JP2015226163A - 位相補間器 - Google Patents

位相補間器 Download PDF

Info

Publication number
JP2015226163A
JP2015226163A JP2014109497A JP2014109497A JP2015226163A JP 2015226163 A JP2015226163 A JP 2015226163A JP 2014109497 A JP2014109497 A JP 2014109497A JP 2014109497 A JP2014109497 A JP 2014109497A JP 2015226163 A JP2015226163 A JP 2015226163A
Authority
JP
Japan
Prior art keywords
current
differential pair
signal
transistor
phase
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014109497A
Other languages
English (en)
Other versions
JP6372166B2 (ja
Inventor
靖文 坂井
Yasubumi Sakai
靖文 坂井
森 俊彦
Toshihiko Mori
俊彦 森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP2014109497A priority Critical patent/JP6372166B2/ja
Priority to US14/682,377 priority patent/US9425777B2/en
Publication of JP2015226163A publication Critical patent/JP2015226163A/ja
Application granted granted Critical
Publication of JP6372166B2 publication Critical patent/JP6372166B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K5/00Manipulating of pulses not covered by one of the other main groups of this subclass
    • H03K5/13Arrangements having a single output and transforming input signals into pulses delivered at desired time intervals
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F1/00Details not covered by groups G06F3/00 - G06F13/00 and G06F21/00
    • G06F1/02Digital function generators
    • G06F1/022Waveform generators, i.e. devices for generating periodical functions of time, e.g. direct digital synthesizers
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K5/00Manipulating of pulses not covered by one of the other main groups of this subclass
    • H03K2005/00013Delay, i.e. output pulse is delayed after input pulse and pulse length of output pulse is dependent on pulse length of input pulse
    • H03K2005/00019Variable delay
    • H03K2005/00026Variable delay controlled by an analog electrical signal, e.g. obtained after conversion by a D/A converter
    • H03K2005/00052Variable delay controlled by an analog electrical signal, e.g. obtained after conversion by a D/A converter by mixing the outputs of fixed delayed signals with each other or with the input signal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/0014Carrier regulation
    • H04L2027/0016Stabilisation of local oscillators
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/18Phase-modulated carrier systems, i.e. using phase-shift keying
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L7/00Arrangements for synchronising receiver with transmitter
    • H04L7/0016Arrangements for synchronising receiver with transmitter correction of synchronization errors
    • H04L7/002Arrangements for synchronising receiver with transmitter correction of synchronization errors correction by interpolation
    • H04L7/0025Arrangements for synchronising receiver with transmitter correction of synchronization errors correction by interpolation interpolation of clock signal

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Nonlinear Science (AREA)
  • General Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Networks Using Active Elements (AREA)
  • Synchronisation In Digital Transmission Systems (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Amplifiers (AREA)
  • Power Engineering (AREA)

Abstract

【課題】位相線形性を劣化させることなく、信号を高周波数化することができる位相補間器を提供することを課題とする。【解決手段】位相補間器は、位相が異なる複数の余弦波又は正弦波の入力信号の位相を合成するミキサ(101)と、位相制御信号に応じたバイアス信号を前記ミキサに出力するバイアス生成器(102)とを有し、前記ミキサは、前記位相制御信号に応じた位相の信号を出力する。【選択図】図1

Description

本発明は、位相補間器に関する。
数値データの正弦値と余弦値とを求める三角関数演算器が知られている(特許文献1参照)。記憶装置は、初期数値θ0として初期正弦値sinθ0と初期余弦値cosθ0とを記憶する。三角関数演算器は、記憶装置の記憶した初期正弦値sinθ0と初期余弦値cosθ0と、入力される数値データθと、初期数値θ0との差分Δθ(Δθ=θ―θ0)とから、次式
sinθ= sinθ0・ cosΔθ + cosθ0・ sinΔθ
cosθ= cosθ0・ cosΔθ − sinθ0・ sinΔθ
によって、入力される数値データの正弦値と余弦値とを求める。
また、入力された位相角信号の絶対値信号と位相角信号の正負符号信号とを出力する絶対値・符号抽出回路を有する正弦・余弦演算回路が知られている(特許文献2参照)。正弦・余弦近似演算回路は、絶対値・符号抽出回路が出力した絶対値信号のうちの所定の下位ビットに基づいて、一次近似演算式を使用し、所定の限定された象限内において、正弦演算結果と余弦演算結果とを近似演算する。位相回転処理回路は、絶対値・符号抽出回路が出力した正負符号信号と、絶対値信号の上位3ビットとに応じて、正弦・余弦近似演算回路が出力した正弦演算結果と余弦演算結果とを、入れ替え、符号反転することによって、所定の限定された象限以外の象限における正弦演算結果と余弦演算結果とを出力する。
特開平11−194926号公報 特開2000−112715号公報
近年、サーバーやコンピュータなどの情報処理システムを構成する中央処理ユニット(CPU)などの部品の性能、特にバンド幅は大きく向上している。そのため、情報処理システム全体の総バンド幅の向上のためには、CPUなどの部品間のデータ送受信を行う送受信回路の高速化が必要となる。
送受信回路を高速化する手法として、送受信回路のクロック信号の生成に位相補間器を使用する方法が知られている。一般的に、送受信回路が処理するデータ信号にはノイズ成分が重畳される。ここで、データ処理のタイミングを決めるクロック信号の生成に位相補間器を用いることで、データ信号を処理するタイミング(クロック信号の位相)を最適な値に設定することが可能となるため、データ信号に重畳されるノイズ成分の影響を低減できる。
送受信回路を高速化する手法として、送受信回路のクロック信号を高周波数化する方法が知られている。しかし、位相補間器に入力する方形波のクロック信号を高周波数化した場合、位相補間器の位相線形性が劣化してしまう。クロック信号を高周波数化すると、回路内の配線に存在する寄生容量などの影響により、方形波のクロック信号が歪んでしまう。歪んだ方形波のクロック信号が位相補間器に入力されると、位相補間器の位相線形性が劣化してしまう。
本発明の目的は、位相線形性を劣化させることなく、信号を高周波数化することができる位相補間器を提供することである。
位相補間器は、位相が異なる複数の余弦波又は正弦波の入力信号の位相を合成するミキサと、位相制御信号に応じたバイアス信号を前記ミキサに出力するバイアス生成器とを有し、前記ミキサは、前記位相制御信号に応じた位相の信号を出力する。
方形波ではなく、余弦波又は正弦波を用いることにより、信号を高周波数化しても、位相線形性の劣化を防止することができる。
図1は、第1の実施形態による位相補間器の構成例を示す図である。 図2は、図1のバイアス生成器の構成例を示す図である。 図3は、図1のバイアス生成器及びバイアス選択器の動作を説明するための図である。 図4は、4相方形波の信号を入力する位相補間器の構成例を示す図である。 図5は、位相補間器の位相特性を示す図である。 図6は、第2の実施形態によるバイアス生成器の構成例を示す図である。 図7は、第3の実施形態による位相補間器の構成例を示す図である。 図8は、第4の実施形態による位相補間器の構成例を示す図である。 図9は、第5の実施形態による位相補間器の構成例を示す図である。 図10は、第6の実施形態による位相補間器の構成例を示す図である。 図11は、第7の実施形態による位相補間器の構成例を示す図である。
(第1の実施形態)
図1は、第1の実施形態による位相補間器の構成例を示す図である。位相補間器は、送受信回路のクロック信号を生成することができる。送受信回路が処理するデータ信号にはノイズ成分が重畳される。位相補間器は、データ処理のタイミングを決めるクロック信号を生成することで、データ信号を処理するタイミング(クロック信号の位相)を最適な値に設定し、データ信号に重畳されるノイズ成分の影響を低減できる。
位相補間器は、ミキサ101、バイアス生成器102、及びバイアス選択器103を有する。ミキサ101は、第1の差動対151と、第2の差動対152と、第3の差動対153と、第4の差動対154と、第5の差動対155と、第6の差動対156と、第7の差動対157と、第8の差動対158と、電流源147,148と、抵抗149,150とを有する。
第1の差動対151は、電流源111,112と、抵抗113,114と、nチャネル電界効果トランジスタ115,116と、テール電流源117とを有する。電流源111は、電源電位ノード及びnチャネル電界効果トランジスタ115のドレイン間に接続される。抵抗113は、電流源111に並列に接続される。nチャネル電界効果トランジスタ115は、ゲートが第1の入力端子CLK_0に接続され、ソースがテール電流源117を介してグランド電位ノードに接続される。電流源112は、電源電位ノード及びnチャネル電界効果トランジスタ116のドレイン間に接続される。抵抗114は、電流源112に並列に接続される。nチャネル電界効果トランジスタ116は、ゲートが第2の入力端子CLK_180に接続され、ソースがテール電流源117を介してグランド電位ノードに接続される。電流源111及び112は、バイアス信号B1に基づく電流を流す。テール電流源117は、バイアス信号B1に基づくテール電流を流す。電流源111及び抵抗113の並列接続回路並びに電流源112及び抵抗114の並列接続回路は、第1の差動対151の負荷である。
第2の差動対152は、抵抗118,119と、nチャネル電界効果トランジスタ120,121と、テール電流源122とを有する。抵抗118は、電源電位ノード及びnチャネル電界効果トランジスタ120のドレイン間に接続される。nチャネル電界効果トランジスタ120は、ゲートが第1の入力端子CLK_0に接続され、ソースがテール電流源122を介してグランド電位ノードに接続される。抵抗119は、電源電位ノード及びnチャネル電界効果トランジスタ121のドレイン間に接続される。nチャネル電界効果トランジスタ121は、ゲートが第2の入力端子CLK_180に接続され、ソースがテール電流源122を介してグランド電位ノードに接続される。テール電流源122は、バイアス信号B3に基づくテール電流を流す。抵抗118及び119は、第2の差動対152の負荷である。
第3の差動対153は、nチャネル電界効果トランジスタ123,124と、テール電流源125とを有する。nチャネル電界効果トランジスタ123は、ドレインが第1の出力端子O_CLKに接続され、ゲートがnチャネル電界効果トランジスタ115のドレインに接続され、ソースがテール電流源125を介してグランド電位ノードに接続される。nチャネル電界効果トランジスタ124は、ドレインが第2の出力端子O_CLKXに接続され、ゲートがnチャネル電界効果トランジスタ116のドレインに接続され、ソースがテール電流源125を介してグランド電位ノードに接続される。テール電流源125は、バイアス信号B1に基づくテール電流を流す。
第4の差動対154は、nチャネル電界効果トランジスタ126,127と、テール電流源128とを有する。nチャネル電界効果トランジスタ126は、ドレインが第2の出力端子O_CLKXに接続され、ゲートがnチャネル電界効果トランジスタ120のドレインに接続され、ソースがテール電流源128を介してグランド電位ノードに接続される。nチャネル電界効果トランジスタ127は、ドレインが第1の出力端子O_CLKに接続され、ゲートがnチャネル電界効果トランジスタ121のドレインに接続され、ソースがテール電流源128を介してグランド電位ノードに接続される。テール電流源128は、バイアス信号B3に基づくテール電流を流す。
第5の差動対155は、電流源129,130と、抵抗131,132と、nチャネル電界効果トランジスタ133,134と、テール電流源135とを有する。電流源129は、電源電位ノード及びnチャネル電界効果トランジスタ133のドレイン間に接続される。抵抗131は、電流源129に並列に接続される。nチャネル電界効果トランジスタ133は、ゲートが第3の入力端子CLK_90に接続され、ソースがテール電流源135を介してグランド電位ノードに接続される。電流源130は、電源電位ノード及びnチャネル電界効果トランジスタ134のドレイン間に接続される。抵抗132は、電流源130に並列に接続される。nチャネル電界効果トランジスタ134は、ゲートが第4の入力端子CLK_270に接続され、ソースがテール電流源135を介してグランド電位ノードに接続される。電流源129及び130は、バイアス信号B2に基づく電流を流す。テール電流源135は、バイアス信号B2に基づくテール電流を流す。電流源129及び抵抗131の並列接続回路並びに電流源130及び抵抗132の並列接続回路は、第5の差動対155の負荷である。
第6の差動対156は、抵抗136,137と、nチャネル電界効果トランジスタ138,139と、テール電流源140とを有する。抵抗136は、電源電位ノード及びnチャネル電界効果トランジスタ138のドレイン間に接続される。nチャネル電界効果トランジスタ138は、ゲートが第3の入力端子CLK_90に接続され、ソースがテール電流源140を介してグランド電位ノードに接続される。抵抗137は、電源電位ノード及びnチャネル電界効果トランジスタ139のドレイン間に接続される。nチャネル電界効果トランジスタ139は、ゲートが第4の入力端子CLK_270に接続され、ソースがテール電流源140を介してグランド電位ノードに接続される。テール電流源140は、バイアス信号B3に基づくテール電流を流す。抵抗136及び137は、第6の差動対156の負荷である。
第7の差動対157は、nチャネル電界効果トランジスタ141,142と、テール電流源143とを有する。nチャネル電界効果トランジスタ141は、ドレインが第1の出力端子O_CLKに接続され、ゲートがnチャネル電界効果トランジスタ133のドレインに接続され、ソースがテール電流源143を介してグランド電位ノードに接続される。nチャネル電界効果トランジスタ142は、ドレインが第2の出力端子O_CLKXに接続され、ゲートがnチャネル電界効果トランジスタ134のドレインに接続され、ソースがテール電流源143を介してグランド電位ノードに接続される。テール電流源143は、バイアス信号B2に基づくテール電流を流す。
第8の差動対158は、nチャネル電界効果トランジスタ144,145と、テール電流源146とを有する。nチャネル電界効果トランジスタ144は、ドレインが第2の出力端子O_CLKXに接続され、ゲートがnチャネル電界効果トランジスタ138のドレインに接続され、ソースがテール電流源146を介してグランド電位ノードに接続される。nチャネル電界効果トランジスタ145は、ドレインが第1の出力端子O_CLKに接続され、ゲートがnチャネル電界効果トランジスタ139のドレインに接続され、ソースがテール電流源146を介してグランド電位ノードに接続される。テール電流源146は、バイアス信号B3に基づくテール電流を流す。
電流源147は、電源電位ノード及び第1の出力端子O_CLK間に接続される。抵抗149は、電流源147に並列に接続される。電流源148は、電源電位ノード及び第2の出力端子O_CLKX間に接続される。抵抗150は、電流源148に並列に接続される。電流源147及び148は、共に、バイアス信号B1及びB2に基づく電流を流す。電流源147及び抵抗149の並列接続回路並びに電流源148及び抵抗150の並列接続回路は、第3の差動対153、第4の差動対154、第7の差動対157及び第8の差動対158に共通に接続される負荷である。
バイアス生成器102は、定電流生成回路104と、sinα電流生成回路105と、cosα電流生成回路106と、制御回路107とを有し、位相制御信号CTLを入力する。定電流生成回路104は、定電流を流すためのバイアス信号B3を、電流源122,128,140,146に出力する。電流源122,128,140,146は、定電流を流す。制御回路107は、位相制御信号CTLに応じて、sinα電流生成回路105及びcosα電流生成回路106を制御する。sinα電流生成回路105は、正弦値sinαの電流を流すためのバイアス信号を出力する。cosα電流生成回路106は、余弦値cosαの電流を流すためのバイアス信号を出力する。
バイアス選択器103は、制御回路108及びスイッチ回路109を有し、位相制御信号CTLを入力する。制御回路108は、位相制御信号CTLに応じて、スイッチ回路109を制御する。スイッチ回路109は、sinα電流生成回路105又はcosα電流生成回路106が出力するバイアス信号をバイアス信号B1及びB2として出力する。
第1の入力端子CLK_0には、余弦波cosθの入力信号が入力される。第2の入力端子CLK_180には、余弦波−cosθの入力信号が入力される。第3の入力端子CLK_90には、正弦波sinθの入力信号が入力される。第4の入力端子CLK_270には、正弦波−sinθの入力信号が入力される。4個の入力端子CLK_0〜CLK_270には、位相が90度ずつ異なる4個の余弦波又は正弦波の入力信号が入力される。ミキサ101は、4個の入力端子CLK_0〜CLK_270の位相が異なる4個の余弦波又は正弦波の入力信号の位相を合成し、位相制御信号CTLに応じた位相の差動信号を第1の出力端子O_CLK及び第2の出力信号O_CLKXに出力する。バイアス生成器102は、位相制御信号CTLに応じたバイアス信号B1〜B3をミキサ101に出力する。
第1の差動対151は、第1の入力端子CLK_0及び第2の入力端子CLK_180の入力信号を入力する。第2の差動対152は、第1の入力端子CLK_0及び第2の入力端子CLK_180の入力信号を入力する。第3の差動対153は、第1の差動対151の出力信号を入力し、第1の出力端子O_CLK及び第2の出力端子O_CLKXに信号を出力する。第4の差動対154は、第2の差動対152の出力信号を入力し、第2の出力端子O_CLKX及び第1の出力端子O_CLKに信号を出力する。第5の差動対155は、第3の入力端子CLK_90及び第4の入力端子CLK_270の入力信号を入力する。第6の差動対156は、第3の入力端子CLK_90及び第4の入力端子CLK_270の入力信号を入力する。第7の差動対157は、第5の差動対155の出力信号を入力し、第1の出力端子O_CLK及び第2の出力端子O_CLKXに信号を出力する。第8の差動対158は、第6の差動対156の出力信号を入力し、第2の出力端子O_CLKX及び第1の出力端子O_CLKに信号を出力する。
ミキサ101は、次式(1)の三角関数の加法定理に基づいて、位相合成を行う。
Figure 2015226163
ここで、余弦波cosθと正弦波sinθの90度位相がずれた2つの信号の合成を考える。余弦波cosθの振幅にずらしたい角度(位相)αの余弦値cosαの重みを掛け合わせ、cosθ・cosαの信号を生成する。また、正弦波sinθの振幅にずらしたい角度αの正弦値sinαの重みを掛け合わせ、sinθ・sinαの信号を生成する。その後、cosθ・cosαの信号とsinθ・sinαの信号とを加算すると、三角関数の加法定理により、式(1)のように、cosθからαだけ位相がずれたcos(θ−α)の信号を生成し、出力端子O_CLK及びO_CLKXに出力することができる。つまり、出力端子O_CLKの信号の位相を入力端子CLK_0の信号の位相よりもαだけずらすことができる。また、入力信号は余弦波及び正弦波のため、方形波よりも寄生容量の影響を受けにくい。そのため、入力信号を高周波数化しても、位相補間器の位相線形性の劣化を防止することができる。以下、その詳細を説明する。
第1〜第4の差動対151〜154は、出力端子O_CLK及びO_CLKXに対して、cosθ・cosαの信号を生成する。第5〜第8の差動対155〜158は、出力端子O_CLK及びO_CLKXに対して、sinθ・sinαの信号を生成する。出力端子O_CLK及びO_CLKXでは、cosθ・cosαの信号及びsinθ・sinαの信号が加算され、cos(θ−α)の信号が生成される。
テール電流源117及び125には、それぞれ、余弦値cosαの電流のバイアス信号B1により、式(2)に示す余弦の重みをもつ電流I11が流れる。また、テール電流源122、128、140及び146には、それぞれ、式(2)に示す定電流I12が流れる。
Figure 2015226163
ここで、βは差動対151〜158の入力段トランジスタ115,116,120,121,123,124,126,127,133,134,138,139,141,142,144,145のβである。αはずらしたい角度である。kは任意の定数である。
まず、第1の差動対151の動作について説明する。第1の差動対151のテール電流源117には、式(2)に示す電流I11が流れる。よって、第1の差動対151の入力段トランジスタ115及び116には、それぞれ、テール電流源117に流れる電流I11の半分となるバイアス電流I11/2が流れる。ここで、飽和動作しているトランジスタ115及び116の相互コンダクタンスgmは、次式(3)で表される。
Figure 2015226163
ここで、Idrは、トランジスタ115及び116のドレイン電流である。従って、第1の差動対151の入力段トランジスタ115の相互コンダクタンスgm1は、次式(4)に示すように、ずらしたい角度αに相関のある値となる。また、トランジスタ115のゲートには、余弦波cosθが入力されることから、トランジスタ115に流れるドレイン電流io1は、次式(4)のように、ずらしたい角度αの余弦値cosαの平方根と余弦波cosθが掛け合わされた値となる。また、トランジスタ115のドレインの電圧vo1は、次式(4)のように、第1の差動対151の出力インピーダンスZo1と電流io1が掛け合わされた値となる。
Figure 2015226163
なお、第1の差動対151に接続される負荷の電流源111及び112には、テール電流源117に流す電流I11の半分となる電流I11/2を流す。これにより、ずらしたい角度αの値を変化させた場合でも、テール電流の変化に応じて負荷の電流源111及び112の電流値も変化するため、出力動作点が変動しない利点がある。
次に、第2の差動対152の動作について説明する。第2の差動対152のテール電流源122には、式(2)に示す電流I12が流れる。よって、第2の差動対152の入力段トランジスタ121にはバイアス電流I12/2が流れ、第2の差動対152の入力段トランジスタ121の相互コンダクタンスgm2は、式(5)のように、任意の定数kの平方根となる。従って、トランジスタ121のドレイン電流io2及びドレイン電圧vo2は、それぞれ、式(5)に示す値となる。
Figure 2015226163
ここで、Zo2は、第2の差動対151の出力インピーダンスである。なお、第1の差動対151の出力インピーダンスZo1と第2の差動対152の出力インピーダンスZo2の値は等しく、Zo1=Zo2である。
次に、第3の差動対153の動作について説明する。第3の差動対153のテール電流源125には、第1の差動対151のテール電流源117と同じ電流I11が流れる。従って、第3の差動対153の入力段トランジスタ123の相互コンダクタンスgm3は、式(6)のように、第1の差動対151の入力段トランジスタ115の相互コンダクタンスgm1と同じ値となる。また、第3の差動対153の入力段トランジスタ123のゲート電圧は、第1の差動対151の入力段トランジスタ115のドレイン電圧voiと同じであるため、第3の差動対153の入力段トランジスタ123のドレイン電流io3は、式(6)に示す、ずらしたい角度αの余弦の重みcosαと余弦波cosθが掛け合わされた値に比例する値となる。
Figure 2015226163
次に、第4の差動対154の動作について説明する。第4の差動対154のテール電流源128には、第2の差動対152のテール電流源122と同じ電流I12が流れる。従って、第4の差動対154の入力段トランジスタ127の相互コンダクタンスgm4は、式(7)のように、第2の差動対152の入力段トランジスタ121の相互コンダクタンスgm2と同じ値となる。また、第4の差動対154の入力段トランジスタ127のゲート電圧は、第2の差動対152の入力段トランジスタ121のドレイン電圧と同じであるため、第4の差動対154の入力段トランジスタ127のドレイン電流io4は、式(7)のように、余弦波cosθに比例する値となる。
Figure 2015226163
ここで、第3の差動対153の入力段トランジスタ123のドレインと第4の差動対154の入力段トランジスタ127のドレインは、第1の出力端子O_CLKで接続されているため、第3の差動対153及び第4の差動対154は、第1の出力端子O_CLKに対して、次式(8)のように、第3の差動対153の電流io3と第4の差動対154の電流io4を加算し、cosθ・cosαに比例する電流io3+io4を出力する。
Figure 2015226163
次に、第5の差動対155〜第8の差動対158について説明する。電流源135及び143には、それぞれ、正弦値sinαの重みをもつバイアス信号B2により、次式(9)の電流I13が流れる。また、電流源140及び146には、次式(9)の定電流I12が流れる。
Figure 2015226163
ここで、βは差動対151〜158の入力段トランジスタ115,116,120,121,123,124,126,127,133,134,138,139,141,142,144,145のβである。αはずらしたい角度である。kは任意の定数である。
まず、第5の差動対155の動作について説明する。第5の差動対155のテール電流源135には、バイアス信号B2により、式(9)に示す電流I13が流れる。よって、第5の差動対155の入力段トランジスタ133には、バイアス電流I13/2が流れる。従って、第5の差動対155の入力段トランジスタ133の相互コンダクタンスgm5は、次式(10)のように、ずらしたい角度αに相関のある値となる。また、第5の差動対155の入力段トランジスタ133のゲートには正弦波sinθが入力されることから、入力段トランジスタ133のドレイン電流io5は、次式(10)のように、ずらしたい角度αの正弦値の重みsinαの平方根と正弦波sinθが掛け合わされた値となる。また、入力段トランジスタ133のドレイン電圧vo5は、次式(10)のように、第5の差動対155の出力インピーダンスZo5とドレイン電流io5が掛け合わされた値となる。
Figure 2015226163
なお、第5の差動対155に接続される負荷の電流源129及び130には、それぞれ、テール電流源135に流す電流I13の半分となる電流I13/2が流れる。これにより、ずらしたい角度αの値を変化させた場合でも、テール電流の変化に応じて、負荷の電流源129及び130の電流値も変化するため、出力動作点が変動しない。
次に、第6の差動対156の動作について説明する。第6の差動対156のテール電流源140には、上式(9)に示す電流I12が流れる。よって、第6の差動対156の入力段トランジスタ139には、バイアス電流I12/2が流れ、第6の差動対156の入力段トランジスタ139の相互コンダクタンスgm6は、次式(11)のように、任意の定数kの平方根となる。従って、第6の差動対156の入力段トランジスタ139のドレイン電流io6及びドレイン電圧vo6は、それぞれ、次式(11)に示す値となる。
Figure 2015226163
ここで、Zo6は、第6の差動対156の出力インピーダンスである。なお、第5の差動対155の出力インピーダンスZo5は、第6の差動対156の出力インピーダンスZo6の値と等しく、第1の差動対151の出力インピーダンスZo1とも等しく、Zo5=Zo6=Zo1が成り立つ。
次に、第7の差動対157の動作について説明する。第7の差動対157のテール電流源143には、第5の差動対155のテール電流源135と同じ電流I13が流れる。従って、第7の差動対157の入力段トランジスタ141の相互コンダクタンスgm7は、次式(12)のように、第5の差動対155の入力段トランジスタ133の相互コンダクタンスgm5と同じ値となる。また、第7の差動対157の入力段トランジスタ141のゲート電圧は、第5の差動対155の入力段トランジスタ133のドレイン電圧vo5と同じであるため、第7の差動対157の入力段トランジスタ141のドレイン電流io7は、次式(12)のように、ずらしたい角度αの正弦値sinαと正弦波sinθが掛け合わされた値に比例する値となる。
Figure 2015226163
次に、第8の差動対158の動作について説明する。第8の差動対158のテール電流源146には、第6の差動対156のテール電流源140と同じ電流I12が流れる。従って、第8の差動対158の入力段トランジスタ145の相互コンダクタンスgm8は、次式(13)のように、第6の差動対156の入力段トランジスタ139の相互コンダクタンスgm6と同じ値となる。また、第8の差動対158の入力段トランジスタ145のゲート電圧は、第6の差動対156の入力段トランジスタ139のドレイン電圧vo6と同じであるため、第8の差動対158の入力段トランジスタ145のドレイン電流io8は、次式(13)のように、正弦波sinθに比例する値となる。
Figure 2015226163
ここで、第7の差動対157の入力段トランジスタ141のドレインと第8の差動対158の入力段トランジスタ145のドレインは、第1の出力端子O_CLKで接続されているため、第7の差動対157及び第8の差動対158は、第1の出力端子O_CLKに対して、次式(14)のように、第7の差動対157の電流io7と第8の差動対158の電流io8を加算し、sinθ・sinαに比例する電流io7+io8を出力する。
Figure 2015226163
第1の出力端子O_CLKでは、第3の差動対153及び第4の差動対154の出力電流io3+io4と第7の差動対157及び第8の差動対158の出力電流io7+io8とが加算され、式(1)に示すように、三角関数の加法定理により、cos(θ−α)に比例する電流が流れる。以上のように、ミキサ101は、位相制御信号CTLに対応する位相αに応じた余弦波cos(θ−α)の信号を出力することができる。
第1の差動対151の負荷は、第1の差動対151のテール電流に比例する電流を流す電流源111,112及び抵抗113,114の並列接続回路である。第5の差動対155の負荷は、第5の差動対155のテール電流に比例する電流を流す電流源129,130及び抵抗131,132の並列接続回路である。第1の出力端子O_CLK及び第2の出力端子O_CLKXには、それぞれ、第3の差動対153のテール電流と第7の差動対157のテール電流との和に比例する電流を流す電流源147,148及び抵抗149,150の並列接続回路が接続される。
第1〜第8の差動対151〜158のテール電流源117,122,125,128,135,140,143,146は、それぞれ、第1〜第8の差動対151〜158の入力段トランジスタのβの逆数に比例する電流I11,I12,I13を流す。第1〜第8の差動対151〜158の入力段トランジスタのβは、すべて同じである。すなわち、第1〜第8の差動対151〜158の入力段トランジスタは、相互に、チャネル種類、チャネル幅及びチャネル長が同じである。
図2は、図1のバイアス生成器102の構成例を示す図である。まず、定電流生成回路104の構成を説明する。pチャネル電界効果トランジスタMaは、ソースが電源電位ノードに接続され、ゲート及びドレインが電流源201を介してグランド電位ノードに接続される。電流源201には、電流Irefが流れる。pチャネル電界効果トランジスタMbは、ソースが電源電位ノードに接続され、ゲートがトランジスタMaのゲートに接続される。トランジスタMa及びMbは、カレントミラー回路を構成し、そのカレントミラー比(サイズ比)はMa:Mb=1:k/βである。nチャネル電界効果トランジスタMcは、ドレイン及びゲートがトランジスタMbのドレインに接続され、ソースがグランド電位ノードに接続される。nチャネル電界効果トランジスタMdは、ドレインがノードN3に接続され、ゲートがトランジスタMcのゲートに接続され、ソースがグランド電位ノードに接続される。トランジスタMc及びMdは、カレントミラー回路を構成し、そのカレントミラー比(サイズ比)はMc:Md=1:1である。トランジスタMbのドレイン電流IdとトランジスタMdのドレイン電流Idは、同じ電流である。ノードN3は、図1のバイアス信号B3を出力する。
次に、sinα電流生成回路105及びcosα電流生成回路106の構成を説明する。制御回路107は、位相制御信号CTLに応じて、第1の制御信号S1を出力する。pチャネル電界効果トランジスタM1は、ソースが電源電位ノードに接続され、ゲート及びドレインが電流源202を介してグランド電位ノードに接続される。電流源202には、電流Iaが流れる。pチャネル電界効果トランジスタM2は、ソースが電源電位ノードに接続され、ゲートがトランジスタM1のゲートに接続される。トランジスタM1及びM2は、カレントミラー回路を構成し、そのカレントミラー比(サイズ比)は、第1の制御信号S1に応じて、M1:M2=1:mに制御される。mは、ずらしたい角度αに比例する係数であり、m=s・αである。sは、任意の定数である。具体的には、第1の制御信号S1に応じて、トランジスタM2のチャネル幅のサイズ(並列接続数)を変えることにより、カレントミラー比を変える。
nチャネル電界効果トランジスタM3は、ドレイン及びゲートがトランジスタM2のドレインに接続され、ソースがグランド電位ノードに接続される。nチャネル電界効果トランジスタM4は、ドレインがpチャネル電界効果トランジスタM5のドレインに接続され、ゲートがトランジスタM3のゲートに接続され、ソースがグランド電位ノードに接続される。トランジスタM3及びM4は、カレントミラー回路を構成し、そのカレントミラー比(サイズ比)は、第1の制御信号S1に応じて、M3:M4=1:mに制御される。
pチャネル電界効果トランジスタM5は、ソースが電源電位ノードに接続され、ゲート及びドレインがトランジスタM4のドレインに接続される。pチャネル電界効果トランジスタM6は、ソースが電源電位ノードに接続され、ゲートがトランジスタM5のゲートに接続され、ドレインが電流源203を介してグランド電位ノードに接続される。電流源203には、電流Ibが流れる。トランジスタM5及びM6は、カレントミラー回路を構成し、そのカレントミラー比(サイズ比)は、M5:M6=1:1/2である。
pチャネル電界効果トランジスタM7は、ソースが電源電位ノードに接続され、ゲート及びドレインが電流源203を介してグランド電位ノードに接続される。pチャネル電界効果トランジスタM8は、ソースが電源電位ノードに接続され、ゲートがトランジスタM7のゲートに接続され、ドレインがノードN2に接続される。トランジスタM7及びM8は、カレントミラー回路を構成し、そのカレントミラー比(サイズ比)は、M7:M8=1:1である。電流源204は、電源電位ノード及びノードN2間に接続され、電流Ibを流す。ノードN2は、図1のcosα電流生成回路106の出力端子であり、cosαの電流を出力する。その詳細は、後に説明する。
pチャネル電界効果トランジスタM9は、ソースが電源電位ノードに接続され、ゲートがトランジスタM5のゲートに接続され、ドレインが電流源205を介してグランド電位ノードに接続される。電流源205には、電流Ibが流れる。トランジスタM5及びM9は、カレントミラー回路を構成し、そのカレントミラー比(サイズ比)は、M5:M9=1:1/6である。
pチャネル電界効果トランジスタM10は、ソースが電源電位ノードに接続され、ゲート及びドレインが電流源205を介してグランド電位ノードに接続される。pチャネル電界効果トランジスタM11は、ソースが電源電位ノードに接続され、ゲートがトランジスタM10のゲートに接続され、ドレインがノードN1に接続される。トランジスタM10及びM11は、カレントミラー回路を構成し、そのカレントミラー比(サイズ比)は、第1の制御信号S1に応じて、M10:M11=1:mに制御される。電流源206は、電源電位ノード及びノードN1間に接続され、電流Icを流す。ノードN1は、図1のsinα電流生成回路105の出力端子であり、sinαの電流を出力する。その詳細は、後に説明する。
ここで、トランジスタMbのドレイン電流Idに対して、電流Ia、Ib及びIcの比は、次式(A1)のようになる。
a:Ib:Ic=Id:s2・Id:s3・Id ・・・(A1)
cosα及びsinαは、三角関数のテイラー級数の第2項までで表すと、次式(15)のようになる。
Figure 2015226163
まず、定電流生成回路104の動作について説明する。トランジスタMa及びMbのカレントミラー比は1:k/βであるので、電流源201が、バンドギャップレファレンス回路などにより参照電流Irefを流すことにより、トランジスタMbのドレイン電流Idは、次式(16)のように、βの逆数及びkに比例した電流になる。ここで、k及びβは上記のk及びβと同値である。ノードN3には、電流Idが流れる。電流Idは、図1のバイアス信号B3に対応する。
Figure 2015226163
次に、sinα電流生成回路105及びcosα電流生成回路106について説明する。電流源202には、電流Iaが流れる。トランジスタM1及びM2のカレントミラー比は1:mであり、トランジスタM3及びM4のカレントミラー比は1:mであるので、トランジスタM4のドレイン電流I1は、次式(17)で表される。トランジスタM5のドレインにも、電流I1が流れ、トランジスタM5及びM6のカレントミラー比が1:1/2であるので、トランジスタM6のドレイン電流I2は、次式(17)で表される。また、トランジスタM7のドレイン電流I3は、次式(17)のように、電流Ibから電流I2を減算した電流になる。また、トランジスタM7及びM8のカレントミラー比が1:1であるので、トランジスタM8のドレインにも電流I3が流れる。また、ノードN2の出力電流I4は、次式(17)のように、電流I3及び電流Ibを加算した電流になる。
Figure 2015226163
ここで、電流Ia及びIbの比は、Ia:Ib=Id:s2・Idであるので、電流I4は、式(15)のように、テイラー級数の第2項まで近似した余弦値cosαの電流が流れる。ノードN2は、図1のcosα電流生成回路106の出力端子に対応し、余弦値cosαの電流I4を出力する。
また、トランジスタM5及びM9のカレントミラー比は1:1/6であるので、トランジスタM9のドレイン電流I5は、次式(18)で表される。また、トランジスタM10のドレイン電流I6は、次式(18)のように、電流Ibから電流I5を減算した電流になる。また、トランジスタM10及びM11のカレントミラー比は1:mであるので、トランジスタM11のドレイン電流I7は、次式(18)で表される。また、ノードN1の出力電流I8は、次式(18)のように、電流I7及び電流Icを加算した電流になる。
Figure 2015226163
ここで、電流Ia、Ib及びIcの比は、Ia:Ib:Ic=Id:s2・Id:s3・Idであるので、電流I8は、式(1)のように、テイラー級数の第2項まで近似した正弦値sinαの電流が流れる。ノードN1は、図1のsinα電流生成回路105の出力端子に対応し、正弦値sinαの電流I8を出力する。
次に、電流Ia、Ib及びIcの具体例を説明する。上記のように、電流Ia、Ib及びIcの比は、Ia:Ib:Ic=Id:s2・Id:s3・Idである。以下、電流Ia、Ib及びIcが次式(19)の例である場合を説明する。
Figure 2015226163
この場合、ノードN2の出力電流I4は、式(15)の近似を適用することで、次式(20)に示される(1+cosα)に比例する電流になる。
Figure 2015226163
また、ノードN1の出力電流I8は、式(15)の近似を適用することで、次式(21)に示される(1+sinα)に比例する電流になる。
Figure 2015226163
次に、電流Ia、Ib及びIcが次式(22)の例である場合を説明する。
Figure 2015226163
この場合、ノードN2の出力電流I4は、次式(23)で表され、式(15)の近似を適用することで、(1+cosα)に比例する電流になる。
Figure 2015226163
また、ノードN1の出力電流I8は、次式(24)で表され、式(15)の近似を適用することで、(1+sinα)に比例する電流になる。
Figure 2015226163
ここで、cosα及びsinαの三角関数のテイラー級数は、次式(25)で表される。
Figure 2015226163
上記では、三角関数のテイラー級数の第2項までの電流を生成する回路の例を示したが、より高次の三角関数のテイラー級数の電流を生成する回路にすることもできる。
図3は、図1のバイアス生成器102及びバイアス選択器103の動作を説明するための図であり、sinα電流生成回路105が出力する正弦値sinα及びcosα電流生成回路106が出力する余弦値cosαを示す。
まず、バイアス選択器103がcosαの電流を出力する方法を説明する。α=0〜45°の範囲のsinαと、α=45〜90°の範囲のcosαは、45度の軸に対して、線対称である。例えば、cos60°=sin30°、cos75°=sin15°である。すなわち、45°≦α<90°の範囲では、cosα=sin(90°−α)が成り立つ。そこで、0°≦α<45°の範囲では、cosα電流生成回路106は、余弦値cosαの電流を生成し、バイアス選択器103は、その余弦値cosαの電流を出力する。これに対し、45°≦α<90°の範囲では、sinα電流生成回路105は、正弦値sin(90°−α)(=cosα)の電流を生成し、バイアス選択器103は、その正弦値sin(90°−α)(=cosα)の電流を出力する。すなわち、0°≦α≦45°の範囲のみを使用する。
次に、バイアス選択器103がsinαの電流を出力する方法を説明する。α=0〜45°の範囲のcosαと、α=45〜90°の範囲のsinαは、45度の軸に対して、線対称である。例えば、sin60°=cos30°、sin75°=cos15°である。すなわち、45°≦α<90°の範囲では、sinα=cos(90°−α)が成り立つ。そこで、0°≦α≦45°の範囲では、sinα電流生成回路105は、正弦値sinαの電流を生成し、バイアス選択器103は、その正弦値sinαの電流を出力する。これに対し、45°<α<90°の範囲では、cosα電流生成回路106は、余弦値cos(90°−α)(=sinα)の電流を生成し、バイアス選択器103は、その余弦値cos(90°−α)(=sinα)の電流を出力する。すなわち、0°≦α≦45°の範囲のみを使用する。
まず、ずらす角度αの範囲が「0°≦α<45°」である場合を説明する。図2の制御回路107は、位相制御信号CTLの角度αが0°≦α<45°である場合、角度αに対応するm(=s・α)を設定するための第1の制御信号S1を出力する。これにより、sinα電流生成回路105はsinαの電流を出力し、cosα電流生成回路106はcosαの電流を出力する。その場合、バイアス選択器103は、正弦値sinαの電流をバイアス信号B2として出力し、余弦値cosαの電流をバイアス信号B1として出力する。
次に、ずらす角度αの範囲が「45°<α<90°」である場合を説明する。図2の制御回路107は、位相制御信号CTLの角度αが45°<α<90°である場合、角度(90°−α)に対応するm(=s・(90°−α))を設定するための第1の制御信号S1を出力する。これにより、sinα電流生成回路105はsin(90°−α)(=cosα)の電流を出力し、cosα電流生成回路106はcos(90°−α)(=sinα)の電流を出力する。その場合、バイアス選択器103は、余弦値sin(90°−α)(=cosα)の電流をバイアス信号B1として出力し、正弦値cos(90°−α)(=sinα)の電流をバイアス信号B2として出力する。
次に、ずらす角度αが「45°」である場合を説明する。αが45°の場合、sinα=cosαが成り立つ。ここで、sinα電流生成回路105及びcosα電流生成回路106の生成するsinα及びcosαのテイラー級数の近似次数が同じ場合は、cosαよりもsinαの方が近似精度が高い。そのため、cosα電流生成回路106よりもsinα電流生成回路105の方が精度が高い。そこで、図2の制御回路107は、位相制御信号CTLの角度αが45°である場合、角度αに対応するm(=s・α)を設定するための第1の制御信号S1を出力する。これにより、sinα電流生成回路105は、sinαの電流を出力する。その場合、バイアス選択器103は、正弦値sinαの電流及び余弦値sinα(=cosα)の電流をバイアス信号B1及びB2として出力する。
以上のように、バイアス生成器102は、45°<α<90°の範囲のsinα及びcosαを生成せず、0°≦α≦45°の範囲のみのsinα及びcosαを生成する。すなわち、第1の制御信号S1により、トランジスタM2、M4及びM11のサイズ変更の範囲は、0°≦α≦45°の狭い範囲であるので、トランジスタM2、M4及びM11の各々の最大並列接続数が少なくなり、トランジスタM2、M4及びM11の面積を小さくすることができる。すなわち、バイアス生成器102の回路規模を削減することができる。
次に、図1の位相補間器の効果を説明するため、図4の位相補間器を説明する。図4は、4相方形波の信号を入力する位相補間器の構成例を示す図である。電流極性切換回路401〜404は、それぞれ、0°の方形波信号φ0、90°の方形波信号φ1、180°の方形波信号φ0X、270°の方形波信号φ1Xを入力する。電流極性切換回路401は、電界効果トランジスタ411,412及び電流源413,144を有し、0°の方形波信号φ0を入力し、三角波の信号を容量406に出力する。電圧レベル補正回路405は、容量406に接続される。電流極性切換回路402〜404も、電流極性切換回路401と同様に動作する。出力端子CSOでは、電流極性切換回路401〜404の出力信号が合成される。電流極性切換回路401〜404の各々の電流源413,414に流れる電流を制御することにより、0°の方形波信号φ0、90°の方形波信号φ1、180°の方形波信号φ0X、270°の方形波信号φ1Xに重み付けをすることができる。これにより、出力端子CSOは、所望の位相の信号を出力することができる。
しかし、方形波の入力信号φ0,φ1,φ0X,φ1Xを高周波数化した場合、入力配線に存在する寄生容量などの影響により、方形波の入力信号φ0,φ1,φ0X,φ1Xが歪んでしまう。歪んだ方形波の入力信号φ0,φ1,φ0X,φ1Xが位相補間器に入力されると、位相補間器の位相線形性が劣化してしまう。
図5は、本実施形態による位相補間器の位相特性を示す図である。特性502は、図4の位相補間器の位相特性であり、上記の理由により、位相線形性が劣化してしまう。特性501は、図1の本実施形態の位相補間器の位相特性であり、理想の線形特性とほぼ一致している。本実施形態は、方形波ではなく、余弦波又は正弦波を用いることにより、信号を高周波数化しても、位相線形性の劣化を防止することができる。
(第2の実施形態)
図6は、第2の実施形態によるバイアス生成器102の構成例を示す図である。以下、本実施形態(図6)が第1の実施形態(図2)と異なる点を説明する。制御回路107は、位相制御信号CTLに応じて、第1の制御信号S1、第2の制御信号S2及び第3の制御信号S3を出力する。トランジスタM6のサイズは、第2の制御信号S2に応じて制御される。すなわち、トランジスタM5及びM6のカレントミラー比は、第2の制御信号S2に応じて制御される。トランジスタM11のサイズは、第3の制御信号S3に応じて制御される。すなわち、トランジスタM10及びM11のカレントミラー比は、第3の制御信号S3に応じて制御される。
ずらしたい角度αが0°<α<90°の時は、トランジスタM6は、トランジスタM5の1/2のサイズに制御され、トランジスタM11は、トランジスタM10のm倍のサイズに制御される。また、トランジスタM2,M4,M11のサイズ比mは、第1の実施形態と同様に、ずらしたい角度αに比例する値が選択される。この場合、本実施形態は、第1の実施形態と同じ動作をする。
ずらしたい角度αが0°の時は、トランジスタM2は、トランジスタM1と同じサイズ(M1:M2=1:1)に制御され、トランジスタM4は、トランジスタM3と同じサイズ(M3:M4=1:1)に制御される。また、トランジスタM6及びM11のサイズは、0に設定される。つまり、トランジスタM6及びM11のゲートは、それぞれ、トランジスタM5及びM10のゲートから切り離される。トランジスタM6がオフ状態になり、トランジスタM6のドレイン電流I2が0になり、ノードN2の出力電流I4は(1+cos0°)に比例する電流になる。また、トランジスタM11がオフ状態になり、トランジスタM11のドレイン電流I7が0になり、ノードN1の出力電流I8は(1+sin0°)に比例する電流になる。
これにより、位相制御信号CTLが示す角度αがどの値をとっても、バイアス生成器102内の電圧が電源電位又はグランド電位に張り付くことがなくなるため、位相制御信号CTLに対する出力の応答が早くなる。
なお、サイズを制御するトランジスタは、上記のように、トランジスタM6及びM11に限定されない。ずらしたい角度αが0度の場合には、トランジスタM6の代わりにトランジスタM7又はM8のゲートを切り離し、トランジスタM11の代わりにトランジスタM9,M10のゲートを切り離してもよい。
以上のように、トランジスタM1及びM2のカレントミラー回路及びトランジスタM3及びM4のカレントミラー回路は第1の制御信号S1に応じてカレントミラー比が制御される。
また、トランジスタM5及びM6等のカレントミラー回路は、トランジスタM1及びM2のカレントミラー回路及びトランジスタM3及びM4のカレントミラー回路の後段に接続され、余弦値cosαの電流を生成するために、第2の制御信号S2に応じてカレントミラー比が制御される。
また、トランジスタM10及びM11等のカレントミラー回路は、トランジスタM1及びM2のカレントミラー回路及びトランジスタM3及びM4のカレントミラー回路の後段に接続され、正弦値sinαの電流を生成するために、第3の制御信号S3に応じてカレントミラー比が制御される。
(第3の実施形態)
図7は、第3の実施形態による位相補間器の構成例を示す図である。本実施形態(図7)は、第1の実施形態(図1)に対して、抵抗118,119,136,137を削除したものである。以下、本実施形態(図7)が第1の実施形態(図1)と異なる点を説明する。
トランジスタ116のドレイン及びトランジスタ120のドレインは、相互に接続され、電流源111及び抵抗113の並列接続回路を介して、電源電位ノードに接続される。トランジスタ115のドレイン及びトランジスタ121のドレインは、相互に接続され、電流源112及び抵抗114の並列接続回路を介して、電源電位ノードに接続される。
トランジスタ134のドレイン及びトランジスタ138のドレインは、相互に接続され、電流源129及び抵抗131の並列接続回路を介して、電源電位ノードに接続される。トランジスタ133のドレイン及びトランジスタ139のドレインは、相互に接続され、電流源130及び抵抗132の並列接続回路を介して、電源電位ノードに接続される。
第1の差動対151及び第2の差動対152は、第1の負荷に共通に接続される。第1の負荷は、電流源111,112及び抵抗113,114の並列接続回路である。第5の差動対155及び第6の差動対156は、第2の負荷に共通に接続され。第2の負荷は、電流源129,130及び抵抗131,132の並列接続回路である。
第1の差動対151及び第2の差動対152の出力負荷が共通になり、第5の差動対155及び第6の差動対156の出力負荷が共通になる。負荷が共通となることにより、回路規模を小さくすることができる。
次に、第1の差動対151〜第4の差動対154の動作を説明する。テール電流源117及び125には、それぞれ、次式(26)のテール電流I11が流れる。また、テール電流源122及び128には、それぞれ、次式(26)のテール電流I12が流れる。
Figure 2015226163
第1の差動対151の入力段トランジスタ115の相互コンダクタンスgm1は、次式(27)のように、ずらしたい角度αの余弦値cosαに相関のある値となる。第1の差動対151の入力段トランジスタ115のゲートには余弦波cosθが入力されることから、入力段トランジスタ115のドレイン電流io1は、次式(27)のように、ずらしたい角度αの余弦値cosαの平方根と余弦波cosθが掛け合わされた値となる。
Figure 2015226163
第2の差動対152のテール電流源122には、上式(26)に示す電流I12が流れる。よって、第2の差動対152の入力段トランジスタ121には、バイアス電流I12/2が流れるため、第2の差動対152の入力段トランジスタ121の相互コンダクタンスgm2は、次式(28)のように、任意の定数kの平方根となる。また、第2の差動対152の入力段トランジスタ121のドレイン電流io2は、次式(28)で表される。
Figure 2015226163
第1の差動対151と第2の差動対152の出力ノードは、共通の負荷に接続される。従って、第1の差動対151の入力段トランジスタ115と第2の差動対152の入力段トランジスタ121のドレイン電圧vo1は、同じであり、次式(29)のように、電流io1と電流io2が加算された電流io1+io2に、出力インピーダンスZo1を掛け合わされた値となる。
Figure 2015226163
次に、第3の差動対153と第4の差動対154の動作について説明する。第3の差動対153のテール電流源125には、第1の差動対151のテール電流源117と同じ電流i11が流れる。従って、第3の差動対153の入力段トランジスタ124の相互コンダクタンスgm3は、次式(30)のように、第1の差動対151の入力段トランジスタ115の相互コンダクタンスgm1と同じ値となる。また、第3の差動対153の入力段トランジスタ124のゲート電圧は、第1の差動対151の入力段トランジスタ115のドレイン電圧vo1と同じであるため、第3の差動対153の入力段トランジスタ124のドレイン電流io3は、次式(30)で表される。
Figure 2015226163
第4の差動対154のテール電流源128には、第2の差動対152のテール電流源122と同じ電流I12が流れる。従って、第4の差動対154の入力段トランジスタ127の相互コンダクタンスgm4は、次式(31)のように、第2の差動対152の入力段トランジスタ121の相互コンダクタンスgm2と同じ値となる。また、第4の差動対154の入力段トランジスタ127のゲート電圧は、第1の差動対151の入力段トランジスタ115のドレイン電圧vo1と同じであるため、第4の差動対154の入力段トランジスタ127のドレイン電流io4は、次式(31)で表される。
Figure 2015226163
第3の差動対153の出力ノードと第4の差動対154の出力ノードは、出力端子O_CLK及びO_CLKXで接続されているため、出力端子O_CLK及びO_CLKXの出力電流は、次式(32)のように、第3の差動対153の電流io3と第4の差動対154の電流io4が加算された電流io3+io4であり、第1の実施形態と同様に、cosθ・cosαに比例する電流になる。第5の差動対155〜第8の差動対158も同様である。
Figure 2015226163
(第4の実施形態)
図8は、第4の実施形態による位相補間器の構成例を示す図である。本実施形態(図8)は、第1の実施形態(図1)に対して、電流源111,112,129,130,147,148を削除したものである。以下、本実施形態(図8)が第1の実施形態(図1)と異なる点を説明する。
トランジスタ115のドレインは、抵抗113を介して電源電位ノードに接続される。トランジスタ116のドレインは、抵抗114を介して電源電位ノードに接続される。トランジスタ133のドレインは、抵抗131を介して電源電位ノードに接続される。トランジスタ134のドレインは、抵抗132を介して電源電位ノードに接続される。第1の出力ノードO_CLKは、抵抗149を介して電源電位ノードに接続される。第2の出力ノードO_CLKXは、抵抗150を介して電源電位ノードに接続される。第1〜第8の差動対151〜158の負荷は、抵抗である。第1〜第8の差動対151〜158の負荷の抵抗は、それぞれ、第1〜第8の差動対151〜158の入力段トランジスタのβに比例する抵抗値を有する。
本実施形態によれば、第1〜第8の差動対151〜158の負荷に電流源がない分、第1〜第8の差動対151〜158の出力ノードにおける寄生容量成分が小さくなり、帯域が広くなる。また、出力端子O_CLK及びO_CLKXの出力範囲を広くとることができる。
(第5の実施形態)
図9は、第5の実施形態による位相補間器の構成例を示す図である。本実施形態(図9)は、第4の実施形態(図8)に対して、抵抗118,119,136,137を削除したものである。以下、本実施形態(図9)が第4の実施形態(図8)と異なる点を説明する。
トランジスタ115のドレイン及びトランジスタ121のドレインは、相互に接続され、抵抗114を介して電源電位ノードに接続される。トランジスタ116のドレイン及びトランジスタ120のドレインは、相互に接続され、抵抗113を介して電源電位ノードに接続される。トランジスタ123のゲート及びトランジスタ126のゲートは、相互に接続され、トランジスタ116及び120のドレインの相互接続点に接続される。トランジスタ124のゲート及びトランジスタ127のゲートは、相互に接続され、トランジスタ115及び121のドレインの相互接続点に接続される。
トランジスタ133のドレイン及びトランジスタ139のドレインは、相互に接続され、抵抗132を介して電源電位ノードに接続される。トランジスタ134のドレイン及びトランジスタ138のドレインは、相互に接続され、抵抗131を介して電源電位ノードに接続される。トランジスタ141のゲート及びトランジスタ144のゲートは、相互に接続され、トランジスタ134及び138のドレインの相互接続点に接続される。トランジスタ142のゲート及びトランジスタ145のゲートは、相互に接続され、トランジスタ133及び139のドレインの相互接続点に接続される。
第1の差動対151及び第2の差動対152は、第1の負荷に共通に接続される。第1の負荷は、抵抗113及び114である。第5の差動対155及び第6の差動対156は、第2の負荷に共通に接続される。第2の負荷は、抵抗131及び132である。
第1の差動対151及び第2の差動対152の出力負荷が共通になり、第5の差動対155及び第6の差動対156の出力負荷が共通になる。負荷が共通となることにより、回路規模を小さくすることができる。
(第6の実施形態)
図10は、第6の実施形態による位相補間器の構成例を示す図である。本実施形態(図10)は、第1の実施形態(図1)に対して、抵抗113,114,118,119,131,132,136,137,149,150を削除し、電流源1001〜1004を追加したものである。以下、本実施形態(図10)が第1の実施形態(図1)と異なる点を説明する。
トランジスタ115のドレインは、電流源111を介して電源電位ノードに接続される。トランジスタ116のドレインは、電流源112を介して電源電位ノードに接続される。トランジスタ120のドレインは、電流源1001を介して電源電位ノードに接続される。トランジスタ121のドレインは、電流源1002を介して電源電位ノードに接続される。電流源1001及び1002には、バイアス信号B3に応じた電流が流れる。
トランジスタ133のドレインは、電流源129を介して電源電位ノードに接続される。トランジスタ134のドレインは、電流源130を介して電源電位ノードに接続される。トランジスタ138のドレインは、電流源1003を介して電源電位ノードに接続される。トランジスタ139のドレインは、電流源1004を介して電源電位ノードに接続される。電流源1003及び1004には、バイアス信号B3に応じた電流が流れる。
第1の出力端子O_CLKは、電流源147を介して電源電位ノードに接続される。第2の出力端子O_CLKXは、電流源148を介して電源電位ノードに接続される。
本実施形態によれば、第1〜第8の差動対151〜158の負荷は、電流源である。出力抵抗の高い電流源を差動対151〜158の出力負荷とすることにより、差動対151〜158の電圧利得を高くすることができる。
(第7の実施形態)
図11は、第7の実施形態による位相補間器の構成例を示す図である。本実施形態(図11)は、第6の実施形態(図10)に対して、電流源1001〜1004を削除したものである。以下、本実施形態(図11)が第6の実施形態(図10)と異なる点を説明する。
トランジスタ115のドレイン及びトランジスタ121のドレインは、相互に接続され、電流源112を介して電源電位ノードに接続される。トランジスタ116のドレイン及びトランジスタ120のドレインは、相互に接続され、電流源111を介して電源電位ノードに接続される。トランジスタ123のゲート及びトランジスタ126のゲートは、相互に接続され、トランジスタ116及び120のドレインの相互接続点に接続される。トランジスタ124のゲート及びトランジスタ127のゲートは、相互に接続され、トランジスタ115及び121のドレインの相互接続点に接続される。
トランジスタ133のドレイン及びトランジスタ139のドレインは、相互に接続され、電流源130を介して電源電位ノードに接続される。トランジスタ134のドレイン及びトランジスタ138のドレインは、相互に接続され、電流源129を介して電源電位ノードに接続される。トランジスタ141のゲート及びトランジスタ144のゲートは、相互に接続され、トランジスタ134及び138のドレインの相互接続点に接続される。トランジスタ142のゲート及びトランジスタ145のゲートは、相互に接続され、トランジスタ133及び139のドレインの相互接続点に接続される。
第1の差動対151及び第2の差動対152の出力負荷が共通になり、第5の差動対155及び第6の差動対156の出力負荷が共通になる。負荷が共通となることにより、回路規模を小さくすることができる。
なお、上記実施形態は、何れも本発明を実施するにあたっての具体化の例を示したものに過ぎず、これらによって本発明の技術的範囲が限定的に解釈されてはならないものである。すなわち、本発明はその技術思想、又はその主要な特徴から逸脱することなく、様々な形で実施することができる。
101 ミキサ
102 バイアス生成器
103 バイアス選択器
104 定電流生成回路
105 sinα電流生成回路
106 cosα電流生成回路
107,108 制御回路
109 スイッチ回路
151〜158 差動対

Claims (13)

  1. 位相が異なる複数の余弦波又は正弦波の入力信号の位相を合成するミキサと、
    位相制御信号に応じたバイアス信号を前記ミキサに出力するバイアス生成器とを有し、
    前記ミキサは、前記位相制御信号に応じた位相の信号を出力することを特徴とする位相補間器。
  2. 前記バイアス生成器は、前記位相制御信号に応じた位相の余弦値又は正弦値のバイアス信号を出力することを特徴とする請求項1記載の位相補間器。
  3. 前記ミキサは、
    位相が異なる4個の余弦波又は正弦波の入力信号をそれぞれ入力する第1〜第4の入力端子と、
    前記位相制御信号に応じた位相の差動信号を出力する第1及び第2の出力端子と、
    前記第1の入力端子及び前記第2の入力端子の入力信号を入力する第1の差動対と、
    前記第1の入力端子及び前記第2の入力端子の入力信号を入力する第2の差動対と、
    前記第1の差動対の出力信号を入力し、前記第1の出力端子及び前記第2の出力端子に信号を出力する第3の差動対と、
    前記第2の差動対の出力信号を入力し、前記第2の出力端子及び前記第1の出力端子に信号を出力する第4の差動対と、
    前記第3の入力端子及び前記第4の入力端子の入力信号を入力する第5の差動対と、
    前記第3の入力端子及び前記第4の入力端子の入力信号を入力する第6の差動対と、
    前記第5の差動対の出力信号を入力し、前記第1の出力端子及び前記第2の出力端子に信号を出力する第7の差動対と、
    前記第6の差動対の出力信号を入力し、前記第2の出力端子及び前記第1の出力端子に信号を出力する第8の差動対とを有し、
    前記第1の差動対、前記第3の差動対、前記第5の差動対及び第7の差動対は、それぞれ、余弦値又は正弦値の前記バイアス信号に基づく電流を流す電流源を有し、
    前記第2の差動対、前記第4の差動対、前記第6の差動対及び第8の差動対は、それぞれ、定電流を流す電流源を有することを特徴とする請求項1又は2記載の位相補間器。
  4. 前記第1〜第8の差動対の負荷は、抵抗であることを特徴とする請求項3記載の位相補間器。
  5. 前記第1の差動対の負荷は、前記第1の差動対のテール電流に比例する電流を流す電流源及び抵抗の並列接続回路であり、
    前記第5の差動対の負荷は、前記第5の差動対のテール電流に比例する電流を流す電流源及び抵抗の並列接続回路であり、
    前記第1及び第2の出力端子には、それぞれ、前記第3の差動対のテール電流と前記第7の差動対のテール電流との和に比例する電流を流す電流源及び抵抗の並列接続回路が接続されることを特徴とする請求項3記載の位相補間器。
  6. 前記第1の差動対及び前記第2の差動対は、第1の負荷に共通に接続され、
    前記第5の差動対及び前記第6の差動対は、第2の負荷に共通に接続されることを特徴とする請求項3記載の位相補間器。
  7. 前記第1の負荷及び前記第2の負荷は、それぞれ、抵抗であることを特徴とする請求項6記載の位相補間器。
  8. 前記第1の負荷は、前記第1の差動対のテール電流に比例する電流を流す電流源及び抵抗の並列接続回路であり、
    前記第2の負荷は、前記第5の差動対のテール電流に比例する電流を流す電流源及び抵抗の並列接続回路であることを特徴とする請求項6記載の位相補間器。
  9. 前記バイアス生成器は、カレントミラー回路を有し、前記位相制御信号に応じて、前記カレントミラー回路のカレントミラー比を制御することを特徴とする請求項1〜8のいずれか1項に記載の位相補間器。
  10. 前記バイアス生成器は、
    前記位相制御信号に応じて、第1〜第3の制御信号を出力する制御回路と、
    前記第1の制御信号に応じてカレントミラー比が制御される第1のカレントミラー回路と、
    前記第1のカレントミラー回路の後段に接続され、前記第2の制御信号に応じてカレントミラー比が制御され、余弦値電流を生成するための第2のカレントミラー回路と、
    前記第1のカレントミラー回路の後段に接続され、前記第3の制御信号に応じてカレントミラー比が制御され、正弦値電流を生成するための第3のカレントミラー回路とを有することを特徴とする請求項1〜8のいずれか1項に記載の位相補間器。
  11. 前記第1〜第8の差動対は、それぞれ、テール電流源を有し、
    前記第1〜第8の差動対のテール電流源は、それぞれ、前記第1〜第8の差動対の入力段トランジスタのβの逆数に比例する電流を流すことを特徴とする請求項3〜8のいずれか1項に記載の位相補間器。
  12. 前記第1〜第8の差動対の入力段トランジスタのβは、すべて同じであることを特徴とする請求項11記載の位相補間器。
  13. 前記第1〜第8の差動対の負荷の抵抗は、それぞれ、前記第1〜第8の差動対の入力段トランジスタのβに比例する抵抗値を有することを特徴とする請求項4記載の位相補間器。
JP2014109497A 2014-05-27 2014-05-27 位相補間器 Active JP6372166B2 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2014109497A JP6372166B2 (ja) 2014-05-27 2014-05-27 位相補間器
US14/682,377 US9425777B2 (en) 2014-05-27 2015-04-09 Phase interpolator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014109497A JP6372166B2 (ja) 2014-05-27 2014-05-27 位相補間器

Publications (2)

Publication Number Publication Date
JP2015226163A true JP2015226163A (ja) 2015-12-14
JP6372166B2 JP6372166B2 (ja) 2018-08-15

Family

ID=54703044

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014109497A Active JP6372166B2 (ja) 2014-05-27 2014-05-27 位相補間器

Country Status (2)

Country Link
US (1) US9425777B2 (ja)
JP (1) JP6372166B2 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20180107185A (ko) * 2016-01-28 2018-10-01 자일링크스 인코포레이티드 위상 보간기 및 위상 보간기의 구현 방법

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108710404B (zh) * 2018-05-23 2020-08-28 中国科学技术大学 一种混合信号发生器

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10150363A (ja) * 1996-10-02 1998-06-02 Philips Electron Nv ディジタルプログラマブル移相器及びこのような移相器を用いるa/d変換器
JP2001217682A (ja) * 1999-11-26 2001-08-10 Fujitsu Ltd 位相合成回路およびタイミング信号発生回路
JP2006262197A (ja) * 2005-03-17 2006-09-28 Fujitsu Ltd 位相制御回路
JP2007312394A (ja) * 2006-05-19 2007-11-29 National Semiconductor Germany Ag 制御可能な位相を具備する周期的電気信号を発生する方法及び回路装置
JP2008028681A (ja) * 2006-07-20 2008-02-07 Sony Corp 移相器、および移相方法
US7420430B2 (en) * 2004-07-30 2008-09-02 Infineon Technologies Ag Method and arrangement for generating an output clock signal with an adjustable phase relation from a plurality of input clock signals
WO2010021280A1 (ja) * 2008-08-18 2010-02-25 日本電信電話株式会社 ベクトル合成型移相器、光トランシーバおよび制御回路

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2071349A5 (ja) * 1969-12-24 1971-09-17 Thomson Csf
US3663754A (en) * 1970-05-18 1972-05-16 Totuus Communications Inc Communication system having modulator for generating orthogonal continuous phase synchronous binary fsk
US5485490A (en) * 1992-05-28 1996-01-16 Rambus, Inc. Method and circuitry for clock synchronization
WO1998021553A1 (fr) * 1996-11-11 1998-05-22 Fanuc Ltd. Circuit d'interpolation de codeur
JPH11194926A (ja) 1997-12-26 1999-07-21 Hitachi Denshi Ltd 三角関数演算器
JP3015011B1 (ja) 1998-10-05 2000-02-28 日本電信電話株式会社 正弦・余弦演算回路
TW483255B (en) * 1999-11-26 2002-04-11 Fujitsu Ltd Phase-combining circuit and timing signal generator circuit for carrying out a high-speed signal transmission
US6417712B1 (en) * 2000-09-27 2002-07-09 Nortel Networks Limited Phase shifter using sine and cosine weighting functions
US7593496B2 (en) * 2005-12-27 2009-09-22 Intel Corporation Phase interpolator
US7889812B2 (en) * 2006-05-26 2011-02-15 Silicon Laboratories, Inc. Direct digital frequency synthesizer with phase error correction, method therefor, and receiver using same
US7756491B2 (en) * 2006-08-04 2010-07-13 Axiom Microdevices, Inc. Phase shifter
KR101297710B1 (ko) * 2006-08-10 2013-08-20 삼성전자주식회사 낮은 지터 스프레드 스펙트럼 클럭 발생기
US20090028216A1 (en) * 2007-07-26 2009-01-29 M/A-Com, Inc. Method and apparatus for generating a radio frequency pulse
JP5499635B2 (ja) * 2009-10-29 2014-05-21 日本電気株式会社 多相クロック発生回路
US8400808B2 (en) * 2010-12-16 2013-03-19 Micron Technology, Inc. Phase interpolators and push-pull buffers
JP6155659B2 (ja) * 2013-01-28 2017-07-05 株式会社ソシオネクスト 位相補間回路および受信回路

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10150363A (ja) * 1996-10-02 1998-06-02 Philips Electron Nv ディジタルプログラマブル移相器及びこのような移相器を用いるa/d変換器
JP2001217682A (ja) * 1999-11-26 2001-08-10 Fujitsu Ltd 位相合成回路およびタイミング信号発生回路
US7420430B2 (en) * 2004-07-30 2008-09-02 Infineon Technologies Ag Method and arrangement for generating an output clock signal with an adjustable phase relation from a plurality of input clock signals
JP2006262197A (ja) * 2005-03-17 2006-09-28 Fujitsu Ltd 位相制御回路
JP2007312394A (ja) * 2006-05-19 2007-11-29 National Semiconductor Germany Ag 制御可能な位相を具備する周期的電気信号を発生する方法及び回路装置
JP2008028681A (ja) * 2006-07-20 2008-02-07 Sony Corp 移相器、および移相方法
WO2010021280A1 (ja) * 2008-08-18 2010-02-25 日本電信電話株式会社 ベクトル合成型移相器、光トランシーバおよび制御回路

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20180107185A (ko) * 2016-01-28 2018-10-01 자일링크스 인코포레이티드 위상 보간기 및 위상 보간기의 구현 방법
KR102580077B1 (ko) 2016-01-28 2023-09-18 자일링크스 인코포레이티드 위상 보간기 및 위상 보간기의 구현 방법

Also Published As

Publication number Publication date
US9425777B2 (en) 2016-08-23
JP6372166B2 (ja) 2018-08-15
US20150349980A1 (en) 2015-12-03

Similar Documents

Publication Publication Date Title
US9673972B2 (en) Phase interpolator
JP5266325B2 (ja) ベクトル合成型移相器、光トランシーバおよび制御回路
JP6205142B2 (ja) 定電圧回路
US8896358B2 (en) Phase interpolator having adaptively biased phase mixer
JP2006086857A (ja) 移相装置
JP6372166B2 (ja) 位相補間器
JP6438422B2 (ja) 基準電流生成回路、ad変換器、及び無線通信装置
JP6254304B2 (ja) 容量性要素を使用して位相補間器の線形性を改善すること
JP2012009925A (ja) Rssi回路
US9485084B2 (en) Linearity of phase interpolators by combining current coding and size coding
JP2009218796A (ja) 線形補正回路及び線形補正方法、並びにセンサ装置
CN109120244B (zh) 相位旋转器设备
WO2023116008A1 (zh) 占空比调节电路及输出电路
JP2018019322A (ja) リンギング抑制回路
US10205423B1 (en) Rail-to-rail source follower
US9705485B1 (en) High-resolution current and method for generating a current
CN108781062B (zh) 可变增益放大器
JP2006173721A (ja) 電流源セルおよびそれを用いたd/aコンバータ
US8742807B1 (en) Low supply voltage analog phase interpolator
CN108172254B (zh) 一种大动态范围浮地忆阻等效元件及非线性可控模拟电阻
JP2014176040A (ja) 差動出力回路、並びに高速シリアル通信用半導体ic及び高速シリアル通信システム
CN112350694B (zh) 相位插值器
Goel DTMOS based DVCC with multifunction filter application
TW202337136A (zh) 訊號轉換電路
JP2016021668A (ja) 演算増幅回路

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170206

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20171218

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180206

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180228

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180515

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180531

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180619

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180702

R150 Certificate of patent or registration of utility model

Ref document number: 6372166

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150