JP2013216117A - 車両の走行可能距離算出装置 - Google Patents

車両の走行可能距離算出装置 Download PDF

Info

Publication number
JP2013216117A
JP2013216117A JP2012085739A JP2012085739A JP2013216117A JP 2013216117 A JP2013216117 A JP 2013216117A JP 2012085739 A JP2012085739 A JP 2012085739A JP 2012085739 A JP2012085739 A JP 2012085739A JP 2013216117 A JP2013216117 A JP 2013216117A
Authority
JP
Japan
Prior art keywords
vehicle
travel
running
resistance
engine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012085739A
Other languages
English (en)
Inventor
Makoto Hotta
信 堀田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2012085739A priority Critical patent/JP2013216117A/ja
Publication of JP2013216117A publication Critical patent/JP2013216117A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles

Landscapes

  • Control Of Vehicle Engines Or Engines For Specific Uses (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Hybrid Electric Vehicles (AREA)

Abstract

【課題】より精度良く走行可能距離を算出する。
【解決手段】エンジンの暖機が終了していて、且つ、車速Vが略一定の定常走行中である条件と勾配センサからの勾配θが0%である条件と窓が閉められている条件との3つの条件が成立しているときには(ステップS100〜S120)、定常走行時車速V1〜V3における定常走行時走行抵抗Rtr1〜Rtr3と定常走行時車速V1〜V3を用いて基準走行抵抗曲線を設定する(ステップS130,S140)。これにより精度良く走行抵抗を算出することができ、より精度良く走行可能距離を算出することができる。
【選択図】図5

Description

本発明は、車両の走行可能距離算出装置に関し、詳しくは、走行抵抗と車速との関係である基準走行抵抗と車速とに基づいて走行抵抗を算出し、算出した走行抵抗と車速とに基づいて車両の走行用のエネルギー源の単位距離あたり消費量であるエネルギー消費率を算出し、算出したエネルギー消費率と車両に搭載されているエネルギー源の残量とに基づいて走行用エネルギー源からのエネルギーで車両が走行可能な距離である走行可能距離を算出する走行可能距離算出手段を備える車両の走行可能距離算出装置に関する。
従来、この種の車両の走行可能距離算出装置としては、商用電源で充電可能な高圧バッテリを搭載した電気自動車において、実燃費データを用いて残走行距離を算出するものが提案されている(例えば、特許文献1参照)。この装置では、車両が長時間停車している状態で商用電源により高圧バッテリが比較的長時間充電されて道路のラッシュ状況などの道路事情が変化していることが推定される場合には、実燃費データを用いずに予め定められた値である基準燃費データを用いて残走行距離を算出することにより、高圧バッテリの充電時間に拘わらず実燃費データを用いて残走行距離を算出した場合に生じる不都合、例えば、前日のラッシュ等において悪い実燃費データを記憶した翌朝に燃費の良い運転を開始した場合に運転開始直後は少ない残走行距離が運転を開始してしばらく経つと急に増加するような不都合を解消することができるとしている。
特開2011−172407号公報
しかしながら、上述の車両の走行可能距離算出装置では、予め定められた値である基準燃費データを用いているため、車両の走行状態によっては実際の燃費が基準燃費データからかけ離れた値になり、車両が走行可能な距離を精度良く算出できない場合がある。
本発明の車両の走行可能距離算出装置は、車両が走行可能な距離をより精度良く算出することを主目的とする。
本発明の車両の走行可能距離算出装置は、上述の主目的を達成するために以下の手段を採った。
本発明の車両の走行可能距離算出装置は、
走行抵抗と車速との関係である基準走行抵抗と車速とに基づいて走行抵抗を算出し、前記算出した走行抵抗と前記車速とに基づいて車両の走行用のエネルギー源の単位距離あたり消費量であるエネルギー消費率を算出し、前記算出したエネルギー消費率と前記車両に搭載されているエネルギー源の残量とに基づいて前記走行用エネルギー源からのエネルギーで前記車両が走行可能な距離である走行可能距離を算出する走行可能距離算出手段を備える車両の走行可能距離算出装置において、
前記走行可能距離算出手段は、複数の車速について前記車速が略一定の定常走行時における走行に要求される要求駆動トルクを用いて定常走行時走行抵抗を設定し、前記複数の車速と各車速における前記設定した定常走行時走行抵抗を用いて前記基準走行抵抗を設定し、前記設定した基準走行抵抗を用いて前記走行抵抗を算出する手段である
ことを特徴とする。
この本発明の車両の走行可能距離算出装置では、走行抵抗と車速との関係である基準走行抵抗と車速に基づいて走行抵抗を算出し、算出した走行抵抗と車速とに基づいて車両の走行用のエネルギー源の単位距離あたり消費量であるエネルギー消費率を算出し、算出したエネルギー消費率と車両に搭載されているエネルギー源の残量とに基づいて走行用エネルギー源からのエネルギーで車両が走行可能な距離である走行可能距離を算出する。こうした走行可能距離の算出において、複数の車速について車速が略一定の定常走行時における走行に要求される要求駆動トルクを用いて定常走行時走行抵抗を設定し、複数の車速と各車速における設定した定常走行時走行抵抗を用いて基準走行抵抗を設定し、設定した基準走行抵抗を用いて走行抵抗を算出する。複数の車速における定常走行時走行抵抗を基準走行抵抗として設定するから、より精度良く走行抵抗を算出することができ、より精度良く走行可能距離を算出することができる。
こうした本発明の車両の走行可能距離算出装置において、前記基準走行抵抗は、車速の二次方程式で表される曲線として設定され、前記複数の車速は、互いに毎時10キロメール以上の間隔をもって離れた少なくとも3つの車速である、ものとすることもできる。こうすれば、より精度よく基準走行抵抗を算出することができ、より精度良く走行可能距離を算出することができる。
また、本発明の車両の走行可能距離算出装置において、前記複数の車速は、前記定常走行時であって、路面の勾配が値0である路面勾配条件と窓を閉めた状態である窓開閉条件と前記複数の車速が予め定められた所定時間内の車速である車速条件との3つの条件のうち1つの条件が成立するときの車速である、ものとすることもできる。こうすれば、より
より精度良く走行可能距離を算出することができ、より精度良く走行抵抗を算出することができる。
さらに、本発明の車両の走行可能距離算出装置において、前記車両は、燃料の供給を受けて運転されるエンジンからの動力とモータからの動力とにより走行可能なハイブリッド自動車であり、前記エネルギー源は、前記燃料であるものとしたり、前記車両は、バッテリからの電力を用いて駆動するモータからの動力により走行可能な電気自動車であり、前記エネルギー源は、前記バッテリに蓄電されている電力である、ものとすることもできる。
本発明の一実施例としてのハイブリッド自動車20の構成の概略を示す構成図である。 基準走行抵抗曲線の一例を示す説明図である。 車速Vとシステム効率Esとの関係としてのシステム効率曲線の一例を示す説明図である。 燃費曲線の一例を示す説明図である。 走行可能距離算出ルーチンの一例を示すフローチャートである。 変形例のハイブリッド自動車120の構成の概略を示す構成図である。 変形例のハイブリッド自動車220の構成の概略を示す構成図である。
次に、本発明を実施するための形態を実施例を用いて説明する。
図1は、本発明の一実施例としてのハイブリッド自動車20の構成の概略を示す構成図である。実施例のハイブリッド自動車20は、図示するように、ガソリンや軽油などを燃料として動力を出力するエンジン22と、エンジン22を駆動制御するエンジン用電子制御ユニット(以下、エンジンECUという)24と、エンジン22のクランクシャフト26にキャリアが接続されると共に駆動輪38a,38bにデファレンシャルギヤ37を介して連結された駆動軸36にリングギヤが接続されたプラネタリギヤ30と、例えば同期発電電動機として構成されて回転子がプラネタリギヤ30のサンギヤに接続されたモータMG1と、例えば同期発電電動機として構成されて回転子が駆動軸36に接続されたモータMG2と、モータMG1,MG2を駆動するためのインバータ41,42と、インバータ41,42の図示しないスイッチング素子をスイッチング制御することによってモータMG1,MG2を駆動制御するモータ用電子制御ユニット(以下、モータECUという)40と、例えばリチウムイオン二次電池として構成されてインバータ41,42を介してモータMG1,MG2と電力をやりとりするバッテリ50と、バッテリ50を管理するバッテリ用電子制御ユニット(以下、バッテリECUという)52と、車両全体を制御するハイブリッド用電子制御ユニット(以下、HVECUという)70と、を備える。
エンジンECU24は、図示しないが、CPUを中心とするマイクロプロセッサとして構成されており、CPUの他に、処理プログラムを記憶するROMやデータを一時的に記憶するRAM,入出力ポート,通信ポートを備える。エンジンECU24には、エンジン22の状態を検出する種々のセンサからの信号、例えば、エンジン22の冷却水の温度を検出する水温センサ22aからの冷却水温Twなどが入力ポートを介して入力されている。また、エンジンECU24からは、エンジン22を駆動するための種々の制御信号が出力ポートを介して出力されている。エンジンECU24は、HVECU70と通信しており、HVECU70からの制御信号によりエンジン22を運転制御すると共に必要に応じてエンジン22の運転状態に関するデータを出力する。
HVECU70は、図示しないが、CPUを中心とするマイクロプロセッサとして構成されており、CPUの他に、処理プログラムを記憶するROMやデータを一時的に記憶するRAM,入出力ポート,通信ポートを備える。HVECU70には、イグニッションスイッチ80からのイグニッション信号やシフトレバー81の操作位置を検出するシフトポジションセンサ82からのシフトポジションSP,アクセルペダル83の踏み込み量を検出するアクセルペダルポジションセンサ84からのアクセル開度Acc,ブレーキペダル85の踏み込み量を検出するブレーキペダルポジションセンサ86からのブレーキペダルポジションBP,車速センサ88からの車速V,路面の勾配を検出する勾配センサ89からの勾配θなどが入力ポートを介して入力されている。HVECU70は、前述したように、エンジンECU24やモータECU40,バッテリECU52と通信ポートを介して接続されており、エンジンECU24やモータECU40,バッテリECU52と各種制御信号やデータのやりとりを行なっている。
こうして構成された実施例のハイブリッド自動車20では、運転者によるアクセルペダルの踏み込み量に対応するアクセル開度Accと車速Vとに基づいて駆動軸36に出力すべき要求トルクTr*を計算し、この要求トルクTr*に対応する要求動力が駆動軸36に出力されるように、エンジン22とモータMG1とモータMG2とが運転制御される。エンジン22とモータMG1とモータMG2との運転制御としては、要求動力に見合う動力がエンジン22から出力されるようにエンジン22を運転制御すると共にエンジン22から出力される動力のすべてがプラネタリギヤ30とモータMG1とモータMG2とによってトルク変換されて駆動軸36に出力されるようモータMG1およびモータMG2を駆動制御するトルク変換運転モードや、要求動力とバッテリ50の充放電に必要な電力との和に見合う動力がエンジン22から出力されるようにエンジン22を運転制御すると共にバッテリ50の充放電を伴ってエンジン22から出力される動力の全部またはその一部がプラネタリギヤ30とモータMG1とモータMG2とによるトルク変換を伴って要求動力が駆動軸36に出力されるようモータMG1およびモータMG2を駆動制御する充放電運転モード,エンジン22の運転を停止してモータMG2からの要求動力に見合う動力を駆動軸36に出力するよう運転制御するモータ運転モードなどがある。なお、トルク変換運転モードと充放電運転モードとは、いずれもエンジン22の運転を伴って要求動力が駆動軸36に出力されるようエンジン22とモータMG1とモータMG2とを制御するモードであり、実質的な制御における差異はないため、以下、両者を合わせてエンジン運転モードという。
エンジン運転モードでは、HVECU70は、アクセルペダルポジションセンサ84からのアクセル開度Accと車速センサ88からの車速Vとに基づいて駆動軸36に出力すべき要求トルクTr*を設定し、設定した要求トルクTr*に駆動軸36の回転数Nr(例えば、モータMG2の回転数Nm2や車速Vに換算係数を乗じて得られる回転数)を乗じて走行に要求される走行用パワーPdrv*を計算し、計算した走行用パワーPdrv*からバッテリ50の充放電要求パワーPb*(バッテリ50から放電するときが正の値)を減じてエンジン22から出力すべきパワーとしての要求パワーPe*を設定する。そして、要求パワーPe*を効率よくエンジン22から出力することができるエンジン22の回転数NeとトルクTeとの関係としての動作ライン(例えば燃費最適動作ライン)を用いてエンジン22の目標回転数Ne*と目標トルクTe*とを設定し、バッテリ50の入出力制限Win,Woutの範囲内で、エンジン22の回転数Neが目標回転数Ne*となるようにするための回転数フィードバック制御によってモータMG1から出力すべきトルクとしてのトルク指令Tm1*を設定すると共にモータMG1をトルク指令Tm1*で駆動したときにプラネタリギヤ30を介して駆動軸36に作用するトルクを要求トルクTr*から減じてモータMG2のトルク指令Tm2*を設定し、設定した目標回転数Ne*と目標トルクTe*とについてはエンジンECU24に送信し、トルク指令Tm1*,Tm2*についてはモータECU40に送信する。目標回転数Ne*と目標トルクTe*とを受信したエンジンECU24は、目標回転数Ne*と目標トルクTe*とによってエンジン22が運転されるようエンジン22の吸入空気量制御や燃料噴射制御,点火制御などを行ない、トルク指令Tm1*,Tm2*を受信したモータECU40は、モータMG1,MG2がトルク指令Tm1*,Tm2*で駆動されるようインバータ41,42のスイッチング素子のスイッチング制御を行なう。こうした制御により、エンジン22を効率よく運転しながらバッテリ50の入出力制限Win,Woutの範囲内で要求トルクTr*を駆動軸36に出力して走行することができる。このエンジン運転モードでは、エンジン22の要求パワーPe*がエンジン22を運転停止した方がよい要求パワーPe*の範囲の上限として定められた停止用閾値Pstop以下に至ったときなどに、エンジン22の停止条件が成立したと判定して、エンジン22の運転を停止してモータ運転モードに移行する。
実施例のハイブリッド自動車20では、基本的には、少なくとも窓開けによる抵抗および路面勾配による抵抗を除く空気抵抗やころがり抵抗などを含む走行抵抗Rtrと車速Vとの関係としての基準走行抵抗曲線と車速Vとを用いて走行抵抗Rtrを設定する。図2は、基準走行抵抗曲線の一例を示す説明図である。基準走行抵抗曲線は、図示するように、次式(1)の車速の二次方程式で表される曲線として設定されている。ここで、a1,b1,c1は、二次方程式の係数である。こうして走行抵抗Rtrを設定すると、設定した走行抵抗Rtrにおける車速Vと走行距離1km当たりの燃料の消費量としての燃費SFCとの関係としての予め定められた燃費曲線を用いて、設定した走行抵抗Rtrと車速Vとに対応する燃費SFCを求め、燃料タンクに貯蔵されている燃料の残量を燃費SFCで割ることによりハイブリッド自動車20が燃料タンクに貯蔵されている燃料を用いて走行可能な距離としての走行可能距離Drを算出する。ここで、燃費曲線は、走行抵抗と車速とにより定められる車両全体のシステム効率Esを用いて設定されるものとする。図3は、走行抵抗Rtrが一定値(例えば、値Rtr1のとき)であるときの車速Vとシステム効率Esとの関係としてのシステム効率曲線の一例を示す説明図であり、図4は、走行抵抗Rtrが一定値(例えば、値Rtr1のとき)であるときの燃費曲線の一例を示す説明図である。こうした処理により、走行可能距離Drを算出することができる。
Rtr=a1・V2+b1・V+c1 ・・・(1)
ところで、実際の走行抵抗は、車速V以外にも、天候の変化や路面の変化、タイヤ交換、空力パーツの交換、窓あけ、駆動輪38a,38bのタイヤの空気圧の変化など様々な要因により変化する。したがって、こうした要因により車速Vに対応する走行抵抗が実際は変化しているにも拘わらず、同じ基準走行抵抗曲線を用いて走行抵抗Rtrを設定すると、設定した走行抵抗Rtrと実際の走行抵抗とのズレが大きくなり、精度良く走行可能距離Drを算出することができなくなる。このため、実施例のハイブリッド自動車20では、図5に例示した走行可能距離算出ルーチンにより走行可能距離Drを設定する。この処理は、エンジン運転モードによりエンジン22やモータMG1,MG2が制御されている最中にHVECU70により実行される。
走行可能距離算出ルーチンでは、最初に、エンジン22の冷却水温Twに基づいてエンジン22の暖機が終了しているか否かを判定する(ステップS100)。エンジン22の暖機が終了しているときには、エンジン22が安定して運転されている状態にあると判断して、さらに、車速Vが一定の定常走行中である条件と勾配センサ89からの勾配θが0%である条件と図示しないセンサなどにより検出された窓の状態が窓が閉められている状態である条件との3つの条件が成立しているか否か(ステップS110)を調べる。
ステップS110の3つの条件が成立しているときには、エンジン22やモータMG1,MG2による車両の駆動力と走行抵抗とが釣り合っているため一定の速度で走行していると判断してこのときの車速V(ここでは、定常走行時車速V1、例えば40km毎時であるものとする)をRAMに記憶すると共に設定されている要求トルクTr*についてデファレンシャルギア37のギヤ比や駆動輪38a,38b,図示しない従動輪の半径などを考慮して換算させる車両の駆動力を定常走行時走行抵抗Rtr1としてRAMに記憶する(ステップS120)。
こうして定常走行時車速V1,定常走行時走行抵抗Rtr1を記憶すると、定常走行時車速V1から10km/h以上間隔が離れた2つの定常走行時車速V2,V3(20km毎時、30km毎時など)での定常走行時走行抵抗Rtr2,Rtr3がRAMに記憶されるまで、ステップS110〜S120の処理を繰り返す(ステップS130)。こうして3つの定常走行時車速V1〜V3における定常走行時走行抵抗Rtr1〜Rtr3を設定したら、定常走行時車速V1〜V3,定常走行時走行抵抗Rtr1〜Rtr3を下記の式(2)に代入した3つの方程式より、式(2)における係数a2,b2,c2を求め、求めた係数を用いた二次方程式で表される曲線を基準走行抵抗曲線に設定して(ステップS140)、本ルーチンを終了する。このように、定常走行時走行抵抗Rtr1〜Rtr3を用いて基準走行抵抗曲線を設定することにより、より精度良く走行抵抗を算出することができ、より精度良く走行可能距離を算出することができる。
Rtr=a2・V2+b2・V+c2 ・・・(2)
なお、エンジン22の暖機が終了していなかったり、ステップS110の3つの条件のうちのいずれかが成立していないときには(ステップS100,S110)、エンジン22が安定して運転されている状態ではないと判断して、エンジン22の暖機が終了したり、ステップS110の3つの条件の全てが成立するまで待つものとした。
以上説明した、実施例のハイブリッド自動車20によれば、定常走行時車速V1〜V3での定常走行時走行抵抗Rtr1〜Rtr3と定常走行時車速V1〜V3とを用いて基準走行抵抗曲線を設定することにより、より精度良く走行抵抗を算出することができ、より精度良く走行可能距離を算出することができる。
実施例のハイブリッド自動車20では、3つの定常走行時車速V1〜V3での定常走行時走行抵抗Rtr1〜Rtr3を用いて基準走行抵抗曲線を設定するものとしたが、複数の定常走行時車速における定常走行時走行抵抗を用いて基準走行抵抗曲線を設定すればよいから、四つ以上の定常走行時車速における定常走行時走行抵抗を用いて基準走行抵抗曲線を設定するものとしてもよい。
実施例のハイブリッド自動車20では、互いに10km/h以上離れた3つの定常走行時車速V1〜V3での定常走行時走行抵抗Rtr1〜Rtr3を用いて基準走行抵抗曲線を設定するものとしたが、定常走行時車速V1〜V3は互いに異なればよく、定常走行時車速V1〜V3を互いに10km/h未満離れた速度にしてもよい。
実施例のハイブリッド自動車20では、ステップS110の処理で、車速Vが略一定の定常走行中である条件と勾配センサ89からの勾配θが0%である条件と窓が閉められている条件との3つの条件が成立しているか否かを調べるものとしたが、車速Vが略一定の定常走行中である条件が成立していればよく、勾配センサ89からの勾配θが0%である条件と窓が閉められている条件とのいずれかの条件が定常走行中である条件と共に成立しているものとしてもよいし、車速Vが略一定の定常走行中である条件のみが成立しているものとしてもよい。
実施例のハイブリッド自動車20では、ステップS100の処理でエンジン22の暖機が終了したか否かを判定するものとしたが、こうした判定を行わないものとしてもよい。
実施例のハイブリッド自動車20では、エンジン22からの動力をプラネタリギヤ30を介して駆動輪38a,38bに接続された駆動軸36に出力すると共にモータMG2からの動力を駆動軸36に出力するものとしたが、図6の変形例のハイブリッド自動車120に例示するように、駆動輪38a,38bに接続された駆動軸36に変速機130を介してモータMGを取り付け、モータMGの回転軸にクラッチ129を介してエンジン22を接続する構成とし、エンジン22からの動力をモータMGの回転軸と変速機130とを介して駆動軸に出力すると共にモータMGからの動力を変速機130を介して駆動軸に出力するものとしてもよい。あるいは、図7の変形例の電気自動車220に例示するように、エンジンを備えずに、モータMGからの動力を変速機230を介して駆動輪38a,38bに接続された駆動軸に出力するものとしてもよい。変形例の電気自動車220の場合には、単位走行距離当たりにバッテリ50に蓄電されている電力が消費される電力を燃費に換算するものとすればよい。即ち、本発明を如何なるタイプのハイブリッド自動車や電気自動車に適用してもよい。
実施例の主要な要素と課題を解決するための手段の欄に記載した発明の主要な要素との対応関係について説明する。実施例では、HVECU70が「走行可能距離算出手段」に相当する。
なお、実施例の主要な要素と課題を解決するための手段の欄に記載した発明の主要な要素との対応関係は、実施例が課題を解決するための手段の欄に記載した発明を実施するための形態を具体的に説明するための一例であることから、課題を解決するための手段の欄に記載した発明の要素を限定するものではない。即ち、課題を解決するための手段の欄に記載した発明についての解釈はその欄の記載に基づいて行なわれるべきものであり、実施例は課題を解決するための手段の欄に記載した発明の具体的な一例に過ぎないものである。
以上、本発明を実施するための形態について実施例を用いて説明したが、本発明はこうした実施例に何等限定されるものではなく、本発明の要旨を逸脱しない範囲内において、種々なる形態で実施し得ることは勿論である。
本発明は、車両の製造産業などに利用可能である。
20,120 ハイブリッド自動車、22 エンジン、22a 水温センサ、24 エンジン用電子制御ユニット(エンジンECU)、26 クランクシャフト、30 プラネタリギヤ、36 駆動軸、37 デファレンシャルギヤ、38a,38b 駆動輪、39a,39b 車輪、40 モータ用電子制御ユニット(モータECU)、41,42 インバータ、43,44 回転位置検出センサ、50 バッテリ、51 温度センサ、52 バッテリ用電子制御ユニット(バッテリECU)、70 ハイブリッド用電子制御ユニット(HVECU)、80 イグニッションスイッチ、81 シフトレバー、82 シフトポジションセンサ、83 アクセルペダル、84 アクセルペダルポジションセンサ、85 ブレーキペダル、86 ブレーキペダルポジションセンサ、88 車速センサ、89 勾配センサ、129 クラッチ、130 変速機、220 電気自動車、MG,MG1,MG2 モータ。

Claims (2)

  1. 走行抵抗と車速との関係である基準走行抵抗と車速とに基づいて走行抵抗を算出し、前記算出した走行抵抗と前記車速とに基づいて車両の走行用のエネルギー源の単位距離あたり消費量であるエネルギー消費率を算出し、前記算出したエネルギー消費率と前記車両に搭載されているエネルギー源の残量とに基づいて前記走行用エネルギー源からのエネルギーで前記車両が走行可能な距離である走行可能距離を算出する走行可能距離算出手段を備える車両の走行可能距離算出装置において、
    前記走行可能距離算出手段は、複数の車速について前記車速が略一定の定常走行時における走行に要求される要求駆動トルクを用いて定常走行時走行抵抗を設定し、前記複数の車速と各車速における前記設定した定常走行時走行抵抗を用いて前記基準走行抵抗を設定し、前記設定した基準走行抵抗を用いて前記走行抵抗を算出する手段である
    車両の走行可能距離算出装置。
  2. 請求項1記載の車両の走行可能距離算出装置であって、
    前記基準走行抵抗は、車速の二次方程式で表される曲線として設定され、
    前記複数の車速は、互いに毎時10キロメール以上の間隔をもって離れた少なくとも3つの車速である、
    車両の走行可能距離算出装置。
JP2012085739A 2012-04-04 2012-04-04 車両の走行可能距離算出装置 Pending JP2013216117A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012085739A JP2013216117A (ja) 2012-04-04 2012-04-04 車両の走行可能距離算出装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012085739A JP2013216117A (ja) 2012-04-04 2012-04-04 車両の走行可能距離算出装置

Publications (1)

Publication Number Publication Date
JP2013216117A true JP2013216117A (ja) 2013-10-24

Family

ID=49588815

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012085739A Pending JP2013216117A (ja) 2012-04-04 2012-04-04 車両の走行可能距離算出装置

Country Status (1)

Country Link
JP (1) JP2013216117A (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015157556A (ja) * 2014-02-24 2015-09-03 トヨタ自動車株式会社 走行情報生成装置、走行情報生成方法、及び走行支援装置
JP2016223926A (ja) * 2015-06-01 2016-12-28 公益財団法人鉄道総合技術研究所 プログラム及び走行抵抗曲線算出装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015157556A (ja) * 2014-02-24 2015-09-03 トヨタ自動車株式会社 走行情報生成装置、走行情報生成方法、及び走行支援装置
JP2016223926A (ja) * 2015-06-01 2016-12-28 公益財団法人鉄道総合技術研究所 プログラム及び走行抵抗曲線算出装置

Similar Documents

Publication Publication Date Title
KR101889648B1 (ko) 하이브리드 차량의 제어 장치, 하이브리드 차량 및 하이브리드 차량의 제어 방법
JP6090273B2 (ja) ハイブリッド自動車
JP4229105B2 (ja) ハイブリッド車およびその制御方法
JP5200924B2 (ja) ハイブリッド車およびその制御方法
JP2013220682A (ja) ハイブリッド車
JP5391831B2 (ja) 駆動装置およびこれを搭載する自動車並びに異常判定方法
JP5895353B2 (ja) ハイブリッド車
JP5751192B2 (ja) ハイブリッド自動車
US10035501B2 (en) Hybrid car
JP7024456B2 (ja) ハイブリッド自動車
JP6252320B2 (ja) アイドル学習制御装置
JP4345765B2 (ja) 車両およびその制御方法
CN107719357B (zh) 混合动力汽车
JP2016132263A (ja) ハイブリッド自動車
JP2013216117A (ja) 車両の走行可能距離算出装置
JP5691997B2 (ja) ハイブリッド自動車
JP5810879B2 (ja) ハイブリッド自動車
JP6720654B2 (ja) クラッチの耐久性判定システム、車両及びクラッチの耐久性判定方法
JP2014083853A (ja) ハイブリッド車
JP2012066635A (ja) ハイブリッド自動車
JP7013837B2 (ja) ハイブリッド車両
JP2011240757A (ja) ハイブリッド自動車
JP2009137384A (ja) 車両および駆動装置並びに車両の制御方法
JP6769147B2 (ja) ハイブリッド自動車
JP6070497B2 (ja) ハイブリッド自動車の制御装置