JP2015134353A - アンモニアガス浄化用触媒 - Google Patents

アンモニアガス浄化用触媒 Download PDF

Info

Publication number
JP2015134353A
JP2015134353A JP2015040589A JP2015040589A JP2015134353A JP 2015134353 A JP2015134353 A JP 2015134353A JP 2015040589 A JP2015040589 A JP 2015040589A JP 2015040589 A JP2015040589 A JP 2015040589A JP 2015134353 A JP2015134353 A JP 2015134353A
Authority
JP
Japan
Prior art keywords
catalyst
ammonia gas
selectivity
base material
porous material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015040589A
Other languages
English (en)
Other versions
JP6131281B2 (ja
Inventor
輝夫 田中
Teruo Tanaka
輝夫 田中
井上 正志
Masashi Inoue
正志 井上
義晃 中▲崎▼
Yoshiteru Nakasaki
義晃 中▲崎▼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NANO CUBE JAPAN CO Ltd
Chugoku Electric Power Co Inc
Original Assignee
NANO CUBE JAPAN CO Ltd
Chugoku Electric Power Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NANO CUBE JAPAN CO Ltd, Chugoku Electric Power Co Inc filed Critical NANO CUBE JAPAN CO Ltd
Priority to JP2015040589A priority Critical patent/JP6131281B2/ja
Publication of JP2015134353A publication Critical patent/JP2015134353A/ja
Application granted granted Critical
Publication of JP6131281B2 publication Critical patent/JP6131281B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Catalysts (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)

Abstract

【課題】優れたアンモニアガスの浄化性能を有し、副生成物の生成量を十分に抑制することが可能なアンモニアガス浄化用触媒を提供する。
【解決手段】本発明は、基材と、基材の表面に担持される多孔質物質と、多孔質物質に保持される触媒成分と、を備えたアンモニアガス浄化用触媒であって、基材は、三次元的に交差、合流もしくは分岐する多数の微細流路を有するものであり、且つ、触媒成分は、Pt−CuO又はPdである。また、多孔質物質は、酸化アルミニウム(Al23)である。
【選択図】図1

Description

本発明は、アンモニアガス浄化用触媒に関する。
火力発電所などから排出される排ガスには、環境汚染の原因となるアンモニアガスが含まれている。そこで、従来より、アンモニアガスを浄化するための装置の開発が行われており、アンモニア浄化用触媒を用いた装置(例えば、図16の「アンモニアガス処理装置16」参照)が知られている。
これらの装置に用いられるアンモニアガス浄化用触媒(例えば、図17の「触媒層17」参照)は、一般的に、基材と、基材の表面に担持される多孔質物質と、多孔質物質に保持される触媒成分と、を備えており、その触媒作用によってアンモニアガスを浄化する性能を有する(例えば、特許文献1参照)。
特開2004−105787号公報
ところで、アンモニアガスは、反応式(1)に示す通り、酸素と反応して浄化される。
4NH3+3O2→2N2+6H2O・・・反応式(1)
しかしながら、従来のアンモニアガス浄化用触媒では、触媒性能の限界から、高いNH3転換率を得ることが困難であり、アンモニアガスを十分に浄化することができなかった。
また、反応式(1)に示される反応においては、副生成物として、N2O、NOxなどが生成してしまう。これらの副生成物は、高温下でその生成量が増加する傾向にあり、しかも、反応式(1)に示される反応は、発熱反応である。そのため、従来のアンモニアガス浄化用触媒では、高いN2選択率(すなわち、低いN2O選択率、低いNOx選択率)を得ることが困難であり、副生成物の生成量を十分に抑制することができなかった。
そこで、本発明は、優れたアンモニアガスの浄化性能を有し、副生成物の生成量を十分に抑制することが可能なアンモニアガス浄化用触媒を提供することを目的とする。
上記課題を解決するために、本発明は、基材と、基材の表面に担持される多孔質物質と、多孔質物質に保持される触媒成分と、を備えたアンモニアガス浄化用触媒であって、前記基材は、三次元的に交差、合流もしくは分岐する多数の微細流路を有するものであり、且つ、前記触媒成分は、Pt−CuO又はPdであることを特徴とする。
また、本発明は、基材と、基材の表面に担持される多孔質物質と、多孔質物質に保持される触媒成分と、を備えたアンモニアガス浄化用触媒であって、前記基材は、三次元的に交差、合流もしくは分岐する多数の微細流路を有するものであり、且つ、前記触媒成分は、Pt−CuO−Clであることを特徴とする。
また、本発明において、前記微細流路の孔径が30μm〜500μmであることを特徴とする。
また、本発明において、前記多孔質物質は、酸化アルミニウム(Al23)であることを特徴とする。
本発明によれば、優れたアンモニアガスの浄化性能を有し、副生成物の生成量を十分に抑制することが可能なアンモニアガス浄化用触媒を提供することができる。
本発明の実施形態に係るアンモニアガス浄化用触媒を示す図である。 実施例1において、Pt−CuO−Al23触媒についてのNH3転換率及びN2選択率を示すグラフである。 実施例1において、Pd−Al23触媒についてのNH3転換率及びN2選択率を示すグラフである。 実施例2の試験結果を示すグラフである。 実施例3の試験結果を示すグラフである。 実施例4におけるNH3転換率を示すグラフである。 実施例4におけるN2O選択率及びNOx選択率を示すグラフである。 実施例5におけるNH3転換率を示すグラフである。 実施例5におけるN2O選択率及びNOx選択率を示すグラフである。 実施例6におけるN2O選択率を示すグラフである。 実施例6におけるNOx選択率を示すグラフである。 実施例7におけるNH3転換率及びN2選択率を示すグラフである。 実施例7におけるN2O選択率及びNOx選択率を示すグラフである。 実施例8におけるNH3転換率及びN2選択率を示すグラフである。 実施例8におけるN2O選択率及びNOx選択率を示すグラフである。 火力発電所におけるアンモニアガスの処理状況を示す図である。 アンモニアガス処理装置の概念図である。
以下、本発明の実施形態について説明する。
===アンモニアガス浄化用触媒の基本構成について===
まず、本発明の実施形態に係るアンモニアガス浄化用触媒の基本構成について説明する。
図1(a)は、本発明の実施形態に係るアンモニアガス浄化用触媒を説明するための概略図、図1(b)は、基材(SUS)の拡大図である。図1(a)に示すアンモニアガス浄化用触媒は、基材(SUS)と、基材(SUS)の表面に担持される多孔質物質(同図の場合には、酸化アルミニウム(Al23))と、多孔質物質に保持される触媒成分(Pt−CuO又はPd)と、を備えている。
図1(b)に示すように、基材(SUS)は、いわゆるマイクロ空間を有するマイクロ・パーティション構造を有し、三次元的に交差、合流もしくは分岐する多数の微細流路を有するものである(例えば、特開2005−264199号公報、特開2005−254194号公報、特開2005−253799号公報、特開2005−307944号公報など参照)。微細流路の孔径は、30μm〜500μmが望ましい。
以下の実施例では、アンモニアガス浄化用触媒の一例として、株式会社ナノ・キューブ・ジャパンから提供されたマイクロ・フィン担持触媒を用いた。なお、マイクロ・フィンの直径はすべて14.8mmである。
===アンモニアガス浄化用触媒の性能について===
次に、アンモニアガス浄化用触媒の性能について説明する。
本発明者らは、アンモニアガスを浄化する際に、本発明の実施形態に係るアンモニアガス浄化用触媒を用いた場合には、高いNH3転換率を得ることが可能であって、優れたアンモニアガスの浄化性能が得られるとともに、高いN2選択率(すなわち、低いN2O選択率、低いNOx選択率)を得ることも可能であって、副生成物の生成量を十分に抑制することができると考えた。そこで、本発明者らは、このようなアンモニアガス浄化用触媒の性能を確認するために、各種の条件下において触媒性能試験を行った。図2〜図15に触媒性能試験の結果を示す。これらの触媒性能試験では、高濃度(8,000ppm以上)且つ高SV(2,000以上)のアンモニアガスを用いた。
そして、図2及び図4〜図11における触媒性能試験では、アンモニアガス浄化用触媒として、図1(b)に示した基材(SUS)と、基材(SUS)の表面に担持される酸化アルミニウム(Al23)と、酸化アルミニウム(Al23)に保持されるPt−CuOと、を備えたもの(以下「Pt−CuO−Al23触媒」という。)を用いた。
また、図3及び図12〜図15における触媒性能試験では、アンモニアガス浄化用触媒として、図1(b)に示した基材(SUS)と、基材(SUS)の表面に担持される酸化アルミニウム(Al23)と、酸化アルミニウム(Al23)に保持されるPdと、を備えたもの(以下「Pd−Al23触媒」という。)を用いた。
<Pt−CuO−Al23触媒を用いた場合>
(実施例1)
実施例1では、Pt−CuO−Al23触媒及びPd−Al23触媒について、酸素濃度を変化させた時の触媒活性を調べた。その結果を図2及び図3に示す。なお、実施例1は、SVが7000h-1、NH3濃度が7.8%の試験条件で行った。図2及び図3に示すように、Pt−CuO−Al23触媒を用いた場合及びPd−Al23触媒を用いた場合には、いずれの場合にも、アンモニアガスが高濃度且つ大流量(高SV)であるにも関わらず、NH3転換率が高く、しかも、N2選択率が高くなった。また、酸素濃度が高いほど、NH3転換率が高くなったが、N2選択率が低くなった。
(実施例2)
実施例2では、触媒成分量の影響、すなわちCuO担持量を変化させて触媒活性に及ぼす影響を調べた。その結果を図4に示す。図4に示すように、CuOの担持量が増加するほど、Pt上でのNH3の過剰な酸化が抑制されることとなった。
(実施例3)
実施例3では、触媒成分量の影響、すなわちPt担持量を変化させて触媒活性に及ぼす影響を調べた。その結果を図5に示す。図5に示すように、Ptの担持量が増加するほど、Pt上でのNH3の過剰な酸化が増加した。また、Ptの担持量が0.1g/lの触媒においては、T100が高くなり、副生成物であるN2O及びNOxの生成量が多くなった。
(実施例4)
実施例4では、触媒成分源の変化が触媒活性に及ぼす影響を調べた。その結果を図6及び図7に示す。図6及び図7に示すように、塩化白金酸水溶液(H2PtCl5・4H2O)を含浸担持させたPt1−CuO10−Clは、塩化白金酸水溶液を含浸担持させていないPt1−CuO10よりも、NH3転換率が高くなるとともに、N2O選択率及びNOx選択率は低くなり、高い活性を示した。
(実施例5)
実施例5では、マイクロ・フィン担持触媒の白金酸化物が触媒活性に及ぼす影響を調べた。その結果を図8及び図9に示す。図8及び図9に示すように、Pt0.1−CuO10−Cl−H触媒では、高いNH3転換率(ほぼ100%)が得られるとともに、低いN2O選択率(約4%)及び低いNOx選択率(ほぼ無視し得る程度に低い値)が得られており、極めて高い活性を示した。
(実施例6)
実施例6では、マイクロ・フィン担持触媒の活性と、ハニカム触媒の活性とを比較した。その結果を図10及び図11に示す。図10及び図11に示すように、Pt−CuO−Al23触媒(Pt:1g/l、CuO:10g/l、触媒長さ25mm)は、ハニカム触媒よりも、N2O選択率及びNOx選択率が低くなり、高い活性を示した。
<Pd−Al23触媒を用いた場合>
(実施例7)
実施例7では、Pd−Al23触媒について酸素濃度を変化させた時の触媒活性を調べた。その結果を図12及び図13に示す。図12及び図13に示すように、Pd−Al23触媒は、Pt−CuO−Al23触媒よりも、NH3転換率は高いが、N2O選択率及びNOx選択率はいずれも低くなった。酸素濃度の変化がPd−Al23触媒に及ぼす影響は、Pt−CuO−Al23触媒の場合とほぼ同様であった。
(実施例8)
実施例8では、Pd−Al23触媒について空間速度を変化させた時の触媒活性を調べた。その結果を図14及び図15に示す。図14及び図15に示すように、Pd−Al23触媒は、Pt−CuO−Al23触媒よりも、高い触媒活性を保っており、SVによるN2選択率への影響は、ほとんど認められなかった。このことは、Pd−Al23触媒が高活性であり、触媒層上端部で反応が完結していることを示唆している。Pd−Al23触媒は、Pt−CuO−Al23触媒よりも、NH3転換率は高いが、N2選択率は低かった。

Claims (4)

  1. 基材と、基材の表面に担持される多孔質物質と、多孔質物質に保持される触媒成分と、を備えたアンモニアガス浄化用触媒であって、
    前記基材は、三次元的に交差、合流もしくは分岐する多数の微細流路を有するものであり、且つ、前記触媒成分は、Pt−CuO又はPdであることを特徴とするアンモニアガス浄化用触媒。
  2. 基材と、基材の表面に担持される多孔質物質と、多孔質物質に保持される触媒成分と、を備えたアンモニアガス浄化用触媒であって、
    前記基材は、三次元的に交差、合流もしくは分岐する多数の微細流路を有するものであり、且つ、前記触媒成分は、Pt−CuO−Clであることを特徴とするアンモニアガス浄化用触媒。
  3. 請求項1又は2において、
    前記微細流路の孔径が30μm〜500μmであることを特徴とするアンモニアガス浄化用触媒。
  4. 請求項1〜3のいずれか1項において、
    前記多孔質物質は、酸化アルミニウム(Al23)であることを特徴とするアンモニアガス浄化用触媒。
JP2015040589A 2015-03-02 2015-03-02 アンモニアガス浄化用触媒 Active JP6131281B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015040589A JP6131281B2 (ja) 2015-03-02 2015-03-02 アンモニアガス浄化用触媒

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015040589A JP6131281B2 (ja) 2015-03-02 2015-03-02 アンモニアガス浄化用触媒

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2012092001A Division JP5756780B2 (ja) 2012-04-13 2012-04-13 アンモニアガス浄化用触媒

Publications (2)

Publication Number Publication Date
JP2015134353A true JP2015134353A (ja) 2015-07-27
JP6131281B2 JP6131281B2 (ja) 2017-05-17

Family

ID=53766625

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015040589A Active JP6131281B2 (ja) 2015-03-02 2015-03-02 アンモニアガス浄化用触媒

Country Status (1)

Country Link
JP (1) JP6131281B2 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08150336A (ja) * 1994-11-28 1996-06-11 Agency Of Ind Science & Technol 排ガス浄化材及び排ガス浄化方法
JPH09271637A (ja) * 1996-02-06 1997-10-21 Toyota Central Res & Dev Lab Inc アンモニア浄化用触媒装置
JP2005254194A (ja) * 2004-03-15 2005-09-22 Yoshiteru Nakasaki 環境浄化マイクロリアクターシステム
WO2008106519A1 (en) * 2007-02-27 2008-09-04 Basf Catalysts Llc Copper cha zeolite catalysts
WO2009075311A1 (ja) * 2007-12-12 2009-06-18 Nikki-Universal Co., Ltd. アンモニア分解触媒および該触媒によるアンモニア含有排ガスの処理方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08150336A (ja) * 1994-11-28 1996-06-11 Agency Of Ind Science & Technol 排ガス浄化材及び排ガス浄化方法
JPH09271637A (ja) * 1996-02-06 1997-10-21 Toyota Central Res & Dev Lab Inc アンモニア浄化用触媒装置
JP2005254194A (ja) * 2004-03-15 2005-09-22 Yoshiteru Nakasaki 環境浄化マイクロリアクターシステム
WO2008106519A1 (en) * 2007-02-27 2008-09-04 Basf Catalysts Llc Copper cha zeolite catalysts
WO2009075311A1 (ja) * 2007-12-12 2009-06-18 Nikki-Universal Co., Ltd. アンモニア分解触媒および該触媒によるアンモニア含有排ガスの処理方法

Also Published As

Publication number Publication date
JP6131281B2 (ja) 2017-05-17

Similar Documents

Publication Publication Date Title
US6534022B1 (en) Conversion of nitrogen oxides in the presence of a catalyst supported on a mesh-like structure
RU2657082C2 (ru) Способ и катализатор для одновременного удаления монооксида углерода и оксидов азота из дымовых или выхлопных газов
BRPI1003707A2 (pt) Processo para reduzir óxidos de nitrogênio em nitrogênio em um gás de escapamento, sistema de catalisador, e, uso do mesmo
RU2016111605A (ru) Смешанные цеолитные катализаторы для очистки выхлопных газов
JP5005050B2 (ja) アンモニアガス浄化用触媒
DE60321136D1 (de) PRESULFATIERTER UND PRENITRIERTER KATALYSATOR, ENHALTEND PLATINUM AUF TRÄGER BESTEHEND AUS MAGNESIUMOXID UND CEROXID FÜR DIE REDUKTION VON NO ZU N2 MIT WASSERSTOFF UNTER NOx-OXIDATIONSBEDINGUNGEN
JP6308844B2 (ja) 水素製造用触媒および該触媒を用いた水素製造方法
RU2014117284A (ru) Трехкомпонентный каталитический нейтрализатор для транспортного средства и система обработки выхлопных газов
RU2014104854A (ru) Катализированный фильтр твердых частиц и способ приготовления катализированного фильтра твердых частиц
US7850935B2 (en) Process and catalyst system for NOx reduction
JP2019505370A (ja) 触媒床、及び酸化窒素を減少させるための方法
BRPI0905173A2 (pt) catalisadores para oxidação de amÈnia, e, processo de oxidação de amÈnia
JP2013538121A (ja) 触媒組成及びその適用
BRPI0500789B1 (pt) Aplicação de catalisador para decomposição de N2O no processo de Ostwald
JP6131281B2 (ja) アンモニアガス浄化用触媒
JP2019505372A (ja) 触媒床、及び酸化窒素を減少させるための方法
JP5756780B2 (ja) アンモニアガス浄化用触媒
ES2279691B1 (es) Catalizadores para conversion de monoxido de carbono en hidrogeno y su uso en el proceso catalitico de enriquecimiento en hidrogeno de una corriente de gas que puede alimentar una pila de combustible.
JP4639381B2 (ja) 排ガス浄化装置
ES2957293T3 (es) Catalizador mejorado para la oxidación selectiva de sulfuro de hidrógeno
KR101365799B1 (ko) 단일 공기 주입을 사용하는 2 단계 우선 산화 시스템
JP2009131759A (ja) 排ガス浄化用触媒
JPH0549934A (ja) 排ガス浄化用触媒およびその製造方法
JP2011104498A (ja) 排気ガス浄化装置
JP5844097B2 (ja) アンモニア処理システム及びアンモニア処理方法

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160224

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160308

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160502

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160726

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160926

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20161025

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170125

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20170307

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170411

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170417

R150 Certificate of patent or registration of utility model

Ref document number: 6131281

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250