JP2019537001A - マルチスケール捕捉タイプ真空ポンピングを用いた高性能frcの改良された持続性のためのシステムおよび方法 - Google Patents

マルチスケール捕捉タイプ真空ポンピングを用いた高性能frcの改良された持続性のためのシステムおよび方法 Download PDF

Info

Publication number
JP2019537001A
JP2019537001A JP2019522247A JP2019522247A JP2019537001A JP 2019537001 A JP2019537001 A JP 2019537001A JP 2019522247 A JP2019522247 A JP 2019522247A JP 2019522247 A JP2019522247 A JP 2019522247A JP 2019537001 A JP2019537001 A JP 2019537001A
Authority
JP
Japan
Prior art keywords
frc
forming
plasma
chamber
vacuum pumps
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019522247A
Other languages
English (en)
Other versions
JP7365693B2 (ja
Inventor
ドリー, アラン ヴァン
ドリー, アラン ヴァン
Original Assignee
ティーエーイー テクノロジーズ, インコーポレイテッド
ティーエーイー テクノロジーズ, インコーポレイテッド
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ティーエーイー テクノロジーズ, インコーポレイテッド, ティーエーイー テクノロジーズ, インコーポレイテッド filed Critical ティーエーイー テクノロジーズ, インコーポレイテッド
Publication of JP2019537001A publication Critical patent/JP2019537001A/ja
Priority to JP2022090168A priority Critical patent/JP2022107774A/ja
Application granted granted Critical
Publication of JP7365693B2 publication Critical patent/JP7365693B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21BFUSION REACTORS
    • G21B1/00Thermonuclear fusion reactors
    • G21B1/05Thermonuclear fusion reactors with magnetic or electric plasma confinement
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21BFUSION REACTORS
    • G21B1/00Thermonuclear fusion reactors
    • G21B1/05Thermonuclear fusion reactors with magnetic or electric plasma confinement
    • G21B1/052Thermonuclear fusion reactors with magnetic or electric plasma confinement reversed field configuration
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B37/00Pumps having pertinent characteristics not provided for in, or of interest apart from, groups F04B25/00 - F04B35/00
    • F04B37/06Pumps having pertinent characteristics not provided for in, or of interest apart from, groups F04B25/00 - F04B35/00 for evacuating by thermal means
    • F04B37/08Pumps having pertinent characteristics not provided for in, or of interest apart from, groups F04B25/00 - F04B35/00 for evacuating by thermal means by condensing or freezing, e.g. cryogenic pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B37/00Pumps having pertinent characteristics not provided for in, or of interest apart from, groups F04B25/00 - F04B35/00
    • F04B37/10Pumps having pertinent characteristics not provided for in, or of interest apart from, groups F04B25/00 - F04B35/00 for special use
    • F04B37/14Pumps having pertinent characteristics not provided for in, or of interest apart from, groups F04B25/00 - F04B35/00 for special use to obtain high vacuum
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21BFUSION REACTORS
    • G21B1/00Thermonuclear fusion reactors
    • G21B1/11Details
    • G21B1/15Particle injectors for producing thermonuclear fusion reactions, e.g. pellet injectors
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21BFUSION REACTORS
    • G21B1/00Thermonuclear fusion reactors
    • G21B1/11Details
    • G21B1/17Vacuum chambers; Vacuum systems
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21BFUSION REACTORS
    • G21B1/00Thermonuclear fusion reactors
    • G21B1/11Details
    • G21B1/19Targets for producing thermonuclear fusion reactions, e.g. pellets for irradiation by laser or charged particle beams
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J7/00Details not provided for in the preceding groups and common to two or more basic types of discharge tubes or lamps
    • H01J7/24Cooling arrangements; Heating arrangements; Means for circulating gas or vapour within the discharge space
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H1/00Generating plasma; Handling plasma
    • H05H1/02Arrangements for confining plasma by electric or magnetic fields; Arrangements for heating plasma
    • H05H1/04Arrangements for confining plasma by electric or magnetic fields; Arrangements for heating plasma using magnetic fields substantially generated by the discharge in the plasma
    • H05H1/08Theta pinch devices, e.g. SCYLLA
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H1/00Generating plasma; Handling plasma
    • H05H1/02Arrangements for confining plasma by electric or magnetic fields; Arrangements for heating plasma
    • H05H1/10Arrangements for confining plasma by electric or magnetic fields; Arrangements for heating plasma using externally-applied magnetic fields only, e.g. Q-machines, Yin-Yang, base-ball
    • H05H1/14Arrangements for confining plasma by electric or magnetic fields; Arrangements for heating plasma using externally-applied magnetic fields only, e.g. Q-machines, Yin-Yang, base-ball wherein the containment vessel is straight and has magnetic mirrors
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H1/00Generating plasma; Handling plasma
    • H05H1/02Arrangements for confining plasma by electric or magnetic fields; Arrangements for heating plasma
    • H05H1/16Arrangements for confining plasma by electric or magnetic fields; Arrangements for heating plasma using externally-applied electric and magnetic fields
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B41/00Pumping installations or systems specially adapted for elastic fluids
    • F04B41/06Combinations of two or more pumps
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/10Nuclear fusion reactors

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • General Engineering & Computer Science (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Optics & Photonics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Plasma Technology (AREA)
  • Producing Shaped Articles From Materials (AREA)
  • Reinforced Plastic Materials (AREA)
  • Treatment Of Steel In Its Molten State (AREA)
  • Processing And Handling Of Plastics And Other Materials For Molding In General (AREA)
  • Moulding By Coating Moulds (AREA)
  • Powder Metallurgy (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Casting Or Compression Moulding Of Plastics Or The Like (AREA)

Abstract

本明細書に説明される主題は、概して、磁場反転配位(FRC)を有する磁気プラズマ閉じ込めシステムに関し、より具体的には、より具体的には、マルチスケール捕捉タイプ真空ポンピングを利用した、上昇されたシステムエネルギーおよび改良された持続性を伴う、FRCの形成および維持を促進する、システムおよび方法に関する。優れた安定性および粒子、エネルギー、および磁束閉じ込めを伴う、FRCの形成および維持を促進する、システムおよび方法であって、より具体的には、マルチスケール捕捉タイプ真空ポンピングを利用した、上昇されたシステムエネルギーおよび改良された持続性を伴う、FRCの形成および維持を促進する、システムおよび方法。

Description

本明細書に説明される主題は、概して、磁場反転配位(FRC)を有する磁気プラズマ閉じ込めシステムに関し、より具体的には、より具体的には、マルチスケール捕捉タイプ真空ポンピングを利用した、上昇されたシステムエネルギーおよび改良された持続性を伴う、FRCの形成および維持を促進する、システムおよび方法に関する。
(背景情報)
磁場反転配位(FRC)は、コンパクト・トロイド(CT)として公知の磁気プラズマ閉じ込めトポロジーの分類に属する。FRCは、主にポロイダル磁場を示し、自然発生のトロイダル磁場がない、または少ない(M.Tuszewski、Nucl.Fusion 28、2033(1988)参照)。このような構造の魅力は、構築および維持が容易なその単純な形状、エネルギーの抽出および灰の除去を促進する無制限の自然ダイバータ、ならびに非常に高いβ(βはFRC内部の平均磁場圧力に対する平均プラズマ圧力の割合である)、すなわち、高出力密度である。高いβ特性は、経済運用、ならびにD−Heおよびp−B11などの進化した非中性子燃料の使用に有利である。
FRCを形成する従来の方法は、磁場反転シータピンチ技術を使用し、高温高密度のプラズマを生成する(A. L. Hoffman and J. T. Slough, Nucl. Fusion 33, 27(1993)参照)。この変形形態は、シータピンチ「源」内に生成されたプラズマが、概ね即座に一端から出て閉じ込めチャンバの中に放出される移動トラッピング方法である。次いで移動するプラズモイドは、チャンバの端部で2つの強いミラーの間に閉じ込められる(例えば、H. Himura, S. Okada, S. Sugimoto, and S. Goto, Phys. Plasmas 2, 191(1995)参照)。いったん閉じ込めチャンバに入ると、ビーム入射(中性または中和された)、回転磁場、RFまたはオーム加熱等の様々な加熱および電流駆動方法を適用してもよい。源と閉じ込め機能とのこの分離は、潜在的な将来の核融合炉に対して重要な工学的利点を提供する。FRCは、非常に堅固であり、動的形成、移動、および激しい捕捉事象に耐性があることが判明している。さらに、それらは、好ましいプラズマ状態を担う傾向を示す(例えば、H. Y. Guo, A. L. Hoffman, K. E. Miller, and L. C. Steinhauer, Phys. Rev. Lett. 92,245001(2004)参照)。他のFRCの形成方法、すなわち、逆向きのヘリシティをもつスフェロマックの融合(例えば、Y. Ono, M. Inomoto, Y. Ueda, T. Matsuyama, and T. Okazaki, Nucl. Fusion 39, 2001(1999)参照)、およびさらなる安定性をも提供する回転磁場(RMF)を用いて電流を駆動することによるもの(例えば、I. R. Jones, Phys. Plasmas 6, 1950(1999)参照)の開発が、過去10年に著しく進歩を遂げた。
最近、かなり昔に提案された衝突融合技法(例えば、D. R. Wells, Phys. Fluids 9, 1010(1966)参照)がさらに著しく発展した。すなわち、閉じ込めチャンバの対向する端部で2つの個別のシータピンチが、同時に2つのプラズモイドを生成し、プラズモイドを互いに向かって高速度で加速させ、次いで、それらは、閉じ込めチャンバの中央で衝突し、複合FRCを形成するために融合する。今までで最大のFRC実験の1つの構築および成功した作動において、従来の衝突融合法は、安定して長持ちし、高磁束、高温のFRCを生成することを示した(例えば、M. Binderbauer, H.Y. Guo, M. Tuszewski et al., Phys. Rev. Lett. 105, 045003(2010)参照)。
FRCは、セパラトリックスの内側の閉じた磁力線のトーラス、およびセパラトリックスのすぐ外側の開放磁力線上の環状縁層から成る。縁層は、FRCの長さを越えて集結してジェットになり、自然ダイバータを提供する。FRCトポロジは、磁場反転ミラープラズマのトポロジと一致する。しかしながら、著しい違いは、FRCプラズマが約10のβを有することである。固有の低い内部磁場は、特定の本来の動的粒子集団、すなわち、FRCの短半径と同等の大きいラーモア半径をもつ粒子を提供する。衝突融合実験において生成されたもののように、過去および現在のFRCの全体的な安定性に少なくとも部分的に寄与すると思われるのは、これらの強い動的効果である。
典型的な過去のFRC実験は、主に粒子移動によって決定されるエネルギー閉じ込めを伴う、対流損失によって支配されてきた。粒子は、セパラトリックス体積から主に径方向外方に拡散し、次いで縁層において軸方向に損失される。故に、FRC閉じ込めは、閉じた磁力線領域と開放磁力線領域の両方の特性に依存する。セパラトリックスから出た粒子の拡散時間は、τ〜a/D(a〜r/4であり、rは、中心セパラトリックスの半径である)として見積もられ、Dは、特性FRC拡散率であり(例えば、D〜12.5ρieであり、ρieは、イオンジャイロ半径を表す)、外部印加磁場で評価される。縁層の粒子閉じ込め時間
は、本質的に、過去のFRC実験における軸方向通過時間である。定常状態において、半径方向の粒子損失と軸方向の粒子損失との間の均衡は、セパラトリックスの密度勾配長さ
をもたらす。FRC粒子閉じ込め時間は、セパラトリックスで実質的な密度を有する過去のFRCに対して
と見積もられる(例えば、M. TUSZEWSKI, “Field Reversed Configurations,” Nucl. Fusion 28, 2033(1988)参照)。
前述に照らして、したがって、エネルギーの将来的発生のための軽核の融合のための反応器コアへの経路として、定常状態FRCと上昇されたエネルギーシステムを併用するために、FRCの持続性を改良することが望ましい。
M. TUSZEWSKI, "Field Reversed Configurations," Nucl. Fusion 28, 2033(1988)
本明細書に提供される本実施形態は、マルチスケール捕捉タイプ真空ポンピングを利用した、上昇されたシステムエネルギーおよび改良された持続性を伴う、FRCの形成および維持を促進する、システムおよび方法を対象とする。本開示のある実施形態によると、磁場反転配位(FRC)を伴う磁場を発生および維持するための方法は、閉じ込めチャンバ内でプラズマの周りにFRCを形成するステップと、複数の中性ビームをFRCプラズマの中に閉じ込めチャンバの中央平面に向かってある角度で注入するステップと、第1および第2のダイバータ内に位置付けられ、相互に対面する表面を伴う2つ以上の側と、開放側とを備える、第1および第2の捕捉真空ポンプを用いて、閉じ込めチャンバに結合される第1および第2の直径方向に対向するダイバータ内に蓄積する中性化されたガス分子をポンピングするステップであって、第1および第2の捕捉真空ポンプは、第1および第2の捕捉ポンプの開放側に相当する面積を画定する平坦プレートの付着係数の4倍よりも大きい付着係数を有する、ステップとを含む。
本開示のさらなる実施形態によると、第1および第2の捕捉真空ポンプの2つ以上の側のうちの少なくとも1つは、個々の捕捉真空ポンプのアレイを備える。
本開示のさらなる実施形態によると、個々の捕捉真空ポンプはそれぞれ、相互に対面する表面を伴う2つ以上の側と、開放側とを備え、個々の捕捉真空ポンプはそれぞれ、個々の捕捉真空ポンプのそれぞれの開放側に相当する面積を画定する平坦プレートの付着係数を上回る付着係数を有する。
本開示のさらなる実施形態によると、第1および第2の捕捉真空ポンプは、第1および第2の捕捉ポンプの開放側に相当する面積を画定する平坦プレートの付着係数のN倍の付着係数を有し、Nは、4<N<16である。
本開示のさらなる実施形態によると、平坦プレートおよび第1および第2の真空ポンプの表面は、その上に堆積されるチタンのフィルムを含む。
本開示のさらなる実施形態によると、本方法は、コンパクトトロイド(CT)プラズマを第1および第2のCT注入器からFRCプラズマの中に閉じ込めチャンバの中央平面に向かってある角度で注入するステップをさらに含み、第1および第2のCT注入器は、閉じ込めチャンバの中央平面の対向側で直径方向に対向する。
本開示のさらなる実施形態によると、捕捉真空ポンプは、相互に対面する表面を伴う2つ以上の側と、開放側とを備え、捕捉真空ポンプは、捕捉ポンプの開放側に相当する面積を画定する平坦プレートの付着係数の4倍よりも大きい付着係数を有する。
本開示のさらなる実施形態によると、第1および第2の捕捉真空ポンプの2つ以上の側のうちの少なくとも1つは、個々の捕捉真空ポンプのアレイを備える。
本開示のさらなる実施形態によると、個々の捕捉真空ポンプはそれぞれ、相互に対面する表面を伴う2つ以上の側と、開放側とを備え、個々の捕捉真空ポンプはそれぞれ、個々の捕捉真空ポンプのそれぞれの開放側に相当する面積を画定する平坦プレートの付着係数を上回る付着係数を有する。
本開示のさらなる実施形態によると、第1および第2の捕捉真空ポンプは、第1および第2の捕捉ポンプの開放側に相当する面積を画定する平坦プレートの付着係数のN倍の付着係数を有し、Nは、4<N<16である。
本開示のさらなる実施形態によると、平坦プレートおよび第1および第2の真空ポンプの表面は、その上に堆積されるチタンのフィルムを含む。
本開示のさらなる実施形態によると、磁場反転配位(FRC)を伴う磁場を発生および維持するためのシステムは、閉じ込めチャンバと、閉じ込めチャンバに結合され、第1および第2のダイバータ内に位置付けられ、相互に対面する表面を伴う2つ以上の側と、開放側とを備える、第1および第2の捕捉真空ポンプを含む、第1および第2の直径方向に対向するFRC形成区分であって、第1および第2の捕捉真空ポンプは、第1および第2の捕捉ポンプの開放側に相当する面積を画定する平坦プレートの付着係数の4倍よりも大きい付着係数を有する、第1および第2の直径方向に対向するFRC形成区分と、複数のプラズマガン、1つ以上のバイアス電極、および第1および第2のミラープラグのうちの1つ以上のものであって、複数のプラズマガンは、第1および第2のダイバータ、第1および第2の形成区分、および閉じ込めチャンバに動作可能に結合される、第1および第2の軸方向プラズマガンを含み、1つ以上のバイアス電極は、閉じ込めチャンバ、第1および第2の形成区分、および第1および第2の外側ダイバータのうちの1つ以上のもの内に位置付けられ、第1および第2のミラープラグは、第1および第2の形成区分と第1および第2のダイバータとの間に位置付けられる、複数のプラズマガン、1つ以上のバイアス電極、および第1および第2のミラープラグのうちの1つ以上のものと、閉じ込めチャンバおよび第1および第2のダイバータに結合される、ゲッタリングシステムと、閉じ込めチャンバに結合され、閉じ込めチャンバの中央平面に向かって角度付けられる、複数の中性原子ビーム注入器とを備える。
本開示のさらなる実施形態によると、本システムはさらに、閉じ込めチャンバの中央平面に向かってある角度で閉じ込めチャンバに結合される、第1および第2のコンパクトトロイド(CT)注入器を備え、第1および第2のCT注入器は、閉じ込めチャンバの中央平面の対向側で直径方向に対向する。
例示的実施形態のシステム、方法、特徴、および利点は、以下の図およびならびに発明を実施するための形態の吟味に応じて、当業者に明白である、または明白となるであろう。全てのそのような付加的方法、特徴、および利点は、本説明内に含まれ、付随の特許請求の範囲によって保護されることが意図される。また、特許請求の範囲は、例示的実施形態の詳細を要求するように限定されないことも意図される。
添付図面は本明細書の一部として含まれ、この例示的な実施形態を示し、上に提供された概要および以下に提供される例示的な実施形態の詳述と共に、本発明の原理を説明し教示する働きをする。
高性能のFRCレジーム(HPF)下と従来のFRCレジーム(CR)下との関係、および他の従来のFRC実験との関係において、本FRCシステムにおける粒子閉じ込めを示す図である。
本FRCシステムの構成要素、および本FRCシステムにおけるFRCを生産可能な磁気トポロジーを示す図である。
図3Aは、中央閉じ込め容器、形成区分、ダイバータ、中性ビーム、電極、プラズマガン、ミラープラグ、およびペレット注入器の好ましい配列を含む、上部から見た本FRCシステムの基本レイアウトを図示する。
図3Bは、上部から見た中心閉じ込め容器を図示し、中心閉じ込め容器内の対称長軸に対して直角である角度で配列される、中性ビームを示す。
図3Cは、上部から見た中心閉じ込め容器を図示し、中心閉じ込め容器内の対称長軸に対して直角未満である角度で配列され、粒子を中心閉じ込め容器の中央平面に向かって注入するように指向される、中性ビームを示す。
図3Dおよび3Eは、それぞれ、中心閉じ込め容器と、形成区分と、内側および外側ダイバータと、中心閉じ込め容器内の対称主軸に対して直角未満の角度で配列される中性ビームと、電極と、プラズマガンと、ミラープラグとの好ましい配列を含む、本FRCシステムの代替実施形態の基本レイアウトの上部および斜視図を図示する。 図3Dおよび3Eは、それぞれ、中心閉じ込め容器と、形成区分と、内側および外側ダイバータと、中心閉じ込め容器内の対称主軸に対して直角未満の角度で配列される中性ビームと、電極と、プラズマガンと、ミラープラグとの好ましい配列を含む、本FRCシステムの代替実施形態の基本レイアウトの上部および斜視図を図示する。
形成部分に対するパルス電力システムの構成要素の概略を示す図である。
個々のパルス電力形成スキッドのアイソメ図である。
形成管アセンブリのアイソメ図である。
中性ビームシステムおよび主要構成要素の部分断面アイソメ図である。
閉じ込めチャンバ上の中性ビーム配置のアイソメ図である。
TiおよびLiゲッタリング・システムの好ましい配置の部分断面アイソメ図である。
ダイバータ・チャンバに搭載されたプラズマガンの部分断面アイソメ図である。また、関連した磁気ミラープラグおよびダイバータ電極アセンブリも示す。
閉じ込めチャンバの軸方向端部における環状バイアス電極の好ましい配置を示す図である。
2つの磁場反転シータピンチ形成部分における一連の外部反磁性ループおよび中央金属閉じ込めチャンバ内に組み込んだ磁界プローブから獲得した、FRCシステムにおける排除磁束半径の展開を示す図である。時間は、形成源内の同期された磁場反転の瞬間から測定され、距離zは、機械の軸方向の中央平面に対して与えられる。
図13A、13B、13C、および13Dは、本FRCシステム上の代表的な非HPFの非持続放出からのデータを示す図である。図13Aは、中央平面における排除磁束半径が、時間関数として示されている。図13Bは、中央平面CO2干渉計からの線集積密度の6つのコードが、時間関数として示されている。図13Cは、CO2干渉計データからのアーベル逆変換密度半径の外形が、時間関数として示されている。図13Dは、圧力平衡からの合計プラズマ温度が、時間関数として示されている。
図13A,13B、13C、および13Dに示された本FRCシステムの同じ放出に対して、選択された時間における排除磁束の軸方向の外形を示す図である。
閉じ込めチャンバの外側に装着されたサドルコイルのアイソメ図である。
図16A、16B、16C、および16Dは、FRCの耐用期間および入射された中性ビームのパルス長の相互関係を示す図である。示されたように、ビームパルスが長いほど、より長く耐用するFRCを生成する。
図17A、17B、17C、および17Dは、FRC性能のFRCシステムの異なる構成要素の個々の効果および組み合わせた効果、ならびにHPFレジームの達成を示す図である。
図18A、18B、18C、および18Dはは、本FRCシステム上の代表的なHPFの非持続放出からのデータを示す図である。図18Aは、中央平面における排除磁束半径が、時間関数として示されている。図18Bは、中央平面CO2干渉計からの線集積密度の6つのコードが、時間関数として示されている。図18Cは、CO2干渉計データからのアーベル逆変換密度半径の外径が、時間関数として示されている。図18Dは、圧力平衡からの合計プラズマ温度が、時間関数として示されている。
電子温度(T)の関数として、磁束閉じ込めを示す図である。これは、HPF放出に対して新しく確立された優れたスケーリングレジームを表すグラフを示す。
図20は、角度付けられていないおよび角度付けられた注入される中性ビームのパルス長に対応する、FRC寿命時間を図示する。
図21A、21B、21C、21Dおよび21Eは、角度付けられた注入される中性ビームのパルス長と、角度付けられた注入される中性ビームのパルス長に対応するプラズマ半径、プラズマ密度、プラズマ温度、および磁束のFRCプラズマパラメータの寿命とを図示する。
図22Aおよび22Bは、コンパクトトロイド(CT)注入器の基本レイアウトを図示する。
図23Aおよび23Bは、中心閉じ込め容器を図示し、そこに搭載されたCT注入器を示す。
図24Aおよび24Bは、そこに結合されたドリフトチューブを有する、CT注入器の代替実施形態の基本レイアウトを図示する。
図25は、FRCプラズマコアおよび閉じ込めチャンバDCコイルの等角図およびFRCプラズマコアから流動する荷電粒子の経路を図示する。
図26は、ダイバータの等角図を図示する。
図27は、本FRCシステムの動作の間に時間の関数として内側および外側ダイバータ内に蓄積する中性ガスの密度を図示する、グラフである。
図28は、開放面立方体および立方体の開放面のサイズが同等の平坦プレートの形態における、個々のポンプ物体の等角図を図示する。
図29は、ボックスを構成する平坦表面の所与の付着係数に関して、ボックスの奥行/幅比の関数としてボックス形状のポンプ物体の正方形開口部の有効付着係数を図示する、グラフである。
図30は、個々のポンプのアレイから成る開放面立方体のアレイを備える側面から形成される、開放側面立方体を備える、自己相似表面捕捉ポンプの等角図を図示する。
図31は、自己相似性の離散スケールレベルの関数としての自己相似表面捕捉ポンプの有効付着係数の増加を図示する、グラフである。
図32は、自己相似表面捕捉ポンプの自己相似性のスケールレベルを示す、等角詳細図を図示する。
図は必ずしも一定の縮尺で描かれてはおらず、同様の構造または機能の要素は、説明のために図を通して同じ参照番号で概ね表されていることに留意されたい。また図は、本明細書に記載された様々な実施形態の説明を容易にすることを意図するに過ぎないことにも留意されたい。図は、必ずしも本明細書に開示された教示のすべての態様を説明せず、特許請求の範囲を限定するものではない。
本明細書に提供される本実施形態は、優れた安定性および粒子、エネルギー、および磁束閉じ込めを伴う、FRCの形成および維持を促進する、システムおよび方法を対象とする。本実施形態のいくつかは、マルチスケール捕捉タイプ真空ポンプを利用した、改良された持続性を伴う、FRCの形成および維持を促進する、システムおよび方法を対象とする。
(詳細な説明)
本明細書に提供される本実施形態は、半径方向および軸方向の両方におけるFRCプラズマの安定性と、FRCプラズマの平衡の軸方向安定性性質から独立して、FRCプラズマ閉じ込めチャンバの対称軸に沿ったFRCプラズマの軸方向位置制御とを促進する、システムおよび方法を対象とする。別個および組み合わせの両方において、これらの付加的特徴および教示の多くを利用する、本明細書に説明される実施形態の代表的実施例が、ここで、添付の図面を参照して説明される。この詳細な説明は、単に、当業者に、本教示の好ましい側面を実践するためのさらなる詳細を教示することを意図し、本発明の範囲を限定することを意図するものではない。したがって、以下の詳細な説明に開示される特徴およびステップの組み合わせは、最も広義には、本発明を実践するために必要ではなくてもよく、代わりに、本教示の代表的実施例を特に説明するためだけに教示される。
さらに、代表的実施例および従属請求項の種々の特徴は、本教示の付加的な有用な実施形態を提供するために、具体的かつ明示的には列挙されない方法で組み合わせられてもよい。加えて、説明および/または請求項に開示される全ての特徴は、元来の開示の目的のために、ならびに実施形態および/または請求項における特徴の複合物から独立して、請求される主題を制限する目的のために、相互から別個かつ独立して開示されることが意図されることが明示的に留意される。また、全ての値範囲またはエンティティの群のインジケーションは、元来の開示の目的のために、ならびに請求される主題を制限する目的のために、あらゆる可能な中間値または中間エンティティを開示することも明示的に留意される。
マルチスケール捕捉タイプ真空ポンプを利用した、FRCプラズマの持続性を促進する、システムおよび方法に目を向ける前に、従来のFRCに優る、優れた安定性および優れた粒子、エネルギー、および磁束閉じ込めを伴う、高性能FRCを形成および維持するためのシステムおよび方法の議論が、提供される。そのような高性能FRCは、コンパクト中性子源(医療用同位体生産、核廃棄物浄化、材料研究、中性子X線撮影、および断層撮影のため)、コンパクト光子源(化学生産および処理のため)、質量分離および濃縮システム、および将来のエネルギー生成のための軽核の融合用炉心を含む、あらゆる種々の用途への経路を提供する。
様々な付随システムおよび作動モードが、FRC内に優れた閉じ込めレジームが存在するかどうかを評価するために調査されてきた。これらの努力は、本明細書に説明された高性能のFRCパラダイムの画期的な発見および発展をもたらした。この新しいパラダイムによれば、本システムおよび方法は、多くの新規の発想と、図1に示したように、FRC閉じ込めを劇的に向上させ、かつ負の副作用のない安定制御を提供する手段を組み合わせる。以下により詳細に論じるように、図1は、以下に説明する(図2および3参照)FRCシステム10における粒子閉じ込めを示し、FRCを形成し維持するために従来のレジームCRによる作動に対して、また他の実施形態で使用されるFRCを形成し維持するために従来のレジームによる粒子閉じ込めに対して、FRCを形成し維持するための高性能のFRCレジーム(HPF)により作動する。本開示は、FRCシステム10の革新的な個々の構成要素および方法、ならびにそれらの集合効果の概要を説明し詳述する。
(FRCシステムの説明)
真空システム
図2および3は、本FRCシステム10の概略を示す。FRCシステム10は、2つの直径方向に対向する磁場反転シータピンチ形成部分200、およびその形成部分200を超えた、中性密度および不純物汚染を制御するための2つのダイバータ・チャンバ300によって包囲された中央閉じ込め容器100を含む。本FRCシステム10は、超高真空を収容するように構築されており、一般的な基準圧10−8トルで作動する。このような真空圧は、嵌合構成要素、金属Oリング、高純度の内壁の間のダブルポンプの嵌合フランジを使用し、ならびに物理的および化学的洗浄に続き、24時間250℃での真空焼成および水素グロー放電洗浄などの、組立て前にすべての部分を最初に慎重に表面調整する必要がある。
磁場反転シータピンチ形成部分200は、以下に詳しく論じる(図4〜6参照)進化したパルス電力形成システムを備えているが、標準磁場反転シータピンチ(FRTP)である。各形成部分200は、超高純度石英の2ミリメートルの内壁を特色とする、標準純度工業グレードの石英管から作成される。閉じ込めチャンバ100は、ステンレス鋼から作成されて、複数の径方向および接線方向のポートが可能になる。また閉じ込めチャンバ100は、以下に説明される実験の時間スケール上で磁束保存器として働き、高速過渡磁場を制限する。真空は、ドライスクロール粗引きポンプ、ターボ分子ポンプおよびクライオポンプのセットを備える、FRCシステム10内に生成され維持される。
磁気システム
磁気システム400は、図2および3に示されている。図2は、他の特徴の中でとりわけ、FRCシステム10によって生産可能なFRC450に関する、FRC磁束および密度等高線(径方向および軸方向座標の関数として)を示す。これらの等高線は、FRCシステム10に対応するシステムおよび方法をシミュレーションするために開発されたコードを使用して、二次元抵抗性Hall−MHD数値シミュレーションによって獲得されたものであり、測定された実験データとよく合致する。図2に見られるように、FRC450は、セパラトリックス451の内側のFRC450の内部453で、閉じた磁力線のトーラス、およびセパラトリックス451のすぐ外側の開いた磁力線452上の環状縁層456からなる。縁層456は、FRCの長さを超えて集結してジェット454になり、自然ダイバータを提供する。
主磁気システム410は、構成要素に沿って、すなわち、FRCシステム10の閉じ込めチャンバ100、形成部分200およびダイバータ300に沿って、特に軸方向位置にある一連の疑似直流コイル412、414、および416を含む。疑似直流コイル412、414、および416は、疑似直流スイッチング電源によって供給され、閉じ込めチャンバ100、形成部分200およびダイバータ300内に約0.1Tの基本磁気バイアス磁場を生成する。疑似直流コイル412、414、および416に加えて、主磁気システム410は、閉じ込めチャンバ100のいずれかの端部と隣接した形成部分200との間に疑似直流ミラーコイル420(スイッチング電源によって供給される)を含む。疑似直流ミラーコイル420は、最高5までの磁気ミラー比を提供し、平衡形状制御のために単独で活性化されることが可能である。加えて、ミラープラグ440は、それぞれの形成部分200とダイバータ300との間に位置付けられる。ミラープラグ440は、小型の疑似直流ミラーコイル430およびミラープラグコイル444を備える。疑似直流ミラーコイル430は、ミラープラグコイル444を通過して短い直径の通路442に向かって磁束表面455の焦点を合わせるために、追加のガイド磁場を生成する3つのコイル432、434および436(スイッチング電源によって供給される)を含む。ミラープラグコイル444は、短い直径の通路442を中心に巻き付き、LCパルス電力回路によって供給され、最高4Tまでの強いミラー磁場を生成する。このコイル配置全体の目的は、堅く束ね、磁束表面455および端部に流れるプラズマジェット454を、ダイバータ300の遠隔チャンバ310に導くことである。最後に、サドルコイル「アンテナ」460のセット(図15参照)は、中央平面の各側面上に2つずつ、閉じ込めチャンバ100の外側に配置され、直流電源によって供給される。サドルコイル・アンテナ460を、回転不安定性の制御および/または電子電流制御のために、約0.01Tの準静的磁気双極子または四重極磁場を提供するように構成することができる。サドルコイル・アンテナ460は、印加電流の方向に依存して、中央平面に対して対称または反対称のいずれかである、磁場を柔軟に提供できる。
パルス電力形成システム
パルス電力形成システム210は、修正シータピンチ原理に基づいて作動する。それぞれが形成部分200の1つに電力を供給する、2つのシステムが存在する。図4〜6は、形成システム210の主な構築ブロックおよび配置を示す。形成システム210は、個々のユニット(=スキッド)220からなるモジュラーパルス電力配置から構成され、スキッド220のそれぞれは、形成石英管240を中心に巻き付くストラップアセンブリ230(=ストラップ)のコイル232のサブセットを活性化する。各スキッド220は、コンデンサ221、インダクタ223、高速大電流スイッチ225および関連トリガー222ならびにダンプ回路224から構成される。全体で、各形成システム210は、350〜400kJの容量エネルギーを保存し、この容量エネルギーは、最高35GWまでの電力を提供してFRCを形成し加速する。これらの構成要素の協調された作動は、最先端のトリガーおよび制御システム222および224を介して達成され、それによって各形成部分200上の形成システム210間のタイミングを同期することが可能になり、スイッチングジッタを数十ナノ秒に最小化する。このモジュラー設計の利点は、その柔軟な作動である。すなわち、FRCをその場で形成でき、次いで加速し照射する(=静的形成)、または形成し同時に加速する(=動的形成)ことができる。
中性ビーム注入器
中性原子ビーム600が、FRCシステム10上に展開され、加熱および電流駆動を提供し、高速粒子圧力を発生させる。図3A、3B、および8に示されるように、中性原子ビーム注入器システム610および640を構成する、個々のビーム線は、標的捕捉ゾーンが十分に区分線451(図2参照)の範囲内にあるように、衝突パラメータを用いて、中心閉じ込めチャンバ100の周囲に位置し、高速粒子をFRCプラズマに対して接線方向に(かつ、中心閉じ込め容器100内の対称長軸に対して垂直または直角である角度で)注入する。各注入器システム610および640は、20〜40keVの粒子エネルギーを用いて、最大1MWの中性ビームパワーをFRCプラズマの中に注入可能である。システム610および640は、正イオン多開口抽出源に基づき、幾何学的集束、イオン抽出グリッドの慣性冷却、および差動ポンプを利用する。異なるプラズマ源の使用は別として、システム610および640は、主に、側方および上方注入能力をもたらす、その個別の搭載場所を満たすようなその物理的設計によって区別される。これらの中性ビーム注入器の典型的構成要素は、側方注入器システム610に関する図7に具体的に図示される。図7に示されるように、各個々の中性ビームシステム610は、端部を被覆する磁気遮蔽614とともに、入力端部(これは、システム640内のアーク源で代用される)にRFプラズマ源612を含む。イオン光学源および加速グリッド616は、プラズマ源612に結合され、ゲート弁620は、イオン光学源および加速グリッド616と中和装置622との間に位置付けられる。偏向磁石624およびイオンダンプ628は、中和装置622と出口端部における照準デバイス630との間に位置する。冷却システムは、2つの低温冷凍機634と、2つのクライオパネル636と、LN2シュラウド638とを備える。本柔軟性のある設計は、広範囲のFRCパラメータにわたる動作を可能にする。
中性原子ビーム注入器600のための代替構成は、高速粒子をFRCプラズマに対して接線方向に注入するが、角度Aは、中心閉じ込め容器100内の対称長軸に対して90°未満であるものである。ビーム注入器615のこれらのタイプの配向は、図3Cに示される。加えて、ビーム注入器615は、中心閉じ込め容器100の中央平面の両側のビーム注入器615が、その粒子を中央平面に向かって注入するように配向されてもよい。最後に、これらのビームシステム600の軸方向位置は、中央平面により近接するように選定されてもよい。これらの代替注入実施形態は、より中心における燃料補給選択肢を促進し、ビームのより優れた結合および注入される高速粒子のより高い捕捉効率を提供する。さらに、角度および軸方向位置に応じて、ビーム注入器615の本配列は、FRC450の軸方向伸長および他の特性のより直接的かつ独立した制御を可能にする。例えば、ビームを容器の対称長軸に対して浅角Aで注入することは、より長い軸方向伸展およびより低い温度を伴うFRCプラズマを作成するであろう一方、より垂直な角度Aで取り上げることは、軸方向により短いが、より高温のプラズマにつながるであろう。本方式では、ビーム注入器615の注入角度Aおよび場所は、異なる目的のために最適化されることができる。加えて、ビーム注入器615のそのような角度付けおよび位置付けは、より高いエネルギーのビーム(概して、より少ないビーム分散を伴う、より多くのパワーを堆積させるためにより好ましい)が、そうでなければ、そのようなビームを捕捉するために必要となるであろうものより低い磁場の中に注入されることを可能にすることができる。これは、高速イオン軌道スケールを判定するのが、エネルギーの方位角成分(容器の対称長軸に対する注入角度が一定ビームエネルギーで低減されるにつれて、徐々に小さくなる)という事実に起因する。さらに、中央平面に向かって角度付けられた注入および中央平面に近接する軸方向ビーム位置は、注入周期の間、FRCプラズマが収縮または別様に軸方向に縮小しても、ビーム−プラズマ結合を改良する。
図3Dおよび3Eに目を向けると、FRCシステム10の別の代替構成は、角度付けられたビーム注入器615に加え、内側ダイバータ302を含む。内側ダイバータ302は、形成区分200と閉じ込めチャンバ100との間に位置付けられ、外側ダイバータ300と実質的に同様に構成され、動作する。高速切替磁気コイルをその中に含む、内側ダイバータ302は、形成プロセスの間、事実上、非アクティブであり、形成FRCが閉じ込めチャンバ100の中央平面に向かって平行移動するにつれて、形成FRCが、内側ダイバータ302を通過することを可能にする。いったん形成FRCが内側ダイバータ302を通過して閉じ込めチャンバ100の中に入ると、内側ダイバータは、アクティブ化され、外側ダイバータと実質的に同様に動作し、閉じ込めチャンバ100を形成区分200から隔離する。
ペレット照射装置
新しい粒子を照射し、FRCの粒子インベントリをより良好に制御する手段を提供するために、12バレルペレット照射装置700(例えば、I.Vinyarら、「Pellet Injectors Developed at PELIN for JET,
TAE, and HL−2A(JET、TAE、およびHL−2Aに対してPELINで開発されたペレット照射装置)」第26回Fusion Science and Technology Symposium(核融合科学技術シンポジウム)の報告書、9月27日〜10月1日(2010)参照)がFRCシステム10上に利用される。図3は、FRCシステム10上のペレット照射装置700の配置を示す。円筒形ペレット(Dは約1mm、Lは約1〜2mm)は、FRCに速度150〜250km/sの範囲で照射される。個々のペレットはそれぞれ、約5×1019の水素原子を含み、これはFRCの粒子インベントリに匹敵する。
ゲッタリング・システム
中性ハロガスは、すべての閉じ込めシステムにおいて深刻な問題であることは周知である。電荷交換および再利用(壁からの低温の不純物材料の放出)プロセスは、エネルギーおよび粒子閉じ込めに壊滅的な影響を与える可能性がある。加えて、縁部におけるまたは縁部付近のいかなる高濃度の中性ガスも、照射された大きい軌道(高エネルギー)の粒子(大きい軌道は、FRCトポロジーの規模の軌道、または少なくとも特性磁界勾配長さスケールよりはるかに大きい軌道半径を有する粒子を指す)の耐用期間を即座に喪失させる、または少なくとも大幅に短くする、すなわち、これは、補助ビーム加熱を介する融合を含め、すべてのエネルギープラズマの適用に弊害をもたらす。
表面調整は、それによって中性ガスおよび不純物の悪影響を、閉じ込めシステムにおいて制御または低減できる手段である。この目的を達成するために、本明細書に提供されたFRCシステム10は、チタニウム(Ti)およびリチウム(Li)成膜システム810および820を利用し、閉じ込めチャンバ(または容器)100およびダイバータ300、302のプラズマ対向面をTiおよび/またはLiの薄膜(厚さ数十マイクロメートル)で被覆する。被覆は蒸着技法により達成される。中実のLiおよび/またはTiは、被覆を形成するために近傍表面上に蒸着され、かつ/または昇華されまた噴霧される。源は、ガイドノズル(Liの場合)822を備える原子炉、またはガイドシュラウド(Tiの場合)812を備える中実の加熱球である。Li蒸着システムは、通常、連続モードで作動するが、Ti昇華装置は、普通はプラズマ作動の間に断続的に作動される。これらのシステムの作動温度は、速い蒸着速度を得るために600℃を超える。良好な壁被覆を達成するために、複数の戦略的に配置された蒸着/昇華システムが必要とされる。図9は、FRCシステム10におけるゲッタリング蒸着システム810および820の好ましい配置を詳しく示す。被覆は、ゲッタリング表面ならびに有効なポンプの原子および分子の水素種(HおよびD)として作用する。また被覆は、炭素および酸素などの他の通常の不純物をかなりの水準で低減する。
ミラープラグ
上述のように、FRCシステム10は、図2および3に示したように、ミラーコイル420、430、および444のセットを利用する。ミラーコイル420の第1のセットは、閉じ込めチャンバ100の2つの軸方向端部に配置され、主磁気システム410のDC閉じ込め、形成、およびダイバータコイル412、414および416から単独に活性化される。ミラーコイル420の第1のセットは、主に融合中にFRC450を進め軸方向に包含する助けとなり、持続している間に平衡成形制御を提供する。第1のミラーコイルセット420は、中央閉じ込めコイル412によって生成された中央閉じ込め磁場より名目上高い磁場(約0.4〜0.5T)を生成する。ミラーコイル430の第2のセットは、3つの小型の疑似直流ミラーコイル432、434および436を含み、形成部分200とダイバータ300との間に配置され、一般的なスイッチ電源によって駆動される。ミラーコイル432、434および436は、より小型のパルスミラープラグコイル444(容量電源によって供給される)および物理的収縮部442と一緒に、狭い低ガス伝導通路を非常に高い磁場(約10〜20msの立上り時間で2〜4T)で提供する、ミラープラグ440を形成する。最も小型のパルスミラーコイル444は、閉じ込めコイル412、414および416のメートルプラススケールの孔およびパンケーキ型設計に比べて、小型の径方向寸法、20cmの孔および同様の長さである。ミラープラグ440の目的は、以下のように多種多様である。(1)コイル432、434、436および444を堅く束ね、磁束表面452および端部に流れるプラズマジェット454を、遠隔ダイバータ・チャンバ300に導く。これは、排出粒子がダイバータ300に適切に到着し、中央FRC450の開いた磁力線452領域からダイバータ300までずっと追跡する、連続した磁束表面455が存在することを確実にする。(2)FRCシステム10における物理的収縮部442は、それを通ってコイル432、434、436および444が磁束表面452およびプラズマジェット454を通過することができ、ダイバータ300内に着座するプラズマガン350からの中性ガス流を妨げる。同じように、収縮部442は、形成部分200からダイバータ300へのガスの逆流を防止し、それによってFRCの起動を開始するときに、FRCシステム10全体に導入しなければならない中性粒子の数が低減する。(3)コイル432、434、436および444によって生成された強い軸方向のミラーは軸方向の粒子損失を低減し、それによって開いた磁力線上の平行な粒子拡散係数が低減する。
図3Dおよび3Eに示される代替構成では、薄型縮径コイル421のセットが、内側ダイバータ302と形成区分200との間に位置付けられる。
軸方向のプラズマガン
ダイバータ300のダイバータ・チャンバ310内に装着されたガン350からのプラズマ流は、安定性および中性ビーム性能を向上させることを意図する。ガン350は、図3および10に示したように、ダイバータ300のチャンバ310の内側の軸上に装着され、プラズマ流をダイバータ300内の開いた磁力線452に沿って、閉じ込めチャンバ100の中心に向かって生成する。ガン350は、ワッシャー積層チャネル内に高濃度ガス放出で作動し、5〜10msに完全にイオン化されたプラズマを数キロアンペア生成するように設計されている。ガン350は、出力プラズマ流を閉じ込めチャンバ100内の所望のサイズのプラズマに一致させる、パルス磁気コイルを含む。ガン350の技術パラメータは、5〜13cmの外径、および最高10cmまでの内径を有するチャネルを特徴とし、ガンの内部磁場は0.5〜2.3Tで、400〜600Vで10〜15kAの放電電流を提供する。
ガンプラズマ流は、ミラープラグ440の磁場を貫通し、形成部分200および閉じ込めチャンバ100に流入することができる。ミラープラグ440を通るプラズマ移動の効率は、ガン350とプラグ440との間の距離を低減し、プラグ440をより広く短くすることによって高まる。妥当な条件下で、ガン350はそれぞれ、約150〜300eVおよび約40〜50eVの高いイオン温度および電子温度で、2〜4Tのミラープラグ440を通り約1022プロトン/sを送達する。ガン350は、FRCの縁層456の著しい燃料補給および改良されたFRC全体の粒子閉じ込めを提供する。
プラズマ密度をさらに高めるために、ガスボックスを利用して、追加のガスをガン350からプラズマ流に吹き入れることが可能である。この技法により、照射されたプラズマ密度を数倍に高めることができる。FRCシステム10では、ミラープラグ440の側部のダイバータ300上に搭載されたガスボックスは、FRCの縁層456の燃料補給、FRC450の形成、およびプラズマ磁力線短絡を向上させる。
上に論じたすべての調整パラメータを所与とし、また、一方のみまたは両方のガンを備えた作動が可能であることを考慮すると、広いスペクトルの作動モードが利用可能であることがすぐにわかる。
バイアス電極
開いた磁束表面の電気バイアスは、方位E×B運動を起こす径方向電位を提供することができ、方位E×B運動は、開いた磁力線プラズマの回転、ならびに速度シアを介して実際のFRCコア450を制御するための、ノブを回すのに類似した制御機構を提供する。この制御を達成させるために、FRCシステム10は、機械の様々な部分に配置された様々な電極を戦略的に利用する。図3は、FRCシステム10内の好ましい場所に位置付けられたバイアス電極を示す。
原則として、以下の4つの分類の電極がある。(1)局所電荷を提供するために、FRC450の縁部において特定の開いた磁力線452に接触させる、閉じ込めチャンバ100内の点電極905、(2)方位が対称的な形で遠端磁束層456に帯電させるための、閉じ込めチャンバ100と形成部分200との間の環状電極900、(3)複数の同心磁束層455(それによって層の選択は、ダイバータ磁場を調節するためにコイル416を調節することによって制御可能であり、その結果、適切な電極910上で所望の磁束層456を終了する)に帯電させるための、ダイバータ300内の同心電極910の積層、および最後に(4)プラズマガン350自体(これは、FRC450のセパラトリックス付近で内部の開いた磁束表面455を遮断する)の陽極920(図10参照)。図10および11は、これらの一部に対するいくつかの典型的な設計を示す。
すべての場合において、これらの電極は、最高約800Vまでの電圧でパルスまたは直流電源によって駆動される。電極のサイズおよびどの磁束表面が交差しているかに依存して、電流をキロアンペア範囲で引くことができる。
(FRCシステムの非持続作動−従来のレジーム)
良好に開発された磁場反転シータピンチ技法の後に、FRCシステム10上の標準プラズマ形成が続く。FRCを開始するための通常のプロセスは、定常状態作動のために疑似直流コイル412、414、416、420、432、434および436を駆動することにより開始する。次いでパルス電力形成システム210のRFTPパルス電力回路は、パルス高速磁場反転コイル232を駆動して、形成部分200内に約−0.05Tの一時的な逆バイアスを生成する。この点で、9〜20psiの所定の量の中性ガスを、形成部分200の外端上に配置されたフランジにおいて方位角に配向されたパフ弁のセットを介して、(北および南の)形成部分200の石英管チャンバ240によって画定された2つの形成容積の中に照射する。次に、小さいRF(約数百キロヘルツ)の磁場を、石英管240の表面上のアンテナのセットから生成して、中性ガス柱内に局所シードイオン化領域(local seed ionization region)の形でプレプレイオン化(pre−pre−ionization)を生成する。これに続いて、パルス高速磁場反転コイル232を駆動する電流上にシータリング変調を加え、これによりガス柱のより広範囲のプレイオン化がもたらされる。最後に、パルス電力形成システム210の主要パルスパワーバンクを燃やして、最高0.4Tまでの順方向バイアス磁場を生成するためにパルス高速磁場反転コイル232を駆動する。このステップは、順方向バイアス磁場が形成管240の全長に亘って均一に生成されるように(静的形成)、または連続蠕動磁場変調が、形成管240の軸に沿って達成されるように(動的形成)、時系列にすることができる。
この形成プロセス全体で、プラズマ内の実際の磁場反転が約5μs内で急速に起きる。形成プラズマに容易に送達されたマルチギガワットのパルス電力は、高温のFRCを生成し、次いで高温のFRCは形成部分200から順方向磁場(磁場蠕動)の時系列の装着、または形成管210(閉じ込めチャンバ100に向かって軸方向を指す、軸方向の磁場勾配を形成する)の軸方向の外端近傍のコイルセット232の最後のコイル内の一時的に増加した電流のいずれかの適用によって、形成部分200から照射される。そのように形成され、加速された2つ(北および南)の形成FRCは、より大きい直径閉じ込めチャンバ100に拡大し、この場合、疑似直流コイル412は、順方向バイアス磁場を生成して、径方向の拡大を制御し平衡外部磁束を提供する。
一旦北および南の形成FRCが閉じ込めチャンバ100の中央平面近傍に到達すると、FRCは衝突する。衝突中、北および南の形成FRCの軸方向の運動エネルギーは、FRCが単一のFRC450に最終的に融合すると、大きく熱化される。プラズマ診断の大きいセットは、FRC450の平衡を調査するために閉じ込めチャンバ100の内で利用可能である。FRCシステム10内の通常の作動条件は、セパラトリックスの半径が約0.4mおよび軸方向に約3m延在する化合したFRCを生成する。さらなる特性は、約0.1Tの外部磁場、約5×1019−3のプラズマ密度および最高1keVまでの合計プラズマ温度である。いかなる持続もなしに、すなわち中性ビーム照射または他の補助手段によって加熱および/または電流駆動なしに、これらのFRCの耐用期間は、本来の特性構成減衰時間の約1msに制限される。
(非持続作動の実験データ−従来のレジーム)
図12は、FRC450のシータピンチ融合プロセスの力学を示すために、セパラトリックスの半径rに近づく、排除磁束半径rΔФの通常の時間発展を示す。2つ(北および南)の個々のプラズモイドは、同時に生成され、次いでそれぞれの形成部分200から出て超音速v約250km/sで加速され、中央平面近傍でz=0で衝突する。衝突中、プラズモイドは軸方向に圧迫し、続いて即座に径方向および軸方向に拡大し、最後に融合してFRC450を形成する。融合するFRC450の径方向および軸方向の力学の両方は、詳しく示した密度プロファイルの測定およびボロメータに基づいた断層撮影によって証明される。
FRCシステム10の代表的な非持続放出からのデータは、図13A、13B、13C、および13Dに時間関数として示されている。FRCは、t=0で開始される。機械の軸方向の中央平面における排除磁束半径は、図13Aに示されている。このデータは、磁気プローブのアレイから得られ、閉じ込めチャンバのステンレス鋼壁のすぐ内側に配置され、これは軸方向磁場を測定する。鋼壁は、この放出の時間スケール上の良好な磁束保存器である。
線集積密度は、z=0に配置された6つのコードのCO/He−Ne干渉計から図13Bに示されている。垂直(y)FRC変位を考慮すると、ボロメータの断層撮影によって測定されたように、アーベル逆変換は図13Cの密度等高線をもたらす。初めの0.1ms間に一部の軸方向および径方向のスロッシング後、FRCは、中空密度プロファイルを有して定着する。このプロファイルは極めて平坦であり、必要に応じて通常の二次元FRC平衡により実質的な密度を軸上にもつ。
圧力平衡から得られ、トムソン散乱分光測定と完全に一致する、合計プラズマ温度が、図13Dに示されている。
排除磁束アレイ全体からの分析は、FRCのセパラトリックス(排除磁束軸方向プロファイルによって見積もられる)の形状が、レーストラック型から楕円形に次第に進化することを示す。図14に示されたこの進化は、2つのFRCから単一のFRCへの段階的な磁気再結合に一致する。実際に、概算は、この特定の場合では、最初の2つのFRC磁束の約10%が、衝突中に再結合すると示唆している。
FRCの長さは、FRCの耐用期間中に3m〜約1mに確実に収縮する。この収縮は図14に見られ、ほとんどの対流エネルギー損失は、FRC閉じ込めより優先されることを示唆する。セパラトリックスの内側のプラズマ圧力は、外部磁気圧力より急速に低減するので、端部領域における磁力線張力は、FRCを軸方向に圧迫し、軸方向および径方向の平衡を回復する。図13および14に論じた放出に対して、FRCの磁束、粒子インベントリ、および熱エネルギー(それぞれ、約10mWb、7×1019粒子、および7kJ)は、FRC平衡が低下するように見えたとき、最初のミリ秒後におよそ1桁低減する。
(持続作動−HPFレジーム)
図12〜14における例は、いかなる持続もなしにFRCを減衰する特性である。しかし、いくつかの技法は、FRCシステム10に展開されて、さらにFRC閉じ込め(内部コアおよび縁層)をHPFレジームに向上させ、閉じ込めを持続させる。
中性ビーム
まず、高速(H)中性を8個の中性ビーム照射装置600からビーム内のBに垂直に照射する。高速中性のビームは、北および南の形成FRCが閉じ込めチャンバ100内で融合した瞬間から1つのFRC450の中に照射される。高速イオンは電荷交換によって主に生成され、FRC450の方位電流に加えるベータトロン軌道(FRCトポロジーのスケール上または特性磁場勾配長さスケールよりはるかに長い主要半径を有する)を有する。放出のわずか後(照射の0.5〜0.8ms後)、充分に大きい高速イオン集団は、内部FRCの安定性および閉じ込め特性を著しく向上させる(例えば、M.W.BinderbauerおよびN.Rostoker、Plasma Phys.56、part
3、451(1996)参照)。さらに、持続の観点から、中性ビーム照射装置600からのビームも、電流を駆動しFRCプラズマを加熱する主な手段である。
FRCシステム10のプラズマレジームでは、高速イオンはプラズマ電子上で主に減速する。放出の初期の間、高速イオンの通常の軌道の平均減速時間は0.3〜0.5msであり、これは著しいFRCの主に電子の加熱をもたらす。高速イオンは、内部FRC磁場が本質的に低いので(0.1Tの外部軸方向磁場に対して平均約0.03T)、セパラトリックスの外側の径方向の偏位を大きくする。高速イオンは、中性ガス濃度がセパラトリックスの外側で高過ぎた場合、電荷交換損失に対して弱いはずである。したがって、FRCシステム10上に展開した壁ゲッタリングおよび他の技法(とりわけガス制御に寄与するプラズマガン350およびミラープラグ440など)は、端中性を最小にし、高速イオン電流の必要な構築を可能にする。
ペレット照射
電子がより高温でFRCの耐用期間がより長い、超高速イオン集団がFRC450内に構築される際、冷凍のHまたはDペレットは、ペレット照射装置700からFRC450の中に照射されて、FRC450のFRC粒子インベントリを持続させる。予想されるアブレーション時間スケールは充分に短いので、かなりのFRC粒子源を提供する。またこの速度は、個々のペレットをより小さい片に砕くことにより、照射された片の表面積を拡大することによって増大させることができるが、ペレット照射装置700のバレルまたは照射管内で、また閉じ込めチャンバ100に入る前に、閉じ込めチャンバ100の中に入る直前に照射管の最後の部分の曲げ半径を締め付けることにより、ペレットと照射管の壁との間の片を増加させることによってステップを達成できる。12バレル(照射管)の燃焼順序および速度、ならびに粉砕を変化させる恩恵により、ペレット照射システム700を調整して、まさに所望のレベルの粒子インベントリの持続を提供することができる。その結果、これはFRC450内の内部動圧ならびにFRC450の持続作動および耐用期間を維持する役に立つ。
一旦、除去された原子がFRC450内で著しいプラズマに衝突すると、除去された原子は完全にイオン化される。次いで得られた低温のプラズマ構成要素は、本来のFRCプラズマにより衝突して加熱される。所望のFRC温度を維持するために必要なエネルギーは、ビーム照射装置600により最終的に供給される。この意味で、ペレット照射装置700は中性ビーム照射装置600と一緒に、定常状態を維持しFRC450を持続するシステムを形成する。
(CT注入器)
ペレット注入器の代替として、コンパクトトロイド(CT)注入器が、主に、磁場反転配位(FRC)プラズマに燃料補給するために提供される。CT注入器720は、図22Aおよび22Bに示されるように、同軸円筒形内側および外側電極722および724と、内側電極の内部に位置付けられるバイアスコイル726と、CT注入器720の放電の反対の端部における電気遮断器728とを含む、磁化同軸プラズマガン(MCPG)を備える。ガスが、ガス注入ポート730を通して内側電極722と外側電極724との間の空間の中に注入され、スフェロマック状プラズマが、放電によって生成され、ローレンツ力によってガンから押し出される。図23Aおよび23Bに示されるように、一対のCT注入器720が容器100の中央平面の近傍および対向側において閉じ込め容器100に結合され、CTを閉じ込め容器100内の中心FRCプラズマの中に注入する。CT注入器720の放電端は、中性ビーム注入器615と同様に、閉じ込め容器100の長手方向軸に対してある角度で閉じ込め容器100の中央平面に向かって指向される。
代替実施形態では、CT注入器720は、図24Aおよび24Bに示されるように、CT注入器720の放電端に結合される伸長円筒形管を備える、ドリフトチューブ740を含む。描写されるように、ドリフトチューブ740は、チューブの周りに位置付けられ、チューブに沿って軸方向に離間される、ドリフトチューブコイル742を含む。複数の診断ポート744が、チューブの長さに沿って描写される。
CT注入器720の利点は、(1)注入されるCTあたりの粒子装荷量の制御および調節性と、(2)高温プラズマが堆積されること(極低温ペレットの代わりに)と、(3)システムが、連続燃料補給を可能にするように、繰り返し率モードで動作されることができることと、(4)システムがまた、注入されるCTが埋設磁場を搬送するにつれて、ある程度の磁束を復元し得ることとである。実験使用のためのある実施形態では、外側電極の内径は、83.1mmであり、内側電極の外径は、54.0mmである。内側電極722の表面は、好ましくは、電極722から生じる不純物を低減させるために、タングステンでコーティングされる。描写されるように、バイアスコイル726が、内側電極722の内側に搭載される。
最近の実験では、最大約100km/秒の超音波CT平行移動速度が、達成された。他の典型的プラズマパラメータは、以下の通りである。電子密度約5×1021m−3、電子温度約30−50eV、および粒子装荷量約0.5〜1.0×1019。CTの高動圧は、注入されるプラズマがFRCの中に深くまで透過し、粒子を区分線の内側に堆積させることを可能にする。最近の実験では、FRC粒子燃料補給は、FRC粒子装荷量の約10〜20%がCT注入器によって正常に提供される結果をもたらし、燃料補給がFRCプラズマを中断させずに容易に実施され得ることを実証した。
サドルコイル
定常状態の電流駆動を達成し、必要なイオン電流を維持するために、電子イオン摩擦力(衝突イオン電子運動量移動からもたらされる)に起因する電子スピンを防止するまたは著しく低減することが望ましい。FRCシステム10は、外部印加された静磁場双極子または四重極磁場を介して、電子遮断を提供する革新的な技法を利用する。これは、図15に示した外部サドルコイル460を介して実現される。サドルコイル460から横方向に印加された径方向の磁場は、回転するFRCプラズマ内の軸方向の電界を誘導する。得られる軸方向の電子電流は、径方向の磁場と相互作用して、電子上に方位遮断力Fθ=−σVeθ<|B>を生成する。FRCシステム10における典型的な条件に対して、プラズマ内部に必要な印加された磁場双極子(または四重極磁場)は、適切な電子遮断を提供するために約0.001Tのみであることが必要である。約0.015Tの対応する外部磁場は充分に小さいので、多くの高速粒子損失あるいは閉じ込めに悪影響をもたらすことはない。事実、印加された磁場双極子(または四重極磁場)は、不安定性の抑制に寄与する。接線中性ビーム照射と軸方向プラズマ照射を組み合わせて、サドルコイル460は、電流の維持および安定性に関して追加レベルの制御を提供する。
ミラープラグ
ミラープラグ440内のパルスコイル444の設計により、適度(約100kJ)の容量エネルギーで高磁場(2〜4T)の局所発生が可能になる。FRCシステム10のこの作動の通常の磁場形成に対して、形成容積内のすべての磁力線は、図2における磁力線によって示唆されたように、ミラープラグ440で収縮部442を通過し、プラズマ壁の接触は起きない。さらに、疑似直流ダイバータ磁気416と連動してミラープラグ440を、磁力線をダイバータ電極910の上に導く、または磁力線を端部カスプ配位(図示せず)内で燃焼させるように、調節することができる。後者は安定性を向上させ、平行な電子熱伝導を抑圧する。
またミラープラグ440自体も、中性ガス制御に寄与する。ミラープラグ440は、ダイバータ300の中へのガス逆流が、プラグの少量のガスコンダクタンス(わずか500L/s)によって著しく低減するので、FRC形成中に石英管に吹き入れられる重水素ガスのより良好な利用が可能になる。形成管210内部の残りの吹き入れられたガスのほとんどは、急速にイオン化される。加えて、ミラープラグ440を通って流れる高密度プラズマは、有効な中性イオン化、ひいては有効なガス障壁を提供する。結果として、FRC縁層456からダイバータ300内に再利用されたほとんどの中性は、閉じ込めチャンバ100に戻らない。加えて、プラズマガン350の作動に関連した中性は(以下に論じるように)、ダイバータ300に大部分が閉じ込められることになる。
最後に、ミラープラグ440は、FRC縁層閉じ込めを向上する傾向がある。ミラー比(プラグ/閉じ込め磁場)が20〜40の範囲で、北と南のミラープラグ440の間の長さが15mで、縁層粒子閉じ込め時間
は、最高10倍まで増加する。向上する
は、FRC粒子閉じ込めを容易に増加させる。
セパラトリックス容積453からの径方向の拡散(D)粒子損失が、縁層456からの軸方向損失
によって均衡がとられたと仮定すると、
が得られ、そこからセパラトリックス密度勾配長さを
と書き換えることができる。式中、r、Lおよびnはそれぞれ、セパラトリックス半径、セパラトリックス長さおよびセパラトリックス密度である。FRC粒子閉じ込め時間は、
であり、式中、τ=a/Dであり、a=r/4である。物理的に、
が向上すると、δが増加し(セパラトリックス密度勾配およびドリフトパラメータが低減し)、したがってFRC粒子損失が低減する。FRC粒子閉じ込めにおける全体の向上は、n
と共に増加するので、概ね二次方程式より若干少ない。

における著しい向上はまた、縁層456が大幅な安定(すなわち、n=1のフルート、ファイアホース、または開放システムに特有の他のMHDの不安定性がない)を維持することも必要とする。プラズマガン350の使用は、この好ましい縁部の安定性を提供する。この意味では、ミラープラグ440およびプラズマガン350は、有効な縁部制御システムを形成する。
プラズマガン
プラズマガン350は、磁力線短絡によりFRC排除ジェット454の安定性を向上させる。プラズマガン350からのガンプラズマは、方位角運動量なしに生成され、これはFRC回転不安定性の制御に有用であることがわかる。したがって、ガン350は、より古い四重極の安定化技術を必要としない、FRCの安定性を制御する有効な手段である。結果として、プラズマガン350は、高速粒子の有益な効果を利用する、または本開示に概要を述べたように、進化したハイブリッド運動FRCレジームに近づくことを可能にする。したがって、プラズマガン350により、FRCシステム10がまさに電子遮断に適切だが、FRCの不安定性を引き起こす、かつ/または劇的な高速粒子拡散をもたらすはずである閾値より低い、サドルコイル電流で作動されることが可能になる。
上に論じたミラープラグで述べたように、
を著しく向上できる場合、供給されたガンプラズマは、縁層粒子損失速度(約1022/s)に匹敵するはずである。FRCシステム10内のガンを生成したプラズマの耐用期間は、ミリ秒の範囲である。実際には、密度n約1013cm−3およびイオン温度約200eVのガンプラズマが、端部ミラープラグ440の間に閉じ込められるとみなしていただきたい。トラップ長さLおよびミラー率Rは、それぞれ約15mおよび20である。クーロン衝突によるイオン平均自由行程は、λii約6×10cmであり、λiiInR/R<Lであるので、イオンはガス動的レジーム内に閉じ込められる。このレジームにおけるプラズマ閉じ込め時間は、τgd約RL/2V約2msであり、式中、Vはイオン音速である。比較のために、これらのプラズマパラメータに対する古典的イオン閉じ込め時間は、τ約0.5τii(lnR+(lnR)0.5)約0.7msであるはずである。異常横拡散は、原則としてプラズマ閉じ込め時間を短縮してもよい。しかし、FRCシステム10では、ボーム拡散速度を前提とする場合、ガンプラズマに対する見積もられた横閉じ込め時間は、τ>τgd約2msである。それ故、ガンは、FRC縁層456の著しい燃料補給、および全体が改良されたFRC粒子閉じ込めを提供するはずである。
さらに、ガンプラズマ流を、約150〜200マイクロ秒後にオンすることができ、それによってFRCの起動、移動および閉じ込めチャンバ100への融合に使用可能になる。tが約0でオンする場合(FRC主要バンク開始)、ガンプラズマは、この動的に形成され融合されたFRC450を持続する役に立つ。形成FRCから、およびガンから組み合わせた粒子インベントリは、中性ビームの捕捉、プラズマの加熱、および長い持続に充分である。tが−1〜0msの範囲でオンする場合、ガンプラズマは、プラズマで石英管210を充填できる、または石英管の中に吹き入れたガスをイオン化でき、したがって、吹き入れたガスを低減する、または恐らく0でさえあるFRC形成が可能になる。後者は、逆バイアス磁場の高速拡散が可能になるために、充分に低温の形成プラズマが必要な場合がある。tが<−2msでオンする場合、プラズマ流は、形成の約1〜3mの磁力線容積ならびに形成部分200の閉じ込め領域および目標プラズマ密度がわずか1013cm−3である閉じ込めチャンバ100を充填することができ、FRCの到達前に中性ビームの構築が充分に可能である。次いで形成FRCを形成し、得られる閉じ込め容器プラズマの中に移動できる。このような方法で、プラズマガン350は、広範囲の作動条件およびパラメータレジームが可能である。
電気的バイアス
縁層456内の径方向電界の制御は、FRCの安定性および閉じ込めに様々な方法で有利である。FRCシステム10に展開した革新的なバイアス構成要素の恩恵により、電位の様々な意図的な分散を閉じ込めチャンバ100内の中央閉じ込め領域の充分に外側の領域から機械全体に亘って開いた磁束表面の群に印加することができる。このような方法で、径方向磁場を、FRC450のすぐ外側の縁層456を横切って生成することができる。次いでこれらの径方向電界は、縁層456の方位回転を修正し、E×B速度シアによってその閉じ込めをもたらす。次いで縁層456とFRCコア453との間のあらゆる差動回転を、シアによりFRCプラズマの内側に移動できる。結果として、縁層456を制御することは、FRCコア453に直接影響を与える。さらに、プラズマ回転における自由エネルギーも不安定性に関与できるので、この技法は、不安定性の開始および成長を制御する直接手段を提供する。FRCシステム10では、適切な縁バイアスは、開いた磁力線の移動および回転、ならびにFRCコア回転の有効な制御を提供する。様々な提供された電極900、905、910および920の場所および形状により、磁束表面455の異なる群の制御が異なる独立した電位で可能になる。このような方法で、多様な異なる電界構成および強度を認識でき、それぞれはプラズマ性能に対する異なる性質の影響をもつ。
すべてのこれらの革新的バイアス技法の主要な利点は、コアおよび縁部のプラズマ挙動が、FRCプラズマの充分に外側から影響を与えることができる、すなわち、いかなる物理的な構成要素も中央高温プラズマ(中央高温プラズマは、エネルギー、磁束および粒子の損失に深刻な影響をもつはずである)に接触させる必要がないという事実である。これは、HPFの概念の性能およびすべての潜在用途に対して主要な有利な影響を有する。
(実験データ−HPF作動)
中性ビームガン600からのビームによる高速粒子の照射は、HPFレジームを可能にする重要な役割を果たす。図16A、16B、16C、および16Dはこの事実を示す。示されているのは、FRCの耐用期間がビームパルスの長さにどのように関連するかを示す曲線のセットである。すべての他の作動条件は、この研究を含むすべての放出に対して一定に保たれる。データは、多くの照射に亘って平均し、したがって、通常の挙動を表す。ビーム期間が長いほど、より長く存続するFRCを生成させることが極めて明白である。この証拠ならびにこの研究中の他の診断を見ると、ビームは安定性を高め、損失を低減することを実証している。ビームパルス長さとFRCの耐用期間との間の相互関係は、ビームトラッピングがある種のプラズマサイズ未満で効力がないので、すなわち、照射されたビームのすべての物理的サイズにおけるFRC450の収縮が、捕捉されるまたはトラッピングされるわけではないので、完全ではない。FRCの収縮は、主に、放電の間のFRCプラズマからの正味エネルギー損失(放電のほぼ中間で約4MW)が、特定の実験設定に関して、中性ビーム(約2.5MW)を介してFRCの中に給送される総パワーより幾分大きいという事実に起因する。ビームを容器100の中央平面により近接する場所に位置させることは、これらの損失を低減させ、FRC寿命時間を延長させる傾向となるであろう。
図17A、17B、17C、および17Dは、HPFレジームを達成するための異なる構成要素の効果を示す。図17A、17B、17C、および17Dは、時間関数としてFRC450の耐用期間を示す典型的な曲線族を示す。すべての場合において、ビーム電力の一定の適度の量(約2.5MW)が、各放出の全期間照射される。各曲線は、構成要素の異なる組合せを表す。例えば、ミラープラグ440、プラズマガン350またはゲッタリング・システム800からのゲッタリングのいずれもなしにFRCシステム10を作動させると、回転の不安定性の急激な発生およびFRCトポロジーの損失をもたらす。ミラープラグ440のみを加えると、不安定性の発生を遅らせ、閉じ込めを増加させる。ミラープラグ440とプラズマガン350の組合せを利用すると、さらに不安定性を低減し、FRCの耐用期間を増加させる。最後にガン350およびプラグ440の上にゲッタリング(この場合Ti)を加えると、最良の結果を得る、すなわち、得られるFRCは、不安定性がなく、最長の耐用期間を示す。構成要素の完全な組合せが最良の効果を生み出し、最良の目標条件をもつビームを提供することが、この実験証明から明らかである。
図1に示したように、最近発見されたHPFレジームは、劇的に改良された移動挙動を示す。図1は、従来のレジームとHPFレジームとの間のFRCシステム10における粒子閉じ込め時間の変化を示す。見てわかるように、これは、HPFレジームにおいて5倍をはるかに超えて改良されている。加えて、図1は、従来のFRC実験前の粒子閉じ込め時間に対して、FRCシステム10における粒子閉じ込め時間を詳しく示す。これらの他の機械に関して、FRCシステム10のHPFレジームは、5倍〜ほぼ20倍に閉じ込めを改良してきた。最後に最も重要なことだが、HPFレジームにおけるFRCシステム10の閉じ込めスケーリングの本質は、すべての以前の測定とは劇的に異なる。FRCシステム10におけるHPFレジームの確立前に、様々な実証的スケーリング則が、以前のFRC実験における閉じ込め時間を予測するためにデータから導き出された。これらのすべてのスケーリング則は、割合R/ρに主に依存する。式中、Rは磁場のない半径(機械の物理的スケールの粗測)であり、ρは外部印加磁場において評価されたイオン・ラーモア半径(印加磁場の粗測)である。従来のFRCにおける長い閉じ込めは、大型機械のサイズおよび/または高磁場のみで可能であることが図1から明らかである。従来のFRCレジームCRにおいてFRCシステム10を作動することは、図1に示したように、これらのスケーリング則に従う傾向がある。しかし、HPFレジームは非常に優れており、はるかに良好な閉じ込めが、大型機械のサイズまたは高磁場なしに達成可能である。より重要なことには、HPFレジームは、CRレジームに比べて低減したプラズマサイズをもつ、改良された閉じ込め時間をもたらすことも図1から明らかである。また、同様の傾向は、以下に説明するように磁束およびエネルギー閉じ込め時間にも見られ、その上、磁束およびエネルギー閉じ込め時間は、FRCシステム10において3〜8倍を超えて増加した。したがって、HPFレジームの進歩は、FRCシステム10におけるFRC平衡を持続し維持するために、わずかなビーム電力、より低い磁場およびより小さいサイズの使用、ならびに未来のより高エネルギーの機械の使用が可能になる。これらの改良に関連して、作動および構築費用を下げ、ならびに工学の複雑さを減らす。
さらなる比較のために、図18A、18B、18C、および18Dは、FRCシステム10における代表的なHPFレジーム放出からのデータを時間関数として示す。図18Aは、中央平面での排除磁束半径を示す。これらのより長い時間スケールに対して、誘導鋼鉄壁は、もはや磁束保存器のように良好ではなく、壁の内部にある磁気プローブは、鋼鉄を通る磁束拡散を適切に構成する壁の外側のプローブで増大される。図13A、13B、13C、および13Dに示したように、従来のレジームCRにおける通常の性能と比較して、HPFレジームの作動モードは、400%を超える長い耐用期間を示す。
線集積密度追跡の代表的コードは、図18Cにおけるそのアーベル逆変換相補、密度等高線と共に、図18Bに示されている。従来のFRCレジームCRと比較して、図13A、13B、13C、および13Dに示したように、プラズマは、非常に安定した作動を示し、パルス全体を通してより不活発である。またピーク濃度は、HPF照射においてわずかに低く、これは、図18Dに示したように、より高い合計プラズマ温度(最高2倍まで)の結果である。
図18A、18B、18C、および18Dに示されたそれぞれの放出に対して、エネルギー、粒子および磁束閉じ込め時間はそれぞれ、0.5ms、1msおよび1msである。放出への基準時間1msで、保存されたプラズマエネルギーは2kJであるが、損失は約4MWであり、この目標を中性ビーム持続に非常に適合させる。
図19は、新しく確立された実験用HPF磁束閉じ込めスケーリングの形態における、HPF体系の全利点を要約する。図19から分かるように、t=0.5ms、すなわち、t0.5msおよびt>0.5msの前後で測定された測定値に基づいて、磁束閉じ込め(同様に、粒子閉じ込めおよびエネルギー閉じ込め)は、所与の区分線半径(r)に対して電子温度(T)のほぼ2乗に伴って変化する。Tの正の指数(負の指数ではない)に伴う本強スケーリングは、閉じ込めが、典型的には、電子温度のある指数に反比例する、従来のトカマクによって呈されるものと完全に反対である。本スケーリングの現れは、HPF状態および大軌道(すなわち、FRCトポロジのスケールおよび/または少なくとも特性磁場勾配長スケール上の軌道)イオン集団の直接的結果である。基本的には、本新しいスケーリングは、高動作温度に実質的に有利に働き、比較的に中程度のサイズの炉を可能にする。
HPF体系が提示する利点によって、中性ビームによって駆動されるFRC持続または定常状態が、達成可能であって、プラズマ熱エネルギー、総粒子数、プラズマ半径および長さ、ならびに磁束等の包括的プラズマパラメータが、実質的減衰を伴わずに、合理的レベルで持続可能であることを意味する。比較のために、図20は、プロットAには、時間の関数としてのFRCシステム10内の代表的HPF体系放電からのデータを、プロットBには、FRC450が、中性ビームパルスの持続時間を通して、減衰を伴わずに持続される、時間の関数としてのFRCシステム10内の投影された代表的HPF体系放電のデータを示す。プロットAに関しては、約2.5〜2.9MWの範囲内の総パワーを伴う中性ビームが、約6msの活性ビームパルス長のために、FRC450の中に注入された。プロットAに描写される反磁性寿命時間は、約5.2msであった。より最近のデータは、約7.2msのプラズマ反磁性寿命時間が、約7msの活性ビームパルス長を用いて達成可能であることを示す。
図16A、16B、16C、および16Dに関して前述のように、ビームパルス長とFRC寿命時間との間の相関は、ビーム捕捉が、あるプラズマサイズを下回ると非効率的となるため、完璧ではない、すなわち、FRC450の物理的サイズが収縮するにつれて、注入されるビーム全てが、奪取および捕捉されることはない。FRCの収縮または減衰は、主に、放電の間のFRCプラズマからの正味エネルギー損失(放電のほぼ中間で−4MW)が、特定の実験設定に関して、中性ビーム(約−2.5MW)を介してFRCの中に給送される総パワーより幾分大きいという事実に起因する。図3Cに関して記載のように、ビーム注入が中性ビームガン600から中央平面に向かって角度付けられることによって、注入周期の間、FRCプラズマが収縮または別様に軸方向に縮小しても、ビーム−プラズマ結合を改良する。加えて、適切なペレット燃料補給は、必要プラズマ密度を維持するであろう。
プロットBは、約6msの活性ビームパルス長および約10MWを若干上回る中性ビームガン600からの総ビームパワーを使用して行われたシミュレーションの結果であって、中性ビームは、約15keVの粒子エネルギーを伴うH(または、D)中性粒子を注入するものとする。ビームのそれぞれによって注入される等価電流は、約110Aである。プロットBに関して、デバイス軸に対するビーム注入角度は、約20°、標的半径0.19mであった。注入角度は、範囲15°〜25°内で変更されることができる。ビームは、方位角的に並流方向に注入されるものとする。中性ビーム運動量注入からの正味側方力ならびに正味軸方向力は、最小限にされるものとする。プロットAと同様に、高速(H)中性粒子が、北側および南側形成FRCが閉じ込めチャンバ100内で融合する瞬間から、中性ビーム注入器600から1つのFRC450の中に注入される。
プロットBのための基礎となったシミュレーションは、背景プラズマおよび平衡のための多次元ホールMHDソルバ、エネルギー性ビーム成分および全散乱プロセスのための完全動態学的モンテカルロベースのソルバ、ならびに全プラズマ種に対して結合された輸送方程式集合を使用して、双方向損失プロセスをモデル化する。輸送成分は、実験的に較正され、実験データベースに対して広範囲にわたってベンチマークされる。
プロットBによって示されるように、FRC450の定常状態反磁性寿命時間は、ビームパルスの長さとなるであろう。しかしながら、重要となる相関プロットBは、ビームがオフにされると、プラズマまたはFRCが、その前ではなく、その時間において、減衰し始めることを示すことに留意することが重要である。減衰は、ビーム支援ではない(おそらく、ビームオフ時間を約1ms超える)、放電中に観察され、単に、固有の損失プロセスによって駆動されるプラズマの特性減衰時間の反映であるものと類似するであろう。
図21A、21B、21C、21Dおよび21Eに目を向けると、図に図示される実験結果は、角度付けられた中性ビームによって駆動されるFRC持続性または定常状態の達成を示す、すなわち、プラズマ半径、プラズマ密度、プラズマ温度、および磁束等のグローバルプラズマパラメータは、NBパルス持続時間と相関して減衰を伴わずに、一定レベルで持続可能である。例えば、そのようなプラズマパラメータは、本質的に、約5+msにわたって一定に保たれている。持続性特徴を含む、そのようなプラズマ性能は、強い相関NBパルス持続時間を有し、蓄積された高速イオンに起因して、NB終了から数ミリ秒後でさえ、反磁性が残存する。図示されるように、プラズマ性能は、NB注入器および他のシステム構成要素等の多くの重要なシステムの関連付けられた電力供給源内の有限貯蔵エネルギーから生じるパルス長制約のみによって限定される。
マルチスケール捕捉タイプ真空ポンプ
図3A、3B、3C、3D、3E、および8に関して上記に記載のように、中性原子ビーム600は、FRCシステム10上で展開され、加熱および電流駆動を提供し、かつ高速粒子圧力を発生させる。中性原子ビーム注入器システム600を備える、個々のビーム線は、中心閉じ込めチャンバ100の周囲に位置し、図3C、3Dおよび3Eに示されるように、好ましくは、角度付けられ、中性粒子を閉じ込めチャンバ100の中央平面に向かって注入する。プラズマ温度を漸増させ、システムエネルギーを上昇させるために、本FRCシステム10は、上昇された電力および拡張されたパルス長、例えば、例示的目的のためだけに、最大30msパルス長を伴う約20+MWの電力の中性ビーム注入器(NBI)システム600を含む。
FRC持続性をさらに改良し、高プラズマ温度および上昇されたシステムエネルギーへのFRC漸増を実証するために、本FRCシステム10はまた、マルチスケール捕捉タイプ真空ポンプを外側および内側ダイバータ300および302内に含み、ダイバータ300および302内での中性化されたガスの蓄積を防止する。図25に図示されるように、種々の機構を通して、荷電されたプラズマ粒子(例えば、水素および重水素等)は、矢印Aによって示されるように、FRCプラズマ450の内部またはコア453から開放磁力線プラズマへと喪失される。ここから、荷電粒子は、矢印Bによって示されるように、開放磁力線452に沿って中心閉じ込め容器100から閉じ込め容器100の両側の4つのダイバータ300および302のそれぞれに流動する。
いったんダイバータ300および302内に入ると、荷電粒子は、例えば、ダイバータ300および302(図3A、3D、10および26)内のバイアス電極910等のダイバータチャンバ310内の表面に衝打し、中性化され、中性化されたガスとして放出されるであろう。そのような中性化されたガスの密度を十分に低く保つことは、開放磁力線452に沿ったプラズマ内の電子が、ダイバータ300および302内の中性ガスをイオン化し、したがって、プロセス中にエネルギーを喪失させる(冷却する)ため、FRC持続性および高プラズマ温度および上昇されたシステムエネルギーへの漸増のために必要である。あまりに低温である電子は、過剰な抗力を生じさせ、FRCプラズマ450のプラズマコアの周囲の活発なイオン軌道周回を減速させる。所定の中性ガス密度を下回ると、イオン化からの電子冷却は、有意とならない傾向にある。
ダイバータ300および302内のそのような中性化されたガスの蓄積を回避するために、中性化されたガスは、ポンピング排除され、ガス密度レベルNがYの所定の最大レベルを超えることを防止する、すなわち、N<Ym−3でなければならない。例えば、ある実施形態では、本ガス蓄積は、内側ダイバータ302内の密度レベルNである1018−3(300Kにおける3×10−5Torr圧力均等物)および外側ダイバータ300内の2×1018−3(300Kにおける6×10−5Torr圧力均等物)を超えることができない。本最大密度/圧力限界を超えることを防止するために要求されるポンピングのレベルは、4つのダイバータ300および302のそれぞれの中に流動する荷電粒子のレートによって決定される。要求されるポンピングのレベルは、1つ以上の孔を有する、漏れているバケツの中に水を傾注することに類似する。より高速で水がバケツの中に傾注されるほど、水レベルが上昇するレベルも増加する。一方、漏出が多いほど、すなわち、孔のサイズおよび/または数が大きいほど、水レベルが降下するレベルも減少する。十分に大きい漏出(すなわち、ポンプ)を用いることで、水がバケツの中に傾注されている(すなわち、荷電粒子がダイバータ300および302の中に流動する)間、水レベル(すなわち、粒子密度/圧力)は、水レベル限界(すなわち、所定の粒子密度/圧力限界、例えば、約1018−3)を下回って維持されることができる。
本FRCシステム10の動作時、図27に示されるように、ダイバータ300および302に向かって流動する、全ての荷電されたプラズマ粒子は、最初に、最大レート約1.25×1022#/秒(より一般的真空ユニットでは、約400Torr−L/秒である)で、2つの外側ダイバータ300の中に流動すると予期される。本FRCシステム10の実施形態は、FRC形成直後、例えば、約5ミリ秒以内に、磁場に変化し、総粒子流の75%を外側ダイバータ300から内側ダイバータ302に切り替えるように構成される。例えば、内側ダイバータ302の中への初期流率は、約300Torr−L/秒であろう。外側ダイバータ300から内側ダイバータ302への粒子流切替後、まもなく、例えば、約5〜10ミリ秒以内に、FRC450内のプラズマ閉じ込めは、予期される粒子流率が、4〜5分の1に、例えば、約60Torr−L/秒まで降下する傾向となるように改善するであろう。単純ゼロ次元シミュレーションモデルは、4つのダイバータ300および302のそれぞれにおいて、水素ガス密度を好ましい最大限界を下回って保つために、200万L/秒真空ポンプと15mの体積ポンピング(ガスを空容積の中に膨張させる)の組み合わせが要求されることを示した。重水素は、150万L/秒に相当するポンピングを要求する。
ガス密度を十分に低く保ちながら、これらの粒子装填量を取り扱うことは、膨大な量のポンピングを要求する。従来のポンピング解決策は、限定ではないが、例えば、コストおよび各ダイバータ300および302の内側の限定された体積空間(例えば、約15m)および表面積(例えば、約10m)を含む、本FRCシステム10のダイバータ300および302と関連付けられた制約内で必要量のポンピングを提供することが不可能である。
例えば、水素および重水素等の粒子をポンピングするための最も安価な方法は、捕捉タイプ真空ポンプ(下記にさらに詳細に議論される)の形態において、ダイバータ300および302のチャンバ310の表面上に堆積されるチタンフィルムを使用して、粒子をチャンバ310の表面に付着させることである。約2.2L/cmsのポンピングは、室温で達成可能であって、これは、水素粒子が付着し、5%のフィルムによって捕捉される確率に対応する。これは、付着係数と呼ばれ、これは、0〜100%に及び得る。約10mの面積の限定された表面積の使用は、本付着係数では、わずか22,000L/秒の総ポンプ速度をもたらすであろう。本ポンプ速度は、ガス密度を所定の最大値を下回って保ちながら、本FRCシステム10の粒子装填量を取り扱うために要求されるものの約100分の1である。
本FRCシステム10のポンピングの必要性を満たすために、2つのポンピング解決策の組み合わせが、採用される。第1に、チタンフィルムが、極低温で冷却された表面、例えば、約77Kまで極低温で冷却された表面上に堆積される。そのような冷却は、付着係数を最大約4倍、例えば、約5%〜約20%まで増加させる傾向にある。第2に、ポンピング表面は、複数のマルチスケール自己相似表面の中に構成され、付着係数を約3〜4倍、例えば、約20%〜約70%までさらに増加させる。そのような付着係数の増加を用いることで、ポンプ速度の100倍の増加が、達成される。ダイバータ300および302の15m真空容器の内側に適合する、利用可能な表面積の7.3mのみを使用して、例えば、水素に関しては、2,400,000L/秒のポンプ速度が、達成され、重水素に関しては、1,500,000L/秒のポンプ速度が、達成される。これらのポンプは、本FRCシステム10上でプラズマショットから発生されたガス(容量)の総量を取り扱うことができる。ポンプは、本ガス量から95%のそのポンプ速度を保ち、より多くのチタンを堆積させることによって、100%まで再生されることができる。
捕捉タイプ真空ポンプ
ガス分子が、プレート312の表面に付着することによって、平坦プレート312(図28)の表面上に捕捉されることができる。ガス分子の捕捉は、縮合および多くの異なるタイプの材料から成り得る表面上への物理的または化学的吸着等の種々の物理的プロセスを介して発生することができる。ガス分子は、本表面に衝打する度に、0〜100%の付着確率を伴って捕捉され得る。表面への単回衝打からの平坦表面上への本付着確率は、付着係数(SF)と呼ばれる。ガス分子が、付着しない場合、典型的には、余弦定理に従って、その表面をランダム方向に残すであろう。平坦表面の付着係数は、平坦表面のサイズから独立する。しかしながら、ポンプの総ポンピング速度は、ガス分子の表面積、付着係数、および平均速度に依存し、式(1)によって与えられる。
有効付着係数、故にポンプ速度は、表面が相互に対面するように、2つ以上の表面をともに組み合わせることによって増加されることができる。例えば、図28に示されるように、5つの平坦正方形形状の壁322、324、326、328および325は、壁322、324、326、328、および325の内部表面が、相互に対面するように、1つの開放側を伴う立方体320の5つの側を生成するように組み合わせられることができる。開放側において本立方体320の中に進入するガス分子は、5つの表面のうちの1つに衝打し、確率SFを伴って、付着するであろう。ガス分子が、最初に衝打した表面に付着しない場合、ガス分子は、ガス分子が進入したばかりの立方体320の開放側に引き返し得る、またはガス分子は、SFの確率による表面に付着する別の機会を伴って、対面する立方体320の他の4つの表面のうちの1つに衝打し得る。ガス分子は、表面のうちの1つに付着するか、または立方体320の開放側を通して退出するかのいずれかまで、複数回、バウンスし、立方体320の表面に衝打し得る。これは、立方体320の開口部と同一サイズの平坦正方形表面312と比較して、ガス分子が立方体320内の表面に付着する確率を効果的に増加させる。立方体320は、事実上、平坦表面312に匹敵するが、平坦表面が立方体320の開放側と同一面積を有する平坦表面312より高い有効SFを有する。
表面が相互に対面するように、2つ以上の表面をともに組み合わせるとき、結果として生じる形状は、必ずしも、立方体の形状を形成する必要はない。結果として生じる形状は、開放側付きチャンバ、空洞、またはチャネル等、単なる平坦表面以上のものを形成する、複数の表面を有する、任意の形状であることができる。例えば、図29に示されるように、図28に示される立方体320のような正方形開口部を伴うが、可変奥行を伴う、ボックスが、形成されることができる。図29は、ボックスを構成する平坦表面の所与のSFに関して、ボックスの奥行/幅比の関数としてボックスの正方形開口部の有効SFのプロットを提供する。ゼロ奥行(同様に、奥行/幅=0)を伴うボックスは、単なる平坦表面312であって、したがって、有効SFは、ボックスの平坦表面の所与のSFと同一であろう。平坦表面に関するサンプルSFが、0.05、0.10、0.20、および0.50を含むように示される。奥行/幅=1の奥行/幅比に関して、ボックス320(1)は、立方体である。ボックス320(2)、320(3)、320(4)および320(5)は、それぞれ、2:1、3:1、4:1および5:1の奥行/幅比を有する。
奥行/幅比が可変であることに加え、開放側の形状および数も、変動してもよい。開放側は、正方形である必要はないが、2つ以上の内部表面が相互に対面する限り、限定ではないが、六角形、円形、長方形、三角形、星形等を含む、任意の形状であることができる。形状はまた、いくつかの離散平坦表面から作製される必要はない。半球のような持続的に湾曲する表面であることもできる。半球に関する有効SFを計算するために、湾曲表面は、無限数の無限小平坦表面から成ると仮定される。
自己相似表面捕捉ポンプ
多スケールレベルにおいて自己相似構造を構築するための基本形状も検討され得、これは、有効SFを大幅に増加させるであろう。例えば、上記(図28および29)に説明される5面立方体320の形態における個々のポンプ物体は、複数の立方体320を用いて、10×10アレイの立方体に組み立てられ、パネルまたは壁330を形成することができる。立方体パネル330のアレイは、次いで、より大きい5面立方体340の5つの壁342、344、345、346、および348を形成するために使用されることができる。
本プロセスは、繰り返し複製され、SF、故に、ポンプの速度および容量を増加させることができる。例えば、図31および32に図示されるように、5%のSFを有する平坦正方形プレート312が、5面立方体320を形成するために使用される場合、立方体320の開口部のSFは、20%まで増加するであろう。立方体320は、次いで、複数の立方体320を用いて、10×10アレイの立方体に組み立てられ、20%と等しいSFを伴う、「平坦」正方形平面または壁330を形成することができる。20%のSFを有する立方体壁330のアレイが、側面342、344、345、346、および348とともに、5面立方体340を形成するために使用される場合、立方体340の開口部のSFは、50%まで増加するであろう。立方体340は、次いで、複数の立方体340を用いて、10×10アレイの立方体に組み立てられ、50%と等しいSFを伴う、「平坦」正方形平面または壁360を形成することができる。50%のSFを有する立方体壁360のアレイが、側面382、384、385、386、および388とともに、5面立方体380を形成するために使用される場合、立方体380の開口部のSFは、80%まで増加するであろう。本プロセスは、所望に応じて、最適SFレベルに到達するために繰り返されることができる。
図26に示されるように、複数のより大きいボックス380が、ダイバータ300および302のチャンバ310の内部の周りに位置付けられる。
SFは、サイズに依存しない。前の実施例の立方体と関連付けられたSFの増加は、開口部をより大きくするのではなく、同一サイズ開口部の立方体によって達成されることができる。換言すると、第1および第3の立方体320および380の開口部を同一サイズに保ちながら、第1の立方体320の構成から第3の立方体380の構成に遷移させることによって、SF、故に、ポンプ速度の4倍の増加が、開口部面積に対応する平坦プレートのSFと比較して達成される。これは、自己相似性の離散スケールレベルの実施例である。第1の立方体320は、1つのスケールのみの立方体、すなわち、立方体320の壁の内部表面は、平坦表面を備える。しかしながら、第2の立方体340の壁の内部表面は、平坦ではなく、むしろ、第1の立方体320のアレイを含む。同様に、第3の立方体380の内部表面は、第2の立方体340のアレイを含む。
ポンプのSF、速度、および容量の増加に関する限りでは、平坦表面を3次元表面に変換するために使用される個々のポンプ物体が、同一形状またはサイズを有する必要があるという要件は存在しない。個々のポンプ物体は、個々のポンプ物体の開口部に対応する平坦プレートと比較してSFを増加させ得る形状を有することのみ必要である。上記に提供される実施例では、10:1比率が、自己相似立方体のスケールサイズにおいて使用されるが、本比率は、任意のものであることができる。スケールレベルの数、形状、およびサイズは、状況毎に最適化されることができる。
上記に述べられたように、極低温で冷却された表面と自己相似形状の組み合わせが、本FRCシステム10では、約80%以上の付着係数を達成するために採用される。ある状況では、SFは、チタンが個々のポンプの開口部を通して堆積することを防止する、いくつかの遮蔽体から70%まで低減される。
これらのタイプの自己相似構造を自然に生産する方法が、存在する。アルゴンの異なる雰囲気下、極低温で冷却された(77K)表面上で成長されたチタンフィルムは、自己相似性を呈する、サブミクロン構造を生産し、表面の付着係数を増加させるであろう。しかしながら、例えば、立方体320、340、および380等の自己相似構造は、堆積されるフィルムから成長されない、意図的にエンジニアリングされた自己相似構造であるが、堆積されるフィルムと併用されることができる。
チタンコーティングに加え、ガスが表面上に捕捉され得る、多くの他の方法が、存在する。NEG(非非蒸発型ゲッタ)、極低温で冷却された活性炭は、より一般的もののうちの2つである。
NEG(非非蒸発型ゲッタ)ポンプは、一般に、粒子加速器全体を通して使用される。これらは、チタン、バナジウム、アルミニウム、ジルコニウム、および鉄の合金粉末混合物から作製される。
典型的には、本NEG粉末は、配列され離間されたスタックである、ディスクの中に、または金属加熱器リボン上に焼結され、これは、次いで、ある形状に屈曲される。したがって、付着係数を増加させるための形状であるが、1つのスケールレベルにおいてのみ採用する。それらは、マルチスケールサイズにおける自己相似構造には成形されない。これらのNEG粉末は、自己相似形状構造に焼結され、ポンプのサイズを増加させずに、その低付着係数、故に、ポンプ速度を増加させ得る。増加されたNEGポンプ速度は、粒子加速器の真空性能の改良に役立つであろう。
10Kまで冷却された活性炭は、水素ガスを捕捉することができ、4Kまでさらに冷却されると、ヘリウムガスを捕捉することができる。これは、ヘリウムガスをポンピングするいくつかの方法のうちの1つである。これは、トカマク型および中性ビーム等の融合デバイス内のポンプとして使用される。自己相似構造上への粉末状活性炭の接着は、付着係数およびポンプ速度を増加させるであろう。
本開示のある実施形態によると、磁場反転配位(FRC)を伴う磁場を発生および維持するための方法は、閉じ込めチャンバ内でプラズマの周りにFRCを形成するステップと、複数の中性ビームをFRCプラズマの中に閉じ込めチャンバの中央平面に向かってある角度で注入するステップと、第1および第2のダイバータ内に位置付けられ、相互に対面する表面を伴う2つ以上の側と、開放側とを備える、第1および第2の捕捉真空ポンプを用いて、閉じ込めチャンバに結合される第1および第2の直径方向に対向するダイバータ内に蓄積する中性化されたガス分子をポンピングするステップであって、第1および第2の捕捉真空ポンプは、第1および第2の捕捉ポンプの開放側に相当する面積を画定する平坦プレートの付着係数の4倍よりも大きい付着係数を有する、ステップとを含む。
本開示のさらなる実施形態によると、第1および第2の捕捉真空ポンプの2つ以上の側のうちの少なくとも1つは、個々の捕捉真空ポンプのアレイを備える。
本開示のさらなる実施形態によると、個々の捕捉真空ポンプはそれぞれ、相互に対面する表面を伴う2つ以上の側と、開放側とを備え、個々の捕捉真空ポンプはそれぞれ、個々の捕捉真空ポンプのそれぞれの開放側に相当する面積を画定する平坦プレートの付着係数を上回る付着係数を有する。
本開示のさらなる実施形態によると、個々の捕捉真空ポンプのそれぞれの2つ以上の側のうちの少なくとも1つは、個々の捕捉真空ポンプの第2のアレイを備える。
本開示のさらなる実施形態によると、第2のアレイの個々の捕捉真空ポンプはそれぞれ、相互に対面する表面を伴う2つ以上の側と、開放側とを備え、第2のアレイの個々の捕捉真空ポンプはそれぞれ、第2のアレイの個々の捕捉真空ポンプのそれぞれの開放側に相当する面積を画定する平坦プレートの付着係数を上回る付着係数を有する。
本開示のさらなる実施形態によると、第1および第2の捕捉真空ポンプは、第1および第2の捕捉ポンプの開放側に相当する面積を画定する平坦プレートの付着係数のN倍の付着係数を有し、Nは、4<N<16である。
本開示のさらなる実施形態によると、平坦プレートおよび第1および第2の真空ポンプの表面は、その上に堆積されるチタンのフィルムを含む。
本開示のさらなる実施形態によると、本方法はさらに、高速中性原子のビームを中性ビーム注入器からFRCプラズマの中に閉じ込めチャンバの平面を通して中央に向かってある角度で注入することによって、減衰を伴わずに、FRCを一定値またはほぼ一定値に維持するステップを含む。
本開示のさらなる実施形態によると、本方法はさらに、閉じ込めチャンバの周りに延在する擬似直流コイルを用いて、閉じ込めチャンバ内で磁場を発生させ、閉じ込めチャンバの対向端部の周りに延在する擬似直流ミラーコイルを用いて、閉じ込めチャンバの対向端部内でミラー磁場を発生させるステップを含む。
本開示のさらなる実施形態によると、本方法はさらに、閉じ込めチャンバの周りに延在する擬似直流コイルを用いて、閉じ込めチャンバ内で磁場を発生させ、閉じ込めチャンバの対向端部の周りに延在する擬似直流ミラーコイルを用いて、閉じ込めチャンバの対向端部内でミラー磁場を発生させるステップを含む。
本開示のさらなる実施形態によると、FRCを形成するステップは、形成FRCを閉じ込めチャンバに結合される対向する第1および第2の形成区分内に形成し、形成FRCを第1および第2の形成区分から閉じ込めチャンバの平面を通して中央に向かって加速させるステップであって、2つの形成FRCが融合し、FRCを形成する、ステップを含む。
本開示のさらなる実施形態によると、FRCを形成するステップは、形成FRCを閉じ込めチャンバの中央平面に向かって加速させながら、形成FRCを形成するステップと、形成FRCを形成し、次いで、閉じ込めチャンバの平面を通して中央に向かって形成FRCを加速させるステップとのうちの1つを含む。
本開示のさらなる実施形態によると、形成FRCを第1および第2の形成区分から閉じ込めチャンバの中央平面に向かって加速させるステップは、第1および第2の形成区分から、閉じ込めチャンバと第1および第2の形成区分に介在する閉じ込めチャンバの反対端部に結合される第1および第2の内側ダイバータを通して、形成FRCを通過させるステップを含む。
本開示のさらなる実施形態によると、形成FRCを第1および第2の形成区分から第1および第2の内側ダイバータを通して通過させるステップは、形成FRCが第1および第2の形成区分から第1および第2の内側ダイバータを通して通過するにつれて、第1および第2の内側ダイバータを非アクティブ化するステップを含む。
本開示のさらなる実施形態によると、本方法はさらに、FRCの磁束表面を第1および第2の内側ダイバータの中に誘導するステップを含む。
本開示のさらなる実施形態によると、本方法はさらに、FRCの磁束表面を形成区分の端部に結合される第1および第2の外側ダイバータの中に誘導するステップを含む。
本開示のさらなる実施形態によると、本方法はさらに、形成区分およびダイバータの周りに延在する擬似直流コイルを用いて、磁場を形成区分および第1および第2の外側ダイバータ内に発生させるステップを含む。
本開示のさらなる実施形態によると、本方法はさらに、形成区分およびダイバータの周りに延在する擬似直流コイルを用いて、磁場を形成区分および第1および第2の内側ダイバータ内で発生させるステップを含む。
本開示のさらなる実施形態によると、本方法はさらに、擬似直流ミラーコイルを用いて、ミラー磁場を第1および第2の形成区分と第1および第2の外側ダイバータとの間に発生させるステップを含む。
本開示のさらなる実施形態によると、本方法はさらに、形成区分とダイバータとの間の狭窄部の周りに延在する擬似直流ミラープラグコイルを用いて、ミラープラグ磁場を第1および第2の形成区分と第1および第2の外側ダイバータとの間の狭窄部内で発生させるステップを含む。
本開示のさらなる実施形態によると、本方法はさらに、擬似直流ミラーコイルを用いて、ミラー磁場を閉じ込めチャンバと第1および第2の内側ダイバータとの間に発生させ、擬似直流薄型ネッキングコイルを用いて、ネッキング磁場を第1および第2の形成区分と第1および第2の内側ダイバータとの間に発生させるステップを含む。
本開示のさらなる実施形態によると、本方法はさらに、チャンバに結合されるサドルコイルを用いて、磁気双極場および磁気四重極場のうちの1つをチャンバ内で発生させるステップを含む。
本開示のさらなる実施形態によると、本方法はさらに、ゲッタリングシステムを用いて、チャンバの内部表面および第1および第2の形成区分の内部表面と、閉じ込めチャンバと第1および第2の形成区分に介在する第1および第2のダイバータと、第1および第2の形成区分に結合される、第1および第2の外側ダイバータとを調整するステップを含む。
本開示のさらなる実施形態によると、ゲッタリングシステムは、チタン堆積システムおよびリチウム堆積システムのうちの1つを含む。
本開示のさらなる実施形態によると、本方法はさらに、プラズマをFRCの中に軸方向に搭載されるプラズマガンから軸方向に注入するステップを含む。
本開示のさらなる実施形態によると、本方法はさらに、FRCの縁層内の半径方向電場プロファイルを制御するステップを含む。
本開示のさらなる実施形態によると、FRCの縁層内の半径方向電場プロファイルを制御するステップは、バイアス電極を用いて、ある電位の分布をFRCの開磁束面群に印加するステップを含む。
本開示のさらなる実施形態によると、本方法はさらに、コンパクトトロイド(CT)プラズマを第1および第2のCT注入器からFRCプラズマの中に閉じ込めチャンバの中央平面に向かってある角度で注入するステップを含み、第1および第2のCT注入器は、閉じ込めチャンバの中央平面の対向側で直径方向に対向する。
本開示のさらなる実施形態によると、捕捉真空ポンプは、相互に対面する表面を伴う2つ以上の側と、開放側とを備え、捕捉真空ポンプは、捕捉ポンプの開放側に相当する面積を画定する平坦プレートの付着係数の4倍よりも大きい付着係数を有する。
本開示のさらなる実施形態によると、第1および第2の捕捉真空ポンプの2つ以上の側のうちの少なくとも1つは、個々の捕捉真空ポンプのアレイを備える。
本開示のさらなる実施形態によると、個々の捕捉真空ポンプはそれぞれ、相互に対面する表面を伴う2つ以上の側と、開放側とを備え、個々の捕捉真空ポンプはそれぞれ、個々の捕捉真空ポンプのそれぞれの開放側に相当する面積を画定する平坦プレートの付着係数を上回る付着係数を有する。
本開示のさらなる実施形態によると、個々の捕捉真空ポンプのそれぞれの2つ以上の側のうちの少なくとも1つは、個々の捕捉真空ポンプの第2のアレイを備える。
本開示のさらなる実施形態によると、第2のアレイの個々の捕捉真空ポンプはそれぞれ、相互に対面する表面を伴う2つ以上の側と、開放側とを備え、第2のアレイの個々の捕捉真空ポンプはそれぞれ、第2のアレイの個々の捕捉真空ポンプのそれぞれの開放側に相当する面積を画定する平坦プレートの付着係数を上回る付着係数を有する。
本開示のさらなる実施形態によると、第1および第2の捕捉真空ポンプは、第1および第2の捕捉ポンプの開放側に相当する面積を画定する平坦プレートの付着係数のN倍の付着係数を有し、Nは、4<N<16である。
本開示のさらなる実施形態によると、平坦プレートおよび第1および第2の真空ポンプの表面は、その上に堆積されるチタンのフィルムを含む。
本開示のさらなる実施形態によると、磁場反転配位(FRC)を伴う磁場を発生および維持するためのシステムは、閉じ込めチャンバと、閉じ込めチャンバに結合され、第1および第2のダイバータ内に位置付けられ、相互に対面する表面を伴う2つ以上の側と、開放側とを備える、第1および第2の捕捉真空ポンプを含む、第1および第2の直径方向に対向するFRC形成区分であって、第1および第2の捕捉真空ポンプは、第1および第2の捕捉ポンプの開放側に相当する面積を画定する平坦プレートの付着係数の4倍よりも大きい付着係数を有する、第1および第2の直径方向に対向するFRC形成区分と、複数のプラズマガン、1つ以上のバイアス電極、および第1および第2のミラープラグのうちの1つ以上のものであって、複数のプラズマガンは、第1および第2のダイバータ、第1および第2の形成区分、および閉じ込めチャンバに動作可能に結合される、第1および第2の軸方向プラズマガンを含み、1つ以上のバイアス電極は、閉じ込めチャンバ、第1および第2の形成区分、および第1および第2の外側ダイバータのうちの1つ以上のもの内に位置付けられ、第1および第2のミラープラグは、第1および第2の形成区分と第1および第2のダイバータとの間に位置付けられる、複数のプラズマガン、1つ以上のバイアス電極、および第1および第2のミラープラグのうちの1つ以上のものと、閉じ込めチャンバおよび第1および第2のダイバータに結合される、ゲッタリングシステムと、閉じ込めチャンバに結合され、閉じ込めチャンバの中央平面に向かって角度付けられる、複数の中性原子ビーム注入器とを備える。
本開示のさらなる実施形態によると、本システムは、FRCを発生させ、中性ビームが注入されている間、減衰を伴わずに、FRCを維持するように構成される。
本開示のさらなる実施形態によると、第1および第2のダイバータは、第1および第2の形成区分と閉じ込めチャンバに介在する、第1および第2の内側ダイバータを備え、第1および第2の形成区分に結合される、第1および第2の外側ダイバータをさらに備え、第1および第2の形成区分は、第1および第2の内側ダイバータと第1および第2の外側ダイバータに介在する。
本開示のさらなる実施形態によると、本システムはさらに、第1および第2の内側および外側ダイバータ、第1および第2の形成区分、および閉じ込めチャンバに動作可能に結合される、第1および第2の軸方向プラズマガンを備える。
本開示のさらなる実施形態によると、本システムはさらに、閉じ込めチャンバに結合される、2つ以上のサドルコイルを備える。
本開示のさらなる実施形態によると、形成区分は、FRCを発生させ、それを閉じ込めチャンバの中央平面に向かって平行移動させるためのモジュール化された形成システムを備える。
本開示のさらなる実施形態によると、バイアス電極は、閉じ込めチャンバ内に位置付けられ、開放磁力線に接触するための1つ以上の点電極と、閉じ込めチャンバと第1および第2の形成区分との間にあって、方位角的に対称方式において遠端束層を充電するための環状電極のセットと、第1および第2のダイバータ内に位置付けられ、複数の同心磁束層を充電するための複数の同心状にスタックされた電極と、開放磁束を捕らえるためのプラズマガンのアノードとのうちの1つ以上のものを含む。
本開示のさらなる実施形態によると、本システムはさらに、閉じ込めチャンバの中央平面に向かってある角度で閉じ込めチャンバに結合される、第1および第2のコンパクトトロイド(CT)注入器を備え、第1および第2のCT注入器は、閉じ込めチャンバの中央平面の対向側で直径方向に対向する。
しかしながら、本明細書に提供される例示的実施形態は、単に、例証的実施例として意図され、いかようにも限定されない。
本明細書に提供される任意の実施形態に関して説明される全ての特徴、要素、構成要素、機能、およびステップは、任意の他の実施形態からのものと自由に組み合わせ可能かつ代用可能であることを意図している。ある特徴、要素、構成要素、機能、またはステップが、一実施形態のみに関して説明される場合、特徴、要素、構成要素、機能、またはステップは、別様に明示的に記述されない限り、本明細書に説明される全ての他の実施形態とともに使用され得ることを理解されたい。本段落は、したがって、常に、異なる実施形態からの特徴、要素、構成要素、機能、およびステップを組み合わせる、または、一実施形態からの特徴、要素、構成要素、機能、およびステップを別のもので代用する、請求項の導入の先行する基礎ならびに書面による支援としての役割を果たし、仮に以下の説明が、特定の事例において、そのような組み合わせまたは代用が可能であることを明示的に記述しなくても、そのような役割を果たす。特に、本説明を読んだ当業者が、ありとあらゆるそのような組み合わせおよび代用の許容性が容易に認識されるであろうことを考えれば、可能性な全ての組み合わせおよび代用を明示的に記載することは、過度の負担である。
多くの事例では、エンティティは、他のエンティティに結合されるように本明細書に説明される。用語「結合される」および「接続される」(またはその形態のいずれか)は、本明細書では同義的に使用され、両場合では、2つのエンティティの直接結合(任意の無視不可能である(例えば、寄生)介在エンティティを伴わずに)および2つのエンティティの間接結合(1つまたは複数の無視不可能である介在エンティティを伴う)に包括的であることを理解されたい。エンティティが、ともに直接結合されるように示される、または任意の介在エンティティの説明を伴わずに、とともに結合されるように説明される場合、それらのエンティティは、文脈によって明確に別様に示されない限り、同様に、ともに間接的に結合されることができることを理解されたい。
実施形態は、種々の修正および代替形態を被るが、その具体的実施例が、図面に示され、本明細書に詳細に説明されている。しかしながら、これらの実施形態は、開示される特定の形態に限定されるものではなく、対照的に、これらの実施形態は、本開示の精神内にある全ての修正、均等物、および代替案を網羅するものであることを理解されたい。さらに、実施形態の任意の特徴、機能、ステップ、または要素、ならびにその範囲内にない特徴、機能、ステップ、または要素によって請求項の範囲を定義する消極的限定が、請求項に記載もしくは追加されてもよい。

Claims (61)

  1. 磁場反転配位(FRC)を伴う磁場を発生および維持するための方法であって、
    閉じ込めチャンバ内でプラズマの周りにFRCを形成するステップと、
    複数の中性ビームを前記FRCプラズマの中に前記閉じ込めチャンバの中央平面に向かってある角度で注入するステップと、
    前記第1および第2のダイバータ内に位置付けられ、相互に対面する表面を伴う2つ以上の側と、開放側とを備える、第1および第2の捕捉真空ポンプを用いて、前記閉じ込めチャンバに結合される第1および第2の直径方向に対向するダイバータ内に蓄積する中性化されたガス分子をポンピングするステップであって、前記第1および第2の捕捉真空ポンプは、前記第1および第2の捕捉ポンプの開放側に相当する面積を画定する平坦プレートの付着係数の4倍よりも大きい付着係数を有する、ステップと
    を含む、方法。
  2. 前記第1および第2の捕捉真空ポンプの2つ以上の側のうちの少なくとも1つは、個々の捕捉真空ポンプのアレイを備える、請求項1に記載の方法。
  3. 前記個々の捕捉真空ポンプはそれぞれ、相互に対面する表面を伴う2つ以上の側と、開放側とを備え、前記個々の捕捉真空ポンプはそれぞれ、前記個々の捕捉真空ポンプのそれぞれの開放側に相当する面積を画定する平坦プレートの付着係数を上回る付着係数を有する、請求項2に記載の方法。
  4. 前記個々の捕捉真空ポンプのそれぞれの2つ以上の側のうちの少なくとも1つは、個々の捕捉真空ポンプの第2のアレイを備える、請求項3に記載の方法。
  5. 前記第2のアレイの個々の捕捉真空ポンプはそれぞれ、相互に対面する表面を伴う2つ以上の側と、開放側とを備え、前記第2のアレイの個々の捕捉真空ポンプはそれぞれ、前記第2のアレイの個々の捕捉真空ポンプのそれぞれの開放側に相当する面積を画定する平坦プレートの付着係数を上回る付着係数を有する、請求項4に記載の方法。
  6. 前記第1および第2の捕捉真空ポンプは、前記第1および第2の捕捉ポンプの開放側に相当する面積を画定する平坦プレートの付着係数のN倍の付着係数を有し、Nは、4<N<16である、請求項1−5に記載の方法。
  7. 前記平坦プレートおよび前記第1および第2の真空ポンプの表面は、その上に堆積されるチタンのフィルムを含む、請求項1−5に記載の方法。
  8. 前記平坦プレートおよび前記第1および第2の真空ポンプの表面は、その上に堆積されるチタンのフィルムを含む、請求項6に記載の方法。
  9. 高速中性原子のビームを中性ビーム注入器から前記FRCプラズマの中に前記閉じ込めチャンバの平面を通して中央に向かってある角度で注入することによって、減衰を伴わずに、前記FRCを一定値またはほぼ一定値に維持するステップをさらに含む、請求項1−5および8に記載の方法。
  10. 高速中性原子のビームを中性ビーム注入器から前記FRCプラズマの中に前記閉じ込めチャンバの平面を通して中央に向かってある角度で注入することによって、減衰を伴わずに、前記FRCを一定値またはほぼ一定値に維持するステップをさらに含む、請求項6に記載の方法。
  11. 高速中性原子のビームを中性ビーム注入器から前記FRCプラズマの中に前記閉じ込めチャンバの平面を通して中央に向かってある角度で注入することによって、減衰を伴わずに、前記FRCを一定値またはほぼ一定値に維持するステップをさらに含む、請求項7に記載の方法。
  12. 前記閉じ込めチャンバの周りに延在する擬似直流コイルを用いて、前記閉じ込めチャンバ内で磁場を発生させ、前記閉じ込めチャンバの対向端部の周りに延在する擬似直流ミラーコイルを用いて、前記閉じ込めチャンバの対向端部内でミラー磁場を発生させるステップをさらに含む、請求項9に記載の方法。
  13. 前記閉じ込めチャンバの周りに延在する擬似直流コイルを用いて、前記閉じ込めチャンバ内で磁場を発生させ、前記閉じ込めチャンバの対向端部の周りに延在する擬似直流ミラーコイルを用いて、前記閉じ込めチャンバの対向端部内でミラー磁場を発生させるステップをさらに含む、請求項10および11に記載の方法。
  14. 前記FRCを形成するステップは、形成FRCを前記閉じ込めチャンバに結合される対向する第1および第2の形成区分内に形成し、前記形成FRCを前記第1および第2の形成区分から前記閉じ込めチャンバの平面を通して中央に向かって加速させるステップであって、前記2つの形成FRCが融合し、前記FRCを形成する、ステップを含む、請求項12に記載の方法。
  15. 前記FRCを形成するステップは、形成FRCを前記閉じ込めチャンバに結合される対向する第1および第2の形成区分内に形成し、前記形成FRCを前記第1および第2の形成区分から前記閉じ込めチャンバの平面を通して中央に向かって加速させるステップであって、前記2つの形成FRCが融合し、前記FRCを形成する、ステップを含む、請求項13に記載の方法。
  16. 前記FRCを形成するステップは、前記閉じ込めチャンバの平面を通して中央に向かって前記形成FRCを加速させながら、形成FRCを形成するステップと、形成FRCを形成し、次いで、前記閉じ込めチャンバの平面を通して中央に向かって前記形成FRCを加速させるステップとのうちの1つを含む、請求項14および15に記載の方法。
  17. 前記第1および第2の形成区分から前記閉じ込めチャンバの平面を通して中央に向かって前記形成FRCを加速させるステップは、前記第1および第2の形成区分から、前記閉じ込めチャンバと前記第1および第2の形成区分に介在する前記閉じ込めチャンバの反対端部に結合される第1および第2の内側ダイバータを通して、前記形成FRCを通過させるステップを含む、請求項14および15に記載の方法。
  18. 前記第1および第2の形成区分から第1および第2の内側ダイバータを通して前記形成FRCを通過させるステップは、前記形成FRCが前記第1および第2の形成区分から前記第1および第2の内側ダイバータを通して通過するにつれて、前記第1および第2の内側ダイバータを非アクティブ化するステップを含む、請求項17に記載の方法。
  19. 前記FRCの磁束表面を前記第1および第2の内側ダイバータの中に誘導するステップをさらに含む、請求項17に記載の方法。
  20. 前記FRCの磁束表面を前記形成区分の端部に結合される第1および第2の外側ダイバータの中に誘導するステップをさらに含む、請求項16に記載の方法。
  21. 前記形成区分およびダイバータの周りに延在する擬似直流コイルを用いて、磁場を前記形成区分および前記第1および第2の外側ダイバータ内で発生させるステップをさらに含む、請求項20に記載の方法。
  22. 前記形成区分およびダイバータの周りに延在する擬似直流コイルを用いて、磁場を前記形成区分および第1および第2の内側ダイバータ内で発生させるステップをさらに含む、請求項19に記載の方法。
  23. 擬似直流ミラーコイルを用いて、ミラー磁場を前記第1および第2の形成区分と前記第1および第2の外側ダイバータとの間に発生させるステップをさらに含む、請求項21に記載の方法。
  24. 前記形成区分と前記ダイバータとの間の狭窄部の周りに延在する擬似直流ミラープラグコイルを用いて、ミラープラグ磁場を前記第1および第2の形成区分と前記第1および第2の外側ダイバータとの間の狭窄部内で発生させるステップをさらに含む、請求項21に記載の方法。
  25. 擬似直流ミラーコイルを用いて、ミラー磁場を前記閉じ込めチャンバと前記第1および第2の内側ダイバータとの間に発生させ、擬似直流薄型ネッキングコイルを用いて、ネッキング磁場を前記第1および第2の形成区分と前記第1および第2の内側ダイバータとの間に発生させるステップをさらに含む、請求項22に記載の方法。
  26. 前記チャンバに結合されるサドルコイルを用いて、磁気双極場および磁気四重極場のうちの1つを前記チャンバ内で発生させるステップをさらに含む、請求項9に記載の方法。
  27. 前記チャンバに結合されるサドルコイルを用いて、磁気双極場および磁気四重極場のうちの1つを前記チャンバ内で発生させるステップをさらに含む、請求項10および11のいずれか1項に記載の方法。
  28. ゲッタリングシステムを用いて、前記チャンバの内部表面および第1および第2の形成区分の内部表面と、前記閉じ込めチャンバと前記第1および第2の形成区分に介在する第1および第2のダイバータと、前記第1および第2の形成区分に結合される第1および第2の外側ダイバータとを調整するステップをさらに含む、請求項9に記載の方法。
  29. 前記ゲッタリングシステムは、チタン堆積システムおよびリチウム堆積システムのうちの1つを含む、請求項28に記載の方法。
  30. プラズマを前記FRCの中に軸方向に搭載されるプラズマガンから軸方向に注入するステップをさらに含む、請求項9に記載の方法。
  31. 前記FRCの縁層内の半径方向電場プロファイルを制御するステップをさらに含む、請求項9に記載の方法。
  32. 前記FRCの縁層内の半径方向電場プロファイルを制御するステップは、バイアス電極を用いて、ある電位の分布を前記FRCの開磁束面群に印加するステップを含む、請求項31に記載の方法。
  33. コンパクトトロイド(CT)プラズマを第1および第2のCT注入器から前記FRCプラズマの中に前記閉じ込めチャンバの中央平面に向かってある角度で注入するステップをさらに含み、前記第1および第2のCT注入器は、前記閉じ込めチャンバの中央平面の対向側で直径方向に対向する、請求項1−5および8に記載の方法。
  34. コンパクトトロイド(CT)プラズマを第1および第2のCT注入器から前記FRCプラズマの中に前記閉じ込めチャンバの中央平面に向かってある角度で注入するステップをさらに含み、前記第1および第2のCT注入器は、前記閉じ込めチャンバの中央平面の対向側で直径方向に対向する、請求項6に記載の方法。
  35. コンパクトトロイド(CT)プラズマを第1および第2のCT注入器から前記FRCプラズマの中に前記閉じ込めチャンバの中央平面に向かってある角度で注入するステップをさらに含み、前記第1および第2のCT注入器は、前記閉じ込めチャンバの中央平面の対向側で直径方向に対向する、請求項7に記載の方法。
  36. コンパクトトロイド(CT)プラズマを第1および第2のCT注入器から前記FRCプラズマの中に前記閉じ込めチャンバの中央平面に向かってある角度で注入するステップをさらに含み、前記第1および第2のCT注入器は、前記閉じ込めチャンバの中央平面の対向側で直径方向に対向する、請求項9に記載の方法。
  37. 磁場反転配位(FRC)を伴う磁場を発生および維持するためのシステムであって、
    閉じ込めチャンバと、
    前記第1および第2の直径方向に対向する内側ダイバータに結合される第1および第2の直径方向に対向するFRC形成区分と、
    前記第1および第2の形成区分に結合される第1および第2のダイバータであって、前記第1および第2のダイバータは、前記第1および第2のダイバータ内に位置付けられ、相互に対面する表面を伴う2つ以上の側と、開放側とを備える、第1および第2の捕捉真空ポンプを含み、前記第1および第2の捕捉真空ポンプは、前記第1および第2の捕捉ポンプの開放側に相当する面積を画定する平坦プレートの付着係数の4倍よりも大きい付着係数を有する、第1および第2のダイバータと、
    複数のプラズマガン、1つ以上のバイアス電極、および第1および第2のミラープラグのうちの1つ以上のものであって、前記複数のプラズマガンは、前記第1および第2のダイバータ、前記第1および第2の形成区分、および前記閉じ込めチャンバに動作可能に結合される、第1および第2の軸方向プラズマガンを含み、前記1つ以上のバイアス電極は、前記閉じ込めチャンバ、前記第1および第2の形成区分、および前記第1および第2の外側ダイバータのうちの1つ以上のもの内に位置付けられ、前記第1および第2のミラープラグは、前記第1および第2の形成区分と前記第1および第2のダイバータとの間に位置付けられる、複数のプラズマガン、1つ以上のバイアス電極、および第1および第2のミラープラグのうちの1つ以上のものと、
    前記閉じ込めチャンバおよび前記第1および第2のダイバータに結合される、ゲッタリングシステムと、
    前記閉じ込めチャンバに結合され、前記閉じ込めチャンバの中央平面に向かって角度付けられる、複数の中性原子ビーム注入器と、
    前記閉じ込めチャンバ、前記第1および第2の形成区分、および前記第1および第2のダイバータの周囲に位置付けられる、複数の擬似直流コイルと、前記第1および第2の形成区分と前記第1および第2のダイバータとの間に位置付けられる、第1および第2の擬似直流ミラーコイルのセットとを備える、磁気システムと
    を備える、システム。
  38. 前記第1および第2の捕捉真空ポンプの2つ以上の側のうちの少なくとも1つは、個々の捕捉真空ポンプのアレイを備える、請求項37に記載のシステム。
  39. 前記個々の捕捉真空ポンプはそれぞれ、相互に対面する表面を伴う2つ以上の側と、開放側とを備え、前記個々の捕捉真空ポンプはそれぞれ、前記個々の捕捉真空ポンプのそれぞれの開放側に相当する面積を画定する平坦プレートの付着係数を上回る付着係数を有する、請求項38に記載のシステム。
  40. 前記個々の捕捉真空ポンプのそれぞれの2つ以上の側のうちの少なくとも1つは、個々の捕捉真空ポンプの第2のアレイを備える、請求項39に記載のシステム。
  41. 前記第2のアレイの個々の捕捉真空ポンプはそれぞれ、相互に対面する表面を伴う2つ以上の側と、開放側とを備え、前記第2のアレイの個々の捕捉真空ポンプはそれぞれ、前記第2のアレイの個々の捕捉真空ポンプのそれぞれの開放側に相当する面積を画定する平坦プレートの付着係数を上回る付着係数を有する、請求項40に記載のシステム。
  42. 前記第1および第2の捕捉真空ポンプは、前記第1および第2の捕捉ポンプの開放側に相当する面積を画定する平坦プレートの付着係数のN倍の付着係数を有し、Nは、4<N<16である、請求項37−41に記載のシステム。
  43. 前記平坦プレートおよび前記第1および第2の真空ポンプの表面は、その上に堆積されるチタンのフィルムを含む、請求項37−41に記載のシステム。
  44. 前記平坦プレートおよび前記第1および第2の真空ポンプの表面は、その上に堆積されるチタンのフィルムを含む、請求項42に記載のシステム。
  45. 前記システムは、FRCを発生させ、前記中性ビームが前記プラズマの中に注入されている間、減衰を伴わずに、前記FRCを維持するように構成される、請求項37−44に記載のシステム。
  46. 前記第1および第2のダイバータは、前記第1および第2の形成区分と前記閉じ込めチャンバに介在する、第1および第2の内側ダイバータを備え、前記第1および第2の形成区分に結合される、第1および第2の外側ダイバータをさらに備え、前記第1および第2の形成区分は、前記第1および第2の内側ダイバータと前記第1および第2の外側ダイバータに介在する、請求項37−45に記載のシステム。
  47. 前記第1および第2の内側および外側ダイバータ、前記第1および第2の形成区分、および前記閉じ込めチャンバに動作可能に結合される、第1および第2の軸方向プラズマガンをさらに備える、請求項46に記載のシステム。
  48. 前記閉じ込めチャンバに結合される2つ以上のサドルコイルをさらに備える、請求項47に記載のシステム。
  49. 前記形成区分は、FRCを発生させ、それを前記閉じ込めチャンバの中央平面に向かって平行移動させるためのモジュール化された形成システムを備える、請求項37に記載のシステム。
  50. バイアス電極は、前記閉じ込めチャンバ内に位置付けられ、開放磁力線に接触するための1つ以上の点電極と、前記閉じ込めチャンバと前記第1および第2の形成区分との間にあって、方位角的に対称方式において遠端束層を充電するための環状電極のセットと、前記第1および第2のダイバータ内に位置付けられ、複数の同心磁束層を充電するための複数の同心状にスタックされた電極と、開放磁束を捕らえるための前記プラズマガンのアノードとのうちの1つ以上のものを含む、請求項37に記載のシステム。
  51. 前記システムは、FRCを発生させ、中性原子ビームが前記FRCの中に注入されている間、減衰を伴わずに、前記FRCを一定値またはほぼ一定値に維持するように構成される、請求項54に記載のシステム。
  52. 前記第1および第2の半径方向磁場は、前記中央平面の周りで反対称である、請求項54に記載のシステム。
  53. 前記閉じ込めチャンバの中央平面に向かってある角度で前記閉じ込めチャンバに結合される、第1および第2のコンパクトトロイド(CT)注入器をさらに備え、前記第1および第2のCT注入器は、前記閉じ込めチャンバの中央平面の対向側で直径方向に対向する、請求項37−52に記載のシステム。
  54. 相互に対面する表面を伴う2つ以上の側と、開放側とを備える捕捉真空ポンプであって、前記捕捉ポンプの開放側に相当する面積を画定する平坦プレートの付着係数の4倍よりも大きい付着係数を有する、捕捉真空ポンプ。
  55. 前記第1および第2の捕捉真空ポンプの2つ以上の側のうちの少なくとも1つは、個々の捕捉真空ポンプのアレイを備える、請求項54に記載のシステム。
  56. 前記個々の捕捉真空ポンプはそれぞれ、相互に対面する表面を伴う2つ以上の側と、開放側とを備え、前記個々の捕捉真空ポンプはそれぞれ、前記個々の捕捉真空ポンプのそれぞれの開放側に相当する面積を画定する平坦プレートの付着係数を上回る付着係数を有する、請求項55に記載の捕捉真空ポンプ。
  57. 前記個々の捕捉真空ポンプのそれぞれの2つ以上の側のうちの少なくとも1つは、個々の捕捉真空ポンプの第2のアレイを備える、請求項56に記載の捕捉真空ポンプ。
  58. 前記第2のアレイの個々の捕捉真空ポンプはそれぞれ、相互に対面する表面を伴う2つ以上の側と、開放側とを備え、前記第2のアレイの個々の捕捉真空ポンプはそれぞれ、前記第2のアレイの個々の捕捉真空ポンプのそれぞれの開放側に相当する面積を画定する平坦プレートの付着係数を上回る付着係数を有する、請求項57に記載の捕捉真空ポンプ。
  59. 前記第1および第2の捕捉真空ポンプは、前記第1および第2の捕捉ポンプの開放側に相当する面積を画定する平坦プレートの付着係数のN倍の付着係数を有し、Nは、4<N<16である、請求項54−58に記載の捕捉真空ポンプ。
  60. 前記平坦プレートおよび前記第1および第2の真空ポンプの表面は、その上に堆積されるチタンのフィルムを含む、請求項54−58に記載の捕捉真空ポンプ。
  61. 前記平坦プレートおよび前記第1および第2の真空ポンプの表面は、その上に堆積されるチタンのフィルムを含む、請求項59に記載の捕捉真空ポンプ。

JP2019522247A 2016-11-04 2017-11-06 マルチスケール捕捉タイプ真空ポンピングを用いた高性能frcの改良された持続性のためのシステムおよび方法 Active JP7365693B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022090168A JP2022107774A (ja) 2016-11-04 2022-06-02 マルチスケール捕捉タイプ真空ポンピングを用いた高性能frcの改良された持続性のためのシステムおよび方法

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US201662418119P 2016-11-04 2016-11-04
US62/418,119 2016-11-04
PCT/US2017/060255 WO2018085798A1 (en) 2016-11-04 2017-11-06 Systems and methods for improved sustainment of a high performance frc with multi-scaled capture type vacuum pumping

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2022090168A Division JP2022107774A (ja) 2016-11-04 2022-06-02 マルチスケール捕捉タイプ真空ポンピングを用いた高性能frcの改良された持続性のためのシステムおよび方法

Publications (2)

Publication Number Publication Date
JP2019537001A true JP2019537001A (ja) 2019-12-19
JP7365693B2 JP7365693B2 (ja) 2023-10-20

Family

ID=62076452

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2019522247A Active JP7365693B2 (ja) 2016-11-04 2017-11-06 マルチスケール捕捉タイプ真空ポンピングを用いた高性能frcの改良された持続性のためのシステムおよび方法
JP2022090168A Pending JP2022107774A (ja) 2016-11-04 2022-06-02 マルチスケール捕捉タイプ真空ポンピングを用いた高性能frcの改良された持続性のためのシステムおよび方法

Family Applications After (1)

Application Number Title Priority Date Filing Date
JP2022090168A Pending JP2022107774A (ja) 2016-11-04 2022-06-02 マルチスケール捕捉タイプ真空ポンピングを用いた高性能frcの改良された持続性のためのシステムおよび方法

Country Status (15)

Country Link
US (3) US11211172B2 (ja)
EP (1) EP3535763B1 (ja)
JP (2) JP7365693B2 (ja)
KR (1) KR20190073544A (ja)
CN (1) CN110100287B (ja)
AU (2) AU2017355652B2 (ja)
BR (1) BR112019009034A2 (ja)
CA (1) CA3041862A1 (ja)
EA (1) EA201991117A1 (ja)
IL (1) IL266359B2 (ja)
MX (1) MX2019005262A (ja)
SA (1) SA519401705B1 (ja)
SG (1) SG11201903447WA (ja)
UA (1) UA127712C2 (ja)
WO (1) WO2018085798A1 (ja)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11515050B1 (en) * 2019-11-22 2022-11-29 X Development Llc Mitigating plasma instability
US11049619B1 (en) * 2019-12-23 2021-06-29 Lockheed Martin Corporation Plasma creation and heating via magnetic reconnection in an encapsulated linear ring cusp
MX2022008660A (es) * 2020-01-13 2022-08-10 Tae Tech Inc Sistema y metodos para formar y mantener plasma de configuracion de campo invertido (frc) de alta energia y temperatura por medio de fusion de spheromak e inyeccon de haz neutro.
AU2021336896A1 (en) * 2020-09-02 2023-04-13 Avalanche Energy Designs, Inc. Orbital confinement fusion device

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02191877A (ja) * 1989-01-20 1990-07-27 Hitachi Ltd クライオポンプ
US5083445A (en) * 1989-01-20 1992-01-28 Hitachi, Ltd. Cryopump
US6330801B1 (en) * 1999-06-11 2001-12-18 Francis J. Whelan Method and system for increasing cryopump capacity
JP2015502532A (ja) * 2011-11-14 2015-01-22 ザ リージェンツ オブ ザ ユニバーシティ オブ カリフォルニア 高性能frcを形成し維持するシステムおよび方法
WO2016070126A1 (en) * 2014-10-30 2016-05-06 Tri Alpha Energy, Inc. Systems and methods for forming and maintaining a high performance frc

Family Cites Families (159)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3120470A (en) 1954-04-13 1964-02-04 Donald H Imhoff Method of producing neutrons
US3170841A (en) 1954-07-14 1965-02-23 Richard F Post Pyrotron thermonuclear reactor and process
US2855696A (en) * 1957-04-15 1958-10-14 Malcolm R Griswold Magnetic compasses
US3071525A (en) 1958-08-19 1963-01-01 Nicholas C Christofilos Method and apparatus for producing thermonuclear reactions
US3036963A (en) 1960-01-25 1962-05-29 Nicholas C Christofilos Method and apparatus for injecting and trapping electrons in a magnetic field
NL287706A (ja) 1960-02-26
US3182213A (en) 1961-06-01 1965-05-04 Avco Corp Magnetohydrodynamic generator
US3132996A (en) 1962-12-10 1964-05-12 William R Baker Contra-rotating plasma system
US3339106A (en) * 1965-05-28 1967-08-29 Canadian Patents Dev Ionization vacuum pump of the orbitron type having a porous annular grid electrode
US3386883A (en) 1966-05-13 1968-06-04 Itt Method and apparatus for producing nuclear-fusion reactions
US3530036A (en) 1967-12-15 1970-09-22 Itt Apparatus for generating fusion reactions
US3530497A (en) 1968-04-24 1970-09-22 Itt Apparatus for generating fusion reactions
US3527977A (en) 1968-06-03 1970-09-08 Atomic Energy Commission Moving electrons as an aid to initiating reactions in thermonuclear devices
US3577317A (en) 1969-05-01 1971-05-04 Atomic Energy Commission Controlled fusion reactor
US3621310A (en) 1969-05-30 1971-11-16 Hitachi Ltd Duct for magnetohydrodynamic thermal to electrical energy conversion apparatus
US3664921A (en) 1969-10-16 1972-05-23 Atomic Energy Commission Proton e-layer astron for producing controlled fusion reactions
AT340010B (de) 1970-05-21 1977-11-25 Nowak Karl Ing Einrichtung zur erzielung einer nuklearen reaktion mittels kunstlichem plasma vorzugsweise zur kontrollierten atomkernfusion
US3668065A (en) 1970-09-15 1972-06-06 Atomic Energy Commission Apparatus for the conversion of high temperature plasma energy into electrical energy
US3663362A (en) 1970-12-22 1972-05-16 Atomic Energy Commission Controlled fusion reactor
LU65432A1 (ja) 1972-05-29 1972-08-24
US4233537A (en) 1972-09-18 1980-11-11 Rudolf Limpaecher Multicusp plasma containment apparatus
US3811794A (en) * 1972-11-22 1974-05-21 Bell Telephone Labor Inc Ultrahigh vacuum sublimation pump
US4182650A (en) 1973-05-17 1980-01-08 Fischer Albert G Pulsed nuclear fusion reactor
US5041760A (en) 1973-10-24 1991-08-20 Koloc Paul M Method and apparatus for generating and utilizing a compound plasma configuration
US5015432A (en) 1973-10-24 1991-05-14 Koloc Paul M Method and apparatus for generating and utilizing a compound plasma configuration
US4010396A (en) 1973-11-26 1977-03-01 Kreidl Chemico Physical K.G. Direct acting plasma accelerator
FR2270733A1 (en) 1974-02-08 1975-12-05 Thomson Csf Magnetic field vehicle detector unit - receiver detects changes produced in an emitted magnetic field
US4098643A (en) 1974-07-09 1978-07-04 The United States Of America As Represented By The United States Department Of Energy Dual-function magnetic structure for toroidal plasma devices
US4057462A (en) 1975-02-26 1977-11-08 The United States Of America As Represented By The United States Energy Research And Development Administration Radio frequency sustained ion energy
US4054846A (en) 1975-04-02 1977-10-18 Bell Telephone Laboratories, Incorporated Transverse-excitation laser with preionization
US4065351A (en) 1976-03-25 1977-12-27 The United States Of America As Represented By The United States Energy Research And Development Administration Particle beam injection system
US4166760A (en) 1977-10-04 1979-09-04 The United States Of America As Represented By The United States Department Of Energy Plasma confinement apparatus using solenoidal and mirror coils
US4347621A (en) 1977-10-25 1982-08-31 Environmental Institute Of Michigan Trochoidal nuclear fusion reactor
US4303467A (en) 1977-11-11 1981-12-01 Branson International Plasma Corporation Process and gas for treatment of semiconductor devices
US4274919A (en) 1977-11-14 1981-06-23 General Atomic Company Systems for merging of toroidal plasmas
US4202725A (en) 1978-03-08 1980-05-13 Jarnagin William S Converging beam fusion system
US4189346A (en) 1978-03-16 1980-02-19 Jarnagin William S Operationally confined nuclear fusion system
US4246067A (en) 1978-08-30 1981-01-20 Linlor William I Thermonuclear fusion system
US4267488A (en) 1979-01-05 1981-05-12 Trisops, Inc. Containment of plasmas at thermonuclear temperatures
US4397810A (en) 1979-03-16 1983-08-09 Energy Profiles, Inc. Compressed beam directed particle nuclear energy generator
US4314879A (en) 1979-03-22 1982-02-09 The United States Of America As Represented By The United States Department Of Energy Production of field-reversed mirror plasma with a coaxial plasma gun
US4416845A (en) 1979-08-02 1983-11-22 Energy Profiles, Inc. Control for orbiting charged particles
JPS5829568B2 (ja) 1979-12-07 1983-06-23 岩崎通信機株式会社 2ビ−ム1電子銃陰極線管
US4548782A (en) 1980-03-27 1985-10-22 The United States Of America As Represented By The Secretary Of The Navy Tokamak plasma heating with intense, pulsed ion beams
US4390494A (en) 1980-04-07 1983-06-28 Energy Profiles, Inc. Directed beam fusion reaction with ion spin alignment
US4350927A (en) 1980-05-23 1982-09-21 The United States Of America As Represented By The United States Department Of Energy Means for the focusing and acceleration of parallel beams of charged particles
US4317057A (en) 1980-06-16 1982-02-23 Bazarov Georgy P Channel of series-type magnetohydrodynamic generator
US4434130A (en) 1980-11-03 1984-02-28 Energy Profiles, Inc. Electron space charge channeling for focusing ion beams
US4584160A (en) 1981-09-30 1986-04-22 Tokyo Shibaura Denki Kabushiki Kaisha Plasma devices
US4543231A (en) 1981-12-14 1985-09-24 Ga Technologies Inc. Multiple pinch method and apparatus for producing average magnetic well in plasma confinement
US4560528A (en) 1982-04-12 1985-12-24 Ga Technologies Inc. Method and apparatus for producing average magnetic well in a reversed field pinch
JPH06105597B2 (ja) 1982-08-30 1994-12-21 株式会社日立製作所 マイクロ波プラズマ源
US4512721B1 (en) * 1982-08-31 2000-03-07 Babcock & Wilcox Co Vacuum insulated steam injection tubing
JPS5960899A (ja) 1982-09-29 1984-04-06 株式会社東芝 イオン・エネルギ−回収装置
US4618470A (en) 1982-12-01 1986-10-21 Austin N. Stanton Magnetic confinement nuclear energy generator
US4483737A (en) 1983-01-31 1984-11-20 University Of Cincinnati Method and apparatus for plasma etching a substrate
US4601871A (en) 1983-05-17 1986-07-22 The United States Of America As Represented By The United States Department Of Energy Steady state compact toroidal plasma production
USH235H (en) 1983-09-26 1987-03-03 The United States Of America As Represented By The United States Department Of Energy In-situ determination of energy species yields of intense particle beams
US4650631A (en) 1984-05-14 1987-03-17 The University Of Iowa Research Foundation Injection, containment and heating device for fusion plasmas
US4639348A (en) 1984-11-13 1987-01-27 Jarnagin William S Recyclotron III, a recirculating plasma fusion system
US4615755A (en) 1985-08-07 1986-10-07 The Perkin-Elmer Corporation Wafer cooling and temperature control for a plasma etching system
US4826646A (en) 1985-10-29 1989-05-02 Energy/Matter Conversion Corporation, Inc. Method and apparatus for controlling charged particles
US4630939A (en) 1985-11-15 1986-12-23 The Dow Chemical Company Temperature measuring apparatus
SE450060B (sv) 1985-11-27 1987-06-01 Rolf Lennart Stenbacka Forfarande for att astadkomma fusionsreaktioner, samt anordning for fusionsreaktor
US4687616A (en) 1986-01-15 1987-08-18 The United States Of America As Represented By The United States Department Of Energy Method and apparatus for preventing cyclotron breakdown in partially evacuated waveguide
US4894199A (en) 1986-06-11 1990-01-16 Norman Rostoker Beam fusion device and method
DK556887D0 (da) 1987-10-23 1987-10-23 Risoe Forskningscenter Fremgangsmaade til fremstilling af en pille og injektor til injektion af saadan pille
DE69026923T2 (de) 1990-01-22 1996-11-14 Werner K Steudtner Kernfusionsreaktor
US5160695A (en) 1990-02-08 1992-11-03 Qed, Inc. Method and apparatus for creating and controlling nuclear fusion reactions
US5311028A (en) 1990-08-29 1994-05-10 Nissin Electric Co., Ltd. System and method for producing oscillating magnetic fields in working gaps useful for irradiating a surface with atomic and molecular ions
US5122662A (en) 1990-10-16 1992-06-16 Schlumberger Technology Corporation Circular induction accelerator for borehole logging
US5206516A (en) 1991-04-29 1993-04-27 International Business Machines Corporation Low energy, steered ion beam deposition system having high current at low pressure
US6488807B1 (en) 1991-06-27 2002-12-03 Applied Materials, Inc. Magnetic confinement in a plasma reactor having an RF bias electrode
US5207760A (en) 1991-07-23 1993-05-04 Trw Inc. Multi-megawatt pulsed inductive thruster
US5323442A (en) 1992-02-28 1994-06-21 Ruxam, Inc. Microwave X-ray source and methods of use
US5301511A (en) * 1992-06-12 1994-04-12 Helix Technology Corporation Cryopump and cryopanel having frost concentrating device
US5502354A (en) 1992-07-31 1996-03-26 Correa; Paulo N. Direct current energized pulse generator utilizing autogenous cyclical pulsed abnormal glow discharges
RU2056649C1 (ru) 1992-10-29 1996-03-20 Сергей Николаевич Столбов Способ управляемого термоядерного синтеза и управляемый термоядерный реактор для его осуществления
US5339336A (en) 1993-02-17 1994-08-16 Cornell Research Foundation, Inc. High current ion ring accelerator
FR2705584B1 (fr) 1993-05-26 1995-06-30 Commissariat Energie Atomique Dispositif de séparation isotopique par résonance cyclotronique ionique.
US5473165A (en) 1993-11-16 1995-12-05 Stinnett; Regan W. Method and apparatus for altering material
US5557172A (en) 1993-12-21 1996-09-17 Sumitomo Heavy Industries, Ltd. Plasma beam generating method and apparatus which can generate a high-power plasma beam
US5537005A (en) 1994-05-13 1996-07-16 Hughes Aircraft High-current, low-pressure plasma-cathode electron gun
US5420425A (en) 1994-05-27 1995-05-30 Finnigan Corporation Ion trap mass spectrometer system and method
US5656519A (en) 1995-02-14 1997-08-12 Nec Corporation Method for manufacturing salicide semiconductor device
US5653811A (en) 1995-07-19 1997-08-05 Chan; Chung System for the plasma treatment of large area substrates
US20040213368A1 (en) 1995-09-11 2004-10-28 Norman Rostoker Fusion reactor that produces net power from the p-b11 reaction
US20020080904A1 (en) * 1995-09-11 2002-06-27 The Regents Of The University Of California Magnetic and electrostatic confinement of plasma in a field reversed configuration
AU7374896A (en) 1995-09-25 1997-04-17 Paul M. Koloc A compound plasma configuration, and method and apparatus for generating a compound plasma configuration
JP3385327B2 (ja) 1995-12-13 2003-03-10 株式会社日立製作所 三次元四重極質量分析装置
US5764715A (en) 1996-02-20 1998-06-09 Sandia Corporation Method and apparatus for transmutation of atomic nuclei
KR100275597B1 (ko) 1996-02-23 2000-12-15 나카네 히사시 플리즈마처리장치
US6000360A (en) 1996-07-03 1999-12-14 Tokyo Electron Limited Plasma processing apparatus
US5811201A (en) 1996-08-16 1998-09-22 Southern California Edison Company Power generation system utilizing turbine and fuel cell
US5923716A (en) 1996-11-07 1999-07-13 Meacham; G. B. Kirby Plasma extrusion dynamo and methods related thereto
JP3582287B2 (ja) 1997-03-26 2004-10-27 株式会社日立製作所 エッチング装置
JPH10335096A (ja) 1997-06-03 1998-12-18 Hitachi Ltd プラズマ処理装置
US6894446B2 (en) 1997-10-17 2005-05-17 The Regents Of The University Of California Controlled fusion in a field reversed configuration and direct energy conversion
US6628740B2 (en) * 1997-10-17 2003-09-30 The Regents Of The University Of California Controlled fusion in a field reversed configuration and direct energy conversion
US6271529B1 (en) 1997-12-01 2001-08-07 Ebara Corporation Ion implantation with charge neutralization
US6390019B1 (en) 1998-06-11 2002-05-21 Applied Materials, Inc. Chamber having improved process monitoring window
FR2780499B1 (fr) 1998-06-25 2000-08-18 Schlumberger Services Petrol Dispositifs de caracterisation de l'ecoulement d'un fluide polyphasique
US6335535B1 (en) 1998-06-26 2002-01-01 Nissin Electric Co., Ltd Method for implanting negative hydrogen ion and implanting apparatus
US6255648B1 (en) 1998-10-16 2001-07-03 Applied Automation, Inc. Programmed electron flux
US6248251B1 (en) 1999-02-19 2001-06-19 Tokyo Electron Limited Apparatus and method for electrostatically shielding an inductively coupled RF plasma source and facilitating ignition of a plasma
US6755086B2 (en) 1999-06-17 2004-06-29 Schlumberger Technology Corporation Flow meter for multi-phase mixtures
US6322706B1 (en) 1999-07-14 2001-11-27 Archimedes Technology Group, Inc. Radial plasma mass filter
US6452168B1 (en) 1999-09-15 2002-09-17 Ut-Battelle, Llc Apparatus and methods for continuous beam fourier transform mass spectrometry
DE10060002B4 (de) 1999-12-07 2016-01-28 Komatsu Ltd. Vorrichtung zur Oberflächenbehandlung
US6593539B1 (en) 2000-02-25 2003-07-15 George Miley Apparatus and methods for controlling charged particles
US6408052B1 (en) 2000-04-06 2002-06-18 Mcgeoch Malcolm W. Z-pinch plasma X-ray source using surface discharge preionization
US6593570B2 (en) 2000-05-24 2003-07-15 Agilent Technologies, Inc. Ion optic components for mass spectrometers
US6664740B2 (en) 2001-02-01 2003-12-16 The Regents Of The University Of California Formation of a field reversed configuration for magnetic and electrostatic confinement of plasma
CN101018444B (zh) * 2001-02-01 2011-01-26 加州大学评议会 场反向配置中的等离子体的磁和静电约束
CZ305458B6 (cs) * 2001-02-01 2015-10-07 The Regents Of The University Of California Přístroj a způsob pro vytváření magnetického pole s topologií s obráceným polem
US6611106B2 (en) 2001-03-19 2003-08-26 The Regents Of The University Of California Controlled fusion in a field reversed configuration and direct energy conversion
GB0131097D0 (en) 2001-12-31 2002-02-13 Applied Materials Inc Ion sources
US6923625B2 (en) * 2002-01-07 2005-08-02 Integrated Sensing Systems, Inc. Method of forming a reactive material and article formed thereby
US6911649B2 (en) 2002-06-21 2005-06-28 Battelle Memorial Institute Particle generator
US7313922B2 (en) * 2004-09-24 2008-01-01 Brooks Automation, Inc. High conductance cryopump for type III gas pumping
US8031824B2 (en) 2005-03-07 2011-10-04 Regents Of The University Of California Inductive plasma source for plasma electric generation system
CA2600421C (en) 2005-03-07 2016-05-03 The Regents Of The University Of California Plasma electric generation system
SI1856702T1 (sl) 2005-03-07 2012-11-30 Univ California Plazemski sistem za generiranje elektrike
US9607719B2 (en) * 2005-03-07 2017-03-28 The Regents Of The University Of California Vacuum chamber for plasma electric generation system
US7115887B1 (en) 2005-03-15 2006-10-03 The United States Of America As Represented By The United States Department Of Energy Method for generating extreme ultraviolet with mather-type plasma accelerators for use in Extreme Ultraviolet Lithography
US20080226011A1 (en) 2005-10-04 2008-09-18 Barnes Daniel C Plasma Centrifuge Heat Engine Beam Fusion Reactor
CN101320599A (zh) 2007-06-06 2008-12-10 高晓达 通过极限环螺旋扇形注入区的束流连续注入方法
US8368636B2 (en) 2007-09-21 2013-02-05 Point Somee Limited Liability Company Regulation of wavelength shift and perceived color of solid state lighting with intensity variation
GB2475634B (en) 2008-09-18 2013-04-10 Craftsmen Corp E Configurable LED driver/dimmer for solid state lighting applications
WO2010089670A1 (en) 2009-02-04 2010-08-12 General Fusion, Inc. Systems and methods for compressing plasma
US8569956B2 (en) 2009-06-04 2013-10-29 Point Somee Limited Liability Company Apparatus, method and system for providing AC line power to lighting devices
US8193738B2 (en) 2009-08-07 2012-06-05 Phihong Technology Co., Ltd. Dimmable LED device with low ripple current and driving circuit thereof
US20110142185A1 (en) 2009-12-16 2011-06-16 Woodruff Scientific, Inc. Device for compressing a compact toroidal plasma for use as a neutron source and fusion reactor
US8760078B2 (en) 2010-10-04 2014-06-24 Earl W. McCune, Jr. Power conversion and control systems and methods for solid-state lighting
US8587215B2 (en) 2011-05-05 2013-11-19 General Electric Company Self-dimming OLED lighting system and control method
CN103428953B (zh) 2012-05-17 2016-03-16 昂宝电子(上海)有限公司 用于利用系统控制器进行调光控制的系统和方法
CN104067349A (zh) * 2011-11-09 2014-09-24 B.弗里兹 用于将等离子体压缩到高能态的方法和设备
US20130249431A1 (en) 2012-03-05 2013-09-26 Luxera, Inc. Dimmable Hybrid Adapter for a Solid State Lighting System, Apparatus and Method
US9078327B2 (en) 2012-03-05 2015-07-07 Luxera, Inc. Apparatus and method for dimming signal generation for a distributed solid state lighting system
US9767925B2 (en) 2012-03-23 2017-09-19 The Trustees Of Princeton University Method, apparatus, and system to reduce neutron production in small clean fusion reactors
CN104813743B (zh) 2012-11-06 2017-08-18 飞利浦照明控股有限公司 电路布置、led灯、照明系统和利用该电路布置的操作方法
CN103024994B (zh) 2012-11-12 2016-06-01 昂宝电子(上海)有限公司 使用triac调光器的调光控制系统和方法
US9192002B2 (en) 2012-11-20 2015-11-17 Isine, Inc. AC/DC conversion bypass power delivery
WO2014114986A1 (en) 2013-01-25 2014-07-31 L Ferreira Jr Moacir Multiphase nuclear fusion reactor
BR112015019181B1 (pt) 2013-02-11 2022-07-26 The Regents Of The University Of California Circuito multiplicador de tensão
US9591740B2 (en) 2013-03-08 2017-03-07 Tri Alpha Energy, Inc. Negative ion-based neutral beam injector
CN109949948A (zh) 2013-09-24 2019-06-28 阿尔法能源技术公司 用于形成和保持高性能frc的系统和方法
US10145371B2 (en) * 2013-10-22 2018-12-04 Taiwan Semiconductor Manufacturing Co., Ltd. Ultra high vacuum cryogenic pumping apparatus with nanostructure material
CN104751902A (zh) 2013-12-25 2015-07-01 核工业西南物理研究院 一种用于核聚变真空系统强力吸气混合丝
US9685308B2 (en) * 2014-06-26 2017-06-20 Saes Getters S.P.A. Getter pumping system
EP3167449A4 (en) 2014-07-07 2018-02-28 Intel Corporation Spin-transfer torque memory (sttm) devices having magnetic contacts
CN104066254B (zh) 2014-07-08 2017-01-04 昂宝电子(上海)有限公司 使用triac调光器进行智能调光控制的系统和方法
KR20160014379A (ko) 2014-07-29 2016-02-11 주식회사 실리콘웍스 조명 장치
JP6133821B2 (ja) * 2014-08-08 2017-05-24 有限会社真空実験室 非蒸発型ゲッター及び非蒸発型ゲッターポンプ
KR102257718B1 (ko) 2014-10-01 2021-05-28 매그나칩 반도체 유한회사 발광 다이오드 구동 회로 및 이를 포함하는 발광 다이오드 조명 장치
TWI629916B (zh) 2014-12-10 2018-07-11 隆達電子股份有限公司 發光裝置與發光二極體電路
CN105185417B (zh) * 2015-09-29 2017-05-10 北京应用物理与计算数学研究所 磁化等离子体聚变点火装置
EA038690B1 (ru) 2015-11-13 2021-10-05 Таэ Текнолоджиз, Инк. Способ и система для генерации и стабилизации плазмы конфигурации с обращенным полем (frc)
US10291130B2 (en) 2016-06-02 2019-05-14 Semiconductor Components Industries, Llc System and method for controlling output signal of power converter

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02191877A (ja) * 1989-01-20 1990-07-27 Hitachi Ltd クライオポンプ
US5083445A (en) * 1989-01-20 1992-01-28 Hitachi, Ltd. Cryopump
US6330801B1 (en) * 1999-06-11 2001-12-18 Francis J. Whelan Method and system for increasing cryopump capacity
JP2015502532A (ja) * 2011-11-14 2015-01-22 ザ リージェンツ オブ ザ ユニバーシティ オブ カリフォルニア 高性能frcを形成し維持するシステムおよび方法
WO2016070126A1 (en) * 2014-10-30 2016-05-06 Tri Alpha Energy, Inc. Systems and methods for forming and maintaining a high performance frc

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
佐保典英 他: "パラレルルーバブラインド形クライオポンプの排気特性", 日本機械学会論文集(B編), vol. 58巻、556号, JPN7022004592, December 1992 (1992-12-01), pages 252 - 258, ISSN: 0004884860 *
佐保典英 他: "パラレルルーバブラインド形クライオポンプの排気速度", 日本機械学会論文集(B編), vol. 59巻、561号, JPN7022004593, May 1993 (1993-05-01), pages 218 - 223, ISSN: 0004884861 *

Also Published As

Publication number Publication date
EP3535763B1 (en) 2023-08-16
EA201991117A1 (ru) 2019-09-30
WO2018085798A1 (en) 2018-05-11
AU2017355652A1 (en) 2019-05-23
US11482343B2 (en) 2022-10-25
SA519401705B1 (ar) 2023-02-19
CN110100287B (zh) 2024-05-17
AU2017355652B2 (en) 2022-12-15
CN110100287A (zh) 2019-08-06
MX2019005262A (es) 2019-06-24
EP3535763A4 (en) 2020-05-13
US11211172B2 (en) 2021-12-28
BR112019009034A2 (pt) 2019-07-09
US20220208398A1 (en) 2022-06-30
SG11201903447WA (en) 2019-05-30
KR20190073544A (ko) 2019-06-26
EP3535763A1 (en) 2019-09-11
IL266359B1 (en) 2023-07-01
JP7365693B2 (ja) 2023-10-20
IL266359B2 (en) 2023-11-01
UA127712C2 (uk) 2023-12-13
AU2023201218A1 (en) 2023-04-06
CA3041862A1 (en) 2018-05-11
US20190318832A1 (en) 2019-10-17
US20230178258A1 (en) 2023-06-08
US11894150B2 (en) 2024-02-06
JP2022107774A (ja) 2022-07-22
IL266359A (en) 2019-06-30

Similar Documents

Publication Publication Date Title
JP7175037B2 (ja) 高性能frcを形成し維持するシステムおよび方法
JP6738109B2 (ja) 高性能frcを形成し維持するシステムおよび方法
AU2019202825B2 (en) Systems and methods for forming and maintaining a high performance frc
JP7207781B2 (ja) Frcプラズマ位置安定性のため方法
JP7266880B2 (ja) 高性能frcの改良された持続性および高性能frcにおける高調高速波電子加熱のためのシステムおよび方法
JP2022107774A (ja) マルチスケール捕捉タイプ真空ポンピングを用いた高性能frcの改良された持続性のためのシステムおよび方法
JP2019537002A (ja) 調整可能ビームエネルギーを伴う中性ビーム注入器を利用する高性能frc上昇エネルギーの改良された持続性のためのシステムおよび方法
EA042626B1 (ru) Системы и способы улучшенного поддержания высокоэффективной конфигурации с обращенным полем с вакуумированием с захватом многомасштабного типа
NZ717865B2 (en) Systems and methods for forming and maintaining a high performance frc

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20201102

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20211020

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20211202

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20220301

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20220428

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220602

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220930

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20221227

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20230227

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230331

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20230502

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230829

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20230905

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230925

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20231002

R150 Certificate of patent or registration of utility model

Ref document number: 7365693

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150