JP2015159634A - 車両 - Google Patents

車両 Download PDF

Info

Publication number
JP2015159634A
JP2015159634A JP2014031940A JP2014031940A JP2015159634A JP 2015159634 A JP2015159634 A JP 2015159634A JP 2014031940 A JP2014031940 A JP 2014031940A JP 2014031940 A JP2014031940 A JP 2014031940A JP 2015159634 A JP2015159634 A JP 2015159634A
Authority
JP
Japan
Prior art keywords
battery
upper limit
shift
input power
limit input
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2014031940A
Other languages
English (en)
Inventor
宏紀 原田
Hiroki Harada
宏紀 原田
山本 雅哉
Masaya Yamamoto
雅哉 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2014031940A priority Critical patent/JP2015159634A/ja
Publication of JP2015159634A publication Critical patent/JP2015159634A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility

Landscapes

  • Hybrid Electric Vehicles (AREA)
  • Control Of Charge By Means Of Generators (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Abstract

【課題】変速中のバッテリの上限入力電力の変動に伴う変速ショックを抑制する。【解決手段】本発明は、変速機を介して駆動輪と接続される出力部材に連結された走行用モータと、走行用モータに電力を供給するバッテリとを備えた車両であり、バッテリの状態に応じて設定されるバッテリの入力を許容する最大の電流値である許容入力電流値に基づきバッテリの上限入力電力を算出し、バッテリの入力を制御するコントローラを有する。変速機は、上限入力電力に応じた走行用モータの回生力によって、走行用モータの変速前回転数を変速後の目標回転数に低下させる変速制御を行う。コントローラは、変速前回転数が目標回転数に低下するまで、変速前の上限入力電力で制御し続けたときのバッテリの状態に基づいて、走行用モータが目標回転数になるときの予測上限入力電力を算出し、予測上限入力電力を変速中の上限入力電力としてバッテリの入力を制御する。【選択図】 図4

Description

本発明は、変速機を介して出力部材に連結された走行用モータと、走行用モータに電力を供給するバッテリと、を備えた車両に関する。
バッテリから供給される電力によって駆動する走行用モータは、変速機を介して駆動輪に接続された出力部材に、車両要求に応じた駆動力を出力する。このとき、車両走行中に変速比が変更されると、変速前後で走行用モータの回転数が変化するので、変速ショックが生じることがある。
このため、特許文献1では、例えば、シフトアップ時に走行用モータを発電機として用い、回生(制動)力を発生させて変速前の走行用モータの回転数を変速後の目標回転数に低下させてから変速を行うようにしている。
特開2000−2327号公報 国際公開2010/005079号 特開2004−068957号公報
走行用モータによって発電された回生電力は、バッテリに入力されるが、特許文献2に記載のように電池保護の観点から入力電力を制限した充放電制御が行われる。このとき、変速途中で入力電力が低く制限されてしまうと、走行用モータの回転数の低下に伴う回生電力の入力が制限され、変速前の走行用モータの回転数を変速後の目標回転数に合わせることができなくなり、変速ショックを抑制できないおそれがある。
そこで、本発明は、変速機を介して出力部材に連結された走行用モータと、走行用モータに電力を供給するバッテリとを備えた車両において、変速中のバッテリの上限入力電力の変動に伴う変速ショックを抑制することを目的とする。
本発明は、変速機を介して駆動輪と接続される出力部材に連結された走行用モータと、走行用モータに電力を供給するバッテリとを備えた車両であり、バッテリの状態に応じて設定されるバッテリの入力を許容する最大の電流値である許容入力電流値に基づきバッテリの上限入力電力を算出し、バッテリの入力を制御するコントローラを有する。ここで、変速機は、上限入力電力に応じた走行用モータの回生力によって、走行用モータの変速前回転数を変速後の目標回転数に低下させる変速制御を行う。
そして、コントローラは、変速前回転数が目標回転数に低下するまで、変速前の上限入力電力で制御し続けたときのバッテリの状態に基づいて、走行用モータが目標回転数になるときの予測上限入力電力を算出し、予測上限入力電力を変速中の上限入力電力としてバッテリの入力を制御する。
本発明によれば、変速中の上限入力電力の変動を予め予測し、走行用モータの回転数が変速後の目標回転数となるときの予測上限入力電力を、変速中の上限入力電力として設定する。このため、上限入力電力に応じた走行用モータの回生力によって、走行用モータの変速前回転数を変速後の目標回転数に低下させる変速機による変速制御中に、上限入力電力が変動しない。したがって、変速中の上限入力電力の変動による走行用モータの回転数合わせのズレを抑制でき、変速ショックを抑制することができる。
また、変速中の上限入力電力の変動を予め予測して変速中の上限入力電力を設定しているので、例えば、変速中に上限入力電力がより低くなったとき、変速機が低くなった上限入力電力に追従できずに、変動する前の上限入力電力に応じた回生電力が入力されること、言い換えれば、変速中に変動して低くなった上限入力電力を超える回生電力が入力されてしまうことが抑制できる。したがって、変速中のバッテリの上限入力電力を超える回生電力の入力が抑制され、バッテリを保護することができる。
電池システムを搭載したハイブリッド車両の変速機及び動力伝達系統を示す概略図である。 変速中の上限入力電力の変動と走行用モータの回転数の変化を示す図である。 上限入力電力を変速用上限入力電力に設定した場合の走行用モータの回転数の変化を示す図である。 車両の変速制御に伴う変速用上限入力電力の設定処理フローを示す図である。
以下、本発明の実施例について説明する。
(実施例1)
本発明の実施例1である電池システムを搭載したハイブリッド車両の変速機及び動力伝達系統について、図1を用いて説明する。
図1に示すように、ハイブリッド車100は、エンジン1、第1MG(Motor Generator)2、第2MG3、動力分配機構4、変速機5、及びバッテリ6が搭載される。
エンジン1の出力軸は、動力分配機構4に接続される。動力分配機構4は、変速機5の入力軸及び第1MG(発電用モータ)2の入力軸と連結される。変速機5の出力軸(出力部材)Pは、駆動輪7のディファレンシャルギア(差動装置)8に連結され、エンジン1の動力が動力分配機構4を介して駆動輪7に伝達される。また、変速機5の入力軸は、第2MG(走行用モータ)3の出力軸と連結されている。第2MG3の動力は、変速機5を介して駆動輪7に伝達されるようになっている。
動力分配機構4は、エンジン1が発生させる動力を2つの経路に分割し、変速機5を介して駆動輪7に伝達する第1経路と、エンジン1が発生させた動力を第1MG2に伝達して発電させる第2経路とを含む。動力分配機構4は、後述する車両制御装置30によって制御され、車両制御装置30は、エンジン1の駆動力を用いた走行制御やバッテリ6への充電制御等に応じて、第1及び第2経路それぞれに伝達される動力やその比率を制御する。
バッテリ6は、第2MG3に電力を供給する電源装置である。バッテリ6の直流電力は、インバータ9により交流電力に変換され、第2MG3に供給される。第2MG3は、三相同期モータや三相誘導モータなどの交流モータである。
インバータ9は、バッテリ6から出力された直流電力を交流電力に変換し、交流電力を第2MG3に出力する。第2MG3は、インバータ9から出力された交流電力を受けて、ハイブリッド車両100を走行させるための運動エネルギを生成する。第2MG3によって生成された運動エネルギは、変速機5を介して駆動輪7に伝達される。
車両が減速したり、停止するときなどのハイブリッド車100の制動時には、駆動輪7が変速機5を介して第2MG3を駆動させる。第2MG3は、ジェネレータ(発電機)として作動し、ハイブリッド車両100の制動時に発生する運動エネルギを電気エネルギ(交流電力)に変換する。
本実施例の第2MG3は、バッテリ6から供給される電力によって駆動する車両走行の駆動源であるとともに、制動エネルギを電力に変換する回生ブレーキとして作動する。第2MG3によって発電された電力(回生エネルギー)は、インバータ9を介してバッテリ6に蓄えられる。インバータ9は、第2MG3が生成した交流電力を直流電力に変換し、直流電力(回生電力)をバッテリ6に出力する。
なお、本実施例では、バッテリ6をインバータ9に接続しているが、これに限るものではない。具体的には、バッテリ6を昇圧回路に接続するとともに、昇圧回路をインバータ9に接続することができる。昇圧回路を用いることにより、バッテリ6の出力電圧を昇圧することができる。また、昇圧回路は、インバータ9からバッテリ6への出力電圧を降圧することができる。
第1MG2は、エンジン1の動力により回転駆動することにより発電し、インバータ9を介して発電した電力をバッテリ6に供給するジェネレータである。第1MG2は、第2MG3と同様に、三相同期モータや三相誘導モータなどの交流モータで構成できる。
第1MG2により発電された電力は、そのまま第2MG3を駆動させる電力として供給したり、バッテリ6に蓄えられる電力として供給することができる。例えば、第1MG2は、バッテリ6のSOC(State of Charge)やハイブリッド車両100の車両要求出力等に応じて制御され、第2MG3は、バッテリ6に蓄えられた電力、第1MG2により発電された電力のうちのいずれか一方又は両方の電力によって駆動制御されるようにすることができる。
エンジン1は、ガソリンエンジンやディーゼルエンジンなどの燃料を燃焼させて動力を出力する公知の内燃機関である。エンジン1には、エンジン1の回転数センサ41が設けられる。回転数センサ41は、エンジン1の回転数を検出して、検出されたエンジン1の回転数(又は回転数を示す信号)を、エンジン制御装置31に出力する。アクセルポジションセンサ42は、アクセル開度(アクセルペダルの踏み込み量)を検出して、車両制御装置30に出力する。
車速センサ43は、検出したハイブリッド車両100の速度を車両制御装置30に出力する。例えば、車速センサ43は、駆動輪7の回転数や第2MG3の回転数等から車両速度を算出・検出することができる。
エンジン制御装置31は、車両制御装置30からのエンジン制御信号に基づいてエンジン1を制御するエンジンECUである。エンジン制御装置31は、車両全体の制御を行うメインコントローラである車両制御装置30に接続されている。エンジン制御装置31は、回転数センサ41などの各種センサの検出値に基づいて、車両制御装置30によって定められた目標回転数及び目標トルクで動作するように、エンジン1の燃料噴射量や吸気する空気量、点火時期などを制御する。
車両全体の制御を行うメインコントローラである車両制御装置30は、ハイブリッド車両100全体で要求される車両要求出力、例えば、アクセルポジションセンサ42によって検出されるアクセルペダルの踏み込み量と、車速センサ43によって検出される車速に基づいて、駆動輪7に接続される駆動軸Pに出力する要求トルク(要求駆動力)を算出し、算出された要求トルクにエンジン1の出力制御及びバッテリ6の入出力制御を行う。
また、バッテリ制御装置33は、バッテリ6のSOCや劣化状態などを管理するとともに、バッテリ6の充放電動作を制御する。バッテリ6には、電圧センサ10A、電流センサ10B、及び温度センサ10Cが設けられ、各センサでの検出値Vb,Ib,Tbがバッテリ制御装置33に入力される。なお、エンジン制御装置31やバッテリ制御装置33、後述する変速機制御装置32は、1つの制御装置で構成することも可能である。
車両制御装置30は、運転状態に応じて駆動供給源を選択し、エンジン1及び第2MG3のうちの一方又は両方からの駆動力を用いたハイブリッド車両100の走行制御を遂行する。
例えば、エンジン1からの駆動力を使用せずに(エンジン1を停止した状態で)、第2MG3のみを駆動源としてハイブリッド車両100の走行制御(EV走行モード)を行うことができる。なお、第2MG3のみを駆動源とした走行制御の場合でも、エンジン1を駆動して第1MG2による発電制御を行うことができる。一方、車両制御装置30は、エンジン1のみ、もしくはエンジン1および第2MG3の両方を駆動源としてハイブリッド車両100の走行制御(HV走行モード)を行うことができる。
次に、本実施例の変速機5について説明する。変速機5は、例えば、一組のラビニョ型遊星歯車機構によって構成することができる。変速機5は、第1サンギヤ51と第2サンギヤ52とが設けられている。第1サンギヤ51にショートピニオン53が噛合し、かつショートピニオン53が軸長が長いロングピニオン54に噛合する。そして、ロングピニオン54が各サンギヤ51,52と同心円上に配置されたリングギヤ55に噛合している。
各ピニオン53,54は、キャリヤ56によって自転かつ公転自在に保持されている。また、第2サンギヤ52がロングピニオン54に噛合している。第1サンギヤ51とリングギヤ55とは、各ピニオン53,54と共にダブルピニオン型遊星歯車機構に相当する機構を構成している。第2サンギヤ52とリングギヤ55とは、ロングピニオン54と共にシングルピニオン型遊星歯車機構に相当する機構を構成している。
また、第1サンギヤ51を選択的に固定する第1ブレーキB1と、リングギヤ55を選択的に固定する第2ブレーキB2とが設けられている。ブレーキB1,B2は、摩擦力によって係合力を生じるいわゆる摩擦係合装置である。
第2MG3の出力軸は、第2サンギヤ52に連結され、キャリヤ56が変速機5の出力軸Pに連結されている。走行用モータである第2MG3は、変速機5を介して駆動輪7と接続される出力軸Pに連結されている。
本実施例の変速機5は、第2サンギヤ52がいわゆる入力要素であり、キャリヤ56が出力要素となっている。第1ブレーキB1をオンさせることにより変速比が1より大きい高速段が設定され、第1ブレーキB1をオフにして第2ブレーキB2をオンさせることにより、高速段より変速比の大きい低速段が設定されるように構成されている。この各変速段の間での変速は、車速やアクセル開度(若しくは、車両要求パワー)などの車両の走行状態に基づいて実行される。
より具体的には、変速段領域を予めマップ(変速線図)として定めておき、検出されたハイブリッド車両100の運転状態(車速やアクセル開度)に応じていずれかの変速段を設定するように制御することができる。このような変速制御は、変速機制御装置32によって行われる。
変速制御装置32は、車速やアクセル開度などの車両の走行状態に基づいて変速が必要であると判断したとき、変速機5に変速指示を出力する。変速機5は、例えば、低速段から高速段に変速する変速指示を受けた場合、図2に示すように、変速開始時刻t_0から実質的な変速を開始し、変速終了時刻t_hで変速を終了させるように、第2MG3の回転数R_pを変速後の目標回転数R_mに低下させる。
このとき、変速機5は、予め設定された変速所要時間で変速が完了するように、第2MG3の回転数を目標回転数R_mに、一定の回転数低下率(回転数低減レート)で変化させる。変速開始時刻t_0から変速終了時刻t_hまでの変速所要時間は、アクセル開度、変速段、車速、ブレーキB1,B2の油圧特性などをパラメータとして、予め設定された変速所要時間マップを用い、算出することができる。なお、変速後の目標回転数R_mは、モータ回転数センサ11によって検出される変速前の回転数R_pと変速後の変速比とに基づいて算出することができる。変速所要時間の算出は、変速制御装置32によって遂行される。
変速機5は、変速を開始してから変速所要時間内に、第2MG3の回生制御を通じて、第2MG3の変速前回転数R_pから目標回転数R_mに低下させるように制御する。具体的には、変速機5の入力軸を介して第2MG3の出力軸に伝達される動力を電力に変化させる回生ブレーキを生じさせ、第2MG3の出力軸に連結される変速機5の入力軸の回転数を、変速後の高速段の回転数まで変化させる。
変速機5は、変速開始時刻t_0から一定の回転数低下率で変速所要時間内に変速前回転数R_pから目標回転数R_mに低下させるように制御するが、このときの回転数低下率は、変速前のバッテリ6の上限入力電力に応じた回生充電可能な電力量に基づいて、決定することができる。つまり、上限入力電力を超えない範囲での回生充電量に基づく回生力に応じた回転数低下率(図2に示す回転数の傾き)で、変速所要時間内に変速前回転数R_pから目標回転数R_mに低下させるように制御する。
そして、変速機5は、変速開始時刻t_0から変速所要時間が経過した際に、高速段を設定する第1ブレーキB1をオンにし、低速段から高速段への変速を終了する。
このように、第2MG3の回転数を変速後の目標回転数に合わせるように変化させて変速を行うことで、変速前後での回転数差を小さくでき、回転数の変化に伴う第2MG3の慣性トルクが、変速機5の出力軸Pの駆動トルクに現れないようにすることができ、変速ショックを抑制することができる。
しかしながら、図2に示すように、変速中にバッテリ6の上限入力電力が低く制限されてしまうと、第2MG3の回生電力の入力が制限される。例えば、変速開始時刻t_0から所定時間経過した時刻t_1において、バッテリ6の上限入力電力Win_Maxが低くなると、第2MG3の回生電力の入力が制限されるので、変速機5は、時刻t1から第2MG3の回生力によって低下させる回転数低下率を、低く制限された上限入力電力Win_Maxに伴って変更する。図2の例では、時刻t_1よりも前の回転数低下率よりも小さい回転数低下率で、時刻t_1後の第2MG3の回生制御が行われる。
このため、変速開始時刻t_0から変速所要時間経過後の時刻t_hまでの期間において、変速途中の時刻t_1から回転数低下率が小さくなったことにより、第2MG3の回転数が目標回転数R_mまで低下せず、時刻t_hで変速を完了させると、変速前後での回転数差が大きくなり、変速ショックが生じてしまう。
一方、変速途中にバッテリ6の上限入力電力Win_Maxが低く制限された時刻t_1から、第2MG3の回生ブレーキでの回転数低下率の小さくなったことを補完するために、時刻t_1から第2MG3の回転数を低下させるための外力を別途作用させることで、時刻t_hまでに目標回転数R_mまで低下させるように構成することもできる。
例えば、ブレーキB1,B2の係合力を調整し、第2MG3の回生電力の入力が制限されて第2MG3の回生力によって低下させることができない回転数を補うように、第2MG3の出力軸に連結される変速機5の入力軸の回転数を低下させる制御を行うことができる。
しかしながら、ブレーキB1,B2のブレーキ性能は、油圧特性によって変化する。例えば、低温時に油圧特性が低下することから応答速度が低くなる。このため、時刻t_1から二点鎖線で示す回転数低下率(バッテリ6の上限入力電力が低く制限される前の回転数低下率)で第2MG3の回転数を低下させることができないことがある。
この場合、ブレーキB1,B2の油圧ブレーキに応答ズレが生じることで、時刻t_1から上限入力電力Win_Maxが低く制限されているのもかかわらず、上限入力電力Win_Maxを超える回生電力がバッテリ6に入力されてしまう。図2の例において、実線で示す回転数低下率と二点鎖線で示す回転数低下率との差分の回生電力が、ブレーキB1,B2の応答速度の低下により、低く制限された上限入力電力Win_Maxを超えて入力されてしまい、バッテリ6を保護することができない。
そこで、本実施例では、変速中の上限入力電力Win_Maxの変動を予め予測し、第2MG3の回転数が変速後の目標回転数R_mとなるときの予測上限入力電力Win_hを、変速中の上限入力電力として設定することで、変速制御中に上限入力電力が変動しないようにする。
図3は、バッテリ6の上限入力電力を変速用の予測上限入力電力Win_hに設定した場合の変速中の第2MG3の回転数の変化を示す図である。
上述のように、変速は、変速前の上限入力電力Win_Maxに応じた回生電力の受け入れを前提として、変速所要時間内に一定の回転数低下率で、第2MG3の回転数を目標回転数R_mに変化させる。このとき、本実施例では、変速所要時間における変速終了時刻t_hの時点で、上限入力電力Win_Maxがどのように変化しているかを予測し、予測された上限入力電力Win_hを前提として、変速所要時間及び回転数低下率を変更し、第2MG3の回転数を目標回転数R_mに変化させる。
上述のように、変速指示が入力されると変速所要時間が算出される。バッテリ制御装置33は、現在のバッテリ6の状態から把握される上限入力電力Win_Maxで入力を制御し続けたときに算出された変速所要時間における変速終了時刻t_hでのバッテリ6の状態を予めマップ等で予測する。そして、変速終了時刻t_hが経過する際の上限入力電力Win_hを算出する。
ここで、バッテリ6の上限入力電力の算出方法について説明する。バッテリ6の入力制御は、例えば、特許文献2に記載の手法で行うことができる。特許文献2に記載のように、バッテリ6として、リチウムイオン二次電池などの非水二次電池を用いることができる。この場合、リチウム金属の析出を抑制するために、許容入力電流値を設定し、バッテリ6の入力電流値(充電電流値)が許容入力電流値を超えないようにする。許容入力電流値とは、バッテリ6を充電するときに許容される最大の電流値である。
許容入力電流値Ilim[t]は、バッテリ6の状態(電流値Ib、電池温度TbおよびSOC)から、特許文献2の式(II)に基づいて算出することができる。なお、SOCとは、満充電容量に対する、現在の充電容量の割合を示すものであり、公知の手法で、例えば、電圧値Vbから求めることができる。
バッテリ制御装置33は、設定された許容入力電流値Ilim[t]を用い、特許文献2の式(IV)に基づいて、バッテリ6の入力を制御するための上限入力制限電力Win_Max[t]を算出(設定)することができる。バッテリ制御装置33は、算出された上限入力電力Win_Max[t]を超えないように、バッテリ6の入力を制御する。
そして、変速所要時間における変速終了時刻t_hでのバッテリ6の状態が把握できれば、特許文献2の式(II)及び式(IV)に基づいて、許容入力電流値Ilim[t_h]を算出することができ、変速終了時刻t_hが経過する際の上限入力電力Win_hを予測値として算出することができる。
上限入力電力Win_hを変速中の上限入力電力として設定すると、変速機制御装置32は、設定された上限入力電力Win_hを前提として、変速所要時間及び回転数低下率を変更し、第2MG3の回転数を目標回転数R_mに変化させる変速制御を行う。
変速機制御装置32は、例えば、上限入力電力Win_hが、現在のバッテリ6の状態から把握される上限入力電力Win_Maxよりも低い場合、上限入力電力Win_hに応じた第2MG3による回生力で回転数を低下させるように回転数低下率を小さくし、小さくされた回転数低下率に応じて変速所要時間を、変速開始時刻t_0から変速終了時刻t_h´までの時間に変更する。
このように構成することで、バッテリ6の上限入力電力に応じた第2MG3の回生力によって、第2MG3の変速前回転数R_pを変速後の目標回転数R_mに低下させる変速機5による変速制御中に、上限入力電力が変動しない。したがって、変速中の上限入力電力の変動による第2MG3の回転数合わせのズレを抑制でき、変速ショックを抑制することができる。
また、変速中の上限入力電力の変動を予め予測して変速中の上限入力電力Win_hを設定しているので、変速機5が変動した上限入力電力に追従できずに変動する前の上限入力電力Win_Maxに応じた回生電力が入力されること、言い換えれば、変速中に変動して低くなった上限入力電力Win_Maxを超える回生電力が入力されてしまうことが抑制できる。したがって、変速中のバッテリ6の上限入力電力を超える回生電力の入力が抑制され、バッテリ6を適切に保護することができる。なお、図3の例において、例えば、バッテリ6の状態に応じて上限入力電力Win_hよりもさらに小さく制限されるような場合(時刻t_h以降)、変速開始時刻t_0から変速終了時刻t_h´までの変速途中で、回転数低下率を小さく変動させるように制御することも可能である。
図4は、ハイブリッド車両100の変速制御に伴う変速用上限入力電力の設定処理フローを示す図である。
バッテリ制御装置33は、変速指示があったか否かを判別する(S101)。変速指示は、車両制御装置30から変速機制御装置32に入力される。本実施例では、バッテリ制御装置33も、変速中の上限入力電力を設定するため、車両制御装置30から出力される変速指示を把握する。
変速指示があった場合、変速機制御装置32によって算出される変速所要時間を取得する(S102)。このとき、変速機制御装置32は、変速前の上限入力電力Win_Maxに応じた回転数低下率及び当該回転数低下率での変速所要時間を算出する。なお、変速所要時間の算出処理は、バッテリ制御装置33が行うように構成してもよい。
次に、バッテリ制御装置33は、ステップS103からS106において、バッテリ6の電流値Ib、電池温度Tb、電圧値Vbを各センサを介して検出し(S103)、各検出値からバッテリ6のSOCを推定する(S104)。そして、許容入力電流値Ilim[t]及び上限入力電力Win_Maxを算出する(S105,S106)。
そして、バッテリ制御装置33は、現時点の上限入力電力Win_Maxで入力を制御し続けたときに、時刻t_hが経過する際の上限入力電力をWin_hとして算出する(S107)。バッテリ制御装置33は、現時点の上限入力電力Win_Maxで入力を制御し続けたときの時刻t_hにおけるバッテリ6の状態を予めマップ等で予測し、予測される時刻t_hにおけるバッテリ6の状態に基づいて、特許文献2の式(II)を用い、上限入力電力Win_hを算出する。
そして、バッテリ制御装置33は、算出された上限入力電力Win_hを変速中の上限入力電力として設定する(S108)。変速機制御装置32は、設定された変速中の上限入力電力Win_hに基づいて、回転数低下率及び変速所要時間を再度算出し、変更された変速所要時間内に低く制限された上限入力電力Win_hに応じた回転数低下率で目標回転数R_mまで第2MG3の回転数が変化するように、変速機5に変速指示を出す。
なお、図4の例において、変速中に上限入力電力Win_Maxが変動しない場合、ステップS107で算出される時刻t_hが経過する際の上限入力電力Win_hは、変速前の上限入力電力Win_Maxと同じ値となる。つまり、変速中の上限入力電力として変速前の上限入力電力Win_Maxが設定され、変速機5及び変速機制御装置32は、変速所要時間及び回転数低下率を変更することなく、ステップS102で取得又は算出される変速所要時間及び回転数低下率で、変速制御を行う。
このとき、図4において、バッテリ制御装置33は、ステップS107で算出される時刻t_hが経過する際の上限入力電力Win_hが、変速前の上限入力電力Win_Maxよりも小さいか否かを判別する処理を行うことができる。小さいと判別された場合に、変速機制御装置32が、設定された変速中の上限入力電力Win_hに基づいて、回転数低下率及び変速所要時間を再度算出するように構成することもできる。
なお、本実施例では、ハイブリッド車両100を一例に説明したが、エンジン1を備えない電気自動車にも適用可能である。
1:エンジン、2:第1MG、3:第2MG、4:動力分割機構、5:変速機、6:バッテリ、7:駆動輪、8:ディファレンシャルギア、9:インバータ、30:車両制御装置、31:エンジン制御装置、32:変速機制御装置、33:バッテリ制御装置

Claims (1)

  1. 変速機を介して駆動輪と接続される出力部材に連結された走行用モータと、前記走行用モータに電力を供給するバッテリとを備えた車両であって、
    前記バッテリの状態に応じて設定される前記バッテリの入力を許容する最大の電流値である許容入力電流値に基づき前記バッテリの上限入力電力を算出し、前記バッテリの入力を制御するコントローラを有し、
    前記変速機は、前記上限入力電力に応じた前記走行用モータの回生力によって、前記走行用モータの変速前回転数を変速後の目標回転数に低下させる変速制御を行い、
    前記コントローラは、
    前記変速前回転数が前記目標回転数に低下するまで、変速前の前記上限入力電力で制御し続けたときの前記バッテリの状態に基づいて、前記走行用モータが前記目標回転数になるときの予測上限入力電力を算出し、
    前記予測上限入力電力を変速中の前記上限入力電力として前記バッテリの入力を制御することを特徴とする車両。
JP2014031940A 2014-02-21 2014-02-21 車両 Pending JP2015159634A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014031940A JP2015159634A (ja) 2014-02-21 2014-02-21 車両

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014031940A JP2015159634A (ja) 2014-02-21 2014-02-21 車両

Publications (1)

Publication Number Publication Date
JP2015159634A true JP2015159634A (ja) 2015-09-03

Family

ID=54183235

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014031940A Pending JP2015159634A (ja) 2014-02-21 2014-02-21 車両

Country Status (1)

Country Link
JP (1) JP2015159634A (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105730435A (zh) * 2016-02-24 2016-07-06 中国第一汽车股份有限公司 一种动力电机辅助换挡控制系统和方法
CN112428885A (zh) * 2020-11-19 2021-03-02 潍柴动力股份有限公司 基于电流限值的混合动力控制方法及装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105730435A (zh) * 2016-02-24 2016-07-06 中国第一汽车股份有限公司 一种动力电机辅助换挡控制系统和方法
CN112428885A (zh) * 2020-11-19 2021-03-02 潍柴动力股份有限公司 基于电流限值的混合动力控制方法及装置

Similar Documents

Publication Publication Date Title
WO2013051104A1 (ja) 充電制御装置および充電制御方法
JP5664769B2 (ja) 車両および車両用制御方法
JPWO2013072991A1 (ja) 車両
JP5803507B2 (ja) ハイブリッド車両の制御装置およびハイブリッド車両
JP2010141997A (ja) 電動車両およびその制御方法
JP2013154720A (ja) ハイブリッド車両
JP2018114854A (ja) 車両の制御装置
JP2011097666A (ja) 自動車およびその制御方法
JP2012045996A (ja) ハイブリッド車両の発電制御装置
JP2015159634A (ja) 車両
JP2012051457A (ja) ハイブリッド車両の制御装置
JP4345765B2 (ja) 車両およびその制御方法
JP5691997B2 (ja) ハイブリッド自動車
JP2009303414A (ja) 車両及びその制御方法
JP4438815B2 (ja) 車両およびその制御方法
JP5074932B2 (ja) 車両および駆動装置並びにこれらの制御方法
JPWO2012104963A1 (ja) ハイブリッド車両
JP2009262866A (ja) ハイブリッド車およびその制御方法
JP6729221B2 (ja) ハイブリッド自動車
WO2012137301A1 (ja) 車両およびその制御方法
JP2013216117A (ja) 車両の走行可能距離算出装置
WO2011086657A1 (ja) ハイブリッド車両の制御装置および制御方法
JP2012153250A (ja) 車両の制御装置
JP2012244681A (ja) 電動車両
JP2012218577A (ja) ハイブリッド車