(約10〜20msの立上り時間で2〜4T)で提供する、ミラープラグ440を形成する。最も小型のパルスミラーコイル444は、閉じ込めコイル412、414および416のメートルプラススケールの孔およびパンケーキ型設計に比べて、小型の径方向寸法、20cmの孔および同様の長さである。ミラープラグ440の目的は、以下のように多種多様である。(1)コイル432、434、436および444を堅く束ね、磁束表面452および端部に流れるプラズマジェット454を、遠隔ダイバータ・チャンバ300に導く。これは、排出粒子がダイバータ300に適切に到着し、中央FRC450の開いた磁力線452領域からダイバータ300までずっと追跡する、連続した磁束表面455が存在することを確実にする。(2)FRCシステム10における物理的収縮部442は、それを通ってコイル432、434、436および444が磁束表面452およびプラズマジェット454を通過することができ、ダイバータ300内に着座するプラズマガン350からの中性ガス流を妨げる。同じように、収縮部442は、形成部分200からダイバータ300へのガスの逆流を防止し、それによってFRCの起動を開始するときに、FRCシステム10全体に導入しなければならない中性粒子の数が低減する。(3)コイル432、434、436および444によって生成された強い軸方向のミラーは軸方向の粒子損失を低減し、それによって開いた磁力線上の平行な粒子拡散係数が低減する。
ダイバータ300のダイバータ・チャンバ310内に装着されたガン350からのプラズマ流は、安定性および中性ビーム性能を向上させることを意図する。ガン350は、図3および10に示したように、ダイバータ300のチャンバ310の内側の軸上に装着され、プラズマ流をダイバータ300内の開いた磁力線452に沿って、閉じ込めチャンバ100の中心に向かって生成する。ガン350は、ワッシャー積層チャネル内に高濃度ガス放出で作動し、5〜10msに完全にイオン化されたプラズマを数キロアンペア生成するように設計されている。ガン350は、出力プラズマ流を閉じ込めチャンバ100内の所望のサイズのプラズマに一致させる、パルス磁気コイルを含む。ガン350の技術パラメータは、5〜13cmの外径、および最高10cmまでの内径を有するチャネルを特徴とし、ガンの内部磁場は0.5〜2.3Tで、400〜600Vで10〜15kAの放電電流を提供する。
開いた磁束表面の電気バイアスは、方位E×B運動を起こす径方向電位を提供することができ、方位E×B運動は、開いた磁力線プラズマの回転、ならびに速度シアを介して実際のFRCコア450を制御するための、ノブを回すのに類似した制御機構を提供する。この制御を達成させるために、FRCシステム10は、機械の様々な部分に配置された様々な電極を戦略的に利用する。図3は、FRCシステム10内の好ましい場所に位置付けられたバイアス電極を示す。
良好に開発された磁場反転シータピンチ技法の後に、FRCシステム10上の標準プラズマ形成が続く。FRCを開始するための通常のプロセスは、定常状態作動のために疑似直流コイル412、414、416、420、432、434および436を駆動することにより開始する。次いでパルス電力形成システム210のRFTPパルス電力回路は、パルス高速磁場反転コイル232を駆動して、形成部分200内に約−0.05Tの一時的な逆バイアスを生成する。この点で、9〜20psiの所定の量の中性ガスを、形成部分200の外端上に配置されたフランジにおいて方位角に配向されたパフ弁のセットを介して、(北および南の)形成部分200の石英管チャンバ240によって画定された2つの形成容積の中に照射する。次に、小さいRF(約数百キロヘルツ)の磁場を、石英管240の表面上のアンテナのセットから生成して、中性ガス柱内に局所シードイオン化領域(local seed ionization region)の形でプレプレイオン化(pre−pre−ionization)を生成する。これに続いて、パルス高速磁場反転コイル232を駆動する電流上にシータリング変調を加え、これによりガス柱のより広範囲のプレイオン化がもたらされる。最後に、パルス電力形成システム210の主要パルスパワーバンクを燃やして、最高0.4Tまでの順方向バイアス磁場を生成するためにパルス高速磁場反転コイル232を駆動する。このステップは、順方向バイアス磁場が形成管240の全長に亘って均一に生成されるように(静的形成)、または連続蠕動磁場変調が、形成管240の軸に沿って達成されるように(動的形成)、時系列にすることができる。
図12は、FRC450のシータピンチ融合プロセスの力学を示すために、セパラトリックスの半径rsに近づく、排除磁束半径rΔФの通常の時間発展を示す。2つ(北および南)の個々のプラズモイドは、同時に生成され、次いでそれぞれの形成部分200から出て超音速vz約250km/sで加速され、中央平面近傍でz=0で衝突する。衝突中、プラズモイドは軸方向に圧迫し、続いて即座に径方向および軸方向に拡大し、最後に融合してFRC450を形成する。融合するFRC450の径方向および軸方向の力学の両方は、詳しく示した密度プロファイルの測定およびボロメータに基づいた断層撮影によって証明される。
図12〜14における例は、いかなる持続もなしにFRCを減衰する特性である。しかし、いくつかの技法は、FRCシステム10に展開されて、さらにFRC閉じ込め(内部コアおよび縁層)をHPFレジームに向上させ、閉じ込めを持続させる。
まず、高速(H)中性を8個の中性ビーム照射装置600からビーム内のBzに垂直に照射する。高速中性のビームは、北および南の形成FRCが閉じ込めチャンバ100内で融合した瞬間から1つのFRC450の中に照射される。高速イオンは電荷交換によって主に生成され、FRC450の方位電流に加えるベータトロン軌道(FRCトポロジーのスケール上または特性磁場勾配長さスケールよりはるかに長い主要半径を有する)を有する。放出のわずか後(照射の0.5〜0.8ms後)、充分に大きい高速イオン集団は、内部FRCの安定性および閉じ込め特性を著しく向上させる(例えば、M.W.BinderbauerおよびN.Rostoker、Plasma Phys.56、part
3、451(1996)参照)。さらに、持続の観点から、中性ビーム照射装置600からのビームも、電流を駆動しFRCプラズマを加熱する主な手段である。
電子がより高温でFRCの耐用期間がより長い、超高速イオン集団がFRC450内に構築される際、冷凍のHまたはDペレットは、ペレット照射装置700からFRC450の中に照射されて、FRC450のFRC粒子インベントリを持続させる。予想されるアブレーション時間スケールは充分に短いので、かなりのFRC粒子源を提供する。またこの速度は、個々のペレットをより小さい片に砕くことにより、照射された片の表面積を拡大することによって増大させることができるが、ペレット照射装置700のバレルまたは照射管内で、また閉じ込めチャンバ100に入る前に、閉じ込めチャンバ100の中に入る直前に照射管の最後の部分の曲げ半径を締め付けることにより、ペレットと照射管の壁との間の片を増加させることによってステップを達成できる。12バレル(照射管)の燃焼順序および速度、ならびに粉砕を変化させる恩恵により、ペレット照射システム700を調整して、まさに所望のレベルの粒子インベントリの持続を提供することができる。その結果、これはFRC450内の内部動圧ならびにFRC450の持続作動および耐用期間を維持する役に立つ。
ペレット注入器の代替として、コンパクトトロイド(CT)注入器が、主に、磁場反転配位(FRC)プラズマに燃料補給するために提供される。CT注入器720は、図22Aおよび22Bに示されるように、同軸円筒形内側および外側電極722および724と、内側電極の内部に位置付けられるバイアスコイル726と、CT注入器720の放電の反対の端部における電気遮断器728とを含む、磁化同軸プラズマガン(MCPG)を備える。ガスが、ガス注入ポート730を通して内側電極722と外側電極724との間の空間の中に注入され、スフェロマック状プラズマが、放電によって生成され、ローレンツ力によってガンから押し出される。図23Aおよび23Bに示されるように、一対のCT注入器720が容器100の中央平面の近傍および対向側において閉じ込め容器100に結合され、CTを閉じ込め容器100内の中心FRCプラズマの中に注入する。CT注入器720の放電端は、中性ビーム注入器615と同様に、閉じ込め容器100の長手方向軸に対してある角度で閉じ込め容器100の中央平面に向かって指向される。
定常状態の電流駆動を達成し、必要なイオン電流を維持するために、電子イオン摩擦力(衝突イオン電子運動量移動からもたらされる)に起因する電子スピンを防止するまたは著しく低減することが望ましい。FRCシステム10は、外部印加された静磁場双極子または四重極磁場を介して、電子遮断を提供する革新的な技法を利用する。これは、図15に示した外部サドルコイル460を介して実現される。サドルコイル460から横方向に印加された径方向の磁場は、回転するFRCプラズマ内の軸方向の電界を誘導する。得られる軸方向の電子電流は、径方向の磁場と相互作用して、電子上に方位遮断力Fθ=−σVeθ<|Br|2>を生成する。FRCシステム10における典型的な条件に対して、プラズマ内部に必要な印加された磁場双極子(または四重極磁場)は、適切な電子遮断を提供するために約0.001Tのみであることが必要である。約0.015Tの対応する外部磁場は充分に小さいので、多くの高速粒子損失あるいは閉じ込めに悪影響をもたらすことはない。事実、印加された磁場双極子(または四重極磁場)は、不安定性の抑制に寄与する。接線中性ビーム照射と軸方向プラズマ照射を組み合わせて、サドルコイル460は、電流の維持および安定性に関して追加レベルの制御を提供する。
ミラープラグ440内のパルスコイル444の設計により、適度(約100kJ)の容量エネルギーで高磁場(2〜4T)の局所発生が可能になる。FRCシステム10のこの作動の通常の磁場形成に対して、形成容積内のすべての磁力線は、図2における磁力線によって示唆されたように、ミラープラグ440で収縮部442を通過し、プラズマ壁の接触は起きない。さらに、疑似直流ダイバータ磁気416と連動してミラープラグ440を、磁力線をダイバータ電極910の上に導く、または磁力線を端部カスプ配位(図示せず)内で燃焼させるように、調節することができる。後者は安定性を向上させ、平行な電子熱伝導を抑圧する。
プラズマガン350は、磁力線短絡によりFRC排除ジェット454の安定性を向上させる。プラズマガン350からのガンプラズマは、方位角運動量なしに生成され、これはFRC回転不安定性の制御に有用であることがわかる。したがって、ガン350は、より古い四重極の安定化技術を必要としない、FRCの安定性を制御する有効な手段である。結果として、プラズマガン350は、高速粒子の有益な効果を利用する、または本開示に概要を述べたように、進化したハイブリッド運動FRCレジームに近づくことを可能にする。したがって、プラズマガン350により、FRCシステム10がまさに電子遮断に適切だが、FRCの不安定性を引き起こす、かつ/または劇的な高速粒子拡散をもたらすはずである閾値より低い、サドルコイル電流で作動されることが可能になる。
縁層456内の径方向電界の制御は、FRCの安定性および閉じ込めに様々な方法で有利である。FRCシステム10に展開した革新的なバイアス構成要素の恩恵により、電位の様々な意図的な分散を閉じ込めチャンバ100内の中央閉じ込め領域の充分に外側の領域から機械全体に亘って開いた磁束表面の群に印加することができる。このような方法で、径方向磁場を、FRC450のすぐ外側の縁層456を横切って生成することができる。次いでこれらの径方向電界は、縁層456の方位回転を修正し、E×B速度シアによってその閉じ込めをもたらす。次いで縁層456とFRCコア453との間のあらゆる差動回転を、シアによりFRCプラズマの内側に移動できる。結果として、縁層456を制御することは、FRCコア453に直接影響を与える。さらに、プラズマ回転における自由エネルギーも不安定性に関与できるので、この技法は、不安定性の開始および成長を制御する直接手段を提供する。FRCシステム10では、適切な縁バイアスは、開いた磁力線の移動および回転、ならびにFRCコア回転の有効な制御を提供する。様々な提供された電極900、905、910および920の場所および形状により、磁束表面455の異なる群の制御が異なる独立した電位で可能になる。このような方法で、多様な異なる電界構成および強度を認識でき、それぞれはプラズマ性能に対する異なる性質の影響をもつ。
中性ビームガン600からのビームによる高速粒子の照射は、HPFレジームを可能にする重要な役割を果たす。図16A、16B、16C、および16Dはこの事実を示す。示されているのは、FRCの耐用期間がビームパルスの長さにどのように関連するかを示す曲線のセットである。すべての他の作動条件は、この研究を含むすべての放出に対して一定に保たれる。データは、多くの照射に亘って平均し、したがって、通常の挙動を表す。ビーム期間が長いほど、より長く存続するFRCを生成させることが極めて明白である。この証拠ならびにこの研究中の他の診断を見ると、ビームは安定性を高め、損失を低減することを実証している。ビームパルス長さとFRCの耐用期間との間の相互関係は、ビームトラッピングがある種のプラズマサイズ未満で効力がないので、すなわち、照射されたビームのすべての物理的サイズにおけるFRC450の収縮が、捕捉されるまたはトラッピングされるわけではないので、完全ではない。FRCの収縮は、主に、放電の間のFRCプラズマからの正味エネルギー損失(放電のほぼ中間で約4MW)が、特定の実験設定に関して、中性ビーム(約2.5MW)を介してFRCの中に給送される総パワーより幾分大きいという事実に起因する。ビームを容器100の中央平面により近接する場所に位置させることは、これらの損失を低減させ、FRC寿命時間を延長させる傾向となるであろう。
マルチスケール捕捉タイプ真空ポンプ
捕捉タイプ真空ポンプ
自己相似表面捕捉ポンプ
Claims (61)
- 磁場反転配位(FRC)を伴う磁場を発生および維持するための方法であって、
閉じ込めチャンバ内でプラズマの周りにFRCを形成するステップと、
複数の中性ビームを前記FRCプラズマの中に前記閉じ込めチャンバの中央平面に向かってある角度で注入するステップと、
前記第1および第2のダイバータ内に位置付けられ、相互に対面する表面を伴う2つ以上の側と、開放側とを備える、第1および第2の捕捉真空ポンプを用いて、前記閉じ込めチャンバに結合される第1および第2の直径方向に対向するダイバータ内に蓄積する中性化されたガス分子をポンピングするステップであって、前記第1および第2の捕捉真空ポンプは、前記第1および第2の捕捉ポンプの開放側に相当する面積を画定する平坦プレートの付着係数の4倍よりも大きい付着係数を有する、ステップと
を含む、方法。 - 前記第1および第2の捕捉真空ポンプの2つ以上の側のうちの少なくとも1つは、個々の捕捉真空ポンプのアレイを備える、請求項1に記載の方法。
- 前記個々の捕捉真空ポンプはそれぞれ、相互に対面する表面を伴う2つ以上の側と、開放側とを備え、前記個々の捕捉真空ポンプはそれぞれ、前記個々の捕捉真空ポンプのそれぞれの開放側に相当する面積を画定する平坦プレートの付着係数を上回る付着係数を有する、請求項2に記載の方法。
- 前記個々の捕捉真空ポンプのそれぞれの2つ以上の側のうちの少なくとも1つは、個々の捕捉真空ポンプの第2のアレイを備える、請求項3に記載の方法。
- 前記第2のアレイの個々の捕捉真空ポンプはそれぞれ、相互に対面する表面を伴う2つ以上の側と、開放側とを備え、前記第2のアレイの個々の捕捉真空ポンプはそれぞれ、前記第2のアレイの個々の捕捉真空ポンプのそれぞれの開放側に相当する面積を画定する平坦プレートの付着係数を上回る付着係数を有する、請求項4に記載の方法。
- 前記第1および第2の捕捉真空ポンプは、前記第1および第2の捕捉ポンプの開放側に相当する面積を画定する平坦プレートの付着係数のN倍の付着係数を有し、Nは、4<N<16である、請求項1−5に記載の方法。
- 前記平坦プレートおよび前記第1および第2の真空ポンプの表面は、その上に堆積されるチタンのフィルムを含む、請求項1−5に記載の方法。
- 前記平坦プレートおよび前記第1および第2の真空ポンプの表面は、その上に堆積されるチタンのフィルムを含む、請求項6に記載の方法。
- 高速中性原子のビームを中性ビーム注入器から前記FRCプラズマの中に前記閉じ込めチャンバの平面を通して中央に向かってある角度で注入することによって、減衰を伴わずに、前記FRCを一定値またはほぼ一定値に維持するステップをさらに含む、請求項1−5および8に記載の方法。
- 高速中性原子のビームを中性ビーム注入器から前記FRCプラズマの中に前記閉じ込めチャンバの平面を通して中央に向かってある角度で注入することによって、減衰を伴わずに、前記FRCを一定値またはほぼ一定値に維持するステップをさらに含む、請求項6に記載の方法。
- 高速中性原子のビームを中性ビーム注入器から前記FRCプラズマの中に前記閉じ込めチャンバの平面を通して中央に向かってある角度で注入することによって、減衰を伴わずに、前記FRCを一定値またはほぼ一定値に維持するステップをさらに含む、請求項7に記載の方法。
- 前記閉じ込めチャンバの周りに延在する擬似直流コイルを用いて、前記閉じ込めチャンバ内で磁場を発生させ、前記閉じ込めチャンバの対向端部の周りに延在する擬似直流ミラーコイルを用いて、前記閉じ込めチャンバの対向端部内でミラー磁場を発生させるステップをさらに含む、請求項9に記載の方法。
- 前記閉じ込めチャンバの周りに延在する擬似直流コイルを用いて、前記閉じ込めチャンバ内で磁場を発生させ、前記閉じ込めチャンバの対向端部の周りに延在する擬似直流ミラーコイルを用いて、前記閉じ込めチャンバの対向端部内でミラー磁場を発生させるステップをさらに含む、請求項10および11に記載の方法。
- 前記FRCを形成するステップは、形成FRCを前記閉じ込めチャンバに結合される対向する第1および第2の形成区分内に形成し、前記形成FRCを前記第1および第2の形成区分から前記閉じ込めチャンバの平面を通して中央に向かって加速させるステップであって、前記2つの形成FRCが融合し、前記FRCを形成する、ステップを含む、請求項12に記載の方法。
- 前記FRCを形成するステップは、形成FRCを前記閉じ込めチャンバに結合される対向する第1および第2の形成区分内に形成し、前記形成FRCを前記第1および第2の形成区分から前記閉じ込めチャンバの平面を通して中央に向かって加速させるステップであって、前記2つの形成FRCが融合し、前記FRCを形成する、ステップを含む、請求項13に記載の方法。
- 前記FRCを形成するステップは、前記閉じ込めチャンバの平面を通して中央に向かって前記形成FRCを加速させながら、形成FRCを形成するステップと、形成FRCを形成し、次いで、前記閉じ込めチャンバの平面を通して中央に向かって前記形成FRCを加速させるステップとのうちの1つを含む、請求項14および15に記載の方法。
- 前記第1および第2の形成区分から前記閉じ込めチャンバの平面を通して中央に向かって前記形成FRCを加速させるステップは、前記第1および第2の形成区分から、前記閉じ込めチャンバと前記第1および第2の形成区分に介在する前記閉じ込めチャンバの反対端部に結合される第1および第2の内側ダイバータを通して、前記形成FRCを通過させるステップを含む、請求項14および15に記載の方法。
- 前記第1および第2の形成区分から第1および第2の内側ダイバータを通して前記形成FRCを通過させるステップは、前記形成FRCが前記第1および第2の形成区分から前記第1および第2の内側ダイバータを通して通過するにつれて、前記第1および第2の内側ダイバータを非アクティブ化するステップを含む、請求項17に記載の方法。
- 前記FRCの磁束表面を前記第1および第2の内側ダイバータの中に誘導するステップをさらに含む、請求項17に記載の方法。
- 前記FRCの磁束表面を前記形成区分の端部に結合される第1および第2の外側ダイバータの中に誘導するステップをさらに含む、請求項16に記載の方法。
- 前記形成区分およびダイバータの周りに延在する擬似直流コイルを用いて、磁場を前記形成区分および前記第1および第2の外側ダイバータ内で発生させるステップをさらに含む、請求項20に記載の方法。
- 前記形成区分およびダイバータの周りに延在する擬似直流コイルを用いて、磁場を前記形成区分および第1および第2の内側ダイバータ内で発生させるステップをさらに含む、請求項19に記載の方法。
- 擬似直流ミラーコイルを用いて、ミラー磁場を前記第1および第2の形成区分と前記第1および第2の外側ダイバータとの間に発生させるステップをさらに含む、請求項21に記載の方法。
- 前記形成区分と前記ダイバータとの間の狭窄部の周りに延在する擬似直流ミラープラグコイルを用いて、ミラープラグ磁場を前記第1および第2の形成区分と前記第1および第2の外側ダイバータとの間の狭窄部内で発生させるステップをさらに含む、請求項21に記載の方法。
- 擬似直流ミラーコイルを用いて、ミラー磁場を前記閉じ込めチャンバと前記第1および第2の内側ダイバータとの間に発生させ、擬似直流薄型ネッキングコイルを用いて、ネッキング磁場を前記第1および第2の形成区分と前記第1および第2の内側ダイバータとの間に発生させるステップをさらに含む、請求項22に記載の方法。
- 前記チャンバに結合されるサドルコイルを用いて、磁気双極場および磁気四重極場のうちの1つを前記チャンバ内で発生させるステップをさらに含む、請求項9に記載の方法。
- 前記チャンバに結合されるサドルコイルを用いて、磁気双極場および磁気四重極場のうちの1つを前記チャンバ内で発生させるステップをさらに含む、請求項10および11のいずれか1項に記載の方法。
- ゲッタリングシステムを用いて、前記チャンバの内部表面および第1および第2の形成区分の内部表面と、前記閉じ込めチャンバと前記第1および第2の形成区分に介在する第1および第2のダイバータと、前記第1および第2の形成区分に結合される第1および第2の外側ダイバータとを調整するステップをさらに含む、請求項9に記載の方法。
- 前記ゲッタリングシステムは、チタン堆積システムおよびリチウム堆積システムのうちの1つを含む、請求項28に記載の方法。
- プラズマを前記FRCの中に軸方向に搭載されるプラズマガンから軸方向に注入するステップをさらに含む、請求項9に記載の方法。
- 前記FRCの縁層内の半径方向電場プロファイルを制御するステップをさらに含む、請求項9に記載の方法。
- 前記FRCの縁層内の半径方向電場プロファイルを制御するステップは、バイアス電極を用いて、ある電位の分布を前記FRCの開磁束面群に印加するステップを含む、請求項31に記載の方法。
- コンパクトトロイド(CT)プラズマを第1および第2のCT注入器から前記FRCプラズマの中に前記閉じ込めチャンバの中央平面に向かってある角度で注入するステップをさらに含み、前記第1および第2のCT注入器は、前記閉じ込めチャンバの中央平面の対向側で直径方向に対向する、請求項1−5および8に記載の方法。
- コンパクトトロイド(CT)プラズマを第1および第2のCT注入器から前記FRCプラズマの中に前記閉じ込めチャンバの中央平面に向かってある角度で注入するステップをさらに含み、前記第1および第2のCT注入器は、前記閉じ込めチャンバの中央平面の対向側で直径方向に対向する、請求項6に記載の方法。
- コンパクトトロイド(CT)プラズマを第1および第2のCT注入器から前記FRCプラズマの中に前記閉じ込めチャンバの中央平面に向かってある角度で注入するステップをさらに含み、前記第1および第2のCT注入器は、前記閉じ込めチャンバの中央平面の対向側で直径方向に対向する、請求項7に記載の方法。
- コンパクトトロイド(CT)プラズマを第1および第2のCT注入器から前記FRCプラズマの中に前記閉じ込めチャンバの中央平面に向かってある角度で注入するステップをさらに含み、前記第1および第2のCT注入器は、前記閉じ込めチャンバの中央平面の対向側で直径方向に対向する、請求項9に記載の方法。
- 磁場反転配位(FRC)を伴う磁場を発生および維持するためのシステムであって、
閉じ込めチャンバと、
前記第1および第2の直径方向に対向する内側ダイバータに結合される第1および第2の直径方向に対向するFRC形成区分と、
前記第1および第2の形成区分に結合される第1および第2のダイバータであって、前記第1および第2のダイバータは、前記第1および第2のダイバータ内に位置付けられ、相互に対面する表面を伴う2つ以上の側と、開放側とを備える、第1および第2の捕捉真空ポンプを含み、前記第1および第2の捕捉真空ポンプは、前記第1および第2の捕捉ポンプの開放側に相当する面積を画定する平坦プレートの付着係数の4倍よりも大きい付着係数を有する、第1および第2のダイバータと、
複数のプラズマガン、1つ以上のバイアス電極、および第1および第2のミラープラグのうちの1つ以上のものであって、前記複数のプラズマガンは、前記第1および第2のダイバータ、前記第1および第2の形成区分、および前記閉じ込めチャンバに動作可能に結合される、第1および第2の軸方向プラズマガンを含み、前記1つ以上のバイアス電極は、前記閉じ込めチャンバ、前記第1および第2の形成区分、および前記第1および第2の外側ダイバータのうちの1つ以上のもの内に位置付けられ、前記第1および第2のミラープラグは、前記第1および第2の形成区分と前記第1および第2のダイバータとの間に位置付けられる、複数のプラズマガン、1つ以上のバイアス電極、および第1および第2のミラープラグのうちの1つ以上のものと、
前記閉じ込めチャンバおよび前記第1および第2のダイバータに結合される、ゲッタリングシステムと、
前記閉じ込めチャンバに結合され、前記閉じ込めチャンバの中央平面に向かって角度付けられる、複数の中性原子ビーム注入器と、
前記閉じ込めチャンバ、前記第1および第2の形成区分、および前記第1および第2のダイバータの周囲に位置付けられる、複数の擬似直流コイルと、前記第1および第2の形成区分と前記第1および第2のダイバータとの間に位置付けられる、第1および第2の擬似直流ミラーコイルのセットとを備える、磁気システムと
を備える、システム。 - 前記第1および第2の捕捉真空ポンプの2つ以上の側のうちの少なくとも1つは、個々の捕捉真空ポンプのアレイを備える、請求項37に記載のシステム。
- 前記個々の捕捉真空ポンプはそれぞれ、相互に対面する表面を伴う2つ以上の側と、開放側とを備え、前記個々の捕捉真空ポンプはそれぞれ、前記個々の捕捉真空ポンプのそれぞれの開放側に相当する面積を画定する平坦プレートの付着係数を上回る付着係数を有する、請求項38に記載のシステム。
- 前記個々の捕捉真空ポンプのそれぞれの2つ以上の側のうちの少なくとも1つは、個々の捕捉真空ポンプの第2のアレイを備える、請求項39に記載のシステム。
- 前記第2のアレイの個々の捕捉真空ポンプはそれぞれ、相互に対面する表面を伴う2つ以上の側と、開放側とを備え、前記第2のアレイの個々の捕捉真空ポンプはそれぞれ、前記第2のアレイの個々の捕捉真空ポンプのそれぞれの開放側に相当する面積を画定する平坦プレートの付着係数を上回る付着係数を有する、請求項40に記載のシステム。
- 前記第1および第2の捕捉真空ポンプは、前記第1および第2の捕捉ポンプの開放側に相当する面積を画定する平坦プレートの付着係数のN倍の付着係数を有し、Nは、4<N<16である、請求項37−41に記載のシステム。
- 前記平坦プレートおよび前記第1および第2の真空ポンプの表面は、その上に堆積されるチタンのフィルムを含む、請求項37−41に記載のシステム。
- 前記平坦プレートおよび前記第1および第2の真空ポンプの表面は、その上に堆積されるチタンのフィルムを含む、請求項42に記載のシステム。
- 前記システムは、FRCを発生させ、前記中性ビームが前記プラズマの中に注入されている間、減衰を伴わずに、前記FRCを維持するように構成される、請求項37−44に記載のシステム。
- 前記第1および第2のダイバータは、前記第1および第2の形成区分と前記閉じ込めチャンバに介在する、第1および第2の内側ダイバータを備え、前記第1および第2の形成区分に結合される、第1および第2の外側ダイバータをさらに備え、前記第1および第2の形成区分は、前記第1および第2の内側ダイバータと前記第1および第2の外側ダイバータに介在する、請求項37−45に記載のシステム。
- 前記第1および第2の内側および外側ダイバータ、前記第1および第2の形成区分、および前記閉じ込めチャンバに動作可能に結合される、第1および第2の軸方向プラズマガンをさらに備える、請求項46に記載のシステム。
- 前記閉じ込めチャンバに結合される2つ以上のサドルコイルをさらに備える、請求項47に記載のシステム。
- 前記形成区分は、FRCを発生させ、それを前記閉じ込めチャンバの中央平面に向かって平行移動させるためのモジュール化された形成システムを備える、請求項37に記載のシステム。
- バイアス電極は、前記閉じ込めチャンバ内に位置付けられ、開放磁力線に接触するための1つ以上の点電極と、前記閉じ込めチャンバと前記第1および第2の形成区分との間にあって、方位角的に対称方式において遠端束層を充電するための環状電極のセットと、前記第1および第2のダイバータ内に位置付けられ、複数の同心磁束層を充電するための複数の同心状にスタックされた電極と、開放磁束を捕らえるための前記プラズマガンのアノードとのうちの1つ以上のものを含む、請求項37に記載のシステム。
- 前記システムは、FRCを発生させ、中性原子ビームが前記FRCの中に注入されている間、減衰を伴わずに、前記FRCを一定値またはほぼ一定値に維持するように構成される、請求項54に記載のシステム。
- 前記第1および第2の半径方向磁場は、前記中央平面の周りで反対称である、請求項54に記載のシステム。
- 前記閉じ込めチャンバの中央平面に向かってある角度で前記閉じ込めチャンバに結合される、第1および第2のコンパクトトロイド(CT)注入器をさらに備え、前記第1および第2のCT注入器は、前記閉じ込めチャンバの中央平面の対向側で直径方向に対向する、請求項37−52に記載のシステム。
- 相互に対面する表面を伴う2つ以上の側と、開放側とを備える捕捉真空ポンプであって、前記捕捉ポンプの開放側に相当する面積を画定する平坦プレートの付着係数の4倍よりも大きい付着係数を有する、捕捉真空ポンプ。
- 前記第1および第2の捕捉真空ポンプの2つ以上の側のうちの少なくとも1つは、個々の捕捉真空ポンプのアレイを備える、請求項54に記載のシステム。
- 前記個々の捕捉真空ポンプはそれぞれ、相互に対面する表面を伴う2つ以上の側と、開放側とを備え、前記個々の捕捉真空ポンプはそれぞれ、前記個々の捕捉真空ポンプのそれぞれの開放側に相当する面積を画定する平坦プレートの付着係数を上回る付着係数を有する、請求項55に記載の捕捉真空ポンプ。
- 前記個々の捕捉真空ポンプのそれぞれの2つ以上の側のうちの少なくとも1つは、個々の捕捉真空ポンプの第2のアレイを備える、請求項56に記載の捕捉真空ポンプ。
- 前記第2のアレイの個々の捕捉真空ポンプはそれぞれ、相互に対面する表面を伴う2つ以上の側と、開放側とを備え、前記第2のアレイの個々の捕捉真空ポンプはそれぞれ、前記第2のアレイの個々の捕捉真空ポンプのそれぞれの開放側に相当する面積を画定する平坦プレートの付着係数を上回る付着係数を有する、請求項57に記載の捕捉真空ポンプ。
- 前記第1および第2の捕捉真空ポンプは、前記第1および第2の捕捉ポンプの開放側に相当する面積を画定する平坦プレートの付着係数のN倍の付着係数を有し、Nは、4<N<16である、請求項54−58に記載の捕捉真空ポンプ。
- 前記平坦プレートおよび前記第1および第2の真空ポンプの表面は、その上に堆積されるチタンのフィルムを含む、請求項54−58に記載の捕捉真空ポンプ。
- 前記平坦プレートおよび前記第1および第2の真空ポンプの表面は、その上に堆積されるチタンのフィルムを含む、請求項59に記載の捕捉真空ポンプ。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2022090168A JP2022107774A (ja) | 2016-11-04 | 2022-06-02 | マルチスケール捕捉タイプ真空ポンピングを用いた高性能frcの改良された持続性のためのシステムおよび方法 |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US201662418119P | 2016-11-04 | 2016-11-04 | |
US62/418,119 | 2016-11-04 | ||
PCT/US2017/060255 WO2018085798A1 (en) | 2016-11-04 | 2017-11-06 | Systems and methods for improved sustainment of a high performance frc with multi-scaled capture type vacuum pumping |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2022090168A Division JP2022107774A (ja) | 2016-11-04 | 2022-06-02 | マルチスケール捕捉タイプ真空ポンピングを用いた高性能frcの改良された持続性のためのシステムおよび方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2019537001A true JP2019537001A (ja) | 2019-12-19 |
JP7365693B2 JP7365693B2 (ja) | 2023-10-20 |
Family
ID=62076452
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2019522247A Active JP7365693B2 (ja) | 2016-11-04 | 2017-11-06 | マルチスケール捕捉タイプ真空ポンピングを用いた高性能frcの改良された持続性のためのシステムおよび方法 |
JP2022090168A Pending JP2022107774A (ja) | 2016-11-04 | 2022-06-02 | マルチスケール捕捉タイプ真空ポンピングを用いた高性能frcの改良された持続性のためのシステムおよび方法 |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2022090168A Pending JP2022107774A (ja) | 2016-11-04 | 2022-06-02 | マルチスケール捕捉タイプ真空ポンピングを用いた高性能frcの改良された持続性のためのシステムおよび方法 |
Country Status (15)
Country | Link |
---|---|
US (3) | US11211172B2 (ja) |
EP (1) | EP3535763B1 (ja) |
JP (2) | JP7365693B2 (ja) |
KR (1) | KR20190073544A (ja) |
CN (1) | CN110100287B (ja) |
AU (2) | AU2017355652B2 (ja) |
BR (1) | BR112019009034A2 (ja) |
CA (1) | CA3041862A1 (ja) |
EA (1) | EA201991117A1 (ja) |
IL (1) | IL266359B2 (ja) |
MX (1) | MX2019005262A (ja) |
SA (1) | SA519401705B1 (ja) |
SG (1) | SG11201903447WA (ja) |
UA (1) | UA127712C2 (ja) |
WO (1) | WO2018085798A1 (ja) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11515050B1 (en) * | 2019-11-22 | 2022-11-29 | X Development Llc | Mitigating plasma instability |
US11049619B1 (en) * | 2019-12-23 | 2021-06-29 | Lockheed Martin Corporation | Plasma creation and heating via magnetic reconnection in an encapsulated linear ring cusp |
MX2022008660A (es) * | 2020-01-13 | 2022-08-10 | Tae Tech Inc | Sistema y metodos para formar y mantener plasma de configuracion de campo invertido (frc) de alta energia y temperatura por medio de fusion de spheromak e inyeccon de haz neutro. |
AU2021336896A1 (en) * | 2020-09-02 | 2023-04-13 | Avalanche Energy Designs, Inc. | Orbital confinement fusion device |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH02191877A (ja) * | 1989-01-20 | 1990-07-27 | Hitachi Ltd | クライオポンプ |
US5083445A (en) * | 1989-01-20 | 1992-01-28 | Hitachi, Ltd. | Cryopump |
US6330801B1 (en) * | 1999-06-11 | 2001-12-18 | Francis J. Whelan | Method and system for increasing cryopump capacity |
JP2015502532A (ja) * | 2011-11-14 | 2015-01-22 | ザ リージェンツ オブ ザ ユニバーシティ オブ カリフォルニア | 高性能frcを形成し維持するシステムおよび方法 |
WO2016070126A1 (en) * | 2014-10-30 | 2016-05-06 | Tri Alpha Energy, Inc. | Systems and methods for forming and maintaining a high performance frc |
Family Cites Families (159)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3120470A (en) | 1954-04-13 | 1964-02-04 | Donald H Imhoff | Method of producing neutrons |
US3170841A (en) | 1954-07-14 | 1965-02-23 | Richard F Post | Pyrotron thermonuclear reactor and process |
US2855696A (en) * | 1957-04-15 | 1958-10-14 | Malcolm R Griswold | Magnetic compasses |
US3071525A (en) | 1958-08-19 | 1963-01-01 | Nicholas C Christofilos | Method and apparatus for producing thermonuclear reactions |
US3036963A (en) | 1960-01-25 | 1962-05-29 | Nicholas C Christofilos | Method and apparatus for injecting and trapping electrons in a magnetic field |
NL287706A (ja) | 1960-02-26 | |||
US3182213A (en) | 1961-06-01 | 1965-05-04 | Avco Corp | Magnetohydrodynamic generator |
US3132996A (en) | 1962-12-10 | 1964-05-12 | William R Baker | Contra-rotating plasma system |
US3339106A (en) * | 1965-05-28 | 1967-08-29 | Canadian Patents Dev | Ionization vacuum pump of the orbitron type having a porous annular grid electrode |
US3386883A (en) | 1966-05-13 | 1968-06-04 | Itt | Method and apparatus for producing nuclear-fusion reactions |
US3530036A (en) | 1967-12-15 | 1970-09-22 | Itt | Apparatus for generating fusion reactions |
US3530497A (en) | 1968-04-24 | 1970-09-22 | Itt | Apparatus for generating fusion reactions |
US3527977A (en) | 1968-06-03 | 1970-09-08 | Atomic Energy Commission | Moving electrons as an aid to initiating reactions in thermonuclear devices |
US3577317A (en) | 1969-05-01 | 1971-05-04 | Atomic Energy Commission | Controlled fusion reactor |
US3621310A (en) | 1969-05-30 | 1971-11-16 | Hitachi Ltd | Duct for magnetohydrodynamic thermal to electrical energy conversion apparatus |
US3664921A (en) | 1969-10-16 | 1972-05-23 | Atomic Energy Commission | Proton e-layer astron for producing controlled fusion reactions |
AT340010B (de) | 1970-05-21 | 1977-11-25 | Nowak Karl Ing | Einrichtung zur erzielung einer nuklearen reaktion mittels kunstlichem plasma vorzugsweise zur kontrollierten atomkernfusion |
US3668065A (en) | 1970-09-15 | 1972-06-06 | Atomic Energy Commission | Apparatus for the conversion of high temperature plasma energy into electrical energy |
US3663362A (en) | 1970-12-22 | 1972-05-16 | Atomic Energy Commission | Controlled fusion reactor |
LU65432A1 (ja) | 1972-05-29 | 1972-08-24 | ||
US4233537A (en) | 1972-09-18 | 1980-11-11 | Rudolf Limpaecher | Multicusp plasma containment apparatus |
US3811794A (en) * | 1972-11-22 | 1974-05-21 | Bell Telephone Labor Inc | Ultrahigh vacuum sublimation pump |
US4182650A (en) | 1973-05-17 | 1980-01-08 | Fischer Albert G | Pulsed nuclear fusion reactor |
US5041760A (en) | 1973-10-24 | 1991-08-20 | Koloc Paul M | Method and apparatus for generating and utilizing a compound plasma configuration |
US5015432A (en) | 1973-10-24 | 1991-05-14 | Koloc Paul M | Method and apparatus for generating and utilizing a compound plasma configuration |
US4010396A (en) | 1973-11-26 | 1977-03-01 | Kreidl Chemico Physical K.G. | Direct acting plasma accelerator |
FR2270733A1 (en) | 1974-02-08 | 1975-12-05 | Thomson Csf | Magnetic field vehicle detector unit - receiver detects changes produced in an emitted magnetic field |
US4098643A (en) | 1974-07-09 | 1978-07-04 | The United States Of America As Represented By The United States Department Of Energy | Dual-function magnetic structure for toroidal plasma devices |
US4057462A (en) | 1975-02-26 | 1977-11-08 | The United States Of America As Represented By The United States Energy Research And Development Administration | Radio frequency sustained ion energy |
US4054846A (en) | 1975-04-02 | 1977-10-18 | Bell Telephone Laboratories, Incorporated | Transverse-excitation laser with preionization |
US4065351A (en) | 1976-03-25 | 1977-12-27 | The United States Of America As Represented By The United States Energy Research And Development Administration | Particle beam injection system |
US4166760A (en) | 1977-10-04 | 1979-09-04 | The United States Of America As Represented By The United States Department Of Energy | Plasma confinement apparatus using solenoidal and mirror coils |
US4347621A (en) | 1977-10-25 | 1982-08-31 | Environmental Institute Of Michigan | Trochoidal nuclear fusion reactor |
US4303467A (en) | 1977-11-11 | 1981-12-01 | Branson International Plasma Corporation | Process and gas for treatment of semiconductor devices |
US4274919A (en) | 1977-11-14 | 1981-06-23 | General Atomic Company | Systems for merging of toroidal plasmas |
US4202725A (en) | 1978-03-08 | 1980-05-13 | Jarnagin William S | Converging beam fusion system |
US4189346A (en) | 1978-03-16 | 1980-02-19 | Jarnagin William S | Operationally confined nuclear fusion system |
US4246067A (en) | 1978-08-30 | 1981-01-20 | Linlor William I | Thermonuclear fusion system |
US4267488A (en) | 1979-01-05 | 1981-05-12 | Trisops, Inc. | Containment of plasmas at thermonuclear temperatures |
US4397810A (en) | 1979-03-16 | 1983-08-09 | Energy Profiles, Inc. | Compressed beam directed particle nuclear energy generator |
US4314879A (en) | 1979-03-22 | 1982-02-09 | The United States Of America As Represented By The United States Department Of Energy | Production of field-reversed mirror plasma with a coaxial plasma gun |
US4416845A (en) | 1979-08-02 | 1983-11-22 | Energy Profiles, Inc. | Control for orbiting charged particles |
JPS5829568B2 (ja) | 1979-12-07 | 1983-06-23 | 岩崎通信機株式会社 | 2ビ−ム1電子銃陰極線管 |
US4548782A (en) | 1980-03-27 | 1985-10-22 | The United States Of America As Represented By The Secretary Of The Navy | Tokamak plasma heating with intense, pulsed ion beams |
US4390494A (en) | 1980-04-07 | 1983-06-28 | Energy Profiles, Inc. | Directed beam fusion reaction with ion spin alignment |
US4350927A (en) | 1980-05-23 | 1982-09-21 | The United States Of America As Represented By The United States Department Of Energy | Means for the focusing and acceleration of parallel beams of charged particles |
US4317057A (en) | 1980-06-16 | 1982-02-23 | Bazarov Georgy P | Channel of series-type magnetohydrodynamic generator |
US4434130A (en) | 1980-11-03 | 1984-02-28 | Energy Profiles, Inc. | Electron space charge channeling for focusing ion beams |
US4584160A (en) | 1981-09-30 | 1986-04-22 | Tokyo Shibaura Denki Kabushiki Kaisha | Plasma devices |
US4543231A (en) | 1981-12-14 | 1985-09-24 | Ga Technologies Inc. | Multiple pinch method and apparatus for producing average magnetic well in plasma confinement |
US4560528A (en) | 1982-04-12 | 1985-12-24 | Ga Technologies Inc. | Method and apparatus for producing average magnetic well in a reversed field pinch |
JPH06105597B2 (ja) | 1982-08-30 | 1994-12-21 | 株式会社日立製作所 | マイクロ波プラズマ源 |
US4512721B1 (en) * | 1982-08-31 | 2000-03-07 | Babcock & Wilcox Co | Vacuum insulated steam injection tubing |
JPS5960899A (ja) | 1982-09-29 | 1984-04-06 | 株式会社東芝 | イオン・エネルギ−回収装置 |
US4618470A (en) | 1982-12-01 | 1986-10-21 | Austin N. Stanton | Magnetic confinement nuclear energy generator |
US4483737A (en) | 1983-01-31 | 1984-11-20 | University Of Cincinnati | Method and apparatus for plasma etching a substrate |
US4601871A (en) | 1983-05-17 | 1986-07-22 | The United States Of America As Represented By The United States Department Of Energy | Steady state compact toroidal plasma production |
USH235H (en) | 1983-09-26 | 1987-03-03 | The United States Of America As Represented By The United States Department Of Energy | In-situ determination of energy species yields of intense particle beams |
US4650631A (en) | 1984-05-14 | 1987-03-17 | The University Of Iowa Research Foundation | Injection, containment and heating device for fusion plasmas |
US4639348A (en) | 1984-11-13 | 1987-01-27 | Jarnagin William S | Recyclotron III, a recirculating plasma fusion system |
US4615755A (en) | 1985-08-07 | 1986-10-07 | The Perkin-Elmer Corporation | Wafer cooling and temperature control for a plasma etching system |
US4826646A (en) | 1985-10-29 | 1989-05-02 | Energy/Matter Conversion Corporation, Inc. | Method and apparatus for controlling charged particles |
US4630939A (en) | 1985-11-15 | 1986-12-23 | The Dow Chemical Company | Temperature measuring apparatus |
SE450060B (sv) | 1985-11-27 | 1987-06-01 | Rolf Lennart Stenbacka | Forfarande for att astadkomma fusionsreaktioner, samt anordning for fusionsreaktor |
US4687616A (en) | 1986-01-15 | 1987-08-18 | The United States Of America As Represented By The United States Department Of Energy | Method and apparatus for preventing cyclotron breakdown in partially evacuated waveguide |
US4894199A (en) | 1986-06-11 | 1990-01-16 | Norman Rostoker | Beam fusion device and method |
DK556887D0 (da) | 1987-10-23 | 1987-10-23 | Risoe Forskningscenter | Fremgangsmaade til fremstilling af en pille og injektor til injektion af saadan pille |
DE69026923T2 (de) | 1990-01-22 | 1996-11-14 | Werner K Steudtner | Kernfusionsreaktor |
US5160695A (en) | 1990-02-08 | 1992-11-03 | Qed, Inc. | Method and apparatus for creating and controlling nuclear fusion reactions |
US5311028A (en) | 1990-08-29 | 1994-05-10 | Nissin Electric Co., Ltd. | System and method for producing oscillating magnetic fields in working gaps useful for irradiating a surface with atomic and molecular ions |
US5122662A (en) | 1990-10-16 | 1992-06-16 | Schlumberger Technology Corporation | Circular induction accelerator for borehole logging |
US5206516A (en) | 1991-04-29 | 1993-04-27 | International Business Machines Corporation | Low energy, steered ion beam deposition system having high current at low pressure |
US6488807B1 (en) | 1991-06-27 | 2002-12-03 | Applied Materials, Inc. | Magnetic confinement in a plasma reactor having an RF bias electrode |
US5207760A (en) | 1991-07-23 | 1993-05-04 | Trw Inc. | Multi-megawatt pulsed inductive thruster |
US5323442A (en) | 1992-02-28 | 1994-06-21 | Ruxam, Inc. | Microwave X-ray source and methods of use |
US5301511A (en) * | 1992-06-12 | 1994-04-12 | Helix Technology Corporation | Cryopump and cryopanel having frost concentrating device |
US5502354A (en) | 1992-07-31 | 1996-03-26 | Correa; Paulo N. | Direct current energized pulse generator utilizing autogenous cyclical pulsed abnormal glow discharges |
RU2056649C1 (ru) | 1992-10-29 | 1996-03-20 | Сергей Николаевич Столбов | Способ управляемого термоядерного синтеза и управляемый термоядерный реактор для его осуществления |
US5339336A (en) | 1993-02-17 | 1994-08-16 | Cornell Research Foundation, Inc. | High current ion ring accelerator |
FR2705584B1 (fr) | 1993-05-26 | 1995-06-30 | Commissariat Energie Atomique | Dispositif de séparation isotopique par résonance cyclotronique ionique. |
US5473165A (en) | 1993-11-16 | 1995-12-05 | Stinnett; Regan W. | Method and apparatus for altering material |
US5557172A (en) | 1993-12-21 | 1996-09-17 | Sumitomo Heavy Industries, Ltd. | Plasma beam generating method and apparatus which can generate a high-power plasma beam |
US5537005A (en) | 1994-05-13 | 1996-07-16 | Hughes Aircraft | High-current, low-pressure plasma-cathode electron gun |
US5420425A (en) | 1994-05-27 | 1995-05-30 | Finnigan Corporation | Ion trap mass spectrometer system and method |
US5656519A (en) | 1995-02-14 | 1997-08-12 | Nec Corporation | Method for manufacturing salicide semiconductor device |
US5653811A (en) | 1995-07-19 | 1997-08-05 | Chan; Chung | System for the plasma treatment of large area substrates |
US20040213368A1 (en) | 1995-09-11 | 2004-10-28 | Norman Rostoker | Fusion reactor that produces net power from the p-b11 reaction |
US20020080904A1 (en) * | 1995-09-11 | 2002-06-27 | The Regents Of The University Of California | Magnetic and electrostatic confinement of plasma in a field reversed configuration |
AU7374896A (en) | 1995-09-25 | 1997-04-17 | Paul M. Koloc | A compound plasma configuration, and method and apparatus for generating a compound plasma configuration |
JP3385327B2 (ja) | 1995-12-13 | 2003-03-10 | 株式会社日立製作所 | 三次元四重極質量分析装置 |
US5764715A (en) | 1996-02-20 | 1998-06-09 | Sandia Corporation | Method and apparatus for transmutation of atomic nuclei |
KR100275597B1 (ko) | 1996-02-23 | 2000-12-15 | 나카네 히사시 | 플리즈마처리장치 |
US6000360A (en) | 1996-07-03 | 1999-12-14 | Tokyo Electron Limited | Plasma processing apparatus |
US5811201A (en) | 1996-08-16 | 1998-09-22 | Southern California Edison Company | Power generation system utilizing turbine and fuel cell |
US5923716A (en) | 1996-11-07 | 1999-07-13 | Meacham; G. B. Kirby | Plasma extrusion dynamo and methods related thereto |
JP3582287B2 (ja) | 1997-03-26 | 2004-10-27 | 株式会社日立製作所 | エッチング装置 |
JPH10335096A (ja) | 1997-06-03 | 1998-12-18 | Hitachi Ltd | プラズマ処理装置 |
US6894446B2 (en) | 1997-10-17 | 2005-05-17 | The Regents Of The University Of California | Controlled fusion in a field reversed configuration and direct energy conversion |
US6628740B2 (en) * | 1997-10-17 | 2003-09-30 | The Regents Of The University Of California | Controlled fusion in a field reversed configuration and direct energy conversion |
US6271529B1 (en) | 1997-12-01 | 2001-08-07 | Ebara Corporation | Ion implantation with charge neutralization |
US6390019B1 (en) | 1998-06-11 | 2002-05-21 | Applied Materials, Inc. | Chamber having improved process monitoring window |
FR2780499B1 (fr) | 1998-06-25 | 2000-08-18 | Schlumberger Services Petrol | Dispositifs de caracterisation de l'ecoulement d'un fluide polyphasique |
US6335535B1 (en) | 1998-06-26 | 2002-01-01 | Nissin Electric Co., Ltd | Method for implanting negative hydrogen ion and implanting apparatus |
US6255648B1 (en) | 1998-10-16 | 2001-07-03 | Applied Automation, Inc. | Programmed electron flux |
US6248251B1 (en) | 1999-02-19 | 2001-06-19 | Tokyo Electron Limited | Apparatus and method for electrostatically shielding an inductively coupled RF plasma source and facilitating ignition of a plasma |
US6755086B2 (en) | 1999-06-17 | 2004-06-29 | Schlumberger Technology Corporation | Flow meter for multi-phase mixtures |
US6322706B1 (en) | 1999-07-14 | 2001-11-27 | Archimedes Technology Group, Inc. | Radial plasma mass filter |
US6452168B1 (en) | 1999-09-15 | 2002-09-17 | Ut-Battelle, Llc | Apparatus and methods for continuous beam fourier transform mass spectrometry |
DE10060002B4 (de) | 1999-12-07 | 2016-01-28 | Komatsu Ltd. | Vorrichtung zur Oberflächenbehandlung |
US6593539B1 (en) | 2000-02-25 | 2003-07-15 | George Miley | Apparatus and methods for controlling charged particles |
US6408052B1 (en) | 2000-04-06 | 2002-06-18 | Mcgeoch Malcolm W. | Z-pinch plasma X-ray source using surface discharge preionization |
US6593570B2 (en) | 2000-05-24 | 2003-07-15 | Agilent Technologies, Inc. | Ion optic components for mass spectrometers |
US6664740B2 (en) | 2001-02-01 | 2003-12-16 | The Regents Of The University Of California | Formation of a field reversed configuration for magnetic and electrostatic confinement of plasma |
CN101018444B (zh) * | 2001-02-01 | 2011-01-26 | 加州大学评议会 | 场反向配置中的等离子体的磁和静电约束 |
CZ305458B6 (cs) * | 2001-02-01 | 2015-10-07 | The Regents Of The University Of California | Přístroj a způsob pro vytváření magnetického pole s topologií s obráceným polem |
US6611106B2 (en) | 2001-03-19 | 2003-08-26 | The Regents Of The University Of California | Controlled fusion in a field reversed configuration and direct energy conversion |
GB0131097D0 (en) | 2001-12-31 | 2002-02-13 | Applied Materials Inc | Ion sources |
US6923625B2 (en) * | 2002-01-07 | 2005-08-02 | Integrated Sensing Systems, Inc. | Method of forming a reactive material and article formed thereby |
US6911649B2 (en) | 2002-06-21 | 2005-06-28 | Battelle Memorial Institute | Particle generator |
US7313922B2 (en) * | 2004-09-24 | 2008-01-01 | Brooks Automation, Inc. | High conductance cryopump for type III gas pumping |
US8031824B2 (en) | 2005-03-07 | 2011-10-04 | Regents Of The University Of California | Inductive plasma source for plasma electric generation system |
CA2600421C (en) | 2005-03-07 | 2016-05-03 | The Regents Of The University Of California | Plasma electric generation system |
SI1856702T1 (sl) | 2005-03-07 | 2012-11-30 | Univ California | Plazemski sistem za generiranje elektrike |
US9607719B2 (en) * | 2005-03-07 | 2017-03-28 | The Regents Of The University Of California | Vacuum chamber for plasma electric generation system |
US7115887B1 (en) | 2005-03-15 | 2006-10-03 | The United States Of America As Represented By The United States Department Of Energy | Method for generating extreme ultraviolet with mather-type plasma accelerators for use in Extreme Ultraviolet Lithography |
US20080226011A1 (en) | 2005-10-04 | 2008-09-18 | Barnes Daniel C | Plasma Centrifuge Heat Engine Beam Fusion Reactor |
CN101320599A (zh) | 2007-06-06 | 2008-12-10 | 高晓达 | 通过极限环螺旋扇形注入区的束流连续注入方法 |
US8368636B2 (en) | 2007-09-21 | 2013-02-05 | Point Somee Limited Liability Company | Regulation of wavelength shift and perceived color of solid state lighting with intensity variation |
GB2475634B (en) | 2008-09-18 | 2013-04-10 | Craftsmen Corp E | Configurable LED driver/dimmer for solid state lighting applications |
WO2010089670A1 (en) | 2009-02-04 | 2010-08-12 | General Fusion, Inc. | Systems and methods for compressing plasma |
US8569956B2 (en) | 2009-06-04 | 2013-10-29 | Point Somee Limited Liability Company | Apparatus, method and system for providing AC line power to lighting devices |
US8193738B2 (en) | 2009-08-07 | 2012-06-05 | Phihong Technology Co., Ltd. | Dimmable LED device with low ripple current and driving circuit thereof |
US20110142185A1 (en) | 2009-12-16 | 2011-06-16 | Woodruff Scientific, Inc. | Device for compressing a compact toroidal plasma for use as a neutron source and fusion reactor |
US8760078B2 (en) | 2010-10-04 | 2014-06-24 | Earl W. McCune, Jr. | Power conversion and control systems and methods for solid-state lighting |
US8587215B2 (en) | 2011-05-05 | 2013-11-19 | General Electric Company | Self-dimming OLED lighting system and control method |
CN103428953B (zh) | 2012-05-17 | 2016-03-16 | 昂宝电子(上海)有限公司 | 用于利用系统控制器进行调光控制的系统和方法 |
CN104067349A (zh) * | 2011-11-09 | 2014-09-24 | B.弗里兹 | 用于将等离子体压缩到高能态的方法和设备 |
US20130249431A1 (en) | 2012-03-05 | 2013-09-26 | Luxera, Inc. | Dimmable Hybrid Adapter for a Solid State Lighting System, Apparatus and Method |
US9078327B2 (en) | 2012-03-05 | 2015-07-07 | Luxera, Inc. | Apparatus and method for dimming signal generation for a distributed solid state lighting system |
US9767925B2 (en) | 2012-03-23 | 2017-09-19 | The Trustees Of Princeton University | Method, apparatus, and system to reduce neutron production in small clean fusion reactors |
CN104813743B (zh) | 2012-11-06 | 2017-08-18 | 飞利浦照明控股有限公司 | 电路布置、led灯、照明系统和利用该电路布置的操作方法 |
CN103024994B (zh) | 2012-11-12 | 2016-06-01 | 昂宝电子(上海)有限公司 | 使用triac调光器的调光控制系统和方法 |
US9192002B2 (en) | 2012-11-20 | 2015-11-17 | Isine, Inc. | AC/DC conversion bypass power delivery |
WO2014114986A1 (en) | 2013-01-25 | 2014-07-31 | L Ferreira Jr Moacir | Multiphase nuclear fusion reactor |
BR112015019181B1 (pt) | 2013-02-11 | 2022-07-26 | The Regents Of The University Of California | Circuito multiplicador de tensão |
US9591740B2 (en) | 2013-03-08 | 2017-03-07 | Tri Alpha Energy, Inc. | Negative ion-based neutral beam injector |
CN109949948A (zh) | 2013-09-24 | 2019-06-28 | 阿尔法能源技术公司 | 用于形成和保持高性能frc的系统和方法 |
US10145371B2 (en) * | 2013-10-22 | 2018-12-04 | Taiwan Semiconductor Manufacturing Co., Ltd. | Ultra high vacuum cryogenic pumping apparatus with nanostructure material |
CN104751902A (zh) | 2013-12-25 | 2015-07-01 | 核工业西南物理研究院 | 一种用于核聚变真空系统强力吸气混合丝 |
US9685308B2 (en) * | 2014-06-26 | 2017-06-20 | Saes Getters S.P.A. | Getter pumping system |
EP3167449A4 (en) | 2014-07-07 | 2018-02-28 | Intel Corporation | Spin-transfer torque memory (sttm) devices having magnetic contacts |
CN104066254B (zh) | 2014-07-08 | 2017-01-04 | 昂宝电子(上海)有限公司 | 使用triac调光器进行智能调光控制的系统和方法 |
KR20160014379A (ko) | 2014-07-29 | 2016-02-11 | 주식회사 실리콘웍스 | 조명 장치 |
JP6133821B2 (ja) * | 2014-08-08 | 2017-05-24 | 有限会社真空実験室 | 非蒸発型ゲッター及び非蒸発型ゲッターポンプ |
KR102257718B1 (ko) | 2014-10-01 | 2021-05-28 | 매그나칩 반도체 유한회사 | 발광 다이오드 구동 회로 및 이를 포함하는 발광 다이오드 조명 장치 |
TWI629916B (zh) | 2014-12-10 | 2018-07-11 | 隆達電子股份有限公司 | 發光裝置與發光二極體電路 |
CN105185417B (zh) * | 2015-09-29 | 2017-05-10 | 北京应用物理与计算数学研究所 | 磁化等离子体聚变点火装置 |
EA038690B1 (ru) | 2015-11-13 | 2021-10-05 | Таэ Текнолоджиз, Инк. | Способ и система для генерации и стабилизации плазмы конфигурации с обращенным полем (frc) |
US10291130B2 (en) | 2016-06-02 | 2019-05-14 | Semiconductor Components Industries, Llc | System and method for controlling output signal of power converter |
-
2017
- 2017-11-06 KR KR1020197015952A patent/KR20190073544A/ko not_active Application Discontinuation
- 2017-11-06 JP JP2019522247A patent/JP7365693B2/ja active Active
- 2017-11-06 IL IL266359A patent/IL266359B2/en unknown
- 2017-11-06 UA UAA201906091A patent/UA127712C2/uk unknown
- 2017-11-06 AU AU2017355652A patent/AU2017355652B2/en active Active
- 2017-11-06 EA EA201991117A patent/EA201991117A1/ru unknown
- 2017-11-06 BR BR112019009034A patent/BR112019009034A2/pt active Search and Examination
- 2017-11-06 CA CA3041862A patent/CA3041862A1/en active Pending
- 2017-11-06 EP EP17867631.8A patent/EP3535763B1/en active Active
- 2017-11-06 WO PCT/US2017/060255 patent/WO2018085798A1/en active Application Filing
- 2017-11-06 SG SG11201903447WA patent/SG11201903447WA/en unknown
- 2017-11-06 MX MX2019005262A patent/MX2019005262A/es unknown
- 2017-11-06 CN CN201780081581.8A patent/CN110100287B/zh active Active
-
2019
- 2019-04-30 US US16/399,396 patent/US11211172B2/en active Active
- 2019-05-01 SA SA519401705A patent/SA519401705B1/ar unknown
-
2021
- 2021-11-08 US US17/521,449 patent/US11482343B2/en active Active
-
2022
- 2022-06-02 JP JP2022090168A patent/JP2022107774A/ja active Pending
- 2022-10-13 US US17/965,071 patent/US11894150B2/en active Active
-
2023
- 2023-02-28 AU AU2023201218A patent/AU2023201218A1/en active Pending
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH02191877A (ja) * | 1989-01-20 | 1990-07-27 | Hitachi Ltd | クライオポンプ |
US5083445A (en) * | 1989-01-20 | 1992-01-28 | Hitachi, Ltd. | Cryopump |
US6330801B1 (en) * | 1999-06-11 | 2001-12-18 | Francis J. Whelan | Method and system for increasing cryopump capacity |
JP2015502532A (ja) * | 2011-11-14 | 2015-01-22 | ザ リージェンツ オブ ザ ユニバーシティ オブ カリフォルニア | 高性能frcを形成し維持するシステムおよび方法 |
WO2016070126A1 (en) * | 2014-10-30 | 2016-05-06 | Tri Alpha Energy, Inc. | Systems and methods for forming and maintaining a high performance frc |
Non-Patent Citations (2)
Title |
---|
佐保典英 他: "パラレルルーバブラインド形クライオポンプの排気特性", 日本機械学会論文集(B編), vol. 58巻、556号, JPN7022004592, December 1992 (1992-12-01), pages 252 - 258, ISSN: 0004884860 * |
佐保典英 他: "パラレルルーバブラインド形クライオポンプの排気速度", 日本機械学会論文集(B編), vol. 59巻、561号, JPN7022004593, May 1993 (1993-05-01), pages 218 - 223, ISSN: 0004884861 * |
Also Published As
Publication number | Publication date |
---|---|
EP3535763B1 (en) | 2023-08-16 |
EA201991117A1 (ru) | 2019-09-30 |
WO2018085798A1 (en) | 2018-05-11 |
AU2017355652A1 (en) | 2019-05-23 |
US11482343B2 (en) | 2022-10-25 |
SA519401705B1 (ar) | 2023-02-19 |
CN110100287B (zh) | 2024-05-17 |
AU2017355652B2 (en) | 2022-12-15 |
CN110100287A (zh) | 2019-08-06 |
MX2019005262A (es) | 2019-06-24 |
EP3535763A4 (en) | 2020-05-13 |
US11211172B2 (en) | 2021-12-28 |
BR112019009034A2 (pt) | 2019-07-09 |
US20220208398A1 (en) | 2022-06-30 |
SG11201903447WA (en) | 2019-05-30 |
KR20190073544A (ko) | 2019-06-26 |
EP3535763A1 (en) | 2019-09-11 |
IL266359B1 (en) | 2023-07-01 |
JP7365693B2 (ja) | 2023-10-20 |
IL266359B2 (en) | 2023-11-01 |
UA127712C2 (uk) | 2023-12-13 |
AU2023201218A1 (en) | 2023-04-06 |
CA3041862A1 (en) | 2018-05-11 |
US20190318832A1 (en) | 2019-10-17 |
US20230178258A1 (en) | 2023-06-08 |
US11894150B2 (en) | 2024-02-06 |
JP2022107774A (ja) | 2022-07-22 |
IL266359A (en) | 2019-06-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP7175037B2 (ja) | 高性能frcを形成し維持するシステムおよび方法 | |
JP6738109B2 (ja) | 高性能frcを形成し維持するシステムおよび方法 | |
AU2019202825B2 (en) | Systems and methods for forming and maintaining a high performance frc | |
JP7207781B2 (ja) | Frcプラズマ位置安定性のため方法 | |
JP7266880B2 (ja) | 高性能frcの改良された持続性および高性能frcにおける高調高速波電子加熱のためのシステムおよび方法 | |
JP2022107774A (ja) | マルチスケール捕捉タイプ真空ポンピングを用いた高性能frcの改良された持続性のためのシステムおよび方法 | |
JP2019537002A (ja) | 調整可能ビームエネルギーを伴う中性ビーム注入器を利用する高性能frc上昇エネルギーの改良された持続性のためのシステムおよび方法 | |
EA042626B1 (ru) | Системы и способы улучшенного поддержания высокоэффективной конфигурации с обращенным полем с вакуумированием с захватом многомасштабного типа | |
NZ717865B2 (en) | Systems and methods for forming and maintaining a high performance frc |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20201102 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20211020 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20211202 |
|
A601 | Written request for extension of time |
Free format text: JAPANESE INTERMEDIATE CODE: A601 Effective date: 20220301 |
|
A601 | Written request for extension of time |
Free format text: JAPANESE INTERMEDIATE CODE: A601 Effective date: 20220428 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20220602 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20220930 |
|
A601 | Written request for extension of time |
Free format text: JAPANESE INTERMEDIATE CODE: A601 Effective date: 20221227 |
|
A601 | Written request for extension of time |
Free format text: JAPANESE INTERMEDIATE CODE: A601 Effective date: 20230227 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20230331 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20230502 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20230829 |
|
A911 | Transfer to examiner for re-examination before appeal (zenchi) |
Free format text: JAPANESE INTERMEDIATE CODE: A911 Effective date: 20230905 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20230925 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20231002 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 7365693 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |