JP2015173519A - 評価装置、評価方法及び、太陽光発電システム - Google Patents

評価装置、評価方法及び、太陽光発電システム Download PDF

Info

Publication number
JP2015173519A
JP2015173519A JP2014047498A JP2014047498A JP2015173519A JP 2015173519 A JP2015173519 A JP 2015173519A JP 2014047498 A JP2014047498 A JP 2014047498A JP 2014047498 A JP2014047498 A JP 2014047498A JP 2015173519 A JP2015173519 A JP 2015173519A
Authority
JP
Japan
Prior art keywords
value
evaluation
unit
output
voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014047498A
Other languages
English (en)
Other versions
JP6361183B2 (ja
Inventor
琢也 中井
Takuya Nakai
琢也 中井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Omron Corp
Original Assignee
Omron Corp
Omron Tateisi Electronics Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Omron Corp, Omron Tateisi Electronics Co filed Critical Omron Corp
Priority to JP2014047498A priority Critical patent/JP6361183B2/ja
Publication of JP2015173519A publication Critical patent/JP2015173519A/ja
Application granted granted Critical
Publication of JP6361183B2 publication Critical patent/JP6361183B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Landscapes

  • Photovoltaic Devices (AREA)

Abstract

【課題】太陽電池の出力の特性評価をより精度良く実施することができる技術を提供する。【解決手段】上記課題を解決するための本発明は、複数のサブユニットが互いに接続されてなる電池ユニットの出力電圧値を変化させた時の出力電圧値に対する出力電流値を取得し、前記出力電圧値に対する前記出力電流値又は前記出力電圧値に対する前記出力電力値を二階微分し、前記二階微分の結果が閾値を超えた場合に、前記電池ユニットを異常と評価する。【選択図】図9

Description

本発明は、太陽電池のI−V特性を評価する評価装置、評価方法及び、I−V特性を評価する評価装置を備える太陽光発電システムに関する。
近年、地球環境問題が注目される中、クリーンなエネルギーである太陽光エネルギーを利用した太陽光発電システムの普及が進んでいる。この太陽光発電システムにおいては、点検時にI−V特性を計測することが推奨されている。この評価においては、太陽電池の直流電圧に対応した直流電流を測定し、これから図31に示すような、直流電流と直流電圧との関係のカーブ(以下、I−Vカーブともいう。)を計測する。しかし、計測結果を評価する指標がないため、確たる評価が難しいという問題点があった。
図32に示すシステムでは、I−Vカーブを日照補正部104が日射強度を用いて補正した後、異常診断部108が補正後のI−Vカーブを閾値と比べて異常の有無を判定する。このように日射強度を用いた補正を行う場合、例えば、予め日射計で測定した日射量と太陽光発電システムの発電量との相関関係を求めておき、この相関関係に基づいて日射強度の違いを相殺するように補正する(特許文献1参照)。しかしながら、計測時に日射計に影がかかった場合や、太陽電池パネルに影がかかった場合に、日射強度と発電量の相関が崩れて、正しく評価できないことがある。
また、このように日射強度を用いるためには、日射計を必要とするため、装置構成が複雑化し、コストの増加や故障率の増加を招きやすい。また、日射計の校正や受光部の清掃などが必要となり、メンテナンスの手間が増加してしまう。
図33は、太陽電池のI−Vカーブを計測する装置の従来例を示す図である。図33において、太陽電池アレイ91は、複数の太陽電池モジュールa−1〜a−12を直列に接続した太陽電池ストリング92Aと、複数の太陽電池モジュールb−1〜b−12を直列に接続した太陽電池ストリング92Bとを並列に接続して有している。
この太陽電池アレイ91の出力電圧を変化させた場合に、I−Vチェッカ92で太陽電池アレイ91の出力電圧値に対する電流値を測定する。また、日射計95は、このときの日照強度を計測してI−Vチェッカ92に入力する。
PC94は、I−Vチェッカ92の測定結果を表示出力する。図34は、この測定結果を示す図であり、図34(a)は正常な状態、図34(b)は一部の太陽電池モジュールに断線が発生した状態、図34(c)は、一部の太陽電池モジュールが影で覆われている状態を示す。
図34(a)は正常な状態、図34(b)は一部の太陽電池モジュールに断線が発生した状態、図34(c)は、一部の太陽電池モジュールが影で覆われている状態を示す。
PC94は、図34(a)〜図34(c)に示すように、横軸に電圧をとり、縦軸に電流をとって、I−Vチェッカ92の測定結果をI−Vカーブ96として表示する。また、PC94は、I−Vチェッカ92の測定結果を微分し、変化率97を表示する。
このように変化率97を表示することで、I−Vカーブ96の変動がピークとして視認できる。例えば、正常な場合には図34(a)のようにピークP1,P2が現れるのに対
し、断線が生じるとピークP1の高さが下がり、ピークP3が生じる。また、一部の太陽電池モジュールが影で覆われた場合には、図34(c)のようにピークP4が現れる。
従って評価者は、変化率97のピークの状態に基づいて太陽電池アレイ91の異常の有無を判断する。
しかしながら、図34の例では、変化率97のどの部分をピークとして捉え、ピークがどの様な状態のときに異常であるといった判断は、評価者の経験や勘によるところが大きく、誰もが精度良く評価できるものではなかった。このため効率良く自動的に評価を行うことのできる評価装置が望まれていた。
特開2012−195495号公報
本発明は、上記の従来技術に鑑みて発明されたものであり、その目的は、太陽電池の出力特性の評価をより精度良くまたは効率的に実施することができる技術を提供することである。
上記課題を解決するため、本発明の評価装置は、
複数のサブユニットが互いに接続されてなる電池ユニットの出力電圧値を変化させた時の出力電圧値に対する出力電流値を取得する取得部と、
前記出力電圧値に対する前記出力電流値又は前記出力電圧値に対する出力電力値を二階微分する演算部と、
前記二階微分の結果が閾値を超えた場合に、前記電池ユニットを異常と評価する評価部と、
を備える。
前記評価装置は、複数の前記サブユニットが直列に接続され、
前記閾値が、複数の前記サブユニットを直列に接続した数毎に定められても良い。
前記評価装置は、直列に接続された前記サブユニットの列が複数並列に接続され、
前記閾値が、複数の前記サブユニットを直列に接続した数、及び前記サブユニットの列の列数毎に定められても良い。
前記評価装置は、前記評価部が、前記サブユニットの開放電圧値と、前記電池ユニットの開放電圧値とから、直列に接続された前記サブユニットの数を求め、当該サブユニットの数に対応する閾値を用いて前記評価を行っても良い。
前記評価装置は、前記評価部が、前記サブユニットの短絡電流値と、前記電池ユニットの短絡電流値とから、並列に接続された前記サブユニットの列数を求め、当該サブユニットの列数に対応する閾値を用いて前記評価を行っても良い。
前記評価装置は、前記評価部が、前記電池ユニットの識別情報の入力を受け、前記電池ユニットの識別情報と対応付けて、前記電池ユニットを構成するサブユニット一つ当たりの開放電圧を記憶する諸元記憶部から、入力された識別情報と対応する開放電圧を取得して前記サブユニットの数を求めることを特徴としても良い。
前記評価装置は、前記評価部が、前記電池ユニットの識別情報の入力を受け、前記電池ユニットの識別情報と対応付けて、前記電池ユニットを構成するサブユニット一つ当たりの短絡電流を記憶する諸元記憶部から、入力された識別情報と対応する短絡電流を取得して前記サブユニットの列数を求めても良い。
前記評価装置は、前記取得部と、前記演算部と、前記評価部のうち、少なくとも一つを、可搬性の筐体内に収納しても良い。
前記評価装置の前記評価部は、前記二階微分の結果が閾値を超えた場合に、前記電池ユニットが最大動作電圧低下モード又は最大操作電流低下モードの異常を生じていると評価しても良い。
また、上記課題を解決するため、本発明のパワーコンディショナは、
上記評価装置における前記取得部と前記演算部と前記評価部のうちの少なくとも一つと、DC/DCコンバータと、インバータと、を有する。
また、上記課題を解決するため、本発明の太陽光発電システムは、
太陽電池モジュールと、
請求項1から7のいずれか一項に記載の評価装置と、
電池ユニットの出力を昇圧するとともに直流電力を交流電力に変換するパワーコンディショナと、を備える。
前記太陽光発電システムは、前記取得部と、前記演算部と、前記評価部のうち、少なくとも一つを、前記パワーコンディショナ内に組み込んだ構成でも良い。
また、上記課題を解決するため、本発明の評価方法は、
複数のサブユニットが互いに接続されてなる電池ユニットの出力電圧値を変化させた時の出力電圧値に対する出力電流値を取得し、
前記出力電圧値に対する前記出力電流値又は前記出力電圧値に対する出力電力値を二階微分し、
前記二階微分の結果が閾値を超えた場合に、前記電池ユニットを異常と評価する。
前記評価方法は、
複数の前記サブユニットが直列に接続され、
前記閾値が、複数の前記サブユニットを直列に接続した数毎に定められても良い。
なお、上記した課題を解決するための手段は、可能な限り組み合わせて使用することが可能である。
本発明によれば、太陽電池の出力の特性評価をより精度良く又は容易に実施することが可能となる。
図1は、太陽電池の説明図である。 図2は、モジュールにおける不具合の形態毎にI−Vカーブを示したグラフである。 図3は、不具合のモードのI−Vカーブに係る演算結果を示す図である。 図4は、電圧値に対する電力値を二階微分した結果を示す図である。 図5は、ストリングにおける不具合の形態(モード)毎にI−Vカーブを示したグラフである。 図6は、不具合のモードのI−Vカーブに係る演算結果を示す図である。 図7は、電圧値に対する電力値を二階微分した結果を示す図である。 図8は、実施例1における太陽電池評価システムの概略構成を示す図である。 図9は、実施例1における評価方法の説明図である。 図10は、実施例1における評価方法の説明図である。 図11は、モジュール数の異なるストリングにおいて不具合が発生した場合のI−Vカーブを示す図である。 図11は、モジュール数の異なるストリングにおいて不具合が発生した場合の二階微分の結果を示す図である。 図13は、ストリングを構成するモジュールの直列に接続された数と、ピークの高さの関係を示す図である。 図14は、電池ユニットを構成するサブユニット一つ当たりの開放電圧を記憶する諸元記憶部の一例を示す図である。 図15は、サブユニットの数毎に閾値を記憶した閾値記憶部の一例を示す図である。 図16は、実施例2における太陽電池評価システムが実行する評価方法の説明図である。 図17は、実施例3における太陽電池評価システムが実行する評価方法の説明図である。 図18は、アレイにおける不具合の形態(モード)毎にI−Vカーブを示したグラフである。 図19は、アレイにおける不具合の形態(モード)毎にI−Vカーブに係る二階微分の結果を示すグラフである。 図20は、電圧値に対する電力値を二階微分した結果を示す図である。 図21は、実施例4における太陽電池評価システムが実行する評価方法の説明図である。 図22は、実施例4における太陽電池評価システムが、出力電力値に対して二階微分して評価を行う評価方法の説明図である。 図23は、サブユニットの数、及び列数毎に閾値を記憶した閾値記憶部の一例を示す図である。 図24は、実施例5における太陽電池評価システムが実行する評価方法の説明図である。 図25は、実施例6における太陽電池評価システムが実行する評価方法の説明図である。 図26は、本発明の実施例7における陽電池評価システムの第1の態様の概略構成を示す図である。 図27は、本発明の実施例7における陽電池評価システムの第2の態様の概略構成を示す図である。 図28は、本発明の実施例7における陽電池評価システムの第3の態様の概略構成を示す図である。 図29は、本発明の実施例7における陽電池評価システムの第4の態様の概略構成を示す図である。 図30は、本発明の実施例7における陽電池評価システムの第5の態様の概略構成を示す図である。 図31は、直流電流と直流電圧との関係のカーブ(I−Vカーブ)の説明図である。 図32は、従来の異常診断装置を示す図である。 図33は、従来のI−Vカーブを計測する装置の従来例を示す図である。 図34は、従来の計測装置による測定結果を示す図である。
以下に図面を参照して、この発明を実施するための形態を例示的に詳しく説明する。
<実施例1>
図1は、太陽電池の説明図である。太陽電池2において、セル21は直列に複数接続され、このセル21の列と並行にバイパスダイオード22が接続されてクラスタ23が形成される。また、クラスタ23が、直列に複数接続されてモジュール24を形成し、モジュール24が、直列に複数接続されてストリング25を形成し、ストリング25が、並列に複数接続されてアレイ26を形成している。
本実施例では、この複数接続する単位をサブユニット、複数のサブユニットで構成されるものを電池ユニットとも称する。即ち、セル21をサブユニットとしてクラスタ23の電池ユニットが形成され、クラスタ23をサブユニットとしてモジュール24の電池ユニットが形成され、モジュール24をサブユニットとしてストリング25の電池ユニットが形成され、ストリング25をサブユニットとしてアレイ26の電池ユニットが形成される。
図2は、モジュール24における不具合の形態(モード)毎にI−Vカーブを示したグラフである。図2(a)は、開放電圧低下モードのI−Vカーブ31を示している。また、図2(a)では、開放電圧低下モードのI−Vカーブ31を実線で示したのに対し、正常時、即ち故障が無い状態のI−Vカーブ41を点線で示した。
開放電圧低下モードは、モジュール24に含まれる一部のクラスタ23が故障した状態である。この場合、故障した分の電圧が低下するので、図2(a)に示すように、開放電圧低下モードのI−Vカーブ31は、最大動作点32及び開放電圧33が共に、正常時のI−Vカーブ41の最大動作点42及び開放電圧43と比べて低下する。
図2(b)は、最大動作電圧低下モードのI−Vカーブ51を示している。最大動作電圧低下モードは、モジュール24に含まれる一部のクラスタ23に影がかかる又は汚れが付着する等によって電圧が低下した状態である。この場合、図2(b)に示すように、最大動作電圧低下モードのI−Vカーブ51は、最大動作点52の電圧が、正常時のI−Vカーブ41の最大動作点42の電圧と比べて低下する。また、最大動作電圧低下モードのI−Vカーブ51は、最大動作点52より電圧値が高くなると、大きな傾きで電流値が低下し、更に電圧値が高くなると傾きが小さくなる。即ち、最大動作電圧低下モードのI−Vカーブ51は、この大きな傾きから小さな傾きに変化する変曲点54を有する。
図2(c)は、最大動作電圧・電流低下モードのI−Vカーブ61を示している。最大動作電圧・電流低下モードは、モジュール24内のケーブル等の抵抗分が増加することによって電圧及び電流が低下した状態である。この場合、図2(c)に示すように、開放電圧・電流低下モードのI−Vカーブ61は、最大動作点62の電圧及び電流が共に、正常時のI−Vカーブ41の最大動作点42の電圧及び電流と比べて低下する。
図2(d)は、短絡電流低下モードのI−Vカーブ71を示している。短絡電流低下モードは、モジュール24に含まれる全てのクラスタ23の電流値が低下した状態である。この場合、図2(d)に示すように、短絡電流低下モードのI−Vカーブ71は、短絡電流及び最大動作点72の電流値が共に、正常時のI−Vカーブ41の短絡電流及び最大動作点42の電流と比べて低下する。
図2(e)は、最大動作電流低下モードのI−Vカーブ81を示している。最大動作電流低下モードは、モジュール24に含まれる一部のクラスタ23の電流が低下した状態で
ある。この場合、図2(e)に示すように、最大動作電流低下モードのI−Vカーブ81は、最大動作点82の電流が、正常時のI−Vカーブ41の最大動作点42の電流と比べて低下する。また、最大動作電流低下モードのI−Vカーブ81は、図2(b)と同様に大きな傾きから小さな傾きに変化する変曲点84を有する。
図2(f)は、出力停止モードを示している。出力停止モードは、出力ラインの損傷等により、電力が完全に出力されない状態である。
このようにI−Vカーブは、不具合のモードによって異なるため、このI−Vカーブの特徴的変化を求めることにより、異常の有無の評価が可能になる。図3は、図2に示した各不具合のモードのI−Vカーブに係る演算結果を示す図である。図3の例では、各不具合のモードにおいて、電圧値Vを最小値から開放電圧(最大値)まで変化させた時の電圧値Vに対する電流値Iを式1のように二階微分した。
Pd=dI/dV ・・・式1
図3(a)、図3(c)、図3(d)に示すように、開放電圧低下モード、最大動作電圧・電流低下モード、及び短絡電流低下モードの二階微分の結果Pdは、略フラットとなる。
一方、図3(b)、図3(e)に示すように、最大動作電圧低下モード及び最大動作電流低下モードの二階微分の結果Pdは、図2(b)、図2(e)に示した変曲点54,84の位置に先鋭なピーク58,88が生じる。そこで、ピーク58,88の高さ以下であって、ピーク58,88以外の二階微分の結果Pdよりも高い閾値Taを設定する。これにより、二階微分の結果Pdを閾値Taと比較し、二階微分の結果Pdが閾値Ta以上であれば最大動作電圧低下モード又は最大動作電流低下モードの異常が生じていると評価できる。また、二階微分の結果Pdが閾値Taよりも低ければ最大動作電圧低下モード又は最大動作電流低下モードの異常が生じていないと評価できる。なお、出力停止モードでは、出力が無いため、二階微分を行わず、図3(f)には、二階微分の結果を示していない。
また、図3は、電圧値に対する電流値を二階微分した例を示したが、これに限らず各不具合のモードにおいて、電圧値Vを最小値から開放電圧(最大値)まで変化させた時の電圧値Vに対する電力値Pを式2のように二階微分しても良い。
Pd=dP/dV ・・・式2
図4は、電圧値に対する電力値を二階微分した結果Pdを示す図である。図4(a)、図4(c)、図4(d)に示すように、開放電圧低下モード、最大動作電圧・電流低下モード、及び短絡電流低下モードの二階微分の結果Pdは、略フラットとなる。
一方、図4(b)、図4(e)に示すように、最大動作電圧低下モード及び最大動作電流低下モードの二階微分の結果Pdは、図2(b)、図2(e)に示した変曲点54,84の位置に先鋭なピーク59,89が生じる。そこで、ピーク59,89の高さ以下であって、ピーク59,89以外の二階微分の結果Pdよりも高い閾値Taを設定する。これにより、図3と同様に二階微分の結果Pdを閾値Taと比較し、二階微分の結果Pdが閾値Ta以上であれば最大動作電圧低下モード又は最大動作電流低下モードの異常が生じていると評価できる。また、二階微分の結果Pdが閾値Taよりも低ければ最大動作電圧低下モード又は最大動作電流低下モードの異常が生じていないと評価できる。
図3,図4では、モジュール24について評価する例を示したが、これに限らず、ストリング25やアレイ26についても同様に評価できる。
図5は、ストリング25における不具合の形態(モード)毎にI−Vカーブを示したグラフである。図5(a)は、開放電圧低下モードのI−Vカーブ131を示している。また、図5(a)では、開放電圧低下モードのI−Vカーブ131を実線で示したのに対し、正常時、即ち故障が無い状態のI−Vカーブ141を点線で示した。
開放電圧低下モードは、ストリング25に含まれる一部のモジュール24が故障した状態である。この場合、故障した分の電圧が低下するので、図5(a)に示すように、開放電圧低下モードのI−Vカーブ131は、最大動作点132及び開放電圧133が共に、正常時のI−Vカーブ141の最大動作点142及び開放電圧43と比べて低下する。
図5(b)は、最大動作電圧低下モードのI−Vカーブ151を示している。最大動作電圧低下モードは、ストリング25に含まれる一部のモジュール24に影がかかる又は汚れが付着する等によって電流が低下した状態である。この場合、図5(b)に示すように、最大動作電圧低下モードのI−Vカーブ151は、最大動作点152の電圧が、正常時のI−Vカーブ141の最大動作点142の電圧と比べて低下する。また、最大動作電圧低下モードのI−Vカーブ151は、最大動作点152より電圧値が高くなると、大きな傾きで電流値が低下し、更に電圧値が高くなると傾きが小さくなる。即ち、最大動作電圧低下モードのI−Vカーブ151は、この大きな傾きから小さな傾きに変化する変曲点154を有する。
図5(c)は、最大動作電圧・電流低下モードのI−Vカーブ161を示している。最大動作電圧・電流低下モードは、ストリング25内のケーブル等の抵抗分が増加することによって電圧及び電流が低下した状態である。この場合、図5(b)に示すように、開放電圧・電流低下モードのI−Vカーブ161は、最大動作点162の電圧及び電流が共に、正常時のI−Vカーブ141の最大動作点142の電圧及び電流と比べて低下する。
図5(d)は、短絡電流低下モードのI−Vカーブ171を示している。短絡電流低下モードは、ストリング25に含まれる全てのモジュール24の電流値が低下した状態である。この場合、図5(d)に示すように、短絡電流低下モードのI−Vカーブ171は、短絡電流及び最大動作点172の電流値が共に、正常時のI−Vカーブ141の短絡電流及び最大動作点142の電流と比べて低下する。
図5(e)は、最大動作電流低下モードのI−Vカーブ181を示している。最大動作電流低下モードは、ストリング25に含まれる一部のモジュール24の電流が低下した状態である。この場合、図5(e)に示すように、最大動作電流低下モードのI−Vカーブ181は、最大動作点182の電流が、正常時のI−Vカーブ141の最大動作点142の電流と比べて低下する。また、最大動作電流低下モードのI−Vカーブ151は、図5(b)と同様に大きな傾きから小さな傾きに変化する変曲点184を有する。
図5(f)は、出力停止モードを示している。出力停止モードは、出力ラインの損傷等により、電力が完全に出力されない状態である。
このようにI−Vカーブは、不具合のモードによって異なるため、このI−Vカーブの特徴的変化を求めることにより、異常の有無の評価が可能になる。図6は、図5に示した各不具合のモードのI−Vカーブに係る演算結果を示す図である。図6の例では、各不具合のモードにおいて、電圧値Vを最小値から開放電圧(最大値)まで変化させた時の電圧値Vに対する電流値Iを前記式1のように二階微分した。
図6(a)、図6(c)、図6(d)に示すように、開放電圧低下モード、最大動作電
圧・電流低下モード、及び短絡電流低下モードの二階微分の結果Pdは、略フラットとなる。
一方、図6(b)、図6(e)に示すように、最大動作電圧低下モード及び最大動作電流低下モードの二階微分の結果Pdでは、図5(b)、図5(e)に示した変曲点154,184の位置に先鋭なピーク158,188が生じる。そこで、ピーク158,188の高さ以下であって、ピーク158,188以外の二階微分の結果Pdよりも高い閾値Taを設定する。これにより、二階微分の結果Pdを閾値Taと比較し、二階微分の結果Pdが閾値Ta以上であれば最大動作電圧低下モード又は最大動作電流低下モードの異常が生じていると評価できる。また、二階微分の結果Pdが閾値Taよりも低ければ最大動作電圧低下モード又は最大動作電流低下モードの異常が生じていないと評価できる。なお、出力停止モードでは、出力が無いため、二階微分を行わず、図6(f)には、二階微分の結果を示していない。
また、図6は、電圧値に対する電流値を二階微分した例を示したが、これに限らず各不具合のモードにおいて、電圧値Vを最小値から開放電圧(最大値)まで変化させた時の電圧値Vに対する電力値Pを式2のように二階微分しても良い。
Pd=d(dP/dV) ・・・式2
図7は、電圧値に対する電力値を二階微分した結果Pdを示す図である。図7(a)、図7(c)、図7(d)に示すように、開放電圧低下モード、最大動作電圧・電流低下モード、及び短絡電流低下モードの二階微分の結果Pdは、略フラットとなる。
一方、図7(b)、図7(e)に示すように、最大動作電圧低下モード及び最大動作電流低下モードの二階微分の結果Pdは、図11(b)、図11(e)に示した変曲点154,184の位置に先鋭なピーク159,189が生じる。そこで、ピーク159,189の高さ以下であって、ピーク159,189以外の二階微分の結果Pdよりも高い閾値Taを設定する。これにより、図6と同様に二階微分の結果Pdを閾値Taと比較し、二階微分の結果Pdが閾値Ta以上であれば最大動作電圧低下モード又は最大動作電流低下モードの異常が生じていると評価できる。また、二階微分の結果Pdが閾値Taよりも低ければ最大動作電圧低下モード又は最大動作電流低下モードの異常が生じていないと評価できる。
図8は、本実施例1における太陽電池評価システム1の概略構成を示す図である。太陽電池評価システム1においては、太陽電池2が計測データ取得部5に接続されており、太陽電池2の出力が計測データ取得部5に入力されるようになっている。また、計測データ取得部5は、太陽電池2の出力電圧値を変化させるように設定する電圧設定部51と、この出力電圧値を変化させたときの出力電圧値と、当該出力電圧値に対する出力電流値を計測する計測部52を有する。
計測データ取得部5において取得されたデータは、演算部6に入力される。演算部6は、入力されたデータを演算して、異常に伴う特徴的変化を求める。例えば、演算部6は、前記出力電圧値に対する前記出力電流値又は前記出力電圧値に対する出力電力値を二階微分し、この二階微分の結果Pd(図3)を演算結果(異常に伴う特徴的変化)とする。また、演算部6は、前記出力電圧値に対する前記出力電流値又は前記出力電圧値に対する出力電力値を微分し、この微分した値の前後の差を演算結果(異常に伴う特徴的変化)として求めても良い。
なお、演算部6は、異常に伴う特徴的変化として、前記二階微分を行う場合、図12に示すように、二階微分の結果Pdのうち、開放電圧付近の値は、異常の有無にかかわらず
生じるノイズのため、開放電圧から所定の範囲の値を除外しても良い。
演算部6における演算結果は、評価部8に入力される。評価部8は、閾値記憶部7から閾値Taを読出し、前記演算結果と比較して、例えば前記二階微分の結果Pdや、前記微分した値の前後の差が閾値Taを超えたか否かを判定し、前記演算結果が閾値Taを超えた場合に、前記電池ユニットを異常と評価する。
出力部9は、評価部8による評価結果を出力する。出力部9は、例えば表示、印刷、音声出力、記憶媒体への書き込み、他の装置への送信等によって評価結果を出力する。これにより、太陽電池2に異常があった場合には、操作者や管理者へ異常を通知する。
図9は、本実施例1における太陽電池評価システム1が実行する評価方法の説明図である。
まず、計測データ取得部5が、太陽電池2のストリング25からI−Vカーブを取得する(ステップS10)。例えば、電圧設定部51が、ストリング25の出力電圧を最小値から開放電圧値まで変化させて、計測部52が、このときの出力電圧値に対する出力電流値を計測してメモリ(不図示)に記憶する。
次に演算部6が、ステップS11で計測した出力電流値Iに対して出力電圧値Vで二階微分し、二階微分の結果Pdを求める(ステップS20)。
評価部8は、閾値記憶部7から閾値Taを取得して、二階微分の結果Pdと比較し、二階微分の結果Pdが閾値Taを超えているか否かを判定する(ステップS30)。
二階微分の結果Pdが閾値Taを超えていなければ(ステップS30,No)、図9の処理を終了し、二階微分の結果Pdが閾値Taを超えていれば(ステップS30,Yes)、出力部9が異常を通知する出力を行う(ステップS40)。
図9では、出力電流値Iに対して二階微分した例を示したが、これに限らず、出力電力値Pに対して二階微分しても良い。
図10は、本実施例1における太陽電池評価システム1が、出力電力値Pに対して二階微分して評価を行う評価方法の説明図である。
まず、計測データ取得部5が、太陽電池2のストリング25からI−Vカーブを取得する(ステップS50)。例えば、電圧設定部51が、ストリング25の出力電圧を最小値から開放電圧値まで変化させて、計測部52が、このときの出力電圧値に対する出力電流値を計測してメモリ(不図示)に記憶する。
次に演算部6が、ステップS50計測した出力電流値Iと出力電圧値Vを乗じて出力電力値Pを算出する(ステップS60)。
また演算部6が、ステップS60で算出した出力電力値Pに対して出力電圧値Vで二階微分し、二階微分の結果Pdを求める(ステップS70)。
評価部8は、閾値記憶部7から閾値Taを取得して、二階微分の結果Pdと比較し、二階微分の結果Pdが閾値Taを超えているか否かを判定する(ステップS80)。
二階微分の結果Pdが閾値Taを超えていなければ(ステップS80,No)、図9の処
理を終了し、二階微分の結果Pdが閾値Taを超えていれば(ステップS80,Yes)、出力部9が異常を通知する出力を行う(ステップS90)。
なお、図9、図10では、出力電圧値を最小値から最大値(開放電圧)まで変化させて、この範囲の出力電圧値に対する出力電力値を全て計測した後に二階微分を行ったが、出力電圧値を変化させつつ出力電流値を計測する毎に二階微分を行っても良い。
以上のように、本実施例1によれば、電池ユニットとしてのストリング25の出力電圧を変化させた時の出力電圧値に対する出力電流値を二階微分して、異常の発生に伴って生じる特徴的変化の値(図3(b):ピーク58の高さ)とし、この二階微分した値を閾値Taと比較することで異常の有無を評価できる。
特に、本実施例1によれば、前記二階微分して得られる値が、例えば図3(b)に示すように、異常が発生したときのみ生じる先鋭なピークとして求められるので、容易、また高精度に異常の有無を評価できる。
<実施例2>
次に、本発明の実施例2について説明する。実施例1においては、二階微分の結果を特定の閾値Taと比較して評価を行った。これに対し本実施例2においては、電池ユニットを構成するサブユニットの数に応じた閾値Taを用いて評価を行った。なお、この他の構成は、前述の実施例1と同じであるので、同一の要素には同符号を付すなどして再度の説明を省略する。
図11は、モジュール数の異なるストリング25において不具合が発生した場合のI−Vカーブを示す図である。
図11(a)は、5つのモジュール24を直列に接続してなるストリング25の正常なI−Vカーブを示す図である。図11(b)は、5つのモジュール24を直列に接続してなるストリング25において、1つのモジュール24に最大動作電圧低下モード又は最大動作電流低下モードの異常が生じた場合のI−Vカーブを示す図である。
図11(c)は、4つのモジュール24を直列に接続してなるストリング25において、1つのモジュール24に最大動作電圧低下モード又は最大動作電流低下モードの異常が生じた場合のI−Vカーブを示す図である。
図11(d)は、3つのモジュール24を直列に接続してなるストリング25において、1つのモジュール24に最大動作電圧低下モード又は最大動作電流低下モードの異常が生じた場合のI−Vカーブを示す図である。
図11(e)は、2つのモジュール24を直列に接続してなるストリング25において、1つのモジュール24に最大動作電圧低下モード又は最大動作電流低下モードの異常が生じた場合のI−Vカーブを示す図である。
図11(f)は、1つのモジュール24から構成されるストリング25において、1つのモジュール24に最大動作電圧低下モード又は最大動作電流低下モードの異常が生じた場合のI−Vカーブを示す図である。
図11(b)〜図11(f)に示すように、ストリング25を構成するモジュールの数が異なっても、最大動作電圧低下モード又は最大動作電流低下モードの異常が生じた場合には、図5(b),図5(e)と同様に変曲点98が現れる。
図11(a)〜図11(f)のストリング25について、出力電圧値に対する出力電流値を二階微分すると、図12(a)〜図12(f)のように、図12(a)では二階微分の結果Pdがフラットになるのに対し、図12(b)〜図12(f)では二階微分の結果Pdにピーク99が現れる。
このようにストリング25に、最大動作電圧低下モード又は最大動作電流低下モードの異常が生じた場合には、ストリング25を構成するモジュールの数に関わらず、ピーク99が現れるが、そのピーク99の高さはストリング25を構成するモジュールの数に依存する。
図13は、ストリング25を構成するモジュール24の直列に接続された数と、ピーク99の高さの関係を示す図である。
ストリング25を構成するモジュール24の直列に接続された数が異なると、ストリング全体の出力電圧が異なるので、一つのモジュール24に異常が生じて低下する電圧が、ストリング全体の出力電圧に与える影響が異なり、この影響の違いがピーク99の高さの違いとして現れる。
そこで、異常を評価する際に、ピーク99と比較する閾値Taは、ピーク99の高さに応じた値に設定することが望ましい。即ち、閾値Taは、ストリング25を構成するモジュール24の直列に接続された数に応じた値に設定されることが望ましい。
図14は、電池ユニットを構成するサブユニット一つ当たりの開放電圧を記憶する諸元記憶部の一例を示す図である。
諸元記憶部75は、サブユニット、本実施例2ではモジュール24一つ当たりの開放電圧や短絡電流等の規定値を、型番、商品名、販売時期及びメーカ名等のサブユニットを識別するための識別情報と対応付けて記憶している。
図15は、サブユニットの数毎に閾値Taを記憶した閾値記憶部7の一例を示す図である。図15の閾値Taは、図12、図13に示すようなモジュール数とピーク99の高さとの関係から、モジュール数毎に定められ、このモジュール数と対応付けて閾値記憶部7に記憶されている。
図16は、本実施例2における太陽電池評価システム1が実行する評価方法の説明図である。
まず、計測データ取得部5が、太陽電池2のストリング25からI−Vカーブを取得する(ステップS10)。例えば、電圧設定部51が、ストリング25の出力電圧を最小値から開放電圧値まで変化させて、計測部52が、このときの出力電圧値に対する出力電流値を計測してメモリ(不図示)に記憶する。
次に演算部6が、ステップS11で計測した出力電流値Iに対して出力電圧値Vで二階微分し、二階微分の結果Pdを求める(ステップS20)。
評価部8は、操作者によるサブユニットの型番、商品名、販売時期及びメーカ名等の識別情報の入力を受け付ける(ステップS23)。この識別情報の入力は、操作者がキーボードを操作して入力する構成やバーコードを読み取って入力する構成等でも良い。
評価部8は、通信回線を介してデータベースサーバとしての諸元記憶部75にアクセスし、ステップS23で入力された識別情報と対応する規定値(開放電圧)を読み出す(ス
テップS25)。
評価部8は、ステップS10で計測したストリング(電池ユニット)25の開放電圧をステップS25で取得したモジュール(サブユニット)24の開放電圧で除して、ストリング25を構成するモジュール24の直列に接続した数を算出する(ステップS27)。
そして評価部8は、ステップS27で算出したモジュール24の数と対応する閾値Taを閾値記憶部7から取得して、二階微分の結果Pdと比較し、二階微分の結果Pdが閾値Taを超えているか否かを判定する(ステップS30)。
二階微分の結果Pdが閾値Taを超えていなければ(ステップS30,No)、図9の処理を終了し、二階微分の結果Pdが閾値Taを超えていれば(ステップS30,Yes)、出力部9が異常を通知する出力を行う(ステップS40)。
図16では、出力電流値Iに対して二階微分した例を示したが、これに限らず、図10のように出力電力値Pに対して二階微分し、この二階微分の結果と本実施形態2の処理(S23〜S30)で求めた閾値Taとを比較して評価を行っても良い。この場合、閾値Taの値は、出力電力値Pに対して二階微分したときのピークの高さとモジュール数との関係から、モジュール数毎に定め、このモジュール数と閾値Taの値とを対応付けて閾値記憶部7に記憶させれば良い。
以上のように本実施例2によれば、ストリング25を構成するモジュール24の数に基づいて、適切な閾値Taを選択できるので、精度良く評価を行うことができる。
<実施例3>
次に、本発明の実施例3について説明する。実施例1においては、二階微分の結果を、用いて最大動作電圧低下モード又は最大動作電流低下モードの評価を行った。これに加えて本実施例3においては、開放電圧低下モード、短絡電圧低下モード、出力停止モードの評価も行う。なお、この他の構成は、前述の実施例1と同じであるので、同一の要素には同符号を付すなどして再度の説明を省略する。
図5(a)に示すように、開放電圧低下モードでは、計測した開放電圧133が、正常な開放電圧143と比べて低くなっている。従ってこの開放電圧133,143を比較することで、開放電圧低下モードの評価を行う。
また、図5(d)に示すように、短絡電流低下モードでは、計測した短絡開放電圧が、正常な短絡電流と比べて低くなっている。従ってこの短絡電流を比較することで、短絡電流低下モードの評価を行う。
更に、図5(f)に示すように、出力停止モードでは、出力電力が完全に停止する。従って出力電力の有無で、出力停止モードの評価を行う。
図17は、本実施例3における太陽電池評価システム1が実行する評価方法の説明図である。
まず、評価部8は、太陽電池2のストリング25からの出力電力が有るか否かを取得する(ステップS5)。出力電力が無い場合(ステッ・BR>VS5,No)、評価部8は、出力停止モードと判定してステップS40へ移行する。
一方、出力電力が有る場合には(ステップS5,Yes)、計測データ取得部5が、太陽電池2のストリング25からI−Vカーブを取得する(ステップS10)。例えば、電圧設定部51が、ストリング25の出力電圧を最小値から開放電圧値まで変化させて、計測部52が、このときの出力電圧値に対する出力電流値を計測してメモリ(不図示)に記憶する。
次に演算部6が、ステップS11で計測した出力電流値Iに対して出力電圧値Vで二階微分し、二階微分の結果Pdを求める(ステップS20)。
評価部8は、閾値記憶部7から閾値Taを取得して、二階微分の結果Pdと比較し、二階微分の結果Pdが閾値Taを超えているか否かを判定する(ステップS30)。
二階微分の結果Pdが閾値Taを超えていなければ(ステップS30,No)、ステップS50へ移行し、二階微分の結果Pdが閾値Taを超えていれば(ステップS30,Ye
s)、最大動作電圧低下モード又は最大動作電流低下モードの異常である旨をメモリに記
憶させる(ステップS35)。
次に評価部8は、ストリング25の正常な開放電圧(規定値)を取得する(ステップS
50)。このストリング25の規定値は、例えば操作者がキーボード等から直接入力する
。また、図14のような諸元記憶部75にストリング25の正常な開放電圧(規定値)をストリング25の識別情報と対応付けて登録しておき、操作者がキーボード等からストリング25の識別情報を入力した場合に、この識別情報と対応する規定値を諸元記憶部75から読み出して取得するものでも良い。
評価部8は、ステップS10で計測したストリング25の開放電圧と規定値とを比較し、計測したストリング25の開放電圧が、規定値より低下しているか否かを判定する(ス
テップS55)。
計測したストリング25の開放電圧が、規定値より低下していなければ(ステップS5
5,No)、ステップS60へ移行し、計測したストリング25の開放電圧が、規定値よ
り低下していれば(ステップS55,Yes)、開放電圧低下モードの異常である旨をメモリに記憶させる(ステップS57)。
更に評価部8は、ストリング25の正常な短絡電流値(規定値)を取得する(ステップ
S60)。このストリング25の規定値は、例えば操作者がキーボード等から直接入力す
る。また、図14のような諸元記憶部75にストリング25の正常な短絡電流値(規定値)をストリング25の識別情報と対応付けて登録しておき、操作者がキーボード等からストリング25の識別情報を入力した場合に、この識別情報と対応する規定値を諸元記憶部75から読み出して取得するものでも良い。
評価部8は、ステップS10で計測したストリング25の短絡電流と規定値とを比較し、計測したストリング25の短絡電流値が、規定値より低下しているか否かを判定する(
ステップS65)。
計測したストリング25の短絡電流値が、規定値より低下していなければ(ステップS
65,No)、ステップS70へ移行し、計測したストリング25の短絡電流値が、規定
値より低下していれば(ステップS65,Yes)、短絡電流低下モードの異常である旨をメモリに記憶させる(ステップS67)。
そして出力部9は、ステップS35,S57,S67で記録された評価結果をメモリから読み出して出力する(ステップS70)。なお、ステップS35,S57,S67で、メモリに何れの異常も記録されなかった場合には、正常である旨の評価結果を出力する。
以上のように、本実施例3によれば、最大動作電圧低下モード又は最大動作電流低下モードの評価に加えて、開放電圧低下モードや、出力停止モードの評価も行うことができる。
<実施例4>
次に、本発明の実施例4について説明する。実施例1においては、実施例1においては、モジュール24を複数直列に接続したストリング25を評価対象とした。これに対し本実施例4においては、ストリングを複数並列に接続したアレイ26を測定対象とした。なお、この他の構成は、前述の実施例1と同じであるので、同一の要素には同符号を付すなどして再度の説明を省略する。
図18は、アレイ26における不具合の形態(モード)毎にI−Vカーブを示したグラフである。図18(a)は、開放電圧低下モードのI−Vカーブ231を示している。また、図18(a)では、開放電圧低下モードのI−Vカーブ231を実線で示したのに対し、正常時、即ち故障が無い状態のI−Vカーブ241を点線で示した。
開放電圧低下モードは、アレイ26に含まれる一部のストリング25が故障した状態である。この場合、故障した分の電圧が低下するので、図18(a)に示すように、開放電圧低下モードのI−Vカーブ231は、最大動作点232及び開放電圧233が共に、正常時のI−Vカーブ241の最大動作点242及び開放電圧43と比べて低下する。
図18(b)は、最大動作電圧低下モードのI−Vカーブ251を示している。最大動作電圧低下モードは、アレイ26に含まれる一部のストリング25に影がかかる又は汚れが付着する等によって電圧が低下した状態である。この場合、図18(b)に示すように、最大動作電圧低下モードのI−Vカーブ251は、最大動作点252の電圧が、正常時のI−Vカーブ241の最大動作点242の電圧と比べて低下する。また、最大動作電圧低下モードのI−Vカーブ251は、最大動作点252より電圧値が高くなると、大きな傾きで電流値が低下し、更に電圧値が高くなると傾きが小さくなる。即ち、最大動作電圧低下モードのI−Vカーブ251は、この大きな傾きから小さな傾きに変化する変曲点254を有する。
図18(c)は、最大動作電圧・電流低下モードのI−Vカーブ261を示している。最大動作電圧・電流低下モードは、アレイ26内のケーブル等の抵抗分が増加することによって電圧及び電流が低下した状態である。この場合、図18(b)に示すように、開放電圧・電流低下モードのI−Vカーブ261は、最大動作点262の電圧及び電流が共に、正常時のI−Vカーブ241の最大動作点242の電圧及び電流と比べて低下する。
図18(d)は、短絡電流低下モードのI−Vカーブ271を示している。短絡電流低下モードは、アレイ26に含まれる全てのストリング25の電流値が低下した状態である。この場合、図18(d)に示すように、短絡電流低下モードのI−Vカーブ271は、短絡電流及び最大動作点272の電流値が共に、正常時のI−Vカーブ241の短絡電流及び最大動作点242の電流と比べて低下する。
図18(e)は、最大動作電流低下モードのI−Vカーブ281を示している。最大動作電流低下モードは、アレイ26に含まれる一部のストリング25の電流が低下した状態である。この場合、図18(e)に示すように、最大動作電流低下モードのI−Vカーブ
281は、最大動作点282の電流が、正常時のI−Vカーブ241の最大動作点242の電流と比べて低下する。また、最大動作電流低下モードのI−Vカーブ251は、図18(b)と同様に大きな傾きから小さな傾きに変化する変曲点284を有する。
図18(f)は、出力停止モードを示している。出力停止モードは、出力ラインの損傷等により、電力が完全に出力されない状態である。
このようにI−Vカーブは、不具合のモードによって異なるため、このI−Vカーブの特徴的変化を求めることにより、異常の有無の評価が可能になる。図19は、図18に示した各不具合のモードのI−Vカーブに係る演算結果を示す図である。図19の例では、各不具合のモードにおいて、電圧値Vを最小値から開放電圧(最大値)まで変化させた時の電圧値Vに対する電流値Iを前記式1のように二階微分した。
図19(a)、図19(c)、図19(d)に示すように、開放電圧低下モード、最大動作電圧・電流低下モード、及び短絡電流低下モードの二階微分の結果Pdは、略フラットとなる。
一方、図19(b)、図19(e)に示すように、最大動作電圧低下モード及び最大動作電流低下モードの二階微分の結果Pdは、図18(b)、図18(e)に示した変曲点254,184の位置に先鋭なピーク258,288が生じる。そこで、ピーク258,288の高さ以下であって、ピーク258,288以外の二階微分の結果Pdよりも高い閾値Taを設定する。これにより、二階微分の結果Pdを閾値Taと比較し、二階微分の結果Pdが閾値Ta以上であれば最大動作電圧低下モード又は最大動作電流低下モードの異常が生じていると評価できる。また、二階微分の結果Pdが閾値Taよりも低ければ最大動作電圧低下モード又は最大動作電流低下モードの異常が生じていないと評価できる。なお、出力停止モードでは、出力が無いため、二階微分を行わず、図19(f)には、二階微分の結果を示していない。
本実施例4では、アレイ26を評価対象としているため、一つのモジュール24に不具合が発生しても、不具合による電力の低下がモジュール24全体の電力に与える影響が小さく、図18のI−Vカーブに現れる変化が小さくなる。しかし、この場合でも二階微分の結果Pdは、図19(b)、図19(e)に示すように、不具合による変化が先鋭なピーク258,288として現れるので、精度良く評価できる。
また、図19は、電圧値に対する電流値を二階微分した例を示したが、これに限らず各不具合のモードにおいて、電圧値Vを最小値から開放電圧(最大値)まで変化させた時の電圧値Vに対する電力値Pを前記式2のように二階微分しても良い。
図20は、電圧値に対する電力値を二階微分した結果Pdを示す図である。図20(a)、図20(c)、図20(d)に示すように、開放電圧低下モード、最大動作電圧・電流低下モード、及び短絡電流低下モードの二階微分の結果Pdは、略フラットとなる。
一方、図20(b)、図20(e)に示すように、最大動作電圧低下モード及び最大動作電流低下モードの二階微分の結果Pdは、図11(b)、図11(e)に示した変曲点254,184の位置に先鋭なピーク259,289が生じる。そこで、ピーク259,289の高さ以下であって、ピーク259,289以外の二階微分の結果Pdよりも高い閾値Taを設定する。これにより、図19と同様に二階微分の結果Pdを閾値Taと比較し、二階微分の結果Pdが閾値Ta以上であれば最大動作電圧低下モード又は最大動作電流低下モードの異常が生じていると評価できる。また、二階微分の結果Pdが閾値Taよりも低ければ最大動作電圧低下モード又は最大動作電流低下モードの異常が生じていない
と評価できる。
図21は、本実施例4における太陽電池評価システム1が実行する評価方法の説明図である。
まず、計測データ取得部5が、太陽電池2のアレイ26からI−Vカーブを取得する(
ステップS110)。例えば、電圧設定部51が、アレイ26の出力電圧を最小値から開
放電圧値まで変化させて、計測部52が、このときの出力電圧値に対する出力電流値を計測してメモリ(不図示)に記憶する。
次に演算部6が、ステップS111で計測した出力電流値Iに対して出力電圧値Vで二階微分し、二階微分の結果Pdを求める(ステップS120)。
評価部8は、閾値記憶部7から閾値Taを取得して、二階微分の結果Pdと比較し、二階微分の結果Pdが閾値Taを超えているか否かを判定する(ステップS130)。
二階微分の結果Pdが閾値Taを超えていなければ(ステップS130,No)、図21の処理を終了し、二階微分の結果Pdが閾値Taを超えていれば(ステップS130,Y
es)、出力部9が異常を通知する出力を行う(ステップS140)。
図21では、出力電流値Iに対して二階微分した例を示したが、これに限らず、出力電力値Pに対して二階微分しても良い。
図22は、本実施例4における太陽電池評価システム1が、出力電力値Pに対して二階微分して評価を行う評価方法の説明図である。
まず、計測データ取得部5が、太陽電池2のアレイ26からI−Vカーブを取得する(
ステップS150)。例えば、電圧設定部51が、アレイ26の出力電圧を最小値から開
放電圧値まで変化させて、計測部52が、このときの出力電圧値に対する出力電流値を計測してメモリ(不図示)に記憶する。
次に演算部6が、ステップS150計測した出力電流値Iと出力電圧値Vを乗じて出力電力値Pを算出する(ステップS160)。
また演算部6が、ステップS160で算出した出力電力値Pに対して出力電圧値Vで二階微分し、二階微分の結果Pdを求める(ステップS170)。
評価部8は、閾値記憶部7から閾値Taを取得して、二階微分の結果Pdと比較し、二階微分の結果Pdが閾値Taを超えているか否かを判定する(ステップS180)。
二階微分の結果Pdが閾値Taを超えていなければ(ステップS180,No)、図9の処理を終了し、二階微分の結果Pdが閾値Taを超えていれば(ステップS180,Ye
s)、出力部9が異常を通知する出力を行う(ステップS190)。
なお、図21、図22では、出力電圧値を最小値から最大値(開放電圧)まで変化させて、この範囲の出力電圧値に対する出力電力値を全て計測した後に二階微分を行ったが、出力電圧値を変化させつつ出力電流値を計測する毎に二階微分を行っても良い。
以上のように、本実施例4によれば、電池ユニットとしてのアレイ26の出力電圧を変化させた時の出力電圧値に対する出力電流値を二階微分して、異常の発生に伴って生じる
特徴的変化の値(例えば図19(b):ピーク258の高さ)とし、この二階微分した値を閾値Taと比較することで異常の有無を評価できる。
<実施例5>
次に、本発明の実施例5について説明する。実施例4においては、二階微分の結果を特定の閾値Taと比較して評価を行った。これに対し本実施例5においては、電池ユニットを構成するサブユニットの数に応じた閾値Taを用いて評価を行った。なお、この他の構成は、前述の実施例1と同じであるので、同一の要素には同符号を付すなどして再度の説明を省略する。
本実施例5では、アレイ26を評価対象とする。アレイ26は、サブユニットとしてのモジュール24が複数直列に接続されてストリング25を構成し、この直列に接続されたモジュール24(ストリング25)が、複数並列に接続されることで構成されている。
アレイ26を構成するモジュール24の直列に接続された数、及び直列に接続されたモジュール24(ストリング25)の列数が異なると、アレイ全体の出力電圧が異なるので、一つのモジュール24に異常が生じて低下する電圧が、アレイ全体の出力電圧に与える影響が異なり、この影響の違いが二階微分の結果Pdにおけるピーク(例えば図19のピーク258)の高さの違いとして現れる。
そこで、異常を評価する際に、二階微分の結果Pdと比較する閾値Taは、アレイ26を構成するモジュール24の直列に接続された数、及びモジュール24の列数に応じた値に設定されることが望ましい。
図23は、サブユニットの数、及び列数毎に閾値Taを記憶した閾値記憶部7の一例を示す図である。図23の例では、モジュール数及び列数毎に、一つのモジュールの不具合によって生じるピークの高さが求められ、このピークの高さから閾値Taがモジュール数及び列数毎に定められ、このモジュール数及び列数と閾値Taとが対応付けられて閾値記憶部7に記憶されている。
図24は、本実施例5における太陽電池評価システム1が実行する評価方法の説明図である。
まず、計測データ取得部5が、太陽電池2のアレイ26からI−Vカーブを取得する(
ステップS10)。例えば、電圧設定部51が、アレイ26の出力電圧を最小値から開放
電圧値まで変化させて、計測部52が、このときの出力電圧値に対する出力電流値を計測してメモリ(不図示)に記憶する。
次に演算部6が、ステップS11で計測した出力電流値Iに対して出力電圧値Vで二階微分し、二階微分の結果Pdを求める(ステップS20)。
評価部8は、操作者によるサブユニット(モジュール24)の型番、商品名、販売時期及びメーカ名等の識別情報の入力を受け付ける(ステップS23)。この識別情報の入力は、操作者がキーボードを操作して入力する構成やバーコードを読み取って入力する構成等でも良い。
評価部8は、通信回線を介してデータベースサーバとしての諸元記憶部75(図14)にアクセスし、ステップS23で入力された識別情報と対応する規定値(開放電圧及び短絡電流)を読み出す(ステップS25)。
評価部8は、ステップS10で計測したアレイ(電池ユニット)26の開放電圧をステップS25で取得したモジュール(サブユニット)24の開放電圧で除して、アレイ26を構成するモジュール24の直列に接続した数を算出する(ステップS27)。
また、評価部8は、ステップS10で計測したアレイ(電池ユニット)26の短絡電流をステップS25で取得したモジュール(サブユニット)24の短絡電流で除して、アレイ26を構成する直列に接続したモジュール24の列数、即ちストリング25の数を算出する(ステップS28)。
そして評価部8は、ステップS27、S28で算出したモジュール24の数及び列数と対応する閾値Taを閾値記憶部7(図23)から取得して、二階微分の結果Pdと比較し、二階微分の結果Pdが閾値Taを超えているか否かを判定する(ステップS30)。
二階微分の結果Pdが閾値Taを超えていなければ(ステップS30,No)、図9の処理を終了し、二階微分の結果Pdが閾値Taを超えていれば(ステップS30,Yes)、出力部9が異常を通知する出力を行う(ステップS40)。
図24では、出力電流値Iに対して二階微分した例を示したが、これに限らず、図10のように出力電力値Pに対して二階微分し、この二階微分の結果と本実施形態2の処理(S23〜S30)で求めた閾値Taとを比較して評価を行っても良い。
以上のように本実施例2によれば、アレイ26を構成するモジュール24の数に基づいて、適切な閾値Taを選択できるので、精度良く評価を行うことができる。
<実施例6>
次に、本発明の実施例6について説明する。実施例4においては、二階微分の結果を、用いて最大動作電圧低下モード又は最大動作電流低下モードの評価を行った。これに加えて本実施例6においては、開放電圧低下モード、短絡電圧低下モード、出力停止モードの評価も行った。なお、この他の構成は、前述の実施例4と同じであるので、同一の要素には同符号を付すなどして再度の説明を省略する。
図25は、本実施例6における太陽電池評価システム1が実行する評価方法の説明図である。
まず、評価部8は、太陽電池2のアレイ26からの出力電力が有るか否かを取得する(
ステップS5)。出力電力が無い場合(ステップS5,No)、評価部8は、出力停止モー
ドと判定してステップS40へ移行する。
一方、出力電力が有る場合には(ステップS5,Yes)、計測データ取得部5が、太陽電池2のアレイ26からI−Vカーブを取得する(ステップS10)。例えば、電圧設定部51が、アレイ26の出力電圧を最小値から開放電圧値まで変化させて、計測部52が、このときの出力電圧値に対する出力電流値を計測してメモリ(不図示)に記憶する。
次に演算部6が、ステップS11で計測した出力電流値Iに対して出力電圧値Vで二階微分し、二階微分の結果Pdを求める(ステップS20)。
評価部8は、閾値記憶部7から閾値Taを取得して、二階微分の結果Pdと比較し、二階微分の結果Pdが閾値Taを超えているか否かを判定する(ステップS30)。
二階微分の結果Pdが閾値Taを超えていなければ(ステップS30,No)、ステップ
S50へ移行し、二階微分の結果Pdが閾値Taを超えていれば(ステップS30,Ye
s)、最大動作電圧低下モード又は最大動作電流低下モードの異常である旨をメモリに記
憶させる(ステップS35)。
次に評価部8は、アレイ26の正常な開放電圧(規定値)を取得する(ステップS50)。このアレイ26の規定値は、例えば操作者がキーボード等から直接入力する。また、図14のような諸元記憶部75にアレイ26の正常な開放電圧(規定値)をアレイ26の識別情報と対応付けて登録しておき、操作者がキーボード等からアレイ26の識別情報を入力した場合に、この識別情報と対応する規定値を諸元記憶部75から読み出して取得するものでも良い。
評価部8は、ステップS10で計測したアレイ26の開放電圧と規定値とを比較し、計測したアレイ26の開放電圧が、規定値より低下しているか否かを判定する(ステップS
55)。
計測したアレイ26の開放電圧が、規定値より低下していなければ(ステップS55,
No)、ステップS60へ移行し、計測したアレイ26の開放電圧が、規定値より低下し
ていれば(ステップS55,Yes)、開放電圧低下モードの異常である旨をメモリに記憶させる(ステップS57)。
更に評価部8は、アレイ26の正常な短絡電流値(規定値)を取得する(ステップS6
0)。このアレイ26の規定値は、例えば操作者がキーボード等から直接入力する。また
、図14のような諸元記憶部75にアレイ26の正常な短絡電流値(規定値)をアレイ26の識別情報と対応付けて登録しておき、操作者がキーボード等からアレイ26の識別情報を入力した場合に、この識別情報と対応する規定値を諸元記憶部75から読み出して取得するものでも良い。
評価部8は、ステップS10で計測したアレイ26の短絡電流と規定値とを比較し、計測したアレイ26の短絡電流値が、規定値より低下しているか否かを判定する(ステップ
S65)。
計測したアレイ26の短絡電流値が、規定値より低下していなければ(ステップS65
,No)、ステップS70へ移行し、計測したアレイ26の短絡電流値が、規定値より低
下していれば(ステップS65,Yes)、短絡電流低下モードの異常である旨をメモリに記憶させる(ステップS67)。
そして出力部9は、ステップS35,S57,S67で記録された評価結果をメモリから読み出して出力する(ステップS70)。なお、ステップS35,S57,S67で、メモリに何れの異常も記録されなかった場合には、正常である旨の評価結果を出力する。
以上のように、本実施例6によれば、最大動作電圧低下モード又は最大動作電流低下モードの評価に加えて、開放電圧低下モードや、出力停止モードの評価も行うことができる。
<実施例7>
次に、実施例7について説明する。本実施例7においては、太陽電池評価システムの構成の様々な態様について説明する。
図26には、本実施例における太陽電池評価システム1Aの態様について示す。この態様における構成要素の太陽電池2、計測データ取得部5、演算部6、閾値記憶部7、評価
部8、出力部9については、各々、図8の太陽電池評価システム1に示した構成と同等である。一方、図26の態様においては、計測データ取得部5、演算部6、閾値記憶部7、評価部8が、可搬型の評価装置、いわゆるカーブトレーサ101内に搭載されている点が異なる。この態様において、出力部9は、モニターやプリンター、PC(パーソナルコンピュータ)等として、カーブトレーサ101と独立に構成されている。
これによれば、操作者が太陽電池2の敷設されている現場にカーブトレーサ101を持参し、設置した上で、適時評価を行うといった運用が可能になる。
次に、図27には、本実施例における太陽電池評価システム1Bの態様について示す。この態様における構成要素の太陽電池2、計測データ取得部5、演算部6、閾値記憶部7、評価部8、出力部9については、各々、図26の太陽電池評価システム1Aに示した構成と同等である。一方、図27の態様においては、出力部9が、計測データ取得部5、演算部6、閾値記憶部7、評価部8と共にカーブトレーサ101内に搭載されている点が異なる。
これによれば、操作者が太陽電池2の設置されている現場にカーブトレーサ101を持参し、設置する際の搬送や取扱いが容易となる。
図28には、本実施例における太陽電池評価システム1Cの態様について示す。この態様における構成要素の太陽電池2、計測データ取得部5、演算部6、閾値記憶部7、評価部8、出力部9については、各々、図26の太陽電池評価システム1Aに示した構成と同等である。
図28において、パワーコンディショナ74は、太陽電池2の出力を昇圧するDC/DCコンバータ74aや、この昇圧後の直流電力を交流電力に変換するインバータ74bを備えている。また、パワーコンディショナ74は、太陽電池2の出力電圧及び出力電流を検出する電流電圧特性計測部73を備えている。電流電圧特性計測部73は、太陽電池2の出力電圧及び出力電流を検出することで、I−Vカーブを取得する機能を有している。
図28の態様においては、パワーコンディショナ74の電流電圧特性計測部73が、太陽電池2の出力電圧を変化させたときの出力電圧値と出力電流値を計測し、評価装置102は、この計測結果を計測データ取得部5で取得して前述の評価に用いる。
このように太陽電池評価システム1Cは、パワーコンディショナ74のI−Vカーブトレース機能を利用して評価を行う構成とした。から演算部6、閾値記憶部7、評価部8と共にカーブトレーサ101内に搭載されている点が異なる。
図29には、本実施例における太陽電池評価システム1Dの態様について示す。この態様における、太陽電池2、及び評価装置103の構成要素の計測データ取得部5、演算部6、閾値記憶部7、評価部8、出力部9については、各々、図28の太陽電池評価システム1Cに示した構成と同等である。一方、図29の態様においては、計測データ取得部5、演算部6、閾値記憶部7、評価部8が、パワーコンディショナ74内に搭載されている点が異なる。
このように、計測データ取得部5、演算部6、閾値記憶部7、評価部8の機能を有する評価装置103をパワーコンディショナ74に内蔵させた構成としても良い。
図30には、本実施例における太陽電池評価システム1Eの態様について示す。この態様における、太陽電池2、及び評価装置104の構成要素の計測データ取得部5、演算部
6、閾値記憶部7、評価部8、出力部9については、各々、図28の太陽電池評価システム1Cに示した構成と同等である。一方、図30の態様においては、出力部9が、計測データ取得部5、演算部6、閾値記憶部7、評価部8と共にパワーコンディショナ74内に搭載されている点が異なる。
このように、評価装置104をパワーコンディショナ74に内蔵させたことで、評価装置を別途用意する必要が無く、容易に太陽電池2の評価を行うことができる。
なお、上記実施例では、電池ユニットとして太陽電池を用いた例を示したが、本発明は、これに限らず、電池ユニットとして燃料電池を採用し、燃料電池の異常を評価するものでも良い。
1,1A,1B,1C,1D,1E 太陽電池評価システム
2 太陽電池
5 計測データ取得部
6 演算部
7 閾値記憶部
8 評価部
9 出力部
21 セル
22 バイパスダイオード
23 クラスタ
24 モジュール
25 ストリング
26 アレイ
74 パワーコンディショナ

Claims (14)

  1. 複数のサブユニットが互いに接続されてなる電池ユニットの出力電圧値を変化させた時の出力電圧値に対する出力電流値を取得する取得部と、
    前記出力電圧値に対する前記出力電流値又は前記出力電圧値に対する出力電力値を二階微分する演算部と、
    前記二階微分の結果が閾値を超えた場合に、前記電池ユニットを異常と評価する評価部と、
    を備えることを特徴とする評価装置。
  2. 複数の前記サブユニットが直列に接続され、
    前記閾値が、複数の前記サブユニットを直列に接続した数毎に定められていることを特徴とする請求項1に記載の評価装置。
  3. 直列に接続された前記サブユニットの列が複数並列に接続され、
    前記閾値が、複数の前記サブユニットを直列に接続した数、及び前記サブユニットの列の列数毎に定められていることを特徴とする請求項2に記載の評価装置。
  4. 前記評価部が、前記サブユニットの開放電圧値と、前記電池ユニットの開放電圧値とから、直列に接続された前記サブユニットの数を求め、当該サブユニットの数に対応する閾値を用いて前記評価を行うことを特徴とする請求項2に記載の評価装置。
  5. 前記評価部が、前記サブユニットの短絡電流値と、前記電池ユニットの短絡電流値とから、並列に接続された前記サブユニットの列数を求め、当該サブユニットの列数に対応する閾値を用いて前記評価を行うことを特徴とする請求項3に記載の評価装置。
  6. 前記評価部が、前記電池ユニットの識別情報の入力を受け、前記電池ユニットの識別情報と対応付けて、前記電池ユニットを構成するサブユニット一つ当たりの開放電圧を記憶する諸元記憶部から、入力された識別情報と対応する開放電圧を取得して前記サブユニットの数を求めることを特徴とする請求項4に記載の評価装置。
  7. 前記評価部が、前記電池ユニットの識別情報の入力を受け、前記電池ユニットの識別情報と対応付けて、前記電池ユニットを構成するサブユニット一つ当たりの短絡電流を記憶する前記諸元記憶部から、入力された識別情報と対応する短絡電流を取得して前記サブユニットの列数を求めることを特徴とする請求項5に記載の評価装置。
  8. 前記取得部と、前記演算部と、前記評価部のうち、少なくとも一つを、可搬性の筐体内に収納したことを特徴とする請求項1から7のいずれか一項に記載の評価装置。
  9. 前記評価部は、前記二階微分の結果が閾値を超えた場合に、前記電池ユニットが最大動作電圧低下モード又は最大操作電流低下モードの異常を生じていると評価する請求項1から7のいずれか一項に記載の評価装置。
  10. 請求項1から7のいずれか一項に記載の評価装置における前記取得部と前記演算部と前記評価部のうちの少なくとも一つと、DC/DCコンバータと、インバータと、を有するパワーコンディショナ。
  11. 太陽電池モジュールと、
    請求項1から7のいずれか一項に記載の評価装置と、
    電池ユニットの出力を昇圧するとともに直流電力を交流電力に変換するパワーコンディ
    ショナと、を備えることを特徴とする太陽光発電システム。
  12. 前記取得部と、前記演算部と、前記評価部のうち、少なくとも一つを、前記パワーコンディショナ内に組み込んだことを特徴とする請求項11に記載の太陽光発電システム。
  13. 複数のサブユニットが互いに接続されてなる電池ユニットの出力電圧値を変化させた時の出力電圧値に対する出力電流値を取得し、
    前記出力電圧値に対する前記出力電流値又は前記出力電圧値に対する出力電力値を二階微分し、
    前記二階微分の結果が閾値を超えた場合に、前記電池ユニットを異常と評価する
    ことを特徴とする評価方法。
  14. 複数の前記サブユニットが直列に接続され、
    前記閾値が、複数の前記サブユニットを直列に接続した数毎に定められていることを特徴とする請求項13に記載の評価方法。
JP2014047498A 2014-03-11 2014-03-11 評価装置、評価方法及び、太陽光発電システム Expired - Fee Related JP6361183B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014047498A JP6361183B2 (ja) 2014-03-11 2014-03-11 評価装置、評価方法及び、太陽光発電システム

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014047498A JP6361183B2 (ja) 2014-03-11 2014-03-11 評価装置、評価方法及び、太陽光発電システム

Publications (2)

Publication Number Publication Date
JP2015173519A true JP2015173519A (ja) 2015-10-01
JP6361183B2 JP6361183B2 (ja) 2018-07-25

Family

ID=54260513

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014047498A Expired - Fee Related JP6361183B2 (ja) 2014-03-11 2014-03-11 評価装置、評価方法及び、太陽光発電システム

Country Status (1)

Country Link
JP (1) JP6361183B2 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107271916A (zh) * 2017-07-14 2017-10-20 天津瑞能电气有限公司 一种电池板组串健康状态检测方法
JP2019106824A (ja) * 2017-12-14 2019-06-27 オムロン株式会社 太陽電池アレイ検査システム、パワーコンディショナ及び太陽電池アレイ検査方法
JP2019161815A (ja) * 2018-03-12 2019-09-19 オムロン株式会社 太陽電池アレイ検査システム、パワーコンディショナ及び太陽電池アレイ検査方法

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH066940A (ja) * 1992-06-18 1994-01-14 Omron Corp 太陽光発電装置
JPH1131829A (ja) * 1997-07-10 1999-02-02 Canon Inc 太陽電池の良否判定方法
JPH11163381A (ja) * 1997-09-24 1999-06-18 Canon Inc 太陽光発電装置の設置方法、及び保守点検方法
JP2000174307A (ja) * 1998-12-01 2000-06-23 Toshiba Corp 太陽電池発電モジュール及びモジュール接続台数診断装置
JP2001326375A (ja) * 2000-03-10 2001-11-22 Sanyo Electric Co Ltd 太陽光発電システムの診断方法及び診断装置
US20110132424A1 (en) * 2009-12-09 2011-06-09 Selim Shlomo Rakib Vibration mediated networks for photovoltaic arrays
JP2012089562A (ja) * 2010-10-15 2012-05-10 Mitsubishi Electric Corp 太陽光発電システム
WO2012063304A1 (ja) * 2010-11-08 2012-05-18 株式会社日立製作所 太陽光発電システム
JP2013051293A (ja) * 2011-08-30 2013-03-14 Jx Nippon Oil & Energy Corp 太陽光発電を最適化する演算装置、太陽光発電を最適化する方法、太陽光発電システム、及び太陽光発電シミュレーションシステム
JP2013239629A (ja) * 2012-05-16 2013-11-28 Central Research Institute Of Electric Power Industry 太陽光発電故障検出装置、太陽光発電故障検出方法及び太陽光発電装置
JP2014011428A (ja) * 2012-07-03 2014-01-20 Jx Nippon Oil & Energy Corp 故障検知装置、故障検知システム、及び故障検知方法

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH066940A (ja) * 1992-06-18 1994-01-14 Omron Corp 太陽光発電装置
JPH1131829A (ja) * 1997-07-10 1999-02-02 Canon Inc 太陽電池の良否判定方法
JPH11163381A (ja) * 1997-09-24 1999-06-18 Canon Inc 太陽光発電装置の設置方法、及び保守点検方法
JP2000174307A (ja) * 1998-12-01 2000-06-23 Toshiba Corp 太陽電池発電モジュール及びモジュール接続台数診断装置
JP2001326375A (ja) * 2000-03-10 2001-11-22 Sanyo Electric Co Ltd 太陽光発電システムの診断方法及び診断装置
US20020059035A1 (en) * 2000-03-10 2002-05-16 Sanyo Electric Co., Ltd. Diagnosis method and diagnosis apparatus of photovoltaic power system
US20110132424A1 (en) * 2009-12-09 2011-06-09 Selim Shlomo Rakib Vibration mediated networks for photovoltaic arrays
JP2012089562A (ja) * 2010-10-15 2012-05-10 Mitsubishi Electric Corp 太陽光発電システム
WO2012063304A1 (ja) * 2010-11-08 2012-05-18 株式会社日立製作所 太陽光発電システム
JP2013051293A (ja) * 2011-08-30 2013-03-14 Jx Nippon Oil & Energy Corp 太陽光発電を最適化する演算装置、太陽光発電を最適化する方法、太陽光発電システム、及び太陽光発電シミュレーションシステム
JP2013239629A (ja) * 2012-05-16 2013-11-28 Central Research Institute Of Electric Power Industry 太陽光発電故障検出装置、太陽光発電故障検出方法及び太陽光発電装置
JP2014011428A (ja) * 2012-07-03 2014-01-20 Jx Nippon Oil & Energy Corp 故障検知装置、故障検知システム、及び故障検知方法

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107271916A (zh) * 2017-07-14 2017-10-20 天津瑞能电气有限公司 一种电池板组串健康状态检测方法
CN107271916B (zh) * 2017-07-14 2023-09-29 天津瑞能电气有限公司 一种电池板组串健康状态检测方法
JP2019106824A (ja) * 2017-12-14 2019-06-27 オムロン株式会社 太陽電池アレイ検査システム、パワーコンディショナ及び太陽電池アレイ検査方法
JP6992473B2 (ja) 2017-12-14 2022-01-13 オムロン株式会社 太陽電池アレイ検査システム、パワーコンディショナ及び太陽電池アレイ検査方法
JP2019161815A (ja) * 2018-03-12 2019-09-19 オムロン株式会社 太陽電池アレイ検査システム、パワーコンディショナ及び太陽電池アレイ検査方法
JP7021571B2 (ja) 2018-03-12 2022-02-17 オムロン株式会社 太陽電池アレイ検査システム、パワーコンディショナ及び太陽電池アレイ検査方法

Also Published As

Publication number Publication date
JP6361183B2 (ja) 2018-07-25

Similar Documents

Publication Publication Date Title
US9998071B2 (en) Failure diagnosis method and failure diagnosis system for photovoltaic system
JP6278912B2 (ja) 太陽光発電システム、及びその故障診断方法
KR101327225B1 (ko) 등가 가동시간 개념을 이용한 계통연계형 태양광발전 시스템의 고장 진단 방법 및 장치
US9506971B2 (en) Failure diagnosis method for photovoltaic power generation system
KR101535056B1 (ko) 계통연계형 태양광발전 시스템의 고장 검출 진단 장치 및 그 방법
JP6310948B2 (ja) 太陽電池検査システムおよび太陽電池検査方法
US9876468B2 (en) Method, system and program product for photovoltaic cell monitoring via current-voltage measurements
JP2012195495A (ja) 異常診断装置およびその方法、コンピュータプログラム
Schuss et al. Detecting defects in photovoltaic panels with the help of synchronized thermography
JP7289995B2 (ja) 太陽光発電ストリングの動作状態を認識する方法および装置ならびに記憶媒体
JP6172530B2 (ja) 太陽光発電システムの異常診断方法
JP6361183B2 (ja) 評価装置、評価方法及び、太陽光発電システム
JP2011077477A (ja) 監視装置
JP2015080399A (ja) 太陽電池モジュールの劣化判別方法
US20120229161A1 (en) Method For Detecting Underperforming Solar Wafers In A Solar Panel or Underperforming Solar Panel in a Solar Array
JP6575572B2 (ja) 太陽電池ストリング診断システム及び太陽電池ストリング診断方法
KR102159768B1 (ko) 태양광발전 어레이의 Hot Spot 진단 장치 및 방법
KR101874857B1 (ko) 태양전지 셀에 대한 고장 모니터링 장치 및 그 동작 방법
JP2014165369A (ja) 太陽電池動作点移動計測方法
JP6354946B2 (ja) 太陽光発電システムの異常診断方法
JP2015159190A (ja) 太陽光発電診断システム
JP2016134930A (ja) 太陽光発電診断装置および太陽光発電診断方法
KR101666738B1 (ko) 태양광모듈 열화 진단 방법 및 장치
KR20170140881A (ko) 태양광발전 어레이 모니터링 비교를 통한 자체 이상 조기발견방법
JP2017223611A (ja) 太陽電池ストリング診断システム及び太陽電池ストリング診断方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170111

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20171031

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20171107

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180109

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180306

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180507

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180529

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180611

R150 Certificate of patent or registration of utility model

Ref document number: 6361183

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees