JP2015195261A - ダイボンダ及び半導体製造方法 - Google Patents

ダイボンダ及び半導体製造方法 Download PDF

Info

Publication number
JP2015195261A
JP2015195261A JP2014072084A JP2014072084A JP2015195261A JP 2015195261 A JP2015195261 A JP 2015195261A JP 2014072084 A JP2014072084 A JP 2014072084A JP 2014072084 A JP2014072084 A JP 2014072084A JP 2015195261 A JP2015195261 A JP 2015195261A
Authority
JP
Japan
Prior art keywords
bonding
position recognition
bonding position
die
recognition camera
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2014072084A
Other languages
English (en)
Inventor
僚 大森
Ryo Omori
僚 大森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fasford Technology Co Ltd
Original Assignee
Fasford Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fasford Technology Co Ltd filed Critical Fasford Technology Co Ltd
Priority to JP2014072084A priority Critical patent/JP2015195261A/ja
Publication of JP2015195261A publication Critical patent/JP2015195261A/ja
Pending legal-status Critical Current

Links

Images

Abstract

【課題】ボンディング精度に優れたダイボンダ及び半導体製造方法を提供する。【解決手段】ボンディングヘッドに保持されたダイと、ダイがボンディングされる基板とを、同一視野で認識するボンディング位置認識カメラで認識してボンディング位置補正を行うことによって、より高い精度でボンディングできるダイボンダ及び半導体製造方法を提供する。【選択図】図2

Description

本発明は、ダイボンダ及び半導体製造方法に係わり、ボンディング精度に優れたダイボンダ及び半導体製造方法に関する。
配線基板や基板などの基板(ワーク)にダイ(半導体チップ)を搭載・実装して半導体デバイスを組み立てる工程の一部として、ピックアップヘッドがダイを吸着・保持(ピックアップ)し、ボンディングヘッドがそのダイを基板上の所定のボンディング位置に実装(ボンディング)するボンディング工程がある。
ボンディング工程では、基板上の所定のボンディング位置に高い精度でボンディングする必要がある。そこで、従来は、ダイボンダにダイ認識用カメラと基板認識用カメラを備え、かつ、温度変化等に起因して生じる、ダイ認識用カメラと基板認識用カメラとの間の基準位置の位置ずれ量を加味して位置合わせが行われていた。
また、より高い精度でボンディングを行うため、特許文献1では、さらに、基板認識用カメラとボンディングヘッドとの間の基準位置の位置ずれ量をも加味して位置合わせを行った後に、ボンディングがなされていた。しかし、ダイ認識用カメラと基板認識用カメラのそれぞれが異なるターゲットを認識することから、各々のカメラやターゲットの位置ずれに起因する位置ずれ量は依然として解消できていなかった。
特開2010-153562号公報
そこで、本発明は、上記課題を解決するため、ボンディングヘッドに保持されたダイと、ダイがボンディングされる基板とを同一視野で認識するボンディング位置認識カメラで認識(撮像)することにより、特に連続的にダイボンディングを行うような量産時において、より高いボンディング精度を維持しつつ、スループット(タクトタイム)も高く維持できるダイボンダ及び半導体製造方法を提供することを目的とする。
本発明に係るダイボンダ及び半導体製造方法では、ダイを保持し基板上の所定のボンディング位置にダイをボンディングするボンディングヘッドと、基板の上方もしくは斜上方に位置し、ボンディングヘッドが保持するダイと基板が近接した際に、ダイもしくはその近傍にある第1の基準マークと基板もしくはその近傍にある第2の基準マークとを、同一の視野で認識するように所定の角度をもって設置されたボンディング位置認識カメラと、ボンディングヘッドの動作とボンディング位置認識カメラの動作とを制御する制御部と、を備え、ボンディング位置認識カメラは、ボンディングヘッドに保持されたダイが基板に近接して停止したタイミングで、第1の基準マークと第2の基準マークとを同一の視野に認識して撮像し、制御手段は、ボンディング位置認識カメラが撮像した画像を画像処理部で処理して得た位置ずれ量に基づいて、ボンディングヘッドの位置を制御する。これにより、ダイを所定のボンディング位置に高精度にボンディングすることが可能となる。
また本発明では、ボンディング位置認識カメラは、ボンディングヘッドもしくはその駆動部に設けられた支持部によって固定されても良い。これにより、ボンディング位置認識カメラは少なくとも第1の基準マークを常に視野に収めた状態で動作することが可能となり、常にボンディングヘッドに保持されたダイもしくはその近傍にある第1の基準マークをボンディング位置認識カメラの視野に捕捉した状態を維持できる。そして、基板の近傍までボンディングヘッドが降下した際には、第1の基準マークと第2の基準マークの双方を同一視野で認識することが可能となる。
また本発明では、ボンディング位置認識カメラは、ボンディング位置認識カメラ用駆動部に設けられた支持部を介して固定されても良い。これにより、ボンディング位置認識カメラは第1の基準マークもしくは第2の基準マークのいずれか又は双方を常に視野に収めた状態で動作することが可能となり、第1の基準マークと第2の基準マークの双方を同一視野で認識することがさらに容易となる。この場合、ボンディング位置認識カメラ用駆動部がボンディングヘッドの降下と同調する機構とすれば、より簡便に第1の基準マークと第2の基準マークの双方を捕捉できる。
また、本発明では、ボンディング位置認識カメラの支持部を、ボンディング位置認識カメラが固定された角度を変更することが可能となるように構成しても良い。これにより、ボンディング位置認識カメラの設置位置が限られている場合であっても、撮像範囲を変更し柔軟に対応することができる。
また、本発明では、制御部は、ボンディング位置認識カメラが、第1の基準マーク及び第2の基準マークの双方が同一の視野内に捕捉されたタイミングで撮像を開始する制御を行うこととしても良い。これにより、ボンディング位置認識カメラが、ボンディングヘッドがダイを基板にボンディングする直前で停止するのを待たずに、もしくは停止して一定の時間を経過するのを待たずに撮像を開始することができるので、タクトタイム(スループット)の向上に寄与し、より生産性を高めることができる。
また、本発明では、複数のボンディング位置認識カメラを設け、例えば、第1のボンディング位置認識カメラと第2のボンディング位置認識カメラとから構成し、第1のボンディング位置認識カメラと第2のボンディング位置認識カメラのそれぞれを、異なる位置に設け、異なるボンディング位置認識カメラによって同じ第1の基準マークと第2の基準マークの双方を捕捉しても良い。これにより、位置ずれ量の補正精度をより高めることができる。
さらに、第1のボンディング位置認識カメラと第2のボンディング位置認識カメラのそれぞれの光軸が水平面において直交する角度をもって設置される構成としても良い。これにより、X軸方向とY軸方向の位置ずれ量の補正をそれぞれのボンディング位置認識カメラで分担し、さらに精度の高い位置ずれ量の補正を行うことが可能となる。加えて、ボンディングヘッドが保持するダイが水平方向に回転してずれている場合は、回転角(θ)の補正量を算出することも容易となる。
本発明によれば、ダイを正確にボンディングできる信頼性の高いダイボンダ及び半導体製造方法を提供できる。
本発明の1つの実施形態であるダイボンダを上から見た概念図である。 本発明の特徴であるボンディング位置認識カメラを有するダイボンダの1つの実施形態を示す概略構成図である。 図2におけるボンディングヘッド部及びボンディング位置認識カメラの近傍を示す概略構成図である。 本発明の特徴であるボンディング位置認識カメラをボンディングヘッド部に設置した場合の1つの実施形態を示す概略構成図である。 第1の基準マークと第2の基準マークとをボンディング位置認識カメラで撮像した際の概要図である。 本発明の特徴であるボンディング位置認識カメラを有するダイボンダにおける処理フローの1つの実施例である。 複数のボンディング位置認識カメラを有するダイボンダの1つの実施形態を示す概略構成図である。 図7における複数のボンディング位置認識カメラの近傍を示す構成概略図である。
以下、図面に基づき、本発明の実施形態を説明する。
図1は、本発明の1つの実施形態であるダイボンダ10を上から見た概念図である。ダイボンダ10は大別してウェハ供給部1と、基板供給・搬送部5と、ダイボンディング部3と、これらを制御する制御部4と、画像処理部6(図1においては、便宜的に制御部4を兼ねた構成としている)を有する。
ウェハ供給部1は、ウェハカセットリフタ11とピックアップ装置12とを有する。ウェハカセットリフタ11はウェハリングが充填されたウェハカセット(図示せず)を有し、順次ウェハリングをピックアップ装置12に供給する。ピックアップ装置12は、所望するダイをウェハリングからピックアップできるように、ウェハリングを移動する。
基板供給・搬送部5はスタックローダ51と、フレームフィーダ52と、アンローダ53とを有する。スタックローダ51は、ダイDを接着する基板45(例えば、リードフレーム)をフレームフィーダ52に供給する。フレームフィーダ52は、基板45をフレームフィーダ52上の位置するプリフォーム部31とボンディングヘッド部32での処理を経てアンローダ53に搬送する。アンローダ53は、搬送された基板45を保管する。
ダイボンディング部3はプリフォーム部31とボンディングヘッド部32とを有する。プリフォーム部31はフレームフィーダ52により搬送されてきた基板45にダイ接着剤を塗布する。ボンディングヘッド部32は、ピックアップ装置12からダイをピックアップして上昇し、ダイDをフレームフィーダ52上のボンディング位置まで移動させる。そして、ボンディングヘッド部32はボンディング位置でダイDを降下させ、ダイ接着剤が塗布された基板45の上にダイDをボンディングする。
図2は、本発明の特徴であるボンディング位置認識カメラ21を有するダイボンダ10の1つの実施形態を示す概略構成図である。
ボンディングヘッド部32は、ダイDを吸着しボンディングするボンディングヘッド41と、リードフレーム(ワーク)である基板45の位置合わせをするために基板45の位置を検出する基板位置認識カメラ42と、ボンディングヘッド41と基板位置認識カメラ42とを支持又は固定する固定台43と、固定台43をXY方向に移動させる移動機構46と、基板45を保持するボンディングステージ(以下、単にステージという)44とを有する。なお、基板45は、基板供給・搬送部5を形成するフレームフィーダ52によって搬送される。
ボンディングヘッド41は、ボンディング工程において、先端にダイDを吸着保持しているコレット41cと、コレット41cを昇降、すなわちZ方向に移動する機構(図示しない)を有する。また、コレット41cを固定台43に対して水平方向若しくは回転方向、すなわちX方向、Y方向、若しくはθ方向に移動・回転し補正する、2次元補正機構41mを有する。
図3は、図2におけるボンディングヘッド部32及びボンディング位置認識カメラ21の近傍を示す概略構成図である。また、図4は、本発明の特徴であるボンディング位置認識カメラ21をボンディングヘッド部32に設置した場合の1つの実施形態を示す概略構成図である。
ボンディング位置認識カメラ21は、基板45の上にボンディングされるダイDもしくはその近傍のコレット41c等に定めた第1の基準マークKM1と、ダイDをボンディングする際の基準となる、基板45もしくはその近傍にある第2の基準マークKM2が近接した場合に同一の視野FOVで両者を認識するように、所定の角度αをもって設置される。
ここで、ボンディング位置認識カメラ21の設置角度αは、ボンディング位置認識カメラ21の光軸OAと直交する視野FOVの被写界深度(焦点深度)内に第1の基準マークKM1と、第2の基準マークKM2が収まるように調整する。ボンディング位置認識カメラ21には、その仕様によって定まる被写界深度による撮像条件の限界があるため、ボンディング位置認識カメラ21の設置角度αの調整は重要である。
ボンディング位置認識カメラ21は、その視野FOV内に第1の基準マークKM1と、第2の基準マークKM2がともに収まるように設置できれば、どのような位置に設置しても良い。また、ボンディング位置認識カメラ21は、支持部24を介して、ダイボンダ10の構造部材23に固定したり、ボンディングヘッド41に固定したりしてもよい。また、ボンディング位置認識カメラ用駆動部25(ボンディング位置認識カメラ用駆動部25は、図2の構造部材23と同様の場所に位置する)に固定してもよい。さらに、支持部24にボンディング位置認識カメラ21の設置角度αを可変とできる機構を設けることで、さらにボンディング位置認識カメラ21の設置自由度が高まり、第1の基準マークKM1と第2の基準マークKM2とを容易に捕捉できるので、多様な製品の部品実装に適用できる。
ボンディング位置認識カメラ21は、ダイDを保持したボンディングヘッド41が基板45に向かって降下して、ダイDが基板45にボンディングされる直前の所定の高さhで停止している状態、すなわち、ダイDもしくはその近傍にある第1の基準マークKM1と基板もしくはその近傍にある第2の基準マークKM2の双方を、所定の高さhで、かつ、同一の視野FOVで認識している状態で撮像する。そして、撮像された第1の基準マークKM1と第2の基準マークKM2を、特徴あるパターンとして画像認識して登録したパターン(以下、「特徴パターンSP」という)として画像処理部6に記憶する。さらに、取得した特徴パターンSP内において、第1の基準マークKM1と第2の基準マークKM2のそれぞれに対応する特徴パターンSPを、特に、特徴パターンSP1及び特徴パターンSP2として指定し、特徴パターンSP1及び特徴パターンSP2の中心座標(基準座標)を設定・算出し、画像処理部6に記憶する。
ボンディング位置認識カメラ21が所定の高さhで特徴パターンSPを撮像・登録し、その後、第1の基準マークKM1及び第2の基準マークKM2に対応する、特徴パターンSP1及び特徴パターンSP2の基準座標を設定・算出する際には、実際にダイDを基板45にボンディングして、ボンディング精度を確認(ティーチング)する。
特徴パターンSPの撮像・登録後のボンディング精度(ボンディング位置ずれ量)が所定の範囲内(例えば±15μm以下のボンディング精度)であれば、登録した特徴パターンSPを以下に説明する補正手順に供する。なお、実際にボンディングした際のボンディング精度が所定の範囲に収まらない場合は、従来から行われているようなコレット41cやボンディングヘッド部32等のティーチングを行い、所定のボンディング精度の範囲内でボンディングできる位置で特徴パターンSPを撮像・登録できるまでティーチングを繰り返す。
実際には、特徴パターンSPを撮像・登録後のボンディング位置ずれ量が所定のボンディング精度に収まった場合であっても、そのボンディング誤差を0とすることは難しい。従って、特徴パターンSPの撮像・登録後のボンディンディング誤差を、撮像した特徴パターンSPに基づいて取得した特徴パターンSP1及び特徴パターンSP2の座標情報に対するオフセット値として適用することで、より高い精度でのボンディングを実現できる。
そして、ティーチング等が完了後のボンディング工程(量産工程)において、本発明に係るダイボンダ10がボンディングを行う際は、ボンディング位置認識カメラ21が所定の高さhで一時的にボンディングヘッド部32の降下動作を停止し、特徴パターンSP´を撮像する。ここで、ボンディング工程において撮像した特徴パターンSP等については、特に「´」を付加して特徴パターンSP´等と表記する。
次いで、画像処理部6において、撮像された特徴パターンSP´に基づいて特徴パターンSP1´及び特徴パターンSP2´をパターンマッチング等により認識し、座標情報を算出し、位置ずれ量を求める。そして、位置ずれ量があらかじめ定められた値以下であることが認められたら、最終的なボンディング処理がなされる。一方、位置ずれ量があらかじめ定められた値以下でないことが認められたら、2次元補正機構41mへ位置ずれ量をフィードバックして必要な位置補正処理がなされ、位置補正処理の後、再度特徴パターンSP´を撮像し、上述と同様の位置ずれ量算出処理がなされる。そして、必要に応じて、位置補正処理が繰り返され、位置ずれ量があらかじめ定められた値以下であることが認められたら、最終的なボンディング処理がなされる。
以下、図5に示した、第1の基準マークKM1と第2の基準マークKM2とをボンディング位置認識カメラ21で撮像した際の概要図を用いて、ボンディング位置認識カメラ21が取得した特徴パターンSPおよび特徴パターンSP´に基づいて、位置ずれ量を算出する方法を説明する。
図5(a)に示すように、基板45から高さh離れた場所にダイDが位置した状態で第1の基準マークKM1と第2の基準マークKM2をボンディング位置認識カメラ21によって撮像する。ここで、図5(b)には、ダイD上に小さい「×」で示したダイ中心DCと、大きい「×」で示した第1の基準マークKM1とを示す。また、図5(c)に示した、基板45の上に大きい「+」で示したダイターゲットDTは、ダイ中心DCを重ね合わせるべき位置である。ダイ中心DCとダイターゲットDTがぴったりと重なりあった場合、すなわち誤差0でボンディングされたときのダイDと基板45とを上方から観察した場合のダイ中心DCとダイターゲットDTの位置関係は図5(d)に示すとおりである。
なお、ダイ中心DCと特徴パターンSP1、ダイターゲットDTと特徴パターンSP2は同一のパターンである必要は無く、第1の基準マークKM1と第2の基準マークKM2を同一の視野FOVでボンディング位置認識カメラ21で撮像可能であれば良い。例えば、第1の基準マークKM1はダイDのエッジやダイD上の配線パターン、若しくはコレット41cのエッジ等の任意のパターンで良い。
同じように、第2の基準マークKM2はダイターゲットDTである必要は無い。むしろダイターゲットDTを特徴パターンSP2としてしまうと、ダイDと基板45が近接した場合には、ボンディング位置認識カメラ21から観察した際にダイターゲットDTがダイDの死角に入ってしまう。そのため、基板45のエッジや、ボンディング位置45bのエッジ近傍のパターン等、ダイDが基板45の上にボンディングされた後もダイDの死角に入らない位置に存在し、かつ、ボンディング位置認識カメラ21によって第1の基準マークKM1と第2の基準マークKM2とを同一の視野FOVで観察できる位置に存在するパターンを第2の基準マークKM2として選択すべきである。
図6を用いて、本発明の特徴であるボンディング位置認識カメラ21を有するダイボンダ10における処理フローの1つの実施例を用いて説明する。
図6におけるボンディング及び位置補正処理のフローは、ダイDを吸着・保持したボンディングヘッド41がボンディング位置45bの上方に到達したことを基板位置認識カメラ42により確認した後に開始する。なお、図6のフロー図には示さないが、前述したように、あらかじめ、第1の基準マークKM1と第2の基準マークKM2のそれぞれを、ボンディング位置認識カメラ21が同一の視野FOVで認識できるように、ダイDが基板45にボンディングされる直前の近接した所定の高さhにおいて撮像する。撮像した画像は特徴パターンSPとして画像処理部6に記憶され、特徴パターンSP内の基準マークKM1及び基準マークKM2に対応する、特徴パターンSP1及び特徴パターンSP2を指定・登録して位置補正の基準となる座標の設定も行う。
また、撮像時の状態でボンディングを行った場合に、所定のボンディング精度を実現できるように、必要に応じてティーチングをして、オフセット値も設定しておく。なお、特徴パターンSPを撮像する場合の高さhは、ダイDの厚さや塗布される接着剤の厚さ等により異なるとともに、ボンディング位置認識カメラ21の被写界深度、ボンディングヘッド41の停止精度、一時停止後のボンディング処理の精度等にも依存して異なるものであるが、ダイDと基板45との垂直方向の距離(高さ)は約200〜300μm以下であることが望ましく、可能な限りダイDと基板45は近接していることがより高いボンディング精度を実現するためにも好ましい。
まず、ダイDを保持したボンディングヘッド41がボンディング位置の上方に到達したことを基板位置認識カメラ42によって検出された後の図6に示すフローのステップ1として、特徴パターンSPを登録した所定の高さhにまで、ボンディングヘッド41が降下し、一時停止する(ステップ1)。
次いで、ボンディングヘッド41が高さhで一時停止すると同時に、第1の基準マークKM1及び第2の基準マークKM2の双方をボンディング位置認識カメラ21が同一の視野FOVに捕捉・撮像して、特徴パターンSP´として記憶する(ステップ2)。ここで、ボンディング位置認識カメラ21による撮像タイミングは、ボンディング位置認識カメラ21が第1の基準マークKM1及び第2の基準マークKM2の双方を同一の視野FOVに明確に認識できれば、ボンディングヘッド41が一時停止しないで高さh付近で一時減速したタイミングや、ボンディング位置認識カメラ21が第1の基準マークKM1及び第2の基準マークKM2の双方を同一の視野FOVに捕捉したタイミングであってもよい。
その後、撮像した特徴パターンSP´において特徴パターンSP1´及び特徴パターンSP2´を画像処理部6で認識し、特徴パターンSP1´及び特徴パターンSP2´のそれぞれに対応する、あらかじめ画像処理部6に記憶した特徴パターンSP1及び特徴パターンSP2のそれぞれの基準座標との座標ずれ(位置ずれ量)を画像処理部6において算出する(ステップ3)。
具体的には、あらかじめボンディング位置認識カメラ21が撮像して画像処理部6で記憶・認識し、登録した特徴パターンSP1と特徴パターンSP2と、ボンディング工程においてボンディング位置認識カメラ21が新たに撮像した、特徴パターンSP1と特徴パターンSP2とに対応する特徴パターンSP1´と特徴パターンSP2´とを、画像処理部6におけるパターン抽出や特徴点抽出、エッジ認識に基づくパターンマッチング等を用いた画像処理によって認識し、各特徴パターンの重心や中心の座標、もしくはオペレータ等が特定した点の座標との比較を行い、位置ずれ量を算出する。このとき、パターンマッチング等の画像処理によって、回転方向の位置ずれ量(θ方向の位置ずれ量)も算出できる。
画像処理部6における処理の一例を図5(d)および(e)を用いて説明する。
図5(d)はあらかじめ撮像・登録した特徴パターンSP1と特徴パターンSP2の位置関係を示しており、説明の便宜上、ボンディング誤差0の理想状態における特徴パターンSP1(大きい「×」マーク)と特徴パターンSP2(小さい「+」マーク)との間の距離をX(X方向)、Y(Y方向)としている。実際の運用においては、特徴パターンSP1と特徴パターンSP2の登録時の誤差に応じて、オフセットを設定してもよい。図5(e)は新たに撮像した特徴パターンSP1´と特徴パターンSP2´を示し、それらの間の距離をX´、Y´としている。
このとき、ダイ中心DCとダイターゲットDTとの間の距離、すなわち位置ずれ量(ΔX、ΔY)は、以下の式(1)(2)により求めることができる。
ΔX=X−X´ (1)
ΔY=Y−Y´ (2)
ここで、特徴パターンSP及び特徴パターンSP´から定まる基準座標としては、必ずしも各特徴パターンの重心もしくは中心点である必要は無く、パターンマッチング等の画像処理上の不都合が無い限り、各特徴パターン上の任意の点を指定してよく、例えば、画像処理上の誤認識が生じ難いユニークな部分に存在する1点を原点として設定することが好ましい。もちろん、従来技術として用いられる、各特徴パターンのパターン全体の特徴的部分を一致させ認識する画像処理上のパターン認識を行うことにより、X座標及びY座標、さらには回転方向(θ方向)のずれ量を算出する方式としてもよい。
なお、ボンディング位置認識カメラ21の光軸OAの方向がX方向なのかY方向なのかによって、ボンディング位置認識カメラ21の設置角度αの影響を考慮する必要がある。すなわち、ボンディング位置認識カメラ21は、斜上方から第1の基準マークKM1と第2の基準マークKM2を撮像するため、光軸OA方向と光軸OAに直交する方向の1画素当たりの距離が異なることとなる。例えば、光軸OAの方向の距離については、sinα等の係数も含めて処理を行う必要が生じる。原則的に、光軸OAの方向に直交する方向(図3、図4の視野FOVにおける紙面奥行方向)については、撮像された画像に基づいて各特徴パターンSPの間の距離、位置ずれ量を算出すればよい。
そして、画像処理部6で前述のフローによって算出した位置ずれ量ΔX及びΔYが、実装・製造される半導体装置等の仕様上許容される所定の位置ずれ量を超える場合は、算出された位置ずれ量ΔX及びΔYをコレット41cが保持するダイDの位置ずれ量に換算し、ボンディングヘッド41の2次元補正機構41mにフィードバックし、位置補正を行う(ステップ4)。なお、許容される所定の位置ずれ量は、製造する製品等に応じてあらかじめ定めておく。
ボンディングヘッド41の位置補正処理が完了したら、再度、ボンディング位置認識カメラ21によって第1の基準マークKM1及び第2の基準マークKM2の双方を撮像して、特徴パターンSP1´´及び特徴パターンSP2´´を取得し、特徴パターンSP1´´及び特徴パターンSP2´´のそれぞれの位置を認識して位置ずれ量を算出し、算出した位置ずれ量が、許容される所定の位置ずれ量の範囲内(閾値内)であると判断されれば、そのままボンディング処理を行う(ステップ5)。
一方、算出した位置ずれ量が、許容される所定の範囲を超える場合は、再度、算出された位置ずれ量をボンディングヘッド41の2次元補正機構41mにフィードバックし、位置補正を行う。すなわち、算出される位置ずれ量が所定の範囲内に収まらない場合は、上述のステップ3及びステップ4を繰り返すこととなる。
ここで、位置ずれ量の補正を繰り返し行う回数が、あらかじめ定めた試行回数(例えば3回)を超えた場合は、指定した特徴パターンが不適合であるか、ダイボンダのメンテナンスが必要なものである等の原因が考えられるとしてアラートを出したり、ダイボンダ10の動作を停止したりする仕様とすることも可能である。
上記によりボンディングが完了したら、次のダイDを基板45にボンディングする動作に移行し、上述のステップを繰り返し実行する(ステップ6)。
次いで、図7に、複数のボンディング位置認識カメラ21、22を有する構成としたダイボンダ10の1つの実施形態の構成概略図を示す。図7においては、説明上の便宜のため、2台のボンディング位置認識カメラ21、22を有するダイボンダの1つの実施形態を示す。
図8(a)は、図7における2台のボンディング位置認識カメラ21、22の近傍を示す構成概略図であり、2台のボンディング位置認識カメラ21、22を上部から見た図である。図8(b)は、ボンディング位置認識カメラ21、22を側面から見た図である。図8(a)に示すように、2台のボンディング位置認識カメラ21、22は互いに90度の位置に配置されている。また、図8(b)に示すように、2台のボンディング位置認識カメラ21、22は基板45に対して所定の設置角度αをもって基板45の上方もしくは斜上方から、第1の基準マークKM1と第2の基準マークKM2の双方を同一の視野FOV内に認識するように撮像する。
2台のボンディング位置認識カメラ21、22が存在する場合であっても、2台のボンディング位置認識カメラ21、22のそれぞれが撮像して画像処理部6に登録された特徴パターンSP1、SP1´及びSP2、SP2´の画像に基づいて、画像処理部6におけるパターンマッチング等の画像処理によって各特徴パターンの基準座標、各特徴パターンの位置ずれ量、及び回転角θの量を算出する処理を行うこととなるので、基本的には1台のボンディング位置認識カメラ21による処理の場合と同じ処理となる。
なお、2台のボンディング位置認識カメラ21、22が存在する場合であっても、それぞれのボンディング位置認識カメラ21、22は同じ基準マークを撮像する。つまり、2台のボンディング位置認識カメラ21、22のそれぞれが、同じ第1の基準マークKM1及び第2の基準マークKM2を撮像することで、2台のボンディング位置認識カメラ21、22の間に存在する物理的なオフセットに起因する誤差も吸収でき、また、画像処理により算出される位置ずれ量の精度も向上する。
ここで、図7においては便宜的に2台のボンディング位置認識カメラ21、22の水平面内の光軸が90度の角度をもって同一の基準マーク、すなわち、第1の基準マークKM1及び第2の基準マークKM2を撮像する構成としている。2台のボンディング位置認識カメラ21、22が90度で交差する構成とすることで、X座標、Y座標のそれぞれの位置ずれ量を算出する精度が向上する。つまり、各ボンディング位置認識カメラ21、22の仕様上規定される被写界深度による限界により、例えば、X軸方向に光軸OAを有するボンディング位置認識カメラ21は、X軸方向の位置ずれ量ΔXの算出よりも、光軸OAに直交するY軸方向の位置ずれ量ΔYの補正の方が高精度となる。逆に、Y軸方向に光軸OAを有するボンディング位置認識カメラ22は、Y軸方向の位置ずれ量ΔYの算出よりも、光軸OAに直交するX軸方向の位置ずれ量ΔXの補正の方が高精度となる。
他にも、ボンディング位置認識カメラ21、22が設置角度αをもってダイD及び基板45を撮像していることから、ボンディング位置認識カメラ21、22から見た場合のX軸方向とY軸方向との1画素の当たりの長さが異なるため、Y軸方向とX軸方向とにおいて、位置ずれ量の補正精度は異なる。すなわち、sinα等の三角関数を用いて、X方向もしくはY方向、またはその両方向の位置ずれ量をダイDの位置ずれ量に換算する処理が必要となる。例えば、2台のボンディング位置認識カメラ21、22の一方が、X軸方向の位置ずれ量ΔXを算出し、他方がY軸方向の位置ずれ量ΔYを算出する設定とするか、又は、どちらか一方に重みづけをして処理することにより、より高い精度で位置ずれ量の算出をすることが可能となる。
例えば、2台のボンディング位置認識カメラ21、22が存在する場合は、X軸方向の位置ずれ量はY軸方向に光軸を有するボンディング位置認識カメラに基づいた値を採用し、逆に、Y軸方向の位置ずれ量はX軸方向に光軸を有するボンディング位置認識カメラに基づいた値を採用するといった処理を行う。なお、回転方向のずれ量については、複数のボンディング位置認識カメラにより求められた回転ずれ量の平均値を位置ずれ量として採用するという処理を取ることもできる。
前述のとおり、複数のボンディング位置認識カメラを有する場合であっても、位置ずれ量を算出するステップは前述のステップ3に記載した方法と同じであるが、複数のボンディング位置認識カメラのそれぞれに基づいて複数の位置ずれ量が算出されるため、それぞれ複数算出されるX軸方向、Y軸方向、回転方向(θ方向)の位置ずれ量のどれを採用するかを事前に設定したり、重みづけをしたりすることが必要となる。
複数のボンディング位置認識カメラが存在する場合の実施例として、2台のボンディング位置認識カメラ21、22の光軸が90度で交差する場合を用いて説明したが、ボンディング位置認識カメラの数は3台以上であってもよい。また、光軸が交差する角度は90度に限られるものではなく、例えば30度や45度であっても良い。これらの場合の位置補正処理も前述と同様であることはいうまでもない。
複数のボンディング位置認識カメラをダイボンダ10に搭載する際には、第1の基準マークKM1と第2の基準マークのそれぞれが、ダイボンダ10の構成要素である2次元補正機構41mやボンディングヘッド41、プリフォーム部31等の死角となって常に同時に同一の視野で認識できない可能性がある。そのため、複数のボンディング位置認識カメラの光軸が交差する角度が90度以外に設定したり、設置角度αを適宜変更したりすることによって、死角が生じることを避けることができる。
また、ボンディング位置認識カメラ21、22の基板45に対する設置角度αは共通していることが画像処理上の安定性等を鑑みて好ましいが、複数のボンディング位置認識カメラの設置角度を異なるものとしたり、複数のボンディング位置認識カメラの設置高さを異なるものとしたりすることで、高さ方向の誤差を検知し補正することが可能となるという利点もある。すなわち、複数のボンディング位置認識カメラの角度やカメラ自体の仕様、製造すべき半導体製品等の仕様、ダイボンダ10の構成等に応じて、複数のボンディング位置認識カメラの設置条件等は定まるものである。
また、許容される位置ずれ量の範囲に閾値を設けてあらかじめ定めることも必要である。閾値については、ボンディング工程に供される実装製品情報の仕様や求められる性能等によって定められるものである。適切な閾値を設定し、かつ、位置ずれ量(補正量)の算出の試行回数の上限も併せて設定することで、ボンディング精度を高く維持しつつ、高いスループット(タクトタイム)を維持して、実装製品の安定生産に資することができる。また、所定の試行回数を超えた場合はアラート等を行う仕様とすることで、ダイボンダのメンテナンス時期の管理等も行うことができる。
以上説明した実施例によれば、ダイDを高い精度をもって正確に基板45にボンディングできる信頼性の高いダイボンダ10を提供でき、本ダイボンダ10を用いることにより信頼性の高い半導体製造方法を提供できる。
従って、上記の実施例によれば、ボンディングヘッド41に保持されたダイDと、ダイDがボンディングされる基板45とを、同一視野で認識するボンディング位置認識カメラ21により認識してボンディング位置補正を行うことにより、より高い精度でボンディングできるダイボンダ及び半導体製造方法を提供することができる。
以上、本発明の実施形態のいくつかに基づいて説明したが、本発明は、その趣旨を逸脱しない範囲で、上述の説明に基づいて当業者が想到し得る種々の代替、修正、変更又は変形を包含するものである。
1:ウェハ供給部 3:ダイボンディング部
4:制御部 5:基板供給・搬送部
6:画像処理部 10:ダイボンダ
21、22:ボンディング位置認識カメラ 23:構造部材
24:支持部 31:プリフォーム部
32:ボンディングヘッド部 41:ボンディングヘッド
41c:コレット 41m:2次元補正機構
43:固定台
44:ボンディングステージ(ステージ) 45:基板
45b:ボンディング位置
45s:処理位置と基準マークとを含む処理位置周辺領域
46:移動機構 D:ダイ
KM:基準マーク SP:特徴パターン

Claims (8)

  1. ダイを保持し基板上の所定のボンディング位置に前記ダイをボンディングするボンディングヘッドと、
    前記基板の上方もしくは斜上方に位置し、前記ボンディングヘッドが保持する前記ダイと前記基板が近接した際に、前記ダイもしくはその近傍にある第1の基準マークと前記基板もしくはその近傍にある第2の基準マークとを、同一の視野で認識するように所定の角度をもって設置されたボンディング位置認識カメラと、
    前記ボンディングヘッドの動作と前記ボンディング位置認識カメラの動作とを制御する制御部と、を備え、
    前記ボンディング位置認識カメラは、前記ボンディングヘッドに保持された前記ダイが前記基板に近接して停止もしくは降下速度を減速したタイミングで、前記第1の基準マークと前記第2の基準マークとを同一の視野に認識して撮像し、
    前記制御手段は、前記ボンディング位置認識カメラが撮像した画像を画像処理部で処理して得た位置ずれ量に基づいて、前記ボンディングヘッドの位置を制御する、ことを特徴とするダイボンダ。
  2. 前記ボンディング位置認識カメラは、前記ボンディングヘッドもしくはその駆動部に設けられた支持部を介して設置されている、ことを特徴とする請求項1に記載のダイボンダ。
  3. 前記ボンディング位置認識カメラは、ボンディング位置認識カメラ用駆動部に設けられた支持部を介して設置されている、ことを特徴とする請求項1に記載のダイボンダ。
  4. 請求項2又は請求項3の支持部は、前記ボンディング位置認識カメラが設置された角度を変更することが可能となるように構成されている、ことを特徴とする請求項2又は請求項3に記載のダイボンダ。
  5. 前記制御部は、前記ボンディング位置認識カメラが、前記第1の基準マーク及び前記第2の基準マークの双方が同一の視野内に捕捉されたタイミングで撮像を開始する制御を行う、ことを特徴とする請求項1乃至請求項4に記載のダイボンダ。
  6. 前記ボンディング位置認識カメラは、複数のボンディング位置認識カメラから構成され、前記複数のボンディング位置認識カメラのそれぞれは、異なる位置に設けられている、ことを特徴とする請求項1乃至請求項5に記載のダイボンダ。
  7. 前記複数のボンディング位置認識カメラは、第1のボンディング位置認識カメラと第2のボンディング位置認識カメラとから構成され、前記第1のボンディング位置認識カメラと前記第2のボンディング位置認識カメラは、それぞれの光軸が直交する角度をもって設置されている、ことを特徴とする請求項6に記載のダイボンダ。
  8. ボンディングヘッドが、保持したダイを基板上の所定のボンディング位置に前記ダイをボンディングするために降下する降下ステップと、
    ボンディング位置認識カメラが、前記ボンディングヘッドが保持する前記ダイもしくはその近傍にある第1の基準マークと前記基板もしくはその近傍にある第2の基準マークとを、前記ダイと前記基板が接近したタイミングで同一の視野で撮像する撮像ステップと、
    前記ボンディング位置認識カメラが撮像した画像を処理して、前記ダイを前記基板上にボンディングした場合に生じる前記ボンディング位置との位置ずれ量を算出する位置ずれ量算出ステップと、
    前記位置ずれ量算出ステップで算出した位置ずれ量を、前記降下ステップにおける前記ボンディングヘッドの降下及び水平方向の駆動量にフィードバックして補正する補正ステップと、
    を有することを特徴とする半導体製造方法。
JP2014072084A 2014-03-31 2014-03-31 ダイボンダ及び半導体製造方法 Pending JP2015195261A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014072084A JP2015195261A (ja) 2014-03-31 2014-03-31 ダイボンダ及び半導体製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014072084A JP2015195261A (ja) 2014-03-31 2014-03-31 ダイボンダ及び半導体製造方法

Publications (1)

Publication Number Publication Date
JP2015195261A true JP2015195261A (ja) 2015-11-05

Family

ID=54434060

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014072084A Pending JP2015195261A (ja) 2014-03-31 2014-03-31 ダイボンダ及び半導体製造方法

Country Status (1)

Country Link
JP (1) JP2015195261A (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017212255A (ja) * 2016-05-23 2017-11-30 株式会社ジェイデバイス 半導体製造装置及び製造方法
US10973158B2 (en) 2017-04-28 2021-04-06 Besi Switzerland Ag Apparatus and method for mounting components on a substrate

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017212255A (ja) * 2016-05-23 2017-11-30 株式会社ジェイデバイス 半導体製造装置及び製造方法
CN107424942A (zh) * 2016-05-23 2017-12-01 株式会社吉帝伟士 半导体制造装置及制造方法
CN107424942B (zh) * 2016-05-23 2022-06-14 安靠科技日本公司 半导体制造装置及制造方法
US10973158B2 (en) 2017-04-28 2021-04-06 Besi Switzerland Ag Apparatus and method for mounting components on a substrate
US11696429B2 (en) 2017-04-28 2023-07-04 Besi Switzerland Ag Apparatus and method for mounting components on a substrate
US11924974B2 (en) 2017-04-28 2024-03-05 Besi Switzerland Ag Apparatus for mounting components on a substrate

Similar Documents

Publication Publication Date Title
JP7164314B2 (ja) 部品を基板上に搭載する装置及び方法
JP5059518B2 (ja) 電子部品実装方法及び装置
JP5277266B2 (ja) ダイボンダ及び半導体製造方法
JP2016015438A (ja) アライメント方法
JP6522797B2 (ja) ダイピックアップ装置
KR102132094B1 (ko) 전자 부품 실장 장치 및 전자 부품 실장 방법
TWI602260B (zh) 晶粒定位裝置
JP6190229B2 (ja) 部品実装装置
US20220223450A1 (en) Apparatus for producing semiconductor device, and method for producing semiconductor device
WO2014174598A1 (ja) 部品実装装置、実装ヘッド、および制御装置
JP2005005288A (ja) 電子部品実装装置および電子部品実装方法
JP6787612B2 (ja) 第1物体を第2物体に対して位置決めする装置及び方法
WO2017064776A1 (ja) 部品実装装置
JP2009004400A (ja) 実装機および部品吸着装置
JP2015195261A (ja) ダイボンダ及び半導体製造方法
JP2009010167A (ja) 部品移載装置
JP5975668B2 (ja) ワーク搬送装置、ワーク搬送方法および組付部品の製造方法
JP5690535B2 (ja) ダイボンダ及び半導体製造方法
JP5903229B2 (ja) ダイボンダ及び半導体製造方法
EP2711143A2 (en) Robot system and article manufacturing method
JP2000252303A (ja) ペレットボンディング方法
JP6259616B2 (ja) ダイボンダ及び半導体製造方法
JP5576219B2 (ja) ダイボンダおよびダイボンディング方法
JP5181383B2 (ja) ボンディング装置
JP4918015B2 (ja) 部品実装方法