JP2015128329A - 中継ノードのインタフェースに関連するレイヤ2測定およびネットワーク負荷平衡時の中継ノードの扱い - Google Patents

中継ノードのインタフェースに関連するレイヤ2測定およびネットワーク負荷平衡時の中継ノードの扱い Download PDF

Info

Publication number
JP2015128329A
JP2015128329A JP2015077964A JP2015077964A JP2015128329A JP 2015128329 A JP2015128329 A JP 2015128329A JP 2015077964 A JP2015077964 A JP 2015077964A JP 2015077964 A JP2015077964 A JP 2015077964A JP 2015128329 A JP2015128329 A JP 2015128329A
Authority
JP
Japan
Prior art keywords
denb
qci
wtru
relay node
interface
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015077964A
Other languages
English (en)
Other versions
JP6267151B2 (ja
Inventor
カイ リュウ
Kai Liu
カイ リュウ
エス.ワン ピーター
S Wong Peter
エス.ワン ピーター
延幸 玉置
Nobuyuki Tamaki
延幸 玉置
エー.スターン−ベルコヴィッツ ジャネット
A Stern-Berkowitz Janet
エー.スターン−ベルコヴィッツ ジャネット
イー.テリー ステファン
Stephen E Terry
イー.テリー ステファン
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
InterDigital Patent Holdings Inc
Original Assignee
InterDigital Patent Holdings Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by InterDigital Patent Holdings Inc filed Critical InterDigital Patent Holdings Inc
Publication of JP2015128329A publication Critical patent/JP2015128329A/ja
Application granted granted Critical
Publication of JP6267151B2 publication Critical patent/JP6267151B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/04Arrangements for maintaining operational condition
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/0005Control or signalling for completing the hand-off
    • H04W36/0083Determination of parameters used for hand-off, e.g. generation or modification of neighbour cell lists
    • H04W36/0085Hand-off measurements
    • H04W36/0094Definition of hand-off measurement parameters
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/24Reselection being triggered by specific parameters
    • H04W36/30Reselection being triggered by specific parameters by measured or perceived connection quality data
    • H04W36/304Reselection being triggered by specific parameters by measured or perceived connection quality data due to measured or perceived resources with higher communication quality
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/34Reselection control
    • H04W36/38Reselection control by fixed network equipment
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/08Access point devices
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/10Scheduling measurement reports ; Arrangements for measurement reports
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/16Performing reselection for specific purposes
    • H04W36/22Performing reselection for specific purposes for handling the traffic
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W84/00Network topologies
    • H04W84/02Hierarchically pre-organised networks, e.g. paging networks, cellular networks, WLAN [Wireless Local Area Network] or WLL [Wireless Local Loop]
    • H04W84/04Large scale networks; Deep hierarchical networks
    • H04W84/042Public Land Mobile systems, e.g. cellular systems
    • H04W84/047Public Land Mobile systems, e.g. cellular systems using dedicated repeater stations

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

【課題】無線リンクの動作を支援するために無線使用量の測定を行う方法は、発展型ノードB(eNB)で行われる。【解決手段】この方法は、第1の無線使用量パラメータを決定するステップを含む。第1の無線使用量パラメータは、eNBと少なくとも1つの無線送信受信ユニット(WTRU)との間の無線使用量の測定である。方法は、第2の無線使用量パラメータを決定するステップをさらに含む。第2の無線使用量パラメータは、eNBと、そのeNBにサービスされている少なくとも1つの中継ノード(RN)との間の無線使用量の測定である。方法は、第1の無線使用量パラメータまたは第2の無線使用量パラメータの少なくとも一方を利用して、発展型総合地上無線アクセス(E−UTRA)無線リンクの動作、無線リソース管理(RRM)、ネットワーク運用および維持(OAM)、または自律的最適化ネットワーク(SON)機能、の少なくとも1つを評価するステップをさらに含む。【選択図】図5

Description

関連出願の相互参照
本出願は、2010年11月5日に出願された米国仮特許出願第61/410,633号、および2011年1月7日に出願された米国仮特許出願第61/430,745号の利益を主張し、それらの出願の内容は参照により本明細書に組み込まれる。
ロングタームエボリューション(LTE)発展型パケットコア(EPC)のネットワーク管理機能は、例えば、移動性管理ゲートウェイ(MME)が輻輳している時や、保守のためにMMEの電源を切る時等に、MMEの負荷をオフロードするMMEの負荷平衡能力を提供する。負荷平衡により、ネットワークはネットワーク側では通常の動作を維持することができ、無線アクセスネットワークまたはユーザ端末に対しては滑らかな対話を維持することができる。
Release−8では、MME負荷平衡(再平衡)機能により、MME(例えばMMEのプールエリア)に登録された利用者/UEを別のMMEに移動させることができる。例えば、ネットワーク運用および管理(OAM)機能で、MMEの1つをMMEのプールエリアから削除する。このような面で、また一般的な事例として、利用者の負荷を可能な限り早く軽減して、ネットワークとユーザの体感への影響を最小にすることができる。発展型ノードB(eNB)の負荷条件を判定するために測定が行われる。そのような測定は、eNBにおける無線接続の種類ごとに差別化されない。
無線リンクの動作および/または負荷平衡を支援するために無線使用量の測定を行う方法が本明細書に開示される。この方法は、第1の無線使用量パラメータを決定するステップを含む。第1の無線使用量パラメータは、発展型ノードB(eNB)と少なくとも1つの無線送信受信ユニット(WTRU)との間の無線使用量の測定である。第1の無線使用量の測定は、eNBのUuインタフェースのトラフィックについてのLayer2(L2)測定である。eNBはドナーeNB(DeNB)と呼ばれる。方法は、第2の無線使用量パラメータを決定するステップをさらに含む。第2の無線使用量パラメータは、eNBと、そのeNBにサービスされている少なくとも1つの中継ノード(RN)との間の無線使用量の測定である。第2の無線使用量の測定は、DeNBのUnインタフェースのトラフィックについてのL2測定である。方法は、第1の無線使用量パラメータまたは第2の無線使用量パラメータの少なくとも一方を利用して、発展型UMTS地上無線アクセス(E−UTRA)無線リンク動作(例えば、Uuインタフェースおよび/もしくはUnインタフェースの動作の支援)、無線リソース管理(RRM)(例えば、Uuおよび/もしくはUn無線リソースの再配分)、ネットワーク運用・維持(OAM:operations and maintenance)(例えば、OAM性能の可観測性)、またはセルフオーガナイジングネットワーク(SON:self-organizing networks)機能(例えば、RN/WTRUのハンドオーバーおよび/もしくはRN接続の維持)、の少なくとも1つを評価するステップをさらに含む。方法はeNBで行われる。
UuインタフェースまたはUnインタフェースの少なくとも一方で行われるL2測定の例は、これらに限定されないが、ダウンリンク(DL)の物理リソースブロック(PRB)使用量、アップリンク(UL)のPRB使用量、サービス品質(QoS)クラスインディケータ(QCI)毎のDL PRB使用量、QCI毎のUL PRB使用量、実際の総負荷条件、Unサブフレーム構成(UnSC)毎のPRB使用量、Unサブフレーム内のマクロWTRU PRB使用量、Unサブフレーム内のRN PRB使用量、DeNBにおけるPRB使用量を示す他の測定、QCI毎のDeNBの下にあるアクティブなWTRUの推定数、DLパケット遅延の測定、DLデータ破棄の測定、DLデータ損失の測定、またはQCI毎のULデータ損失測定、の1つまたは複数を含む。パケット処理および伝送遅延の測定がQCIごとにRNで行われる。RNで行われた測定の結果はDeNBに通知される。
本明細書には、ネットワークの負荷平衡を実現し、ネットワークインタフェースに関連する測定を取得し、使用する方法およびシステムが開示される。一例では、ネットワークの過負荷を管理する方法は、中継ノードにサービスするドナーeNBに関連するMMEの過負荷を検出するステップを含む。この方法は、過負荷を検出すると、その中継ノードにサービスされているユーザ機器から発信されるアタッチ要求を拒否するステップを含む。アタッチ要求を拒否するステップに替えて、またはそれに加えて、方法は、過負荷を検出すると、過負荷制御手順を実施するために中継ノードに過負荷開始メッセージを送信するステップを含む。方法は、過負荷を検出するのに応答して過負荷制御手順をドナーeNBで実施するステップを含む。
ソース(ハンドオーバー元)eNBからターゲット(ハンドオーバー先)eNBにRNをハンドオーバーする方法が行われる。この方法は、RNのハンドオーバーを決定するステップを含む。方法は、RNにハンドオーバーのコマンド(命令)を送信するステップをさらに含む。方法は、ターゲットeNBにベアラコンテクスト情報を送信するステップをさらに含む。ベアラコンテクスト情報は、RNに接続された少なくとも1つの無線送信/受信ユニット(WTRU)が当該ハンドオーバーを通じて接続状態を維持したままターゲットeNBが前記RNを受け入れることを可能にする情報を含む。
上記概要は、以下の詳細な説明でさらに説明する概念の一部を簡略化した形態で紹介するために提供される。この概要は、特許請求の範囲の主題の主要な特徴や必須の特徴を明らかにするものでも、特許請求の範囲の主題の範囲を限定するために使用されるものでもない。さらに、特許請求の範囲の主題は、本開示の任意の箇所に記述される不利点のいずれかまたはすべてを解決する制限事項にも限定されない。
添付図面との関連で例として与える以下の接続から、より詳細な理解が得られる。
1つまたは複数の開示される実施形態が実施される例示的通信システムのシステム図である。 図1Aに示す通信システム内で使用される例示的な無線送信/受信ユニット(WTRU)のシステム図である。 図1Aに示す通信システム内で使用される例示的な無線アクセスネットワークおよび例示的コアネットワークのシステム図である。 図1Aに示す通信システム内で使用される別の例示的な無線アクセスネットワークおよび例示的コアネットワークのシステム図である。 図1Aに示す通信システム内で使用される別の例示的な無線アクセスネットワークおよび例示的コアネットワークのシステム図である。 中継ノードおよびドナー発展型ノードB(eNB)の例示的配置のシステム図である。 中継ノードの例示的なハンドオーバーを説明するシステム図である。 無線使用量の測定を行う例示的方法を説明する流れ図である。 レイヤ2の測定を行うための例示的システムのブロック図である。
以下で、各種図面を参照して例示的実施形態を詳細に説明する。この説明は可能な実施の詳細な例を示すが、詳細事項は例示的なものであり、決して本出願の範囲を限定するものではないことに留意されたい。
図1Aは、1つまたは複数の開示される実施形態が実施される例示的通信システム100の図である。通信システム100は、音声、データ、映像、メッセージング、放送等のコンテンツを複数の無線ユーザに提供する多重接続システムである。通信システム100は、複数の無線ユーザが、無線帯域等のシステム資源の共有を通じてそのようなコンテンツにアクセスすることを可能にする。例えば、通信システム100は、符号分割多重接続(CDMA)、時分割多重接続(TDMA)、周波数分割多重接続(FDMA)、直交FDMA(OFDMA)、単一キャリアFDMA(SC−FDMA)等の1つまたは複数のチャネルアクセス方法を用いる。
図1Aに示すように、通信システム100は、無線送信/受信ユニット(WTRU)102a、102b、102c、および/または102d(総称的にまたはまとめてWTRU102と呼ばれる)、無線アクセスネットワーク(RAN)103/104/105、コアネットワーク106/107/109、公衆交換電話網(PSTN)108、インターネット110、および他のネットワーク112を含むが、開示される実施形態は、任意数のWTRU、基地局、ネットワーク、および/またはネットワーク要素を企図することが理解されよう。各WTRU102a、102b、102c、102dは、無線環境で動作および/または通信するように構成された任意種の装置である。例として、WTRU102a、102b、102c、102dは、無線信号を送信および/または受信するように構成され、ユーザ機器(UE)、移動局、固定型または移動型の加入者ユニット、ページャ、携帯電話、携帯情報端末(PDA)、スマートフォン、ラップトップ、ネットブック、パーソナルコンピュータ、無線センサ、消費者家電等を含む。
通信システム100は、基地局114aおよび基地局114bも含む。各基地局114a、114bは、WTRU102a、102b、102c、102dの少なくとも1つと無線にインタフェースをとって、コアネットワーク106/107/109、インターネット110、および/またはネットワーク112等の1つまたは複数の通信ネットワークへのアクセスを助けるように構成された任意種の装置である。例として、基地局114a、114bは、ベーストランシーバ局(BTS)、ノードB、eノードB、ホームノードB、ホームeノードB、サイトコントローラ、アクセスポイント(AP)、無線ルータ等である。図では基地局114a、114bはそれぞれ1つの要素として示すが、基地局114a、114bは、任意数の相互接続された基地局および/またはネットワーク要素を含むことが理解されよう。
基地局114aはRAN103/104/105の一部であり、それらのRANも、他の基地局および/または基地局コントローラ(BSC)、無線ネットワークコントローラ(RNC)、中継ノード等のネットワーク要素(図示せず)を含む。基地局114aおよび/または基地局114bは、セル(図示せず)とも呼ばれる特定の地理的領域内で無線信号を送信および/または受信するように構成される。セルはさらにセルセクタに分割される。例えば、基地局114aに関連付けられたセルが3つのセクタに分割される。したがって、一実施形態では、基地局114aは、セルのセクタごとに1つ、すなわち計3つのトランシーバを含む。別の実施形態では、基地局114aは、多入力多出力(MIMO)技術を用い、したがってセルのセクタごとに複数のトランシーバを利用する。
基地局114a、114bは、エアインタフェース115/116/117を介してWTRU102a、102b、102c、102dの1つまたは複数と通信し、エアインタフェースは、任意の適切な無線通信リンク(例えば、無線周波(RF)、マイクロ波、赤外線(IR)、紫外線(UV)、可視光等)である。エアインタフェース115/116/117は、任意の適切な無線アクセス技術(RAT)を使用して確立される。
より具体的には、上記のように、通信システム100は多重接続システムであり、CDMA、TDMA、FDMA、OFDMA、SC−FDMA等の1つまたは複数のチャネルアクセス方式を用いる。例えば、RAN103/104/105内の基地局114aおよびWTRU102a、102b、102cは、ユニバーサルモバイルテレコミュニケーションシステム(UMTS)地上無線アクセス(UTRA)等の無線技術を実装し、その場合エアインタフェース115/116/117は広帯域CDMA(WCDMA(登録商標))を使用して確立する。WCDMA(登録商標)は、高速パケットアクセス(HSPA)および/または発展型HSPA(HSPA+)等の通信プロトコルを含む。HSPAは、高速ダウンリンクパケットアクセス(HSDPA)および/または高速アップリンクパケットアクセス(HSUPA)を含む。
別の実施形態では、基地局114aおよびWTRU102a、102b、102cは、発展型UMTS地上無線アクセス(E−UTRA)等の無線技術を実装し、その場合は長期間発展(LTE)および/またはLTE−Advanced(LTE−A)を使用してエアインタフェース115/116/117を確立する。
他の実施形態では、基地局114aおよびWTRU102a、102b、102cは、IEEE802.16(すなわちマイクロ波アクセスのための世界規模の相互動作性(WiMAX))、CDMA2000、CDMA2000IX、CDMA2000EV−DO、暫定標準2000(IS−2000)、暫定標準95(IS−95)、暫定標準856(IS−856)、移動通信のための世界規模システム(GSM(登録商標))、GSM(登録商標)発展のための増大データレート(EDGE)、GSM EDGE(GERAN)等の無線技術を実装する。
図1Aの基地局114bは、例えば、無線ルータ、ホームノードB、ホームeノードB、またはアクセスポイントであり、職場、住宅、乗り物、大学構内等の限定された領域内で無線接続を容易にするために適当なRATを利用する。一実施形態では、基地局114bおよびWTRU102c、102dは、IEEE802.11等の無線技術を実装して、無線ローカルエリアネットワーク(WLAN)を確立する。別の実施形態では、基地局114bおよびWTRU102c、102dはIEEE802.15等の無線技術を実装して、無線パーソナルエリアネットワーク(WPAN)を確立する。さらに別の実施形態では、基地局114bおよびWTRU102c、102dは、セルラー方式のRAT(例えば、WCDMA(登録商標)、CDMA2000、GSM(登録商標)、LTE、LTE−A等)を利用してピコセルまたはフェムトセルを確立する。図1Aに示すように、基地局114bはインターネット110への直接の接続を有する。したがって、基地局114bは、コアネットワーク106/107/109を介してインターネット110にアクセスする必要がない。
RAN103/104/105は、コアネットワーク106/107/109と通信状態にあり、コアネットワークは、音声、データ、アプリケーション、および/またはインターネットプロトコルによる音声伝送(VoIP)サービスをWTRU102a、102b、102c、102dの1つまたは複数に提供するように構成された任意種のネットワークである。例えば、コアネットワーク106/107/109は、呼の制御、課金サービス、モバイル位置を利用したサービス、料金前払いの通話、インターネット接続、映像配信等を提供する、かつ/またはユーザ認証等の高レベルのセキュリティ機能を行う。図1Aには示さないが、RAN103/104/105および/またはコアネットワーク106/107/109は、RAN103/104/105と同じRATまたは異なるRATを用いる他のRANと直接または間接的に通信することが理解されよう。例えば、E−UTRA無線技術を利用するRAN103/104/105に接続されるのに加えて、コアネットワーク106/107/109は、GSM(登録商標)無線技術を用いる別のRAN(図示せず)とも通信状態にある。
コアネットワーク106/107/109は、WTRU102a、102b、102c、102dがPSTN108、インターネット110、および/または他のネットワーク112にアクセスするためのゲートウェイの役割も果たす。PSTN108は、従来型の電話サービス(POTS)を提供する回線交換電話網を含む。インターネット110は、TCP/IPインターネットプロトコルスイートの伝送制御プロトコル(TCP)、ユーザデータグラムプロトコル(UDP)およびインターネットプロトコル(IP)等の共通の通信プロトコルを使用する、相互接続されたコンピュータネットワークおよび装置からなる世界規模のシステムを含む。ネットワーク112は、他のサービス提供者に所有および/または運営される有線または無線の通信ネットワークを含む。例えば、ネットワーク112は、RAN103/104/105と同じRATまたは異なるRATを用いる1つまたは複数のRANに接続された別のコアネットワークを含む。
通信システム100内のWTRU102a、102b、102c、102dの一部またはすべては、多モード能力を備える。すなわち、WTRU102a、102b、102c、102dは、種々の無線リンクを通じて種々の無線ネットワークと通信するための複数のトランシーバを含む。例えば、図1Aに示すWTRU102cは、セルラー方式の無線技術を用いる基地局114a、およびIEEE802無線技術を用いる基地局114bと通信するように構成される。
図1Bは、例示的なWTRU102のシステム図である。図1Bに示すように、WTRU102は、プロセッサ118、トランシーバ120、送信/受信要素122、スピーカ/マイクロフォン124、キーパッド126、ディスプレイ/タッチパッド128、取外し不能メモリ130、取外し可能メモリ132、電源134、全地球測位システム(GPS)チップセット136、および他の周辺機能138を備える。WTRU102は、実施形態との整合性を保ちながら、上述の要素のサブコンビネーションを含むことが理解されよう。また、各実施形態は、基地局114aおよび114bおよび/またはその基地局114aおよび114bが表すノード(これらに限定されないが、とりわけトランシーバ局(BTS)、ノードB、サイトコントローラ、アクセスポイント(AP)、ホームノードB、発展型ホームノードB(eノードB)、ホーム発展型ノードB(HeNB)、ホーム発展型ノードBゲートウェイ、およびプロキシノード等)が、図1Bに示され、本明細書に記載される要素の一部またはすべてを含むことを企図する。
プロセッサ118は、汎用プロセッサ、特殊目的プロセッサ、従来のプロセッサ、デジタル信号プロセッサ(DSP)、複数のマイクロプロセッサ、DSPコアと関連した1つまたは複数のマイクロプロセッサ、コントローラ、マイクロコントローラ、特定用途集積回路(ASIC)、利用者書き換え可能ゲートアレイ(FPGA)回路、任意の他の種の集積回路(IC)、状態機械等である。プロセッサ118は、信号の符号化、データ処理、電力制御、入出力処理、および/またはWTRU102が無線環境で動作することを可能にする他の機能を行う。プロセッサ118はトランシーバ120に結合され、トランシーバ120は送信/受信要素122に結合される。図1Bではプロセッサ118とトランシーバ120を別個の構成要素として示すが、プロセッサ118とトランシーバ120は電子パッケージやチップに共に一体化されてもよいことが理解されよう。
送信/受信要素122は、エアインタフェース115/116/117を通じて基地局(例えば基地局114a)との間で信号を送信または受信するように構成される。例えば、一実施形態では、送信/受信要素122は、RF信号を送信および/または受信するように構成されたアンテナである。別の実施形態では、送信/受信要素122は、例えばIR、UV、または可視光信号を送信および/または受信するように構成されたエミッタ/検出器である。さらに別の実施形態では、送信/受信要素122は、RF信号と光信号の両方を送受信するように構成される。送信/受信要素122は、各種無線信号の任意の組合せを送信および/または受信するように構成されることが理解されよう。
また、図1Bでは送信/受信要素122を1つの要素として示すが、WTRU102は任意数の送信/受信要素122を含む。より具体的には、WTRU102はMIMO技術を用いる。そのため、一実施形態では、WTRU102は、エアインタフェース115/116/117を通じて無線信号を送受信するために2つ以上の送信/受信要素122(例えば複数のアンテナ)を含む。
トランシーバ120は、送信/受信要素122から送信される信号を変調し、送信/受信要素122に受信された信号を復調するように構成される。上記のように、WTRU102は多モード能力を有する。そのため、トランシーバ120は、WTRU102が例えばUTRAやIEEE802.11等の複数種のRATを介して通信することを可能にする複数のトランシーバを含む。
WTRU102のプロセッサ118は、スピーカ/マイクロフォン124、キーパッド126、および/またはディスプレイ/タッチパッド128(例えば液晶ディスプレイ(LCD)表示装置や有機発光ダイオード(OLED)表示装置)に結合され、それらからユーザ入力データを受け取る。プロセッサ118はまた、スピーカ/マイクロフォン124、キーパッド126、および/またはディスプレイ/タッチパッド128にユーザデータを出力する。また、プロセッサ118は、取外し不能メモリ130および/または取外し可能メモリ132等の任意種の適切なメモリの情報にアクセスし、データを記憶する。取外し不能メモリ130は、ランダムアクセスメモリ(RAM)、読み出し専用メモリ(ROM)、ハードディスク、または他の任意種のメモリ記憶装置を含む。取外し可能メモリ132は、加入者識別モジュール(SIM)カード、メモリスティック、セキュアデジタル(SD)メモリカード等を含む。他の実施形態では、プロセッサ118は、サーバや家庭コンピュータ(図示せず)等、物理的にWTRU102にないメモリの情報にアクセスし、データを記憶する。
プロセッサ118は、電源134から電力を受け取り、その電力をWTRU102中の他の構成要素に配布および/または制御するように構成される。電源134は、WTRU102に電力を供給するのに適した任意の装置である。例えば、電源134は、1つまたは複数の乾電池(例えばニッケルカドミウム(NiCd)、ニッケル亜鉛(NiZn)、ニッケル水素(NiMH)、リチウムイオン(Li−ion)等)、太陽電池、燃料電池等を含む。
プロセッサ118はGPSチップセット136にも結合され、GPSチップセット136は、WTRU102の現在の位置に関する位置情報(例えば経度および緯度)を提供するように構成される。GPSチップセット136からの情報に加えて、またはその代わりに、WTRU102は、基地局(例えば基地局114a、114b)からエアインタフェース115/116/117を介して位置情報を受信し、かつ/または、信号が2つ以上の近隣の基地局から受信されるタイミングに基づいて自身の位置を判定する。WTRU102は、実施形態との整合性を保ちながら、任意の適切な位置判定方法で位置情報を取得することが理解されよう。
プロセッサ118はさらに、他の周辺機能138に結合され、周辺機能は、追加的な機能、機能性、および/または有線もしくは無線接続を提供する1つまたは複数のソフトウェアおよび/またはハードウェアモジュールを含む。例えば、周辺機能138は、加速度計、電子コンパス、衛星トランシーバ、デジタルカメラ(写真または映像用)、ユニバーサルシリアルバス(USB)ポート、振動装置、テレビトランシーバ、ハンドフリーヘッドセット、Bluetooth(登録商標)モジュール、周波数変調(FM)無線ユニット、デジタル音楽プレーヤ、メディアプレーヤ、ビデオゲームプレーヤモジュール、インターネットブラウザ等を含む。
図1Cは、一実施形態によるRAN103およびコアネットワーク106のシステム図である。上記のように、RAN103は、UTRA無線技術を用いてエアインタフェース115を介してWTRU102a、102b、102cと通信する。RAN103は、コアネットワーク106とも通信状態にある。図1Cに示すように、RAN103は、ノードB140a、140b、140cを含み、各ノードBは、エアインタフェース115を通じてWTRU102a、102b、102cと通信するために1つまたは複数のトランシーバを備える。ノードB140a、140b、140cは各々、RAN103内の特定のセル(図示せず)に関連付けられる。RAN103はRNC142a、142bも含む。RAN103は実施形態との整合性を保ちながら、任意数のノードBおよびRNCを含むことが理解されよう。
図1Cに示すように、ノードB140a、140bはRNC142aと通信状態にある。また、ノードB140cはRNC142bと通信状態にある。ノードB140a、140b、140cは、Iubインタフェースを介してそれぞれのRNC142a、142bと通信する。RNC142a、142bは、Iurインタフェースを介して相互と通信する。各RNC142a、142bは、それぞれが接続されたノードB140a、140b、140cを制御するように構成される。また、各RNC142a、142bは、外部ループ電力制御、負荷制御、アドミッション制御、パケットスケジューリング、ハンドオーバー制御、マクロダイバーシティ、セキュリティ機能、データの暗号化等の他の機能を実行または支援するように構成される。
図1Cに示すコアネットワーク106は、メディアゲートウェイ(MGW)144、モバイル交換センター(MSC)146、サービングGPRSサポートノード(SGSN)148、および/またはゲートウェイGPRSサポートノード(GGSN)150を含む。上記の各要素はコアネットワーク106の一部として図示するが、これらの要素の任意の1つはコアネットワークの運営者以外のエンティティにより所有および/または運営されてもよいことが理解されよう。
RAN103内のRNC142aは、IuCSインタフェースを介してコアネットワーク106内のMSC146に接続される。MSC146はMGW144に接続される。MSC146およびMGW144は、WTRU102a、102b、102cに、PSTN108等の回線交換ネットワークへのアクセスを提供して、WTRU102a、102b、102cと従来の地上回線通信機器との間の通信を容易にする。
RAN103内のRNC142aは、IuPSインタフェースを介してコアネットワーク106のSGSN148にも接続される。SGSN148はGGSN150に接続される。SGSN148およびGGSN150は、WTRU102a、102b、102cに、インターネット110等のパケット交換ネットワークへのアクセスを提供して、WTRU102a、102b、102cとIP対応機器との間の通信を容易にする。
上記のように、コアネットワーク106はネットワーク112にも接続され、ネットワーク112は、他のサービス提供者に所有および/または運営される有線または無線のネットワークを含む。
図1Dは、一実施形態によるRAN104およびコアネットワーク107のシステム図である。上記のように、RAN104は、E−UTRA無線技術を用いて、エアインタフェース116を通じてWTRU102a、102b、102cと通信する。RAN104はコアネットワーク107とも通信状態にある。
RAN104はeノードB160a、160b、160cを含むが、RAN104は実施形態との整合性を保ちながら任意数のeノードBを含むことが理解されよう。eノードB160a、160b、160cはそれぞれ、エアインタフェース116を通じてWTRU102a、102b、102cと通信するための1つまたは複数のトランシーバを含む。一実施形態では、eノードB160a、160b、160cはMIMO技術を実装する。したがって、例えばeノードB160aは、複数のアンテナを使用してWTRU102aとの間で無線信号を送受信する。
各eノードB160a、160b、160cは、特定のセル(図示せず)に関連付けられ、無線リソース管理に関する決定、ハンドオーバーの決定、アップリンクおよび/またはダウンリンクのユーザのスケジューリング等を処理するように構成される。図1Dに示すように、eノードB160a、160b、160cはX2インタフェースを通じて相互と通信する。
図1Dに示すコアネットワーク107は、移動性管理ゲートウェイ(MME)162、サービングゲートウェイ164、およびパケットデータネットワーク(PDN)ゲートウェイ166を含む。図では上述の各要素はコアネットワーク107の一部として示すが、それらの要素のいずれか1つは、コアネットワークの運営者以外のエンティティによって所有および/または運営されることが理解されよう。
MME162は、S1インタフェースを介してRAN104内のeノードB160a、160b、160c各々に接続され、制御ノードの役割を果たす。例えば、MME162は、WTRU102a、102b、102cのユーザの認証、ベアラのアクティブ化/非アクティブ化、WTRU102a、102b、102cの最初のアタッチ時の特定サービングゲートウェイの選択等を担う。MME162は、RAN104と、GSM(登録商標)やWCDMA(登録商標)等の他の無線技術を用いる他のRAN(図示せず)とを切り替えるための制御プレーン機能も提供する。
サービングゲートウェイ164は、S1インタフェースを介してRAN104内の各eノードB160a、160b、160cに接続される。サービングゲートウェイ164は、一般に、WTRU102a、102b、102cとの間でユーザデータパケットを送信および転送する。サービングゲートウェイ164は、他の機能、例として、eノードB間ハンドオーバー時にユーザプレーンを固定する、WTRU102a、102b、102cに入手可能なダウンリンクデータがある時にページングをトリガにより始動する、WTRU102a、102b、102cのコンテクストを管理および記憶する等も行う。
サービングゲートウェイ164はPDNゲートウェイ166にも接続されて、WTRU102a、102b、102cとIP対応装置間の通信を容易にする。PDNゲートウェイ166は、WTRU102a、102b、102cにインターネット110等のパケット交換ネットワークへのアクセスを提供する。
コアネットワーク107は、他のネットワークとの通信を容易にする。例えば、コアネットワーク107は、PSTN108等の回線交換ネットワークへのアクセスをWTRU102a、102b、102cに提供して、WTRU102a、102b、102cと従来の地上回線通信装置との間の通信を容易にする。例えば、コアネットワーク107は、コアネットワーク107とPSTN108間のインタフェースとして機能するIPゲートウェイ(例えばIPマルチメディアサブシステム(IMS)サーバ)を含むか、またはそれと通信する。また、コアネットワーク107は、WTRU102a、102b、102cにネットワーク112へのアクセスを提供することができ、ネットワーク112は、他のサービス提供者に所有および/または運営される他の有線または無線ネットワークを含む。
図1Eは、一実施形態によるRAN105およびコアネットワーク109のシステム図である。RAN105は、IEEE802.16無線技術を使用してエアインタフェース117を通じてWTRU102a、102b、102cと通信するアクセスサービスネットワーク(ASN)である。下記でさらに述べるように、WTRU102a、102b、102c、RAN105、およびコアネットワーク109の異なる機能エンティティ間の通信リンクが基準点として定義される。
図1Eに示すように、RAN105は、基地局180a、180b、180c、およびASNゲートウェイ182を含むことができるが、RAN105は、実施形態との整合性を保ちながら任意数の基地局およびASNゲートウェイを含むことが理解されよう。基地局180a、180b、180cはそれぞれRAN105内の特定のセル(図示せず)に関連付けられ、それぞれエアインタフェース117を通じてWTRU102a、102b、102cと通信するための1つまたは複数のトランシーバを含む。一実施形態では、基地局180a、180b、180cはMIMO技術を実装する。そのため、例えば基地局180aは、複数のアンテナを使用して、WTRU102aとの間で無線信号を送受信する。基地局180a、180b、180cは、ハンドオフのトリガ、トンネルの確立、無線リソース管理、トラフィックの分類、サービス品質(QoS)ポリシーの施行等の移動性管理機能も提供する。ASNゲートウェイ182はトラフィック集約点として機能し、ページング、加入者プロファイルのキャッシュ、コアネットワーク109へのルーティング等を担う。
WTRU102a、102b、102cとRAN105との間のエアインタフェース117は、IEEE802.16仕様を実装するR1基準点として定義される。また、WTRU102a、102b、102cはそれぞれ、コアネットワーク109との間に論理インタフェース(図示せず)を確立する。WTRU102a、102b、102cとコアネットワーク109との間の論理インタフェースは、認証、権限付与、IPホスト設定管理、および/または移動性管理に使用されるR2基準点として定義される。
各基地局180a、180b、180c間の通信リンクは、WTRUのハンドオーバーおよび基地局間のデータ転送を容易にするプロトコルを含むR8基準点として定義される。基地局180a、180b、180cとASNゲートウェイ182間の通信リンクは、R6基準点として定義される。R6基準点は、各WTRU102a、102b、102cに関連する移動イベントに基づく移動性管理を容易にするプロトコルを含む。
図1Eに示すように、RAN105はコアネットワーク109に接続される。RAN105とコアネットワーク109間の通信リンクは、例えばデータ転送および移動性管理機能を容易にするプロトコルを含むR3基準点として定義される。コアネットワーク109は、モバイルIPホームエージェント(MIP−HA)184、認証、権限付与、課金(AAA)サーバ186、およびゲートウェイ188を含む。上述の各要素はコアネットワーク109の一部として図示するが、これらの要素のいずれか1つはコアネットワークの運営者以外のエンティティにより所有および/または運営されることが理解されよう。
MIP−HAは、IPアドレス管理を担い、WTRU102a、102b、102cが異なるASNおよび/または異なるコアネットワーク間を移動することを可能にする。MIP−HA184は、WTRU102a、102b、102cに、インターネット110等のパケット交換ネットワークへのアクセスを提供して、WTRU102a、102b、102cと、IP対応装置との間の通信を容易にする。AAAサーバ186は、ユーザ認証およびユーザサービスの支援を担う。ゲートウェイ188は、他のネットワークとの相互動作を容易にする。例えば、ゲートウェイ188は、WTRU102a、102b、102cに、PSTN108等の回線交換ネットワークへのアクセスを提供して、WTRU102a、102b、102cと、従来の陸線通信装置との間の通信を容易にする。また、ゲートウェイ188は、WTRU102a、102b、102cに、他のサービス提供者によって所有および/または運営される他の有線または無線ネットワークを含むネットワーク112へのアクセスを提供する。
図1Eには示さないが、RAN105は他のASNに接続され、コアネットワーク109は他のコアネットワークに接続されることが理解されよう。RAN105と他のASNとの間の通信リンクはR4基準点として定義され、RAN105と他のASN間のWTRU102a、102b、102cの移動性を司るプロトコルを含む。コアネットワーク109と他のコアネットワーク間の通信リンクは、R5基準点として定義され、R5基準点は、ホームコアネットワークと一時利用される(visited)コアネットワーク間の相互動作を容易にするプロトコルを含む。
無線セルラネットワークのユーザ数が増え続けるのに伴い、無線アクセスネットワーク(RAN)の容量を増すためのいくつかの技術が提案されている。その一例は中継ノード(RN)の配置である。中継ノードは、セルの追加的なカバレッジを提供するために、そのセル内(例えばセル境界近傍や他の低カバレッジ領域)に配置される。中継ノードは、別の基地局(例えばeNB)を介してコアネットワークに接続される一種の基地局である。RNからコアネットワークへの接続をバックホール接続と呼ぶ。RNは、エアインタフェースを通じてeNBを介してコアネットワークに接続するため、その接続は無線バックホールと呼ばれる。RNに無線バックホールを提供するeNBは、ドナー(donor)eNB(DeNB)と呼ばれる。
DeNBは、ある種のプロキシ機能を提供する。例えば、DeNBは、RNとMME/コアネットワーク(CN)間のインタフェースの役割を果たす。一例では、DeNBは、RNに代わってMMEとの間にS1インタフェースを確立する。DeNBは、例えばセッションの作成やRNのEPSベアラの管理等のゲートウェイ的な機能をRNに提供する。RNから見ると、DeNBは、MME(例えば、S1インタフェースを備える)とeNB(例えば、X2インタフェースを備える)の両方として見える。DeNBからは、RNは、WTRU/UEとして機能するように見える。例えば、RNは、スケジューリングを要求し、ULおよび/またはDLグラント(grant)を受信し、コアネットワークに制御シグナリングを送受信する等を行う。また、RNはDeNBにとってはeNBとしても見える。RNは、WTRUがコアネットワークにアクセスするための無線アクセスインタフェースを提供する。例えば、RNに接続されたWTRUから見ると、RNは、eNBおよび/またはDeNBによって提供されるセルとは異なるセルとして見える。
RNは、少なくとも2つの物理層エンティティを含み、一方はUEと通信し(例えばRNはRN−WTRUのためのeNBとして動作する)、もう一方はDeNBと通信する(例えば無線バックホールのため)。RNとの間の通信のための時間−周波数リソースは、eNBとRN間の送信およびRNとWTRU間の送信を時分割多重化することにより配分される。DeNBとRN間の送信が行われるサブフレームは、上位層(例えば物理層より上の層)により設定される。DeNBとRN間の送信が行われるサブフレームはUnサブフレームと呼ばれる。Unインタフェースは、UnサブフレームにおけるRNとDeNB間の通信を意味する。
Release−10またはそれ以後によるRNの配置を仮定すると、1つまたは複数のRNに対応するMMEが過負荷になる可能性がある。例えば、RNは、RNのS1接続時に従来のWTRUよりも多くの動作を行う。そのような輻輳を緩和するために、1つまたは複数のRNが特定のMMEからオフロードされる。例えば、1つまたは複数のRNに信号接続を提供する過負荷状態のMMEは、そのRNのS1接続の動作レベルが高いRNをオフロードする。一例では、ネットワーク運用および維持(OAM)でMMEプールからMMEを削除しようとする場合は、そのMMEにサービスされている利用者が解放され、それらの利用者は1つまたは複数のRNを含む。説明のために、1つまたは複数のRNにサービスしているMMEをRN−MMEと呼ぶ。Unサブフレーム構成(UnSC)には複数の種類がある。例えば、DeNBとRN間の伝送のために8種類のUnサブフレーム構成が定義される。
RN−MMEが負荷の再平衡を行い、RNをオフロードすることを決定すると、RN−MMEは、そのRNにサービスしているDeNBに「RNコンテクスト解放」メッセージを送信する。例えば、RNコンテクスト解放メッセージは、「負荷平衡のためのTAUが必要」等の解放の理由をDeNBに対して含む。RNコンテクスト解放メッセージは、DeNBのRN S1コンテクストを解放するように命令する。DeNBは、同様の理由を含むRRC接続解放メッセージを送信することにより、RNの無線リソース制御(RRC)接続を解放する。
解放メッセージを受信すると、RNは、RRC接続および/または自身のUn設定を解放する。RNは、再接続のために元のDeNBを再選択し、追跡領域更新(TAU)手順を開始する。例えば、TAU手順は、RNに接続されている利用者のPGWとRNを変更することなく行われる。RNは、事前に登録されたMME(例えば、過負荷になったMME/受信側から削除されたMME)に通知することなく、TAU手順を開始する。RNは、RNに別のMMEを選択するようにDeNBに要求する。そして、RNは、新しいMMEに登録する。したがって、RNは、1つのMMEからオフロードされ、別のMMEに接続される。RNは、TAU手順が完了するとEPSベアラを再開し、その際RNは直接新しいMMEとの間で動作を開始している。
負荷再平衡の理由でRNを解放しようとする時には、そのRNに接続されているWTRUをアクティブな状態または接続された状態に保つことが目標となる。例えば、WTRUおよびDeNB/RNのWTRUコンテクストを維持するかどうか、またはどれほどの時間維持するかの決定は様々に異なり、RNへのWTRUの接続性は移行の影響を受ける。
同様に、E−UTRANも様々な理由で過負荷になる(例えば、E−UTRANの無線リソースの使用量が設定容量を超える、かつ/またはRNにサービスするDeNBのS1リンク容量が何らかの理由で影響される等)。この例では、E−UTRANは、接続されているWTRUおよび他のノード、ならびに/またはE−UTRAN内でトラフィックを生成しているWTRUおよび他のノードをオフロードすることを決定する。E−UTRANにRNが配置される時、RNおよび/またはそのRNにサービスされているWTRUが現在のDeNBから別のDeNBにオフロードされる。
RNは、eNBに接続するWTRUと同じ無線プロトコルおよび手順を使用するUnインタフェースを介してDeNBに接続するので、DeNBは、RRC接続解放手順を使用してRNへのRRC接続を解放して、MME間および/またはE−UTRAN間の負荷を平衡する。Unインタフェースは、RNのための無線バックホールの役割を果たすと共に、OAMによって設定される。RRCシグナリングを使用して、Unインタフェース/Unサブフレーム構成を設定/再設定する。
RNは、1つまたは複数のDeNBの事前に設定された複数のセルのうち1つに再接続することを試みる。それらのセルは、RNのためのDeNBのホワイトリスト(DeNBリスト)と見なされる。RNを事前に設定されたセルの1つに再接続しようとする場合、オフロードを行うDeNBは、そのRNのDeNBリストの要素を把握していない場合がある。DeNBは、RNを解放し、リダイレクトするための適切なリダイレクト情報要素(IE)を構築することができない。例えば、DeNBがRNのDeNBリストにあるeNB/セルのいずれかを特定したかどうかに応じて、異なる選択肢が存在する。例えば、RNは、リダイレクト情報を用いずにDeNBセルから解放されるが、RRC接続解放メッセージは、解放の目的(例えば「DeNBの負荷平衡」)を知らせる理由を含む。この例では、RNは、DeNBリストにある事前設定されたセルの1つを再選択するが、そのRNを解放したDeNBセルにサービスされているセルは再選択しないことを決定する。一例では、RNのための1つまたは複数の事前設定されたセルについてのリダイレクト情報は、DeNBによりCNおよび/またはRNから取得される。リダイレクト情報は、RNに送信されるRRC接続解放メッセージに含められる。RNは、事前設定されたセルの1つを再選択する。RNは、そのRNを解放した元のDeNBにサービスされているセルは再選択しないことを決定する。
上記の事例では、RNがDeNBから解放され、DeNBは、WTRUとDeNB/RNにあるそのWTRUのコンテクストを維持するかどうかを決定する。リダイレクト解放の事例でも、RNは異なるDeNBを再選択するが、そのDeNBは、動作中のRN−WTRUを維持し、接続されたWTRUにアクティブなコンテクストを保つには好ましくない状態にある可能性がある。
MMEの負荷平衡機能と併せて、MMEは、自身に接続されたeNBに、eNBへの接続を試みるWTRUによるシグナリングアクセスをそれ以上制限するように命令することによりシグナリング過負荷の事例も回避する。過負荷条件下にあると見なされるMMEは、選択されたeNBに(例えばeNBは無作為に選択されるか、現在の負荷、アクティブな接続、他のMMEの負荷等の所定の基準に基づいて選択される)、過負荷制御を開始および/または終了するように指示する。過負荷制御が行われているeNBは、緊急性のないサービスに対するRRC接続要求を試みるWTRUがさらにあっても拒否する。MMEが過負荷制御を解放すると、eNBは通常のシグナリングサービスを再開する。
WTRUを基点とするMME過負荷への対処および/またはMME負荷平衡/再平衡に変更を加えて、DeNBの下に配置されたRNが、そのRNに接続されたWTRUのアクティブな接続/コンテクストを維持しながら、異なるDeNB/MMEに再接続できるようにする。また、過負荷/再平衡の手順は、RNが解放されてアイドル状態になることなく、異なるDeNBおよび/またはMMEを再選択できるように設計される。例えば、タイプ1のRNが解放されてアイドル状態になった場合、RN−WTRU(例えばそのRNに接続されているWTRU)は、RNセルのカバレッジとサービスを失い、その結果利用者の体感が良好でなくなる。
図2に、RN配置の例示的アーキテクチャを示す。DeNB202は、WTRUおよびRN両方の接続を支援するように構成されたeNBである。例えば、WTRU220aとWTRU220bはDeNB202に接続され、DeNB202によってサービスされ、かつ/またはDeNB202に滞在する。WTRU220aとWTRU220bは、Uuインタフェースを介してDeNB202と無線通信する。DeNB202は、1つまたは複数のMME(例えば、MME206および/またはMME208)と通信する。DeNB202は、S1インタフェースを介してMME206および/またはMME208と通信する。DeNB202はRN204にサービスする。DeNB202とRN204は、Unインタフェースを介して無線通信する。RN204は、1つまたは複数のWTRU(例えば、RN−WTRU220cおよび/またはRN−WTRU220d)にサービスする。RNにサービスされるWTRUは、RN−WTRU(例えば、RN−WTRU220cおよび/またはRN−WTRU220d)と呼ばれる。RN204は、自身の無線バックホール(例えば、自身のUnインタフェース)を介してDeNB202を通じてMME206および/またはMME208と通信する。DeNB202は、利用可能なUuインタフェースおよびUnインタフェース間でアップリンクおよび/またはダウンリンクのリソースを配分する。例えば、あるサブフレーム群が1つまたは複数のUuインタフェースを介した通信のために配分され(例えばUuサブフレーム)、あるサブフレーム群が1つまたは複数のUnインタフェースを介した通信のために配分される(例えばUnサブフレーム)。DeNBは時分割多重化を利用してサブフレームを配分する。
一実施形態によると、過負荷制御が行われているDeNBは、MMEから「S1過負荷開始」メッセージを受信する。過負荷の事例では、「S1過負荷開始」メッセージを受信するDeNB/eNBはMMEによって無作為に選択される。例えば、DeNB202は現在MME206にサービスされている。DeNB202は、自身に接続される1つまたは複数の中継機(例えばRN204)にサービスする。RN204はさらにRN−WTRU220cおよびRN−WTRU220dにサービスし、したがって、過負荷状態にあるMMEに対してより多くのシグナリング負荷を発生させる。MME206は、「S1過負荷開始」メッセージをDeNB202に送信する。「S1過負荷開始」メッセージを受信すると、DeNBは、以下の動作の1つもしくは複数(または任意の組合せ)を行うように構成される。例えば、DeNB204は、RN204にサービスされているWTRUから発信される新しい接続要求を拒否する。一例では、DeNB204は、DeNBへの接続を試みるRNから発信されるRRC接続要求を拒否する。拒否は、アタッチ手順がフェーズIの開始処理であるかフェーズIIの開始処理であるかに関係なく発生する。
一例では、すでに接続されているRN204に対してS1プロキシとして機能するDeNB202が、そのDeNBに接続されている中継機の一部もしくはすべて、または無作為に選択された中継機にも「S1過負荷開始」メッセージを送信する。「S1過負荷開始」メッセージは、特定のRNがMMEの過負荷制御の対象として選択されなかった場合でもそのRNに送信される。そして、中継機は、続く「S1過負荷中止」メッセージが受信されるまで過負荷制御手順に従う。
さらに、DeNB202は、S1/RRCシグナリングが、利用可能なUnリソースのうち大きな割合を利用していると判断した場合は、自身がサービスしているRN(例えば、RN204)に対して別個に過負荷制御手順を開始する。例えば、DeNB202は、S1/RRCシグナリングが、利用可能なUnリソースのうち大きな割合を利用していると判断するのに基づいて、そのDeNBがサービスしている任意のRNに「S1過負荷開始」メッセージを送信する。
MMEの負荷(再)平衡の事例では、RNは、異なるDeNBに切り替えられるか、または現在のDeNBにとどまる。RNが新しいDeNBを再選択しない場合は、RNに対するDeNB内処置方法および/または内部(もしくはバックエンド)のシグナリング動作を使用してMMEの再平衡を実現し、一方でRNをRRC_Connected状態に保つ。RRC解放メッセージングを利用してDeNBから解放してから同じDeNBに再接続するようにRNに命令するのではなく、上記のようなDeNB内部の再平衡が利用される。
RNの解放を回避するために、MMEの再平衡には種々のシグナリング段階がある。例えば、以下の動作(任意の順序または組合せで行われる)を使用して、RNを、オフロードを行うMMEからMMEプール内にある別のMMEに内部的に切り替える。ネットワークOAMおよび/またはMMEがRNを現在のRN−MMEから同じMMEプールにある別のMME(または同じDeNBの接続範囲内にあるMME)にオフロードすることを決定すると、現在のRN−MMEはS1の「RNコンテクスト解放」をDeNBに発行する。「RNコンテクスト解放」メッセージは、削除しようとするRNの識別、理由、および/または新しいMMEの識別を含む。例えば、RN204はDeNB202にサービスされ、DeNB202はMME206にサービスされる。MME206とDeNB202間のS1インタフェースの過負荷を検出すると、MME206は、「RNコンテクスト解放」メッセージをDeNB202に送信する。「RNコンテクスト解放」メッセージは、RN204を識別してもしなくてもよい。また、「RNコンテクスト解放」メッセージは、MME208を選択可能なMMEとして特定してもしなくてもよい。DeNB202は、自身の許可されたMMEプールに基づいてMME208を選択する。
例えば、RN204を、オフロードを行うMME(例えば、MME206)からMMEプールにある異なるMME(例えば、MME208)に内部で切り替えるには、DeNB202はRN204に要求を送信して、現在のRRC接続および現在のUn/Uu設定および/または動作を維持するように指示する。要求は、追跡領域更新(TAU)メッセージをDeNB202に返送することもRN204に指示する。DeNB202がDeNB202からTAUメッセージを受信すると、DeNB202は、負荷再平衡のために別のMMEを選択するようにトリガされる。例えば、DeNB202は、以下の手順の1つまたは複数を任意の組合せで行う。DeNB202は、特別な標識を含むRRCメッセージ(例えば、理由の値「負荷平衡のためのTAUが必要」を含むRRC接続解放メッセージ)をRN204に送信する。DeNB202は、RRC接続および/または、RN204に対するUnインタフェース設定を含む他の設定を引き続き維持する。RN204は、RRC接続およびUn設定を解放しないことを決定し、RNに接続されたWTRUを支援する動作を維持する。RN204は、RRC接続の再確立に似た動作のいくつか、例えばDeNB202に関する無線ベアラの再設定等を行う。RN204は、登録されたMME(例えば、MME206)に通知せずに、DeNB202にTAUメッセージを発行する。DeNB202はRN204を新しいMME(例えば、MME208)に接続し、RN204のS1コンテクストを再開する。
一例では、DeNB202はRN204にRRC RN設定メッセージを送信する。例えば、RRC RN設定メッセージは、同じDeNB(例えばDeNB202)の同じUnリソースに対するHOコマンド、および/またはRNにDeNB内ハンドオーバー型の動作を指示要求する特別の標識を含む。RN設定メッセージを受信したRN(例えばRN204)は、自身の同じRRC接続、自身のUnインタフェース/サブフレーム構成、および/または自身にアタッチ/接続されたWTRU(例えば、RN−WTRU)の接続を維持する。一例では、RN204はRN設定メッセージを受信し、RN−WTRU(例えばRN−WTRU220cおよび/またはRN−WTRU220d)を維持した状態で、同じDeNB(例えばDeNB202)にDeNB内HO(HO設定に従う)を行う。RN204は、登録されたMMEに通知せずに、DeNB202にTAUメッセージを発行する。DeNB202は、RN204を新しいMME(例えば、MME208)に接続し、RN204のS1コンテクストを再開する。
一例では、DeNB202は、新しいMME(例えば、MME208)にRNを接続し、その新しい経路を介してMME208にMME/RNトラフィックを送る。それにより、DeNB202は内部で再平衡を行ってRNの負荷を新しいRN−MMEに移す。DeNB202は、MME設定更新手順を行うことにより、RN204を新しいMME(例えば、MME208)に切り替えさせる。例えば、DeNB202は、RN204にMME設定更新要求メッセージを送信して、新しいMMEとRNとの関係を更新する。
DeNBにサービスされるRNの管理を第1のMMEから第2のMMEに切り替えるのに加えて、RNは、RRC制御を介して別のDeNBにもハンドオーバーされる。第1のDeNBから第2のDeNBへのRNのハンドオーバーを説明する例示的なシステム図を図3に示す。第1のDeNBから2のDeNBへのRNのハンドオーバーは「ホスト変更(re-hosting)」と呼ばれる。RNのホスト変更は、MMEの(再)平衡またはE−UTRANの負荷平衡を実現するために行われる。例えば、サービスされるWTRU(例えば、RNに接続されているWTRU)を持つRNのホスト変更は、サービスされるWTRUを伴うRNが、RN RRC接続の解放を経ずに、別のDeNBにハンドオーバーされるように行われる。RNは、RRC_Connected状態に保たれる。また、RNは、RNセル、およびそのRNセルに接続されている、または滞在しているRN−WTRUを継続して維持する。
図3に関して、システム300に示すように、RN306はDeNB302にサービスされている。また、RN−WTRU320aおよびRN−WTRU320bはRN306に接続されるか、または滞在する。DeNB304は、RN306のDeNBリストにあるDeNBである。RN306がDeNB302からDeNB304にハンドオーバーされる際、RN306は同じMMEによって扱われる場合もそうでない場合もある。システム350は、RN306がDeNB302からDeNB304にハンドオーバーされた結果の例示的システムアーキテクチャを示す。上位レベルでは、各種例で、RNは、無線インタフェースを介して同じまたは別のネットワーク上にある別のアクセス可能なDeNBに直接ハンドオーバーされる。それにより、RNが解放されてアイドル状態になったためにユーザに対してネットワークカバレッジが失われるのを回避することを助ける。図4に示す例では、RN306がDeNB302からDeNB304にハンドオーバーされるか、またはRN306がDeNB304からDeNB302にハンドオーバーされる際、RN−WTRU320aおよび/またはRN−WTRU320bは接続状態を保つ。システム300からシステム350に移行する際には、DeNB302をソースDeNBと呼び、DeNB304をターゲットDeNBと呼ぶ。システム350からシステム300に移行する際には、DeNB304をソースDeNBと呼び、DeNB302をターゲットDeNBと呼ぶ。
一例では、RNのハンドオーバー手順におけるターゲットDeNBは、以下の基準の1つまたは複数に関連付けられる。例えば、ターゲットDeNBは、RNのDeNBリストにあるDeNBである。一例では、ターゲットDeNBは、RNによって測定がすでに行われ、現在のソースDeNBに報告されている近隣DeNBである。一例では、ターゲットDeNBはRNからアクセス可能である。一例では、ハンドオーバー対象のRN、ソースDeNB、およびRNにサービスしているMMEは、ハンドオーバーを行う前に、ターゲットDeNBが過負荷状態でないことを確認する。
一例では、ハンドオーバーを開始するノード(例えば、DeNBまたはMME)が、RNをホスト変更することを決定し、RNハンドオーバー情報を取得する動作を開始する。開始ノードによって収集または取得されるRNハンドオーバー情報の例は、以下のRNハンドオーバーパラメータの1つまたは複数を任意の組合せで含む。一例では、RNハンドオーバーパラメータは、RNのDeNBリストを含む。一例では、RNハンドオーバーパラメータは、負荷条件、RNに関する無線伝搬条件等のDeNB(例えば、ソースDeNBおよびターゲットDeNB)の動作情報を含む。一例では、RNハンドオーバーパラメータは、RNのUnインタフェース設定(例えば、タイプ1のRNの場合はUnサブフレーム構成)を含む。一例では、RNハンドオーバーパラメータは、RNの位置情報、RNの近隣セル情報、RNのタイミング/同期情報、および/またはRNの負荷条件を含む。
一例では、ソースDeNBまたはターゲットDeNBがRNのホスト変更を開始する。例えば、ソースDeNBがRN−OAM(例えば、RNへのサービスに関連するOAMノード)に接触して、RNのDeNBリストを要求する。DeNBは、RNのDeNBリストにある1つまたは複数のDeNBの動作ステータスも要求する。RNのDeNBリストおよび/またはDeNBリストにあるDeNBのステータス情報は、ターゲットDeNB情報として使用される。DeNBは、ターゲットとして可能性のあるDeNBおよび/またはRN−OAMにも1つまたは複数のRNハンドオーバーパラメータを要求する。一例では、ソースDeNBがRNに要求を送信して、RNのDeNBリストを報告するようにRNに要求する。一例では、ソースDeNBがRNに要求を送信して、そのRNからアクセス可能なDeNBを特定するようにRNに要求する。RNは、近隣セルの測定を行い、近隣セルの測定に基づいて要求に応答する。近隣セルの測定結果は、要求への応答に含められるか、または周期的にDeNBに送信される。
ソースDeNBは、ターゲットとして可能性のあるDeNBの情報を取得すると、1つまたは複数の候補ターゲットDeNBにハンドオーバー(HO)要求を送信する。HO要求は、現在のRNのUnサブフレーム構成情報および/またはタイミング/同期情報を含む。ターゲットDeNBは、HO要求を受け付け、ソースDeNBのHO情報に対する応答を返送し、ソースDeNB HO情報はハンドオーバーパラメータまたは他の制御情報を含む。HO要求への応答は、RNに転送されるシェル(shell)RRCメッセージを含む。HO情報は、新しいUnサブフレーム構成および/または専用アクセスRACH署名を含む。HO情報は、切替えの時間、同期の時間、アップリンクグラント等も含む。
ソースDeNBは、1つまたは複数のターゲットDeNBから応答を受信すると、どのDeNBにRNをハンドオーバーするかを決定する。ソースDeNBは、選択されたターゲットDeNBへのRN−WTRU/RN/DeNBコンテクストまたはコンテクスト関連情報の転送を開始する。ターゲットDeNBは、新しいターゲットDeNBのHO設定を含むRRC RN再設定メッセージを介して、選択されたターゲットDeNBにハンドオーバーするようにRNに命令する。RNは、切替え可能な状態になると、または提供される場合は切替えの時間に、RRC RN再設定メッセージで指定されたUn設定でターゲットDeNBに切り替わる。例えば、RNが事前に新しいターゲットDeNBを測定しており、設定がUnサブフレーム構成、同期情報、またはアップリンクグラントの1つまたは複数を含む場合は、RNは直接ターゲットDeNBにアクセスする。一例では、RNは、本明細書でさらに詳しく定義する特殊なRN RACHアクセス手順でターゲットDeNBへのアクセスを開始する。RNは、ターゲットDeNBの下でTAUを行う。例えば、ホスト変更がMMEの負荷再平衡を助けるために行われた場合は、TAUは、MMEの再平衡手順を完了するために行われる。RNは、ハンドオーバーコマンド/RRC RN再設定メッセージでもTAUを行うように指示される。最後に、DeNB/新しいセルの追跡領域情報に基づいて、DeNBはTAUを行うことを決定する。固定型のRNおよび移動型のRNの両方が、1つのDeNBから別のDeNBへのハンドオーバーを行う。
一例では、RNとそれに関連するRN−WTRUのハンドオーバーを容易にするために、ターゲットDeNBは、自身の呼受付ポリシーに基づいて、以下の動作の1つまたは複数を行う。ターゲットDeNBは、RNとそれに関連するRN−WTRUのHOを受け付ける。ターゲットDeNBは、RNと、特定のRN−WTRU、例えば事前に定義されたQoS契約を有するRN−WTRUのみのHOを受け付ける。ターゲットDeNBはRNのHOは受け付けるが、RN−WTRUは拒否する。ターゲットDeNBは、RNおよびNR−WTRUを拒否する。ターゲットDeNBがRNおよび/またはそれに関連するRN−WTRUの一部もしくはすべてを受け付けない場合、ソースDeNBおよびRNは、拒否されたRNおよび/またはRN−WTRUがサービスを失うことなく元のセルに戻れることを保証する。RNは受け付けられるが、1つもしくは複数の(またはすべての)RN−WTRUが拒否される場合は、新しいターゲットDeNBに関連付けようとするRNが、UEを元のソースDeNBにハンドオーバーする。
一例では、MMEが、RNのホスト変更および第1のDeNBから第2のDeNBへのハンドオーバーを開始する。例えば、RNのホスト変更がMMEの再平衡を行うためにMMEから開始される場合は、本明細書に記載されるように、MMEの再平衡に関連する動作と、第1のDeNBから第2のDeNBへのRNのハンドオーバーに関連する動作の両方が行われる。MMEで開始されるハンドオーバーの事例では、RN−MME(例えば現在RNをホストしているMME)がRN−OAMからのDeNBリストの取得を開始する。RN−MMEは、ターゲットDeNB情報を収集するために、ターゲット(ハンドオーバー先)として可能性のあるDeNBの動作ステータスも要求する。一例では、RN−MMEは、ソースDeNBに要求を送信して、DeNBリストの取得、またはRNの測定を介したRNの近隣セル情報の取得をソースDeNBに指示する。一例では、RN−MMEがターゲットDeNB情報を収集すると、RN−MMEはMMEに代わってRNのホスト変更を行うようにDeNBに要求する。
一例では、RNが現在のDeNB以外の他のDeNBにアクセスできないためにRNハンドオーバーを行うことができない場合(例えば当該エリア/RNの範囲内に他のDeNBがない、またはRNの範囲内に接続を受け付けているDeNBがない等)は、開始ノード(DeNBまたはMME)が、以下の動作の1つまたは複数を任意の順序または組合せで行う。開始ノードは、オフロードの決定を取り消す(例えばMMEが再平衡手順をキャンセルする)。開始ノードが「オフロード先(offloading dock)なし」のコードを含む拒否メッセージを返送する(例えばMMEの代理で動作しているDeNBが適切なターゲットDeNBを見つけられない場合は、拒否メッセージがソースDeNBからRN−MMEに送信される)。開始ノードが、オフロード/削除する別のRNを選択する。開始ノードが、DeNBまたはRNから(例えば、RN−WTRU)のWTRUのオフロードを行う。開始ノードがRNを解放する。
一例では、DeNBが負荷平衡のためにRNのHOを行うのではなく、MMEまたはDeNBが、RNにRNの制御下にあるWTRU(例えば、RN−WTRU)の負荷平衡を行うように命令する。該命令は、S1、X2および/またはRRCシグナリングを介して送信される。
RNおよび/またはRNハンドオーバーのための特殊なRACH手順がある。このRNの特殊なRACHアクセス手順では、RNが自身のRNセルを維持し、RN−WTRUの接続を維持することができる。RN−WTRUは、RNが新しいDeNBに対して専用署名/プリアンブルでRACHアクセス手順を行う間、RRC_Connected状態に保たれる。RACHアクセス手順を使用して、セル同期および/または初期アップリンクグラントを取得する。専用署名はターゲットDeNBによって割り当てられる。RNに適したRACH署名/プリアンブルを決定する際、ターゲットDeNBは、現在または将来のRNのUnサブフレーム構成、特にRNのアップリンク送信の機会に基づいてプリアンブルを選択する。一例では、現在のUnサブフレーム構成(例えば、ソースDeNBにおけるUnサブフレーム構成)は、将来のUnサブフレーム構成(例えば、ハンドオーバー後のターゲットDeNBにおけるUnサブフレーム構成)と同じである。RNは、Unアップリンクのサブフレーム送信の機会時に、専用署名を新しいターゲットDeNBに送信する。RNは、新しいターゲットDeNBからのランダムアクセス応答(RAR)を求めてUnダウンリンクサブフレームのR−PDCCHを監視する。RNがアップリンクグラントを含むRARを受信すると、RNの特殊なRACH手順が終了し、RNは、新しいターゲットDeNBとの間でUnインタフェース動作を開始する。
UuインタフェースにE−UTRANによって行われるLayer2(L2)測定の現在の定義は、E−UTRA無線リンク動作、無線リソース管理(RRM)、ネットワーク運用・維持(OAM)、ならびにセルフオーガナイジングネットワーク(SON)機能に対応している。eNBにおけるL2測定は、PRB(物理リソースブロック)の使用量、アクティブなWTRUの数、パケット遅延、データ損失等の性能指標を得るために設計されたものである。L2測定の結果を取得して、トラフィック条件、リソースの利用状況、および/またはWTRUとE−UTRAN間のUu無線インタフェースの動作効率を反映した性能指標として使用する。
例えば、PRB使用量の測定を使用して、一定の期間にわたる、セルの利用可能な総PRBに対する、UL/DLごとにWTRUに使用されたPRBの割合を測定する。PRBの使用量の測定により、セルのトラフィック負荷の推定が得られ、セルの輻輳レベルの指標として使用される。PRBの使用量は、呼受付制御、負荷平衡、および/またはセル間の干渉制御において基準として使用される。PRBの使用量は、OAM性能の可観測性としても使用される。eNBで得られたL2測定の結果は、X2インタフェースを通じて近隣eNBとの間で共有され、その測定結果に基づいて近隣セルへの負荷平衡のためのハンドオーバーが開始される。本発明では、ネットワーク負荷平衡および過負荷制御およびeNBにおけるL2測定時のRNの扱いに向上がもたらされる。
セルの使用状況をよりよく表し、RAN内での使用の種類に関するより詳細な情報を得るために、RANノードで行う新しい測定が本明細書に定義される。例えば、eNBが、自身のUuインタフェースと自身のUnインタフェースに別々に測定を行うように構成される。2つの測定結果のセット(例えばDeNBのUuインタフェースに対するL2測定と、DeNBのUnインタフェースに対するL2測定)は、トラフィック条件をより正確に反映する。DeNBのUuエアインタフェースがタイプ1のRNとマクロWTRUの両方にどのように共有されるかに関するより正確な情報を得るために、eNBまたはRNで行われる新しいL2測定が本明細書に定義される。DeNBのUuおよびUnインタフェースに行われるL2測定を利用して、E−UTRA無線リンク動作(例えば、Uuインタフェースおよび/またはUnインタフェース動作の支援)、無線リソース管理(RRM)(例えば、Uuおよび/またはUn無線リソースの再配分)、ネットワーク運用・維持(OAM)(例えば、OAM性能の可観測性)、ならびにセルフオーガナイジングネットワーク(SON)機能(例えば、RN/WTRUのハンドオーバーおよび/またはRN接続の維持)を支援する。
DeNBは、各インタフェースの輻輳レベルを正確に推定するために、UuおよびUnインタフェースのPRB使用量を別々に測定する。その情報を、DeNBが、異なるセル間の負荷平衡または自身のUnインタフェースとUuインタフェース間のリソースの再配分のために使用することができる。特に、本明細書には、Unサブフレーム使用量に対するPRB使用量の独立した測定を有する、DeNBで行われる新しいL2測定が開示される。この新しい測定は、タイプ1、タイプ1a、およびタイプ1−bの中継機に対応可能なDeNBに適用される。
UnサブフレームにおけるRNの合計PRB使用量の測定が行われる。UnサブフレームのためのDeNB−RNインタフェースにおける負荷条件を検出するために、DeNBのUnインタフェースのリソース使用量を測定で監視する。測定の結果は、DeNBで行われる負荷平衡、呼受付制御、および/または輻輳制御に使用される。
時間Tの間に使用されるDeNB−RN PRBの割合はM_RN(T)と定義され、M_RN(T)の値は、可能なUnサブフレームPRB使用量のパーセント値として表される。M_RN(T)の値は、所与の時間Tの間にRNによる使用のために割り当てられたPRBの合計数(M1_RN(T))を、所与の時間Tの間にRNに割り当てられたUnサブフレーム中で利用可能な総PRBリソース(P_RN(T))で割ることによって得られる。
例えば、合計DeNB−RN PRB使用量は、MACとL1の間のサービスアクセスポイントで計算される。測定は、DLとULに別々に行われる。式(1)はUnサブフレーム中の合計RN PRB使用量を表し、これは、時間Tにわたって平均した、UnインタフェースでRNに使用されたPRBの割合である。Unサブフレーム中の合計RN PRB使用量の値は0ないし100%の範囲である。
Figure 2015128329
M1_RN(T)は、時間Tの間にRNの送信/受信のために割り当てられた完全物理リソースブロックの数を表す。DLについては、送信に使用されたPRBが含められる。ULについては、送信のために割り当てられたPRBが含められる。P_RN(T)は、時間Tの間にUnサブフレームに利用可能なPRBの最大数(例えば利用可能なPRBの合計数)を表す。Tは、測定が行われる期間を表す。
別の例では、実際にRNに割り当てられたUnサブフレーム中のRN PRB使用量は、RN PRBの数(M1_RN(T))を、Unサブフレーム(P_RN(T))中のPRBの合計数と、時間Tの間に同じUnサブフレーム内にあるマクロWTRU PRB(例えば、DeBに直接接続されたWTRUに割り当てられたPRB)の数(M1_DoUE(T))との差で割った値として、定義される。式(2)は、実際にRNに割り当てられたUnサブフレーム中のRN PRB使用量を表す。
Figure 2015128329
合計DeNB−RN PRB使用量は、MACとL1の間のサービスアクセスポイントで計算される。測定はDLとULに別々に行われる。
別の例では、実際にRNに割り当てられたUnサブフレーム中のRN PRB使用量は、時間Tの間のRN PRBの数(M1_RN(T))を、Unサブフレーム中のPRBの合計数(P_RN(T))と、時間Tの間の同じUnサブフレーム内の割り込み不可の優先マクロWTRUトラフィックのためのマクロWTRU PRBの数(M2_DoUE(T))との差で割った値として測定される。式(3)は、RNに実際に割り当てられたUnサブフレーム中のRN PRB使用量を表す。
Figure 2015128329
合計DeNB−RN PRB使用量は、MACとL1の間のサービスアクセスポイントで計算される。測定はDLとULに別々に行われる。時間Tの間のUnサブフレーム中の割り込み不可優先マクロUEトラフィック(M2_DoUE(T))は、時間に制約がある(例えば送信時に非Unサブフレームを待つことができない)WTRUデータトラフィックである。時間に制約があると見なされるWTRUデータトラフィックの例は、半永続的にスケジュールされたデータトラフィック、TTIに対応付けられた(TTI-bundled)データトラフィック、WTRU DRXの持続時間の時間制限にとって極めて重要なデータトラフィック、および/またはHARQのタイミングに関連するトラフィックである。
リソース使用量を評価するために定義される他の測定は、UnサブフレームのマクロWTRUリソースの使用量である。マクロWTRUとは、リソースを1つまたは複数のRNに配分しているDeNBに接続されているWTRUである。マクロWTRUは、ドナーWTRUまたはドナーUEとも呼ばれる。マクロWTRUはUuインタフェースを介してDeNBと通信する。ただし、マクロWTRUには、例えば利用可能なUnサブフレームのためのリソースがRNに割り当てられていない場合には、例えばRNのUnインタフェースのためにRNに割り当てられたサブフレーム内でリソースが割り当てられる。UnサブフレームのマクロWTRU PRB使用量の測定は、DLとULに別々に行われる。測定結果はM_DoUE(T)と表される。マクロWTRU PRB使用量測定の結果は、測定されたRN PRB使用量M_RN(T)(上記参照)と共に使用されて、現在割り当てられている実際のUnサブフレームの負荷条件を判定する。
M_DoUE(T)は、時間Tの間にマクロWTRUが使用するために割り当てられたPRBの測定数(M1_DoUE(T))を、時間Tの間にRNが使用することが可能であった利用可能な合計PRBリソース(P_RN(T))で割ることによって求められる。P_RN(T)は、測定期間Tの間に実際にRNに割り当てられたUnサブフレーム中で利用可能なPRBの合計数として定義される。式(4)は、RNに実際に割り当てられたUnサブフレーム中のマクロWTRU PRB使用量を表す。
Figure 2015128329
実際のRNサブフレームのマクロWTRU PRB使用量は、MACとL1の間のサービスアクセスポイントで計算される。測定は、ダウンリンクのUnサブフレームに行われる。M_DoUE(T)は、実際のUnサブフレームにおけるマクロWTRU PRBの使用量と定義される。M_DoUE(T)は、時間Tにわたって平均した、RNに割り当てられたUnインタフェースサブフレームで使用されたPRBの割合である。値は0ないし100%の範囲である。M1_DoUE(T)は、時間Tの間にマクロWTRUのためのUnサブフレームでマクロWTRUの送信/受信のために割り当てられた完全物理リソースブロックの数である。
時間Tの間のUnサブフレームの実際の負荷条件はL_UnA(T)と表される。例えば、時間Tの間のUnサブフレームの実際の負荷条件は、実際のマクロWTRU PRBの使用量を実際のRN PRBの使用量に足すことによってDeNBで取得される。それらの測定は上記のようにして得られ、時間Tの間にRNに実際に割り当てられたUnサブフレームのPRB使用量に関係する。式(5)は、時間Tの間のUnサブフレームの実際の負荷条件を表す。
LUnA(T)=M_RN(T)+M_DoUE(T) 式(5)
L_UnA(T)は、0ないし100%の値をとるパーセント値である。Unサブフレームの実際の負荷条件の測定は、DLとULに別々に行われる。一例では、時間Tの間のUnインタフェースの実際の負荷条件L_UnA(T)は、測定期間T中のRN PRBの合計数と測定期間T中のマクロWTRU PRBの合計数との和を、測定期間T中にRNに実際に割り当てられたUnサブフレーム中で利用可能なPRBの合計数で割ることにより、DeNBで取得される。式(6)は、時間Tの間のUnサブフレームの実際の負荷条件を表す。
Figure 2015128329
例えば、Unサブフレーム中のRN PRBの使用量、Unサブフレーム中のマクロWTRUの使用量、および/またはUnサブフレームの実際の負荷条件は、Uu/Unインタフェースの再配分動作のために、DeNBおよび/またはMME/OAM等の他のノードで使用される。例えば、DeNBは、以下の条件の1つまたは複数が発生した時に、実際に割り当てられている現在のUnサブフレームにUnサブフレーム(例えばサブフレーム構成単位をなす)を追加するか、またはUnサブフレームを削減する。DeNBは、L_UnA(T)が高いパーセント値の閾値に近づいている、または閾値を越えている時、かつ/またはL_UnA(T)が低いパーセント値の閾値に近づいている、または下回っている時にUnサブフレームを追加および/または削減する(例えばUnサブフレーム再割り当てをトリガにより始動する)。例えば、DeNBは、L_UnA(T)が高いパーセント値の閾値に近づいている、または閾値を越えている時に、Unサブフレームを追加する(例えばUnインタフェースに割り当てるサブフレームを増やす)。DeNBは、L_UnA(T)が低いパーセントの閾値に近づいている、または下回っている時にUnサブフレームを削減する(例えばUnインタフェースに割り当てるサブフレームを減らす)。DeNBは、RN PRB使用量M_RN(T)が1つまたは複数の閾値を超えている、かつ/または下回っている時にUnサブフレームを追加および/または削減する(例えばUnサブフレームの再割り当てを行わせる)。一例では、DeNBは、RN PRB使用量M_RN(T)が閾値を超えている時にUnサブフレームを追加する。DeNBは、RN PRB使用量M_RN(T)が閾値を下回っている時にUnサブフレームを削減する。一例では、DeNBは、RN PRB使用量M_RN(T)とマクロWTRU PRBの使用量M_DoUE(T)との比が閾値を越える、かつ/または閾値を下回る時にUnサブフレームを追加および/または削減する(例えばUnサブフレームの再割り当てを行わせる)。一例では、DeNBは、マクロWTRU PRBの使用量M_DoUE(T)の値が閾値を越える、かつ/または閾値を下回る時にUnサブフレームを追加および/または削減する(例えばUnサブフレームの再割り当てを行わせる)。
また、UnサブフレームのPRB使用量の測定はトラフィッククラスごとに行われる。例えば、時間Tにわたり平均したUnサブフレームの合計RN PRB使用量の測定はトラフィッククラスごとに行われる。そのような測定により、トラフィッククラス毎のDeNBのUnインタフェースのリソース使用量を監視する。トラフィッククラスは、伝送に関連付けられたサービス品質クラス(QoS)の標識(QCIまたは本明細書では「qci」)に基づいて定義される。トラフィッククラス毎のUnサブフレームにわたる合計RN PRB使用量はM_RN(qci)と表され、これは、RNトラフィッククラス(例えばQCI)に関連するRN PRB使用量のパーセント値である。
RNトラフィッククラス毎のPRB使用量の測定は、1つのセル内にあるRNについての集約的な測定として定義され、専用トラフィックチャネル(DTCH)に適用することが可能である。測定は、MACとL1の間のサービスアクセスポイントで行われる。測定は、QCIごとにDL DTCHと、QCIごとにUL DTCHに別々に行われる。
M_RN1(T,qci)は、期間Tの間のRNトラフィッククラス毎のUnサブフレームの絶対RN PRB使用量と定義され、完全または部分物理リソースブロックの数である。式(7)は、期間Tの間のRNトラフィッククラス毎のUnサブフレームの絶対RN PRB使用量を表す。
Figure 2015128329
M_RN(qci)は、トラフィッククラス毎のUnサブフレームにわたるRN PRB使用量と定義され、時間Tにわたって平均した、RNが利用可能なPRBに対する、特定のRNトラフィッククラス(例えば、QCI)に使用されたPRBの割合である。この値は0ないし100%の範囲をとる。式(8)は、時間Tの間のRNトラフィッククラス毎のUnサブフレームにわたるRN PRB使用量を表す。
Figure 2015128329
変数tは、Unサブフレーム中にDTCH データを含んでいる時間Tの間のトランスポートブロックを表す変数と定義される。最初の送信およびHARQによる再送信がtに計数される。B(t,qci)は、Unインタフェースで送信されたトランスポートブロックtで搬送された、qciのQCI値を持つRN DTCHの合計DTCHビット数と定義される。B(t)は、Unインタフェースで送信されたトランスポートブロックtで搬送された、qciのQCI値を持つRN DTCHの合計DTCHビット数と定義される。
M_RN(qci)は、Unサブフレームにわたるトラフィッククラス毎のRN PRB使用量と定義される。M_RN(qci)の値は、時間Tにわたって平均された特定のqciに使用されたPRBの割合であり、0ないし100%の範囲をとる。M_RN1(T,qci)は、UnサブフレームにわたるRNトラフィッククラス毎の絶対PRB使用量と定義され、これは、完全または部分的な物理リソースブロックの数である。Tは、測定が行われる期間である(例えば、TTI単位で求められる)。tは、DeNB−RNインタフェース(例えば、Unインタフェース)を通る、DTCHデータを含んでいる時間Tの間のトランスポートブロックと定義される。tの値を求める際には、最初の送信およびHARQによる再送信が計数される。S(t)は、トランスポートブロックtの送信に使用される物理リソースブロックのセットである。W(p)は、現在PRBpを共有しているトランスポートブロックの数である。B(t,qci)は、トランスポートブロックtで搬送され、Unインタフェースで送信される、qciのQCI値を持つRN DTCHの合計DTCHビット数である。B(t)は、トランスポートブロックtで搬送され、Unインタフェースで送信された、DTCHおよびダウンリンク制御チャネル(DCCH)の合計ビット数である。X(t)は、多重化を考慮に入れために定義される。例えば、多重化を考慮に入れる場合、X(t)は(t)=1と定義される。多重化を考慮に入れない場合に、トランスポートブロックtが1つのQCIに対応するデータを搬送する場合は、X(t)はX(t)=1と定義される。多重化を考慮に入れない場合に、トランスポートブロックtが2つ以上のQCI値に対応するデータを搬送する場合は、X(t)はX(t)=0と定義される。
別の例では、トラフィッククラス単位のRN PRBの使用量測定は他の方式で得られる。RNに実際に割り当てられたUnサブフレーム中のトラフィッククラス毎のRN PRB使用量は、特定のトラフィッククラス/QCIのRN PRBの数(M_RN1(T,qci))を、Unサブフレーム中のPRBの合計数(P_RN(T))と、時間Tの間に同じUnサブフレーム内にあるマクロWTRU PRBの数(M1_DoUE(T))(上記のマクロWTRU PRB使用量に関する箇所を参照)との差で割った値として定義される。式(9)は、時間T中のRNトラフィッククラス毎のUnサブフレームにわたる絶対RN PRB使用量を表す。式(10)は、時間Tの間にRNに実際に割り当てられたUnサブフレーム中のトラフィッククラス毎のRN PRB使用量を表す。
Figure 2015128329
Figure 2015128329
合計DeNB−RN PRB使用量は、MACとL1の間のサービスアクセスポイントで計算される。測定はDLとULに別々に行われる。
一例では、RNに実際に割り当てられたUnサブフレーム中のトラフィッククラス毎のRN PRB使用量は、特定のトラフィッククラス/QCIのRN PRBの絶対数(M_RN1(T,qci))を、Unサブフレーム中のPRBの合計数P_RN(T)と、時間Tの間に同じUnサブフレームにある割り込み不可優先マクロWTRUトラフィックのマクロWTRU PRBの数(M2_DoUE(T))との差で割った値として求められる。式(11)は、時間Tの間にRNに実際に割り当てられたUnサブフレーム中のトラフィッククラス毎のRN PRB使用量を表す。
Figure 2015128329
合計DeNB−RN PRB使用量は、MACとL1の間のサービスアクセスポイントで計算される。測定はDLとULに別々に行われる。
同様に、UnサブフレームにわたるマクロWTRU PRB使用量に関する測定が定義され、QCI単位で行われる。この測定により、トラフィッククラス/QCI毎のUnサブフレームにおけるマクロWTRUリソースの使用量を監視する。測定は、QCIごとにDL DTCHおよび/またはQCIごとにUL DTCHに別々に行われる。測定結果はM_DoUE(T,qci)と定義され、測定されたRN PRB使用量(例えば、M_RN(T,qci))と共に使用して、現在割り当てられている実際のUnサブフレームの負荷条件をトラフィッククラス/QCIごとに判定する。例えば、M_DoUE(T,qci)は、qciのQCI値を持つ期間TにわたりマクロUEが使用するために割り当てられたPRBの測定数(M1_DoUE(T,qci))を、所与の期間Tの間にUnサブフレーム中で割り当てることができた利用可能な合計PRBリソース(P_RN(T))で割ることによって得られる。式(12)は、時間Tの間のUnサブフレーム中のトラフィッククラス毎のマクロWTRU PRBの使用量を表す。
Figure 2015128329
M_DoUE(T,qci)は、トラフィッククラス(qci)毎の実際のUnサブフレームにわたるマクロWTRU PRBの使用量と定義され、これは、RNに割り当てられたUnインタフェースのサブフレームで使用されたPRBを時間Tにわたって平均した割合である。M_DoUE(T,qci)は、0ないし100%の範囲の値をとる。M1_DoUE(T,qci)は、時間Tの間にQCI=qciを持つUnサブフレームでマクロWTRUの送信または受信のために割り当てられた完全物理リソースブロックの数と定義される。
一例では、時間Tの間のトラフィッククラス毎のUnサブフレームの実際の負荷条件(L_UnA(T,qci))の測定が行われる。時間Tの間のトラフィッククラス毎のUnサブフレームの実際の負荷条件は、QCI毎の実際のマクロWTRU PRBの使用量と、QCI毎の実際のRN PRBの使用量とを足すことにより、DeNBで取得される。QCI毎の実際のマクロWTRU PRB使用量とQCI毎の実際のRN PRB使用量は共に、時間Tの間にRNに実際に割り当てられたUnサブフレームに対して得られる。測定は、QCIごとにDL DTCHおよび/またはQCIごとにUL DTCHに別々に行われる。式(13)は、時間Tの間のトラフィッククラス毎のUnサブフレームの実際の負荷条件を表す。L_UnA(T,qci)は0ないし100%の範囲の値である。
L_UnA(T,qci)=M_RN(T,qci)+M_DoUE(T,qci) 式(13)
一例では、期間Tの間のUnインタフェースの実際の負荷条件L_UnA(T,qci)は、QCI毎のRN PRBの合計数と、QCI毎のマクロWTRU PRBの合計数との和を、測定期間TにRNに実際に割り当てられたUnサブフレーム中で利用可能なPRBの合計数で割ることによりDeNBで取得される。式(14)は、時間Tの間のトラフィッククラス毎のUnサブフレームの実際の負荷条件を表す。L_UnA(T,qci)は0ないし100%の範囲の値である。
Figure 2015128329
RN単位でUnサブフレームにおける合計PRB使用量を求めるために測定が行われる。例えば、この測定で、DeNBのUnインタフェースにおける時間Tの間のRN局JによるPRB使用量のパーセント値(M_RN(T,J))を得る。この測定を使用して、RN局Jを含む個々のRNの性能を評価する。DeNBは、時間Tの間にRN局Jが使用したPRBの数(M1_RN(T,J))を、所与の時間Tの間にRNに割り当てられたUnサブフレーム中で利用可能な合計PRBリソース(P_RN(T))で割ることにより、時間Tの間のRN局によるPRB使用量のパーセント値(M1_RN(T,J))を求める。式(15)は、UnサブフレームにわたるRN局Jによる合計PRB使用量を表す。
Figure 2015128329
RN PRBの使用量は、MACとL1の間のサービスアクセスポイントで計算される。測定はDLとULに別々に行われる。M_RN(T,J)は、時間Tにわたって平均したUnインタフェースでRN局Jに使用されたPRBの割合である。M_RN(T,J)の値は0ないし100%の範囲をとる。M1_RN(T,J)は、時間Tの間にRN局Jの送信または受信のために割り当てられた完全物理リソースブロックの絶対数である。DLについては、M1_RN(T,J)は、RN局Jによる送信に使用されたPRBを含む。ULについては、M_RN(T,J)は、送信のためにRN局Jに割り当てられたPRBを含む。Jは、測定がRN局Jに関して行われたことを意味する。P1_RN(T)は、時間Tの間にRN局Jによる使用が可能なUnサブフレーム中のRPBの最大数を表す。
一例では、時間TにわたってRN局Jが使用したPRBの数(M1_RN(T,J))と、所与の時間Tの間にRNに割り当てられたUnサブフレーム中で利用可能な合計PRBリソース(P_RN(T))との比を求める代わりに(またはそれに加えて)、時間Tの間にRN局Jによる使用が可能なUnサブフレーム中のPRBの最大数(P1_RN(T))が、使用量測定の基盤として使用される。例えば、P1_RN(T)は、RN局Jに割り当てられたUnサブフレーム中のPRBの合計数を表す。式(16)は、UnサブフレームにわたるRN局Jによる合計PRB使用量を表す。
Figure 2015128329
一例では、時間Tの間にRN局Jに使用されたPRBの数(M1_RN(T,J))と、所与の時間Tの間にRNに割り当てられたUnサブフレーム中の利用可能な合計PRBリソース(P_RN(T))、または時間Tの間にRN局Jが使用することが可能なUnサブフレーム中のPRBの最大数(P1_RN(T))との比を求める代わりに(またはそれに加えて)、RN局Jに実際に割り当てられたUnサブフレーム中で利用可能なPRBの数(P2_RN(T))を測定で利用する。式(17)は、UnサブフレームにわたるRN局Jによる合計PRB使用量を表す。
Figure 2015128329
割り当てられたUnサブフレームを2つ以上のRNが共有する場合、特定のRNが利用可能なPRBの数、特定のRN局が利用可能なPRBは、Unサブフレーム中の非マクロWTRU PRBをおおまかに平均した何分の1かと定義される(例えば1/N。Nは、リソースを共有しているRNの数)。一例では、特定のRN局が利用可能なPRBは、RNの現在の負荷に基づきRNのリソースの何分の1かと定義される。一例では、特定のRN局が利用可能なPRBは、DeNBに内部的に既知のDeNBスケジューラの実装に基づいて定義される(例えば、過去、現在、および/または将来の既知のスケジューリング情報に基づいて所与のRN局に割合を割り当てる)。
一例では、RNに実際に割り当てられたUnサブフレーム中のRN毎のPRB使用量を求めるために、DeNBは、時間Tにわたり平均した、UnインタフェースでRN局Jが使用したPRBの数(M1_RN(T,J))を求め、次いでその数を、Unサブフレーム中のPRBの合計数(P_RN(T))と、時間Tの間の同じUnサブフレーム中のマクロWTRU PRBの数(M1_DoUE(T)との差で割る。式(18)は、UnサブフレームにわたるRN局Jによる合計PRB使用量を表す。
Figure 2015128329
RN局Jによる合計UnサブフレームPRB使用量は、MACとL1の間のサービスアクセスポイントで計算される。測定は、ダウンリンク通信とアップリンク通信に別々に行われる。
一例では、RNに実際に割り当てられたUnサブフレーム中のRN PRB使用量は、時間Tにわたり平均した、UnインタフェースでRN局Jに使用されたPRBの数(M1_RN(T,J))を、Unサブフレーム中のPRBの合計数(P_RN(T))と、Tの時間の間に同じUnサブフレーム内にある割り込み不可の優先マクロWTRUトラフィックのためのマクロWTRU PRBの数(M2_DoUE(T))との差で割った値として表される。式(19)は、UnサブフレームにわたるRN局Jによる合計PRB使用量を表す。
Figure 2015128329
RN局Jによる合計UnサブフレームのPRB使用量は、MACとL1の間のサービスアクセスポイントで計算される。測定は、ダウンリンク通信とアップリンク通信に別々に行われる。
時間Tにわたるトラフィッククラス(QCI)ごと、RN毎のUnサブフレームのPRB使用量の測定が行われる。この測定は、時間TにわたるRNごと、トラフィッククラス(QCI)毎のUnサブフレームのPRB使用量に相当し、PRBのパーセント値として表される。この測定を使用して個々のRNの性能を評価する。時間Tの間のUnサブフレームにわたるQCIクラスごと、RN局毎の使用量(M_RN(T,J,qci))は、時間Tの間にRN局Jによって使用されたqci毎のPRBの数(M1_RN(T,J,qci))を、時間Tの間にUnサブフレームでRN局Jが利用可能であったPRBの最大数(P1_RN(T))で割ることによって求められる。この測定はDLとULに別々に行われる。式(20)は、時間TにわたるRNごと、トラフィッククラス(QCI)毎のUnサブフレームの合計PRB使用量を表す。
Figure 2015128329
RN PRB使用量は、MACとL1の間のサービスアクセスポイントで計算される。測定はDLとULに別々に行われる。M_RN(T,J,qci)は、UnインタフェースでRN局Jによって使用されたトラフィッククラス毎のPRBを時間Tにわたって平均したパーセント値である。M_RN(T,J,qci)の値は0ないし100%の範囲をとる。M1_RN(T,J,qci)は、トラフィッククラスqciごとに時間Tの間に送信/受信のためにRN局Jに割り当てられた完全リソースブロックの数である。DLについては、送信に使用されたPRBが含められる。ULについては、送信のために割り当てられたPRBが含められる。
一例では、RNに実際に割り当てられたUnサブフレーム中のRNごと、QCI毎のPRB使用量(M_RN(T,J,qci))は、時間Tの間にトラフィッククラスqciごとに送信/受信のためにRN局Jに割り当てられた完全リソースブロックの数(M1_RN(T,J,qci))を、RN局Jに割り当てられたUnサブフレーム中のPRBの合計数(P1_RN(T))と、時間Tの間の同じUnサブフレーム中のマクロWTRU PRBの数(M1_DoUE(T))との差で割った値として求められる。式(21)は、時間Tの間にRNに実際に割り当てられたUnサブフレーム中のRNごと、QCI毎のPRB使用量を表す。
Figure 2015128329
合計DeNB−RN PRB使用量は、MACとL1の間のサービスアクセスポイントで計算される。測定はDLとULに別々に行われる。
一例では、 は、時間Tの間にトラフィッククラスqciごとにRN局Jに送信/受信のために割り当てられた完全リソースブロックの数(M1_RN(T,J,qci))を、RN局Jに割り当てられたUnサブフレーム中のPRBの合計数(P1_RN(T))と、時間Tの間に同じUnサブフレーム中にある割り込み不可優先マクロWTRUトラフィックのためのマクロWTRU PRBの数(M2_DoUE(T))との差で割った値として求められる。式(22)は、時間Tの間にRNに実際に割り当てられたUnサブフレーム中のRNごと、QCI毎のPRB使用量を表す。
Figure 2015128329
Unサブフレーム構成(UnSC)単位毎のPRB使用量の測定が行われる。測定はDLとULに別々に行われる。基本となるUnSC単位は、DeNBがUnサブフレームを割り当てるためにRNを設定する際の基本のシグナリング単位と定義される。例えば、1つのドナーセルに合計8個の互いに素のUnSC単位がある。UnSC単位は、Unインタフェースで利用可能なサブフレームの配分であり、RRCシグナリングを介して1つまたは複数のUnSCが1つまたは複数のRNに割り当てられる。2つ以上のRNが、RNトラフィックのために同じUnSCを共有する。ドナーセル内のマクロWTRUのトラフィックもUnサブフレームリソースを使用するように割り当てられる。例えば、Unサブフレームは、RNトラフィックならびにマクロWTRUトラフィックにより負荷分散される。UnSC単位でPRBの使用量を評価するためにDeNBでL2測定が行われる。
一例では、UnSCごとにUnサブフレーム中のマクロWTRU PRBの使用量の測定が行われる。時間Tの間の所与のUnSC K(例えば、KはUnSCの索引)についてのマクロWTRU PRB使用量は、M_DoUEsc(K,T)と表される。M_DoUEsc(K,T)を求めるために、DeNBは、時間Tの間のUnSC KのマクロWTRUのPRBの測定数(M1_DoUEsc(K,T))を、時間Tの間にUnSC Kで利用可能なPRBの合計数(P_RNsc(K,T))で割る。式(23)は、時間TにわたるUnSC毎のUnサブフレーム中のマクロWTRU PRBの使用量を表す。
Figure 2015128329
測定結果は、UnSCの総負荷条件を導出するために使用される。測定結果は、Unサブフレームの配分を拡大する前に、他の未割り当てのUnSCのマクロWTRUトラフィックを原因とする負荷条件を予測するためにも使用される。
UnSC単位のUnサブフレーム中のRN PRB使用量の測定が行われる。Unサブフレーム(例えば割り当てられたUnSC単位)に対する合計RNトラフィック使用量を監視するのに加えて、1つまたは複数のUnSCの負荷条件を評価するために、個々のUnSC毎のRN PRB使用量も測定される。UnSC毎のRN PRB使用量の測定は、DLとULに別々に行われる。例えば、時間Tの間のUnSC K毎のRN PRB使用量は、M_RNsc(K,T)と表される。DeNBは、時間Tの間にUnSC KでRNに割り当てられるPRBの合計数(M1_RNsc(K,T))を、時間Tの間にUnSC Kで利用可能なPRBの合計数(P_RNsc(K,T))で割ることによりM_RNsc(K,T)を得る。式(24)は、時間TにわたるUnSC毎のUnサブフレーム中のRN PRB使用量を表す。
Figure 2015128329
測定結果は、UnSC毎の総負荷条件を判定するために使用される。測定結果は、Unサブフレームの配分を縮小する前に、他の割り当て済みのUnSCのRNトラフィックを原因とする負荷条件を予測するためにも使用される。
一例では、時間Tの間にUnSC KでRNに割り当てられるPRBの合計数(M1_RNsc(K,T))と、時間Tの間にUnSC Kで利用可能なPRBの合計数(P_RNsc(K,T))との比を求める代わりに(またはそれに加えて)、時間T中のUnSC KのPRBの合計数(P_RNsc(K,T))と、時間Tの間のUnSC KのマクロWTRUのためのPRBの測定数(M1_DoUEsc(K,T))との差が利用される。例えば、時間TにわたるUnSC毎のUnサブフレーム中のRN PRB使用量を求めるために、時間Tの間にUnSC KでRNに割り当てられるPRBの合計数(M1_RNsc(K,T))を、時間Tの間のUnSC K中のPRBの合計数(P_RNsc(K,T))と、時間Tの間のUnSC KのマクロWTRUのためのPRBの測定数(M1_DoUEsc(K,T))との差で割る。式(25)は、時間TにわたるUnSC毎のUnサブフレーム中のRN PRB使用量を表す。
Figure 2015128329
一例では、上記で開示したUnSC毎の RN PRB使用量の定義を利用する代わりに(またはそれに加えて)、時間Tの間にUnSC KにあるRN PRBの合計数(M1_RNsc(K,T))を、時間Tの間のUnSC KのPRBの合計数(P_RNsc(K,T))と、時間Tの間にUnSC Kで観測された割り込み不可優先マクロWTRUトラフィックに割り当てられたマクロWTRU PRBの数(M2_DoUEsc(K,T))との差で割ることにより、UnSC毎のRN PRB使用量が求められる。式(26)は、時間TにわたるUnサブフレームにおけるUnSC毎のRN PRB使用量を表す。
Figure 2015128329
式中、M2_DoUEsc(K,T)は、時間Tの間にUnSC Kで観測された割り込み不可優先マクロWTRUトラフィックからのPRBの数である。例えば、特定のUnSCの総負荷(例えば、M_RNsc(K,T)+M_DoUEsc(K,T))が第1の閾値を超えるか、または第2の閾値を下回る場合、ドナーセルのUu/Unサブフレームの再配分がトリガにより始動される、かつ/または特定のRNに対する再設定がトリガにより始動される。一例では、M_RNsc(K,T)が第1の閾値を超えるか、または第2の閾値を下回ると、ドナーセルのUu/Unサブフレーム再配分がトリガにより始動されるか、かつ/または特定のRNに対する再設定がトリガにより始動される。例えば、特定のRNに関連する輻輳したUnSCの場合には、トリガにより、追加的なUnSCをRNに割り当てることにより、DeNBにRNを再設定させるか、またはRNに新しいUnSCを割り当て、既存のUnSCをRNから除去することによりRNを再設定させる。
Unサブフレーム構成単位ごと、トラフィッククラス(QCI)ごとにPRB使用量の測定が行われる。Unサブフレーム構成単位ごと、トラフィッククラス(QCI)毎のPRB使用量の測定は、DLとULに別々に行われる。例えば、トラフィッククラス/QCI毎の特定のUnSC KのマクロWTRU PRB使用量(M_DoUEsc(K,T,qci))の測定が行われる。QCI毎のUnSC KにおけるマクロWTRU PRB使用量は、時間TにわたるUnSC KのトラフィッククラスqciのマクロWTRU PRBの測定数(M1_DoUEsc(K,T,qci))を、時間Tの間にUnSC Kで利用可能なPRBの合計数(P_RNsc(K,T))で割ることによって求められる。式(27)は、時間TにわたるUnSC単位ごと、トラフィッククラス(QCI)毎のマクロWTRU PRB使用量を表す。
Figure 2015128329
UnSC単位ごと、トラフィッククラス(QCI)毎のマクロWTRU PRB使用量は、UnSCの総負荷条件を導出するために使用されるか、かつ/または、例えばUnサブフレームの配分を拡張する前に、未割り当ての他のUnSCのマクロWTRUトラフィックを原因とする負荷条件を予測するために使用される。
Unサブフレーム(例えば割り当てられたUnSC単位)の合計RNトラフィック使用量を監視するのに加えて、QCI毎のRN PRB使用量および/またはQCI毎のマクロWTRU PRB使用量もUnSC単位で測定される。QCIごと、UnSC毎のRN PRB使用量および/またはQCIごと、UnSC毎のマクロWTRU PRB使用量は、特定のUnSCの負荷条件を判定するために測定される。QCIごと、UnSC毎のRN PRB使用量および/またはQCIごと、UnSC毎のマクロWTRU PRB使用量は、DLとULに別々に行われる。時間Tの間のUnSC KのQCI qciについてのRN PRB使用量(M_RNsc(K,T,qci))は、時間Tの間にQCI qciでUnSC KでRNに割り当てられたPRBの合計数(M1_RNsc(K,T))を、時間Tの間にUnSC Kで利用可能なPRBの合計数(P_RNsc(K,T))で割ることによって求められる。式(28)は、時間Tにわたるトラフィッククラス(QCI)ごと、UnSC単位毎のRN PRB使用量を表す。
Figure 2015128329
一例では、上記で開示したUnSCごと、QCI毎のRN PRB使用量の定義を利用する代わりに(またはそれに加えて)、時間Tの間のQCI qciのUnSC K中のRN PRB合計数(M1_RNsc(K,T,qci))を、時間T中のUnSC K中のPRBの合計数(P_RNsc(K,T))と、時間Tの間にUnSC Kで観測されるマクロWTRU PRBの数(M1_DoUEsc(K,T))との差で割ることにより、UnSCごと、QCI 毎のRN PRB使用量が求められる。式(28)は、時間TにわたるトラフィックUnSC単位ごと、クラス(QCI)毎のRN PRB使用量を表す。
Figure 2015128329
一例では、上記で開示したUnSCごと、QCI毎のRN PRB使用量の定義を利用する代わりに(またはそれに加えて)、時間Tの間のQCI qciのUnSC K中のRN PRBの合計数(M1_RNsc(K、T、qci))を、時間Tの間のUnSC K中のPRBの合計数(P_RNsc(K,T))と、時間Tの間にUnSC Kで観測される割り込み不可優先マクロWTRUトラフィックのためのマクロWTRU PRBの数(M2_DoUEsc(K,T))との差で割ることにより、UnSCごと、QCI毎のRN PRB使用量が求められる。式(29)は、時間TにわたるUnSC単位ごと、トラフィッククラス(QCI)毎のRN PRB使用量を表す。
Figure 2015128329
合計マクロWTRU PRB使用量を求めるために測定が行われる。例えば、合計マクロWTRU PRB使用量の測定を利用して、DeNB/マクロWTRUインタフェースの負荷条件を検出するために、DeNBのUuインタフェースにおけるリソースの使用量を監視する。測定結果は、DeNBで負荷平衡および/または輻輳制御に使用される。合計マクロWTRU PRB使用量の測定で、時間Tの間の合計マクロWTRU PRB使用量のパーセント値(M(T))が得られる。M(T))は、マクロWTRUに割り当てられるPRBの数(M1(T))を、時間Tの間にマクロWTRUによって使用されることが可能な利用可能な合計PRBリソース(P(T))で割ることによって求められる。P(T)は、時間Tの間にマクロWTRUに割り当てることができたPRBの最大数と定義される。例えば、時間Tの間にマクロWTRUに割り当てることができるPRBの最大数は、時間Tの間のPRBの合計数(A(T))と、時間Tの間にRNに割り当てられるPRBの数(RN(T))との差である。式(30)および(31)は、それぞれ、時間Tの間の合計マクロWTRU PRB使用量のパーセント値と、時間Tの間にマクロWTRUに割り当てることができるPRBの最大数を表す。
Figure 2015128329
Figure 2015128329
測定はDLとULに別々に行われる。M(T)は、時間Tにわたって平均した、実際にマクロWTRUに使用されたPRBの割合である合計マクロWTRU PRB使用量である。M(T)は0ないし100%の範囲の値である。M1(T)は、時間Tの間にマクロWTRUに割り当てられた完全リソースブロックの数である。DLについては、マクロWTRUによる送信に使用されたPRBが含められる。ULについては、送信のためにマクロWTRUに割り当てられたPRBが含められる。P(T)は、時間Tの間にDeNBのUuインタフェースでマクロWTRUが利用可能なPRBの合計数である。A(T)は、時間Tの間に利用可能なPRBの合計数である。RN(T)は、時間Tの間にRNによって使用されたPRBの合計数である。
一例では、合計マクロWTRU PRB使用量は、トラフィッククラス(QCI)ごとに測定される。測定により、トラフィッククラス毎のDeNB−UE間のインタフェース(例えば、Uuインタフェース)におけるリソース使用量が得られる。トラフィッククラス毎の合計マクロWTRU PRB使用量はM(qci)と表され、マクロWTRUのあるトラフィッククラスに関連するPRB使用量のパーセント値である。トラフィッククラス毎のマクロWTRU PRB使用量の測定は、1つのセル内のマクロWTRUの集約であり、専用トラフィックチャネル(DTCH)に適用可能である。測定は、MACとL1の間のサービスアクセスポイントで行われる。測定は、DL DTCH(例えば、QCIごと)とUL DTCH(例えば、QCIごと)に別々に行われる。式(32)は、時間Tの間のトラフィッククラスqci毎の絶対マクロWTRU PRB使用量を表す。式(33)は、トラフィッククラス毎のマクロWTRU PRB使用量を表す。式(34)は、時間Tの間にマクロWTRUに割り当てることができるPRBの最大数を表す。
Figure 2015128329
Figure 2015128329
P(T)=A(T)−RN(T) 式(34)
M1(qci,T)は、時間Tの間にマクロWTRUに割り当てられたトラフィッククラスqci毎のPRBの数であり、完全または部分PRBの数である。変数tは、DeNB−WTRU間のインタフェース(例えばUuインタフェース)を通るSTCHデータを含んでいる、時間T中のトランスポートブロックを表す。最初の送信およびHARQによる再送信に使用されるトランスポートブロックが計数される。S(T)は、ブロックtの送信に使用されるPRBのセットである。W(p)は、現在PRBpを共有しているトランスポートブロックの数である。B(t,qci)は、トランスポートブロックtで搬送され、DeNB−WTRU間インタフェース(例えばUuインタフェース)で送信される、qciのQCIを持つRN DTCHのためのDTCHビットの合計数である。X(t)は、多重化を考慮に入れるために定義される。例えば、多重化を考慮に入れる場合は、X(t)はX(t)=1と定義される。多重化を考慮に入れない場合に、トランスポートブロックtが単一のQCIに対応するデータを搬送する場合は、X(t)はX(t)=1と定義される。多重化を考慮に入れない場合に、トランスポートブロックtが2つ以上のQCI値に対応するデータを搬送する場合は、X(t)はX(t)=0と定義される。M(qci)は、トラフィッククラス毎のマクロWTRU PRB使用量であり、時間Tにわたって平均した、QCI qciに使用されるPRBのパーセント値として表される。M(qci)は0ないし100%の範囲の値をとる。P(T)は、時間Tの間にDeNBのUuインタフェースでマクロWTRUに割り当てることができるPRBの最大数である。A(T)は、時間Tの間に利用可能なPRBの合計数である。RN(T)は、時間Tの間にRNに使用されるPRBの合計数である。
セルフオーガナイジングネットワーク(SON)に対して、eNBは、RNセルのセルリソースステータスを要求する。そのRNセルを維持しているRNは、自身の無線バックホールをDeNBに伝え、DeNBは、要求元のeNBとは異なる基地局である。RNセルの容量は、ドナーセルの容量および/またはRNバックホールリンクの容量によって制限されるため、要求元のeNBは、DeNBのドナーセル(例えばRNの無線バックホールがDeNBに通信される際に使用されるセル)のセルリソースステータスも要求する。DeNBがRNセルのリソース更新で要求元のDeNBに応答する時、DeNBは自身のドナーセルの識別を通知する。例えば、DeNBは、ドナーセルのE−UTRANセルグローバル識別子(ECGI)を要求元のeNBに送信する。RNバックホールもRNの容量に影響するため、DeNBは、RNバックホールリンクの無線リソースステータスも送信する。中継セルの負荷条件に対応するために、要求元のeNBは、DeNBのドナーセルと、ドナーセル内でRNバックホールに関連する負荷に関連する情報をDeNBから受信する。表1に、DeNBから別のeNBに送信されるRNセルステータス更新メッセージで提供される情報要素の例を示す。例えば、セルステータス更新メッセージは、ドナーセルIDおよびUnインタフェース無線リソースステータスを含む。
Figure 2015128329
トラフィッククラス/QCI毎のDeNB下にあるアクティブなWTRUの数の測定は、QCIクラス毎のアクティブなWTRUの数を示す。DeNBは自身のリソースをRNとマクロWTRUとの間で配分する(例えば、UuおよびUnサブフレームを時分割多重化する)ので、DeNBは、RNの下にあるWTRU(例えばRN−WTRU)を除いてQCI毎のアクティブなマクロWTRUの数を計数する。例えば、DeNBが1つまたは複数のRNにサービスしている場合は、測定で、そのDeNBにサービスされているRNに接続されたWTRUではなく、DeNBに直接接続されたQCI毎のアクティブなWTRUの数を求める。アクティブなマクロWTRUの数の測定は、ULでアクティブなマクロWTRUおよび/またはDLでアクティブなマクロWTRUに対して行われる。
DLでRN下にあるアクティブなWTRUのQCI毎の合計数を求めるために測定が行われる。DeNBは、各RNの下にあるアクティブなWTRUの数を求め、合計数を計算する。例えば、式(35)は、時間Tの間にQCI qciでDeNBによってサービスされるRNに接続されているDLのアクティブなWTRUの合計数を表す。
Figure 2015128329
M(T,qci)は、時間Tにわたって平均した、DeNBに接続されたRNに接続されたDLのアクティブなWTRUのQCI毎の数である。N(i,qci)は、qciの所与のQCI値についてRN(i)の下にあるDLのアクティブなWTRUの数であり、iはRNの索引番号である。
測定を行って、QCIごとにULでRNの下にあるアクティブなWTRUの合計数を求める。DeNBは、各RNの下にあるアクティブなWTRUの数を求め、合計数を計算する。例えば、式(36)は、時間Tの間にQCI qciのDeNBにサービスされるRNに接続されたULのアクティブなWTRUの合計数を表す。
Figure 2015128329
M(T,qci)は、時間Tにわたって平均した、DeNBに接続されたRNに接続されたQCI毎のULのアクティブなWTRUの数である。N(i,qci)は、qciの所与のQCI値についてのRN(i)の下にあるULのアクティブなWTRUの数であり、iはRNの索引番号である。
平均アクティブなWTRUビットレートの判定は、セルPDCP SDUビットレート(DLおよび/またはUL)を各QCIのアクティブなWTRU(DLおよび/またはUL)の数で割ることによって把握される。セルPDCP SDUビットレートの測定がDeNBにおけるRNトラフィックを含む場合は、DeNBにおけるアクティブなWTRUの数の測定は、DeNB−WTRU(例えば、マクロWTRU)とRN−WTRUの両方を含む。Rn−WTRUの平均ビットレートは、RNによってすでに計算されている場合もあり、DeNBがRN−WTRUを計算に含める場合は冗長になる。一例では、発生しうる二重の計数を考慮するために、DeNBによるセルPDCP SDUビットレートの計算の際に、X2/S1からRNセルに転送される、またはRNセルから受信されるPDCP SDUをビットの計数から差し引く。一例では、DeNBは、QCI毎のアクティブなWTRUの測定時にDeNB−WTRU(例えば、マクロWTRU)は数に入れるが、RN−WTRUは数に入れない。
DeNBにおけるDLパケット遅延の測定で、QCIクラス毎の平均パケット遅延を測定する。測定結果を使用して、各QCIクラスのQoSを保証/実現する。DeNB−RN間のインタフェース(例えば、Unインタフェース)での遅延は、RNのバックホールリンクであり、そのためそれらのパケットの遅延は、RNのUuインタフェース(例えばRNとそのRNに接続されたWTRUの間のインタフェース)で測定される。したがって、DeNBで測定されるパケット遅延は、DeNBのUnインタフェースのパケットではなく、マクロWTRUパケット(例えば、DeNBのUuインタフェースのパケット)の遅延を測定する。RNバックホールパケットの遅延の測定は、独立した測定として行われる。したがって、1つのセル内でサービスされるRNが1つまたは複数ある場合は、DeNBは、DeNBとマクロWTRUの間で送信されるパケット(例えば、DeNBのUuインタフェースのパケット)、およびDeNBと1つまたは複数のRNの間で送信されるパケット(例えば、DeNBのUnインタフェースのパケット)について別個の測定を行う。
マクロWTRUのDLパケット遅延の測定は、マクロWTRUのQCI毎の平均DLパケット(例えば、DeNBのUuインタフェースのDLトラフィック)の遅延を示す。DeNBのUuインタフェースのQCl毎のDLパケット遅延は、マクロWTRUのデータ無線ベアラ(DRB)のパケット遅延を指す。遅延を求める目的で、パケット到着の基準点をPDCP上位サービスアクセスポイント(SAP)とする。パケット受信の基準点をMAC下位SAPとする。一例では、マクロWTRUのDLパケット遅延の測定は、QCLごとに別個に行われる。例えば、式(37)は、時間Tの間にQCI qciでDeNBのUuインタフェースを通るマクロWTRUパケットのDLパケット遅延を表す。
Figure 2015128329
M(T,qci)は、時間Tにわたって平均した、QCI毎のマクロWTRU(例えば、Uuインタフェースのパケット遅延)のDLパケット遅延である。例えば、DLパケット遅延の単位は、秒やミリ秒等の時間を単位とする。tArriv(i)は、マクロWTRUのPDCPのサービスデータ単位(SDU)iが到着する時間である。例えば、マクロWTRU PDCP SDUの到着を判定する基準点はPDCP上位SAPである。tAck(i)は、マクロWTRU PDCP SDU iの最後の部分がHARQフィードバック情報に従ってWTRUに受信された時間である。添え字iは、時間Tの間にPDCP上位SAPに到着するマクロWTRU SDUを表す。例えば、特定のPDCP SDUのすべての部分についてHARQ受信通知が受信されない場合、そのPDCP SDUはパケット遅延の判定で除外される。I(T)は、当該測定期間Tの間のマクロWTRU PDCP SDUの合計数である。
同様に、RNバックホールDLパケット遅延の測定は、RNトラフィック(例えば、DeNBのUnインタフェースのDLトラフィック)のQCI毎の平均DLパケット遅延に対応する。この測定をRN処理および伝送遅延の測定と組合せて、RNパケットの合計パケット遅延を求める。DeNBのUnインタフェースのQCI毎のDLパケット遅延は、RNデータ無線ベアラ(DRB)についてのパケット遅延を指す。遅延を判定する目的で、パケット到着の基準点をPDCP上位サービスアクセスポイント(SAP)とする。パケット受信の基準点はMAC下位SAPとする。一例では、RN DLパケット遅延の測定はQCIごとに別個に行われる。例えば、式(38)は、時間Tの間のQCI qciのDeNBのUnインタフェースを通るRNパケットのDLパケット遅延を表す。
Figure 2015128329
M_RN(T,qci)は、時間Tにわたって平均した、QCI毎のRNのDLパケット遅延(例えば、Unインタフェースのパケット遅延)である。例えば、DLパケット遅延の単位は、秒やミリ秒等の時間を単位とする。tArriv(i)は、RN PDCPサービスデータ単位(SDU)iが到着する時間である。例えば、RN PDCP SDUの到着を判定する基準点はPDCP上位SAPとする。tAck(i)は、HARQフィードバック情報に従ってRN PDCP SDUiの最後の部分がRNに受信された時間である。添え字iは、時間Tの間にPDCP上位SAPに到着するRN SDUを表す。例えば、特定のPDCP SDUのすべての部分についてHARQ受信通知が受信されない場合、そのPDCP SDUはパケット遅延の判定で除外される。I(T)は、当該測定期間Tの間のRN PDCP SDUの合計数である。
一例では、QCI毎のRNバックホールDLパケット遅延の測定はRN単位で行われる。RN単位で測定を行うと、1つまたは複数のRN間の相対遅延が比較されるので、より詳細な負荷および遅延情報が得られる。DeNBのUnインタフェースにおけるQCIごと、RN毎のDLパケット遅延では、DRBのパケット遅延を測定する。遅延を判定する目的で、パケット到着の基準点をPDCP上位サービスアクセスポイント(SAP)とする。パケット受信の基準点はMAC下位SAPとする。一例では、RN DLパケット遅延の測定はQCIごとに別個に行われる。例えば、式(39)は、時間Tの間にQCI qciのDeNBのUnインタフェースを通るRNjのパケットのDLパケット遅延を表す。
Figure 2015128329
M_RN(T,j,qci)は、時間Tにわたって平均した、QCI毎のRNjのDLパケット遅延(例えば、DeNBとRNjの間のUnインタフェースにおけるパケット遅延)である。例えば、DLパケット遅延の単位は、秒やミリ秒等の時間を単位とする。tArriv(i)は、RNjのPDCPサービスデータ単位(SDU)iが到着する時間である。例えば、RN PDCP SDUの到着を判定する基準点はPDCP上位SAPとする。tAck(i)は、HARQフィードバック情報に従ってRNjのPDCP SDUiの最後の部分がRNに受信された時間である。添え字iは、時間Tの間にPDCP上位SAPに到着するRNjのSDUを表す。例えば、特定のPDCP SDUのすべての部分についてHARQ受信通知が受信されない場合、そのPDCP SDUはパケット遅延を求める際に除外される。I(T)は、当該測定期間Tの間のRNjのPDCP SDUの合計数である。
RN−WTRUの全パケット遅延を正確に求めるために、RNにおけるパケット処理および伝送遅延の測定を行って、そのRNのQCI毎の処理および伝送遅延を求める。RNパケット処理および伝送遅延の測定は、RN MACWTRUがそのUnインタフェースでDeNBからのパケットを受信する時間と、RN MACeNBがそのUuインタフェースでRN−WTRUからACKを受信する時間との間の平均遅延を意味する。この測定をDeNBバックホール遅延と組合せて、DeNBのPDCP上位SAPからRN−WTRUへのRN−WTRUパケットの合計のDL平均遅延を求める。例えば、RNの元で行われる送信者から受信者へのトラフィッククラス毎の合計パケット遅延の推定は、ネットワークのQoS管理に使用される。合計パケット遅延の推定は、RN−WTRUパケットの合計DL平均遅延を平均ネットワークパケット遅延と組合せることによって求められる。QCI毎のDLパケット遅延の測定は、DRBのパケット遅延を指す。遅延を判定する目的で、パケット到着の基準点をUnインタフェースのRN MAC下位SAPとする。パケット受信の基準点は、RNのUuインタフェースのRN MAC下位SAPとする。一例では、RNにおけるパケット処理および伝送遅延の測定はQCIごとに別個に行われる。例えば、式(40)は、時間Tの間のQCI qciのRNにおけるDLパケット処理および伝送遅延を表す。
Figure 2015128329
M(T,qci)は、時間Tにわたって平均した、QCI毎のRNのDLパケット遅延である。例えば、DLパケット遅延の単位は、秒やミリ秒等の時間を単位とする。tArriv(i)は、MACがUnインタフェースでDeNBからMAC SDUiを受信する時間である。tAck(i)は、HARQフィードバック情報に従ってSDUiの最後の部分がRN−WTRUに受信された時間である。添え字iは、時間Tの間にUuインタフェースを介してRNのMAC層に到着するSDUを表す。I(T)は、当該測定期間Tの間のMAC SDUの合計数である。
DeNBにおけるDLデータ破棄の測定で、所与のセルの輻輳レベルの指標としてのパケット破棄率を測定する。DeNBで、DeNB−RN間インタフェース(例えば、Unインタフェース)およびDeNBマクロWTRUインタフェース(例えばUuインタフェース)で発生しうる輻輳を反映するために、2つの測定を別個に行って、UuインタフェースとUnインタフェースの輻輳レベルを判定する。
例えば、マクロWTRUについてのDeNBにおけるDLデータ破棄の測定を行って、DLマクロWTRUパケットのパケット破棄比を求める。DeNBのUuインタフェースにおけるQCI毎のDLパケット破棄率の測定は、マクロWTRU DRBについての破棄率を示す。例えば、パケットは1つのマクロWTRU PDCP SDUに相当する。測定を行うための基準点はPDCP上位SAPとする。測定はQCIごとに別個に行われる。例えば、式(41)は、時間Tの間のQCI qciのパケットのUuインタフェースにおけるDLパケットの破棄率を表す。
Figure 2015128329
多くの事例では、パケット損失は非常に少ない。個々の破棄率の測定結果の統計的精度は、受信されたパケットの数と、したがって測定の時間に依存する。M_ue(T,qci)は、時間Tにわたって平均した、QCI毎のDLマクロWTRUのパケット破棄率である。DLマクロWTRUのパケット破棄率の単位は、n個のパケット当たりの破棄パケット数である。例えばnは106パケットである。Ddiscue(T,qci)は、時間Tの間に無線で送信された部分がなく、ハンドオーバー以外の理由でPDCP、RLC、またはMAC層で破棄されたDLマクロWTRUパケットの数であり、qciのQCIの無線ベアラのデータを含む。N_ue(T,qci)は、時間Tの間にPDCP上位SAPに到着したqciのQCIを持つベアラのDLマクロWTRUパケットの数である。例えば、Tは分単位で測定される。
同様に、RNトラフィックについてのDeNBにおけるDLデータ破棄の測定を行って、DL RNパケットのパケット破棄比を求める。DeNBのUnインタフェースのQCI 毎のDLパケットの破棄率の測定は、RN DRBの破棄率を示す。例えば、パケットは1つのRN PDCP SDUに相当する。測定を行うための基準点はPDCP上位SAPとする。測定はQCIごとに別個に行われる。例えば、式(42)は、時間Tの間のQCI qciを持つパケットのUnインタフェースにおけるDLパケットの破棄率を表す。
Figure 2015128329
多くの事例では、パケット損失は非常に少ない。個々の破棄率の測定結果の統計的精度は、受信されたパケットの数と、したがって測定の時間に依存する。M_RN(T,qci)は、時間Tにわたって平均した、QCI毎のDL RNパケット破棄率である。DL RNパケットの破棄率の単位は、n個のパケット当たりの破棄パケット数である。例えばnは106パケットである。Ddisc_RN(T,qci)は、時間Tの間に無線で送信された部分がなく、ハンドオーバー以外の理由でPDCP、RLC、またはMAC層で破棄され、qciのQCIの無線ベアラのデータを含むDL RNパケットの数である。N_RN(T,qci)は、時間Tの間にPDCP上位SAPに到着したqciのQCIを持つベアラのDL RNパケットの数である。例えば、Tは分単位で測定される。
一例では、所与のトラフィッククラスのRNトラフィックについてのDeNBのDLデータ破棄は、RNごとに測定される。例えば、DeNBのUnインタフェースにおけるRN局jについてのQCI毎のDLパケット破棄率の測定は、RN局jのDRBについての破棄率を示す。例えば、パケットは1つのRN PDCP SDUに相当する。測定を行うための基準点はPDCP上位SAPとする。測定はQCIごとに別個に行われる。例えば、式(43)は、時間Tの間のQCI qciのパケットのUnインタフェースにおけるDLパケットの破棄率を表す。
Figure 2015128329
多くの事例では、パケット損失は非常に少ない。個々の破棄率の測定結果の統計的精度は、受信されたパケットの数と、したがって測定の時間に依存する。M_RN(T,j,qci)は、時間Tにわたって平均した、RN局jについてのQCI毎のDL RNパケットの破棄率である。DL RNパケット破棄率の単位は、n個のパケット当たりの破棄パケット数である。例えばnは106パケットである。Ddisc_RN(T,j,qci)は、時間Tの間に無線で送信された部分がなく、ハンドオーバー以外の理由でPDCP、RLC、またはMAC層で破棄され、qciのQCIを持つ無線ベアラのデータを含むRN局jのDL RNパケットの数である。N_RN(T,j,qci)は、時間Tの間にPDCP上位SAPに到着したRN局jのqciのQCIを持つベアラのDL RNパケットの数である。例えば、Tは分単位で測定される。
DeNBにおける無線伝送条件の詳細なモデルを確定するために、DeNBのマクロWTRUのパケット損失(例えば、Uuインタフェースに関連するパケット損失)およびDeNB−RNのパケット損失(例えば、Unインタフェースに関連するパケット損失)の別個の測定 。測定は、一部の種類および/またはすべての種類の中継機に適用される。
UuインタフェースにおけるQCI毎のDLパケット損失率の測定で、QCIクラス毎のマクロWTRUパケットのDLデータ損失率を測定する。例えば、パケットは1つのマクロWTRU PDCP SDUに相当する。測定はQCIごとに別個に行われる。測定を行うための基準点はPDCP上位SAPとする。例えば、式(44)は、時間Tの間のQCI qciのパケットのUuインタフェースにおけるDLパケット損失率を表す。
Figure 2015128329
例えば、パケット損失は、QCIのパケットエラー損失率(PELR)によって上限が決まることが予想され、PELRは10-6ないし10-2の間の値をとる。個々のパケット損失率の測定結果の統計的精度は、受信されたパケットの数と、したがって測定に許される時間に依存する。M(T,qci)は、時間Tにわたって平均した、UuインタフェースにおけるQCI毎のDLパケット損失率である。DLパケット損失率の単位は、n個のパケット当たりの破棄パケット数である。例えばnは106パケットである。Dloss(T,qci)は、少なくとも一部分が無線で送信されたが肯定応答が返されておらず、それ以上送信の試みが行われないと時間Tの間に判断された、qciのQCIを持つUuインタフェースのDLパケットの数である。例えば、パケットの送信が別のセルで継続しうる場合は、計数から除外される。N(T,qci)は、無線で送信され、時間Tの間に肯定応答が返されたqciのQCIを持つベアラのDLマクロWTRUパケットの数である。例えばTは分単位で測定される。
同様に、UnインタフェースにおけるQCI単位のDLパケット損失率の測定で、QCIクラス毎のRNパケットのDLデータ損失率を測定する。例えば、パケットは1つのRN PDCP SDUに相当する。測定はQCIごとに別個に行われる。測定を行うための基準点はPDCP上位SAPとする。例えば、式(45)は、時間Tの間のQCI qciのパケットのUnインタフェースにおけるDLパケット損失率を表す。
Figure 2015128329
例えば、パケット損失は、QCIのパケットエラー損失率(PELR)によって上限が決まることが予想され、PELRは10-6ないし10-2の間の値をとる。個々のパケット損失率の測定結果の統計的精度は、受信されたパケットの数と、したがって測定に許される時間に依存する。M_RN(T,qci)は、時間Tにわたって平均した、UnインタフェースにおけるQCI毎のDLパケット損失率である。DLパケット損失率の単位は、n個のパケット当たりの破棄パケット数である。例えばnは106パケットである。Dloss_RN(T,qci)は、少なくとも一部分が無線で送信されたが肯定応答が返されておらず、それ以上送信の試みが行われないと時間Tの間に判断された、qciのQCIを持つUnインタフェースのDLパケットの数である。例えば、パケットの送信が別のセルで継続しうる場合は、計数から除外される。N(T,qci)は、無線で送信され、時間Tの間に肯定応答が返されたqciのQCIを持つベアラのDL RNパケットの数である。例えばTは分単位で測定される。
一例では、UnインタフェースにおけるQCI毎のDLパケット損失率の測定は、RN単位で行われる。例えば、所与のRN局JについてのQCI毎のDLパケット損失率の測定で、RN局JのDRBについてのパケット損失を測定する。パケットは1つのRN PDCP SDUに相当する。測定はQCIごとに別個に行われる。測定を行うための基準点はPDCP上位SAPとする。例えば、式(46)は、時間Tの間のQCI qciのパケットのUnインタフェースにおけるRN局JについてのDLパケット損失率を表す。
Figure 2015128329
例えば、パケット損失は、QCIのパケットエラー損失率(PELR)によって上限が決まることが予想され、PELRは10-6ないし10-2の間の値をとる。個々のパケット損失率の測定結果の統計的精度は、受信されたパケットの数と、したがって測定に許される時間に依存する。M_RN(T,J,qci)は、時間Tにわたって平均した、UnインタフェースにおけるQCI毎のRN局JについてのDLパケット損失率である。DLパケット損失率の単位は、n個のパケット当たりの破棄パケット数である。例えばnは106パケットである。Dloss_RN(T,J,qci)は、少なくとも一部分が無線で送信されたが肯定応答が返されておらず、それ以上送信の試みが行われないと時間Tの間に判断された、qciのQCIを持つUnインタフェースのRN局JについてのDLパケットの数である。例えば、パケットの送信が別のセルで継続しうる場合は、計数から除外される。N(T,J,qci)は、無線で送信され、時間Tの間に肯定応答が返された、RN局JについてのqciのQCIを持つベアラのDL RNパケットの数である。例えばTは分単位で測定される。
UuインタフェースにおけるQCI毎のULパケット損失率の測定で、各QCIクラスのマクロWTRUパケットのULデータ損失率を測定する。例えば、パケットは1つのマクロWTRU PDCP SDUに相当する。測定はQCIごとに別個に行われる。測定を行うための基準点はPDCP上位SAPとする。例えば、式(47)は、時間Tの間のQCI qciのパケットのUuインタフェースにおけるULパケット損失率を表す。
Figure 2015128329
例えば、パケット損失は、QCIのパケットエラー損失率(PELR)によって上限が決まることが予想され、PELRは10-6ないし10-2の間の値をとる。個々のパケット損失率の測定結果の統計的精度は、受信されたパケットの数と、したがって測定に許される時間に依存する。M(T,qci)は、時間Tにわたって平均した、UuインタフェースにおけるQCI毎のULパケット損失率である。ULパケット損失率の単位は、n個のパケット当たりの破棄パケット数である。例えばnは106パケットである。Dloss(T,qci)は、時間Tの間の欠落しているマクロWTRU UL PDCPの連続番号の数であり、上位層に渡されず、qciのQCIを持つデータ無線ベアラに属する、Uuインタフェース上のUL PDCPパケットの数に相当する。例えば、パケットの送信が別のセルで継続しうる場合は、そのパケットは計数から除外される。N(T,qci)は、PDCP上位SAPによって上位層に渡された最初のパケットで始まり、時間Tの最後のパケットのPDCP SNで終わる、qciのQCIを持つベアラのマクロWTRU UL PDCPの連続番号(欠落している連続番号を含む)の合計数である。例えばTは分単位で測定される。
同様に、UnインタフェースにおけるQCI毎のULパケット損失率の測定で、各QCIクラスのRNパケットのULデータ損失率を測定する。例えば、パケットは1つのRN PDCP SDUに相当する。測定はQCIごとに別個に行われる。測定を行うための基準点はPDCP上位SAPとする。例えば、式(48)は、時間Tの間のQCI qciのパケットのUnインタフェースにおけるULパケット損失率を表す。
Figure 2015128329
例えば、パケット損失は、QCIのパケットエラー損失率(PELR)によって上限が決まることが予想され、PELRは10-6ないし10-2の間の値をとる。個々のパケット損失率の測定結果の統計的精度は、受信されたパケットの数と、したがって測定に許される時間に依存する。M_RN(T,qci)は、時間Tにわたって平均した、UnインタフェースにおけるQCI毎のULパケット損失率である。ULパケット損失率の単位は、n個のパケット当たりの破棄パケット数である。例えばnは106パケットである。Dloss_RN(T,qci)は、時間Tの間の欠落しているRN UL PDCPの連続番号の数であり、上位層に渡されず、qciのQCIを持つデータ無線ベアラに属する、Unインタフェース上のUL PDCPパケットの数に相当する。例えば、パケットの送信が別のセルで継続しうる場合は、そのパケットは計数から除外される。N_RN(T,qci)は、PDCP上位SAPによって上位層に渡された最初のパケットで始まり、時間Tの最後のパケットのPDCP SNで終わる、qciのQCIを持つベアラのRN UL PDCPの連続番号(欠落している連続番号を含む)の合計数である。例えばTは分単位で測定される。
一例では、UnインタフェースにおけるQCI毎のULパケット損失率の測定は、RN単位で行われる。例えば、RN局JについてのUnインタフェースにおけるQCI毎のULパケット損失率の測定で、qciのQCIを持つRN局JのDRBについてのULパケット損失を測定する。例えば、パケットは、RN局Jのための1つのPDCP SDUに相当する。測定はQCIごとに別個に行われる。測定を行うための基準点はPDCP上位SAPとする。例えば、式(49)は、時間Tの間のQCI qciのパケットのUnインタフェースにおけるULパケット損失率を表す。
Figure 2015128329
例えば、パケット損失は、QCIのパケットエラー損失率(PELR)によって上限が決まることが予想され、PELRは10-6ないし10-2の間の値をとる。個々のパケット損失率の測定結果の統計的精度は、受信されたパケットの数と、したがって測定に許される時間に依存する。M_RN(T,J,qci)は、時間Tにわたって平均した、UnインタフェースにおけるRN局JについてのQCI毎のULパケット損失率である。ULパケット損失率の単位は、n個のパケット当たりの破棄パケット数である。例えばnは106パケットである。Dloss_RN(T,J,qci)は、時間Tの間のRN局Jについての欠落しているRN UL PDCPの連続番号の数であり、上位層に渡されず、qciのQCIを持つデータ無線ベアラに属する、Unインタフェース上のUL PDCPパケットの数に相当する。例えば、パケットの送信が別のセルで継続しうる場合は、そのパケットは計数から除外される。N_RN(T,J,qci)は、PDCP上位SAPによって上位層に渡された最初のパケットで始まり、時間Tの最後のパケットのPDCP SNで終わる、RN局JについてのqciのQCIを持つベアラのRN UL PDCPの連続番号(欠落している連続番号を含む)の合計数である。例えばTは分単位で測定される。
図4は、本明細書に開示される無線リンク動作および/または負荷平衡を支援するために無線使用量の測定を行う例示的方法の流れ図である。402で、eNB等の装置が第1の無線使用量パラメータを決定する。第1の無線使用量パラメータは、eNBと少なくとも1つのWTRUとの間の無線使用量の測定である。第1の無線使用量の測定は、eNBのUuインタフェースにおけるトラフィックのLayer2(L2)測定である。eNBはDeNBである。404で、eNBは第2の無線使用量パラメータを決定する。第2の無線使用量パラメータは、eNBとそのeNBにサービスされている少なくとも1つのRN間の無線使用量の測定である。第2の無線使用量の測定は、DeNBのUnインタフェースにおけるトラフィックについてのL2測定である。406で、eNBは、第1の無線使用量パラメータまたは第2の無線使用量パラメータの少なくとも一方を利用して、発展型総合地上無線アクセス(E−UTRA)無線リンクの動作(例えば、Uuインタフェースおよび/もしくはUnインタフェース動作の支援)、無線リソース管理(RRM)(例えば、Uuおよび/もしくはUn無線リソースの再配分)、ネットワーク運用および維持(OAM)(例えば、OAM性能の可観測性)、ならびに自律的最適化ネットワーク(SON)機能(例えば、RN/WTRUのハンドオーバーおよび/もしくはRN接続の維持)、の少なくとも1つを評価する。第1の無線使用量パラメータまたは第2の無線使用量パラメータの少なくとも一方を利用することは、第1の無線使用量パラメータまたは第2の無線使用量パラメータの少なくとも一方をE−UTRAネットワークに送信することを含む。E−UTRANネットワーク内のノードは、eNBから提供されたパラメータに基づいて性能の判定を行う。
測定は、本明細書に記載されるL2測定の1つまたは複数である。UuインタフェースまたはUnインタフェースの少なくとも一方で行われるL2測定の例は、これらに限定されないが、ダウンリンク(DL)の物理リソースブロック(PRB)使用量、アップリンク(UL)のPRB使用量、サービス品質(QoS)クラスインディケータ(QCI)毎のDL PRB使用量、QCI毎のUL PRB使用量、実際の総負荷条件、Unサブフレーム構成(UnSC)毎のPRB使用量、Unサブフレーム中のマクロWTRU PRB使用量、Unサブフレーム中のRN PRB使用量、DeNBにおけるPRB使用量を示す他の測定、QCI毎のDeNB下にあるアクティブなWTRUの推定数、DLパケット遅延の測定、DLデータ破棄の測定、DLデータ損失の測定、またはULデータ損失の測定、の1つまたは複数を含む。パケット処理および伝送遅延の測定がRNで行われる。RNで行われた測定結果はDeNBに通知される。
図5にレイヤ2の測定を行うように構成されたeNBの例を示す。一例では、eNB500は1つまたは複数のアンテナ510を含む。1つまたは複数のアンテナ510はトランシーバ512に結合される。WTRU520a、WTRU520b、RN502、および/またはRN504からのメッセージおよび信号は、1つまたは複数のアンテナ510およびトランシーバ512を介してeNB500に受信される。Uu測定ユニット514がトランシーバ512に結合される。Un測定ユニット516がトランシーバ512に結合される。Uu測定ユニット514は、第1の無線使用量の測定を行うように構成される。第1の無線使用量の測定では、eNB500とWTRU520aおよび/またはWTRU520bの少なくとも一方との間の無線使用量を測定する。Un測定ユニット516は、第2の無線使用量の測定を行うように構成される。第2の無線使用量の測定では、eNB500と、RN502および/またはRN504の少なくとも一方との間の無線使用量を測定する。理解されるように、eNB500にサービスされるWTRUおよび/またはRNはこれよりも多くても少なくてもよく、eNB500は、より多い、または少ないWTRUおよび/またはRNに対して測定を行ってよい。評価ユニット518がUu測定ユニット514およびUn測定ユニット516に結合される。評価ユニット518は、第1の無線測定および第2の無線測定それぞれを利用して、セル負荷平衡、無線リソースの再配分、呼受付制御、または輻輳制御の少なくとも1つを行うように構成される。一例では、Uu測定ユニット514、Un測定ユニット516、および/または評価ユニット518は、測定を行う、かつ/または評価するように構成されたプロセッサとして実装される。
上記では特定の組合せで特徴および要素について説明したが、当業者は、各特徴または要素は単独で、または他の特徴および要素と任意の組合せで使用できることを認識されよう。また、本明細書に記載の方法は、コンピュータまたはプロセッサによる実行のためにコンピュータ可読媒体に組み込まれた、コンピュータプログラム、ソフトウェア、またはファームウェアとして実装される。コンピュータ可読媒体の例は、電子信号(有線または無線接続を通じて伝送される)、およびコンピュータ可読記憶媒体を含む。コンピュータ可読記憶媒体の例は、これらに限定されないが、読み出し専用メモリ(ROM)、ランダムアクセスメモリ(RAM)、レジスタ、キャッシュメモリ、半導体メモリ装置、内蔵ハードディスクや取外し可能ディスク等の磁気媒体、光磁気媒体、およびCD−ROMディスクやデジタル多用途ディスク(DVD)等の光学媒体を含む。ソフトウェアと関連したプロセッサが使用されて、WTRU、UE、端末、基地局、RNC、または任意のホストコンピュータで使用するための無線周波トランシーバを実装する。

Claims (20)

  1. ソース発展型ノードB(eNB)からターゲットeNBへ中継ノード(RN)をハンドオーバーするための方法であって、
    前記ソースeNBが、前記RNを前記ターゲットeNBへハンドオーバーすることを決定するステップと、
    前記ソースeNBが、ハンドオーバーコマンドを前記RNへ送信するステップであって、前記ハンドオーバーコマンドは、前記RNが前記ソースeNBから前記ターゲットeNBへハンドオーバーすべきであることを示す、ステップと、
    前記ソースeNBが、ベアラコンテクスト情報を前記ターゲットeNBへ送信するステップであって、前記ベアラコンテクスト情報は、前記ターゲットeNBに、前記RNに接続される少なくとも1つの無線送受信ユニット(WTRU)が前記ハンドオーバーの間中前記接続された状態のままでいながら、前記RNを受諾することを許可する情報を備える、ステップと
    を含むことを特徴とする方法。
  2. 前記ソースeNBが、ハンドオーバー要求メッセージを前記ターゲットeNBへ送信するステップと、
    前記ソースeNBが、ハンドオーバー受諾メッセージを前記ターゲットeNBから受信するステップであって、前記ハンドオーバー受諾メッセージは、ハンドオーバーパラメータを含み、前記ハンドオーバーパラメータは、前記ハンドオーバーコマンド内に含まれる、ステップと
    をさらに含むことを特徴とする請求項1に記載の方法。
  3. 前記ハンドオーバーパラメータは、Unサブフレーム構成、または、同期およびタイミング情報のうちの少なくとも1つを備えることを特徴とする請求項2に記載の方法。
  4. 前記RNをハンドオーバーすることを決定するステップは、前記ソースeNBによって実行される測定、または、モビリティマネジメントエンティティ(MME)から受信されるメッセージのうちの少なくとも1つに基づいていることを特徴とする請求項1に記載の方法。
  5. 前記ソースeNBが、前記RNのためのドナーeNB(DeNB)一覧を受信するステップと、前記DeNB一覧に基づいて前記ターゲットeNBを選択するステップと、をさらに含むことを特徴とする請求項1に記載の方法。
  6. 前記ハンドオーバーコマンドは、前記RNについての専用ランダムアクセスチャネルプリアンブルを備えることを特徴とする請求項1に記載の方法。
  7. Uuインタフェース上で1つまたは複数の無線送受信ユニット(WTRU)と通信するように構成された第1の物理層エンティティと、
    Unインタフェース上で1つまたは複数の発展型ノードB(eNB)と通信するように構成された第2の物理層エンティティと、
    プロセッサであって、
    前記Unインタフェースまたは前記Uuインタフェースのうちの1つまたは複数についての1つまたは複数のレイヤ2(L2)測定を実行し、
    前記1つまたは複数のL2測定をソースドナーeNB(DeNB)へ送信し、
    RRCRN再構成メッセージを前記ソースDeNBから受信し、前記RRCRN再構成メッセージは、中継ノードがターゲットDeNBへハンドオーバーすべきであるという表示、および、前記ターゲットDeNBと通信するためのUnインタフェース構成情報を備え、
    前記中継ノードに前記Uuインタフェースを介して接続される少なくとも1つのWTRUが前記ハンドオーバー中に接続された状態のままでいながら、前記ソースDeNBから前記ターゲットDeNBへのハンドオーバーを実行する
    ように構成されたプロセッサと
    を備えたことを特徴とする中継ノード。
  8. 前記RRCRN再構成メッセージは、前記中継ノードが、前記ターゲットDeNBへハンドオーバーすると、追跡領域更新手順(TAU)を実行すべきであるという表示をさらに備えることを特徴とする請求項7に記載の中継ノード。
  9. 前記ターゲットDeNBへハンドオーバーされた前記中継ノードは、前記中継ノードが、前記中継ノードが前記ソースDeNBへ接続されていたときに前記中継ノードを供給したモビリティマネジメントエンティティ(MME)とは異なるMMEに関連付けられた新しい追跡領域に入ることをもたらすことを特徴とする請求項8に記載の中継ノード。
  10. 前記ハンドオーバー前に前記中継ノードに接続されていた各WTRUは、前記ハンドオーバー後、前記中継ノードに接続されたままであることを特徴とする請求項7に記載の中継ノード。
  11. 前記ハンドオーバー前に前記中継ノードに接続されていたWTRUのサブセットは、前記ハンドオーバー後、前記中継ノードに接続されたままであることを特徴とする請求項7に記載の中継ノード。
  12. 前記WTRUのサブセットは、共通サービス品質(QoS)特性を共有することを特徴とする請求項11に記載の中継ノード。
  13. 前記プロセッサは、前記中継ノードに接続されていた少なくとも第1のWTRUを、前記ターゲットDeNBへの前記ハンドオーバーが完了する前に、前記ソースDeNBへハンドオーバーするようにさらに構成されることを特徴とする請求項11に記載の中継ノード。
  14. 少なくとも前記第1のWTRUは、前記ターゲットDeNBによって拒絶されていたことを特徴とする請求項13に記載の中継ノード。
  15. 前記プロセッサは、前記ソースDeNB、前記ターゲットDeNB、またはモビリティマネジメントエンティティのうちの1つまたは複数からコマンドを受信することに基づいて、前記中継ノードに接続されたWTRUのための負荷平衡を実行するようにさらに構成されることを特徴とする請求項7に記載の中継ノード。
  16. 前記ハンドオーバーのためのランダムアクセスチャネル(RACH)手順の間、前記プロセッサは、前記ターゲットDeNBで利用されるべきUnサブフレーム構成に関連付けられた専用ランダムアクセスプリアンブルを利用するよう構成されることを特徴とする請求項7に記載の中継ノード。
  17. 前記専用ランダムアクセスプリアンブルは、前記RRCRN再構成メッセージによって示されることを特徴とする請求項16に記載の中継ノード。
  18. 中継ノード(RN)によって実行される方法であって、
    前記RNが、Uuインタフェース上で1つまたは複数の無線送受信ユニット(WTRU)と通信するステップと、
    前記RNが、Uuインタフェース上で1つまたは複数の発展型NodeB(eNB)と通信するステップと、
    前記RNが、前記Unインタフェースまたは前記Uuインタフェースのうちの1つまたは複数についての1つまたは複数のレイヤ2(L2)測定を実行するステップと、
    前記RNが、前記1つまたは複数のL2測定をソースドナーeNB(DeNB)へ送信するステップと、
    前記RNが、RRCRN再構成メッセージを前記ソースDeNBから受信するステップであって、前記RRCRN再構成メッセージは、前記中継ノードがターゲットDeNBへハンドオーバーすべきであるという表示、および、前記ターゲットDeNBと通信するためのUnインタフェース構成情報を備える、ステップと、
    前記RNが、前記中継ノードに前記Uuインタフェースを介して接続される少なくとも1つのWTRUが前記ハンドオーバーの間接続された状態のままでいながら、前記ソースDeNBから前記ターゲットDeNBへのハンドオーバーを実行するステップと
    を含むことを特徴とする方法。
  19. 前記RNが、前記ターゲットDeNBへの前記ハンドオーバーが完了する前に、前記RNに接続されていた少なくとも第1のWTRUを、前記ソースDeNBへハンドオーバーするステップをさらに含むことを特徴とする請求項18に記載の方法。
  20. 少なくとも前記第1のWTRUは、前記ターゲットDeNBによって拒絶されていたことを特徴とする請求項19に記載の方法。
JP2015077964A 2010-11-05 2015-04-06 中継ノードのインタフェースに関連するレイヤ2測定およびネットワーク負荷平衡時の中継ノードの扱い Active JP6267151B2 (ja)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US41063310P 2010-11-05 2010-11-05
US61/410,633 2010-11-05
US201161430745P 2011-01-07 2011-01-07
US61/430,745 2011-01-07

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2013537852A Division JP5728586B2 (ja) 2010-11-05 2011-11-04 中継ノードのインタフェースに関連するレイヤ2測定およびネットワーク負荷平衡時の中継ノードの扱い

Publications (2)

Publication Number Publication Date
JP2015128329A true JP2015128329A (ja) 2015-07-09
JP6267151B2 JP6267151B2 (ja) 2018-01-24

Family

ID=44999931

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2013537852A Active JP5728586B2 (ja) 2010-11-05 2011-11-04 中継ノードのインタフェースに関連するレイヤ2測定およびネットワーク負荷平衡時の中継ノードの扱い
JP2015077964A Active JP6267151B2 (ja) 2010-11-05 2015-04-06 中継ノードのインタフェースに関連するレイヤ2測定およびネットワーク負荷平衡時の中継ノードの扱い

Family Applications Before (1)

Application Number Title Priority Date Filing Date
JP2013537852A Active JP5728586B2 (ja) 2010-11-05 2011-11-04 中継ノードのインタフェースに関連するレイヤ2測定およびネットワーク負荷平衡時の中継ノードの扱い

Country Status (9)

Country Link
US (2) US8467351B2 (ja)
EP (2) EP2922335B1 (ja)
JP (2) JP5728586B2 (ja)
KR (3) KR101680947B1 (ja)
CN (3) CN105792297B (ja)
BR (1) BR112013011154B1 (ja)
RU (1) RU2547821C2 (ja)
TW (2) TWI575977B (ja)
WO (1) WO2012061680A2 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022158830A (ja) * 2021-03-31 2022-10-17 スターライト テクノロジーズ リミテッド オープン無線アクセスネットワーク環境におけるハンドオーバーのためのターゲットセル推薦方法

Families Citing this family (87)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009231976A (ja) * 2008-03-19 2009-10-08 Nec Corp 異なる無線アクセス方式間のハンドオーバ方法および無線通信システム
US9031530B2 (en) * 2010-11-08 2015-05-12 Qualcomm Incorporated System and method for assisting in powering on sleeping network entities
EP2664095B1 (en) * 2011-01-10 2016-01-06 Nokia Solutions and Networks Oy Error control in a communication system
WO2012094774A1 (en) * 2011-01-10 2012-07-19 Nokia Siemens Networks Oy Relay node related measurements
US9838925B2 (en) * 2011-01-26 2017-12-05 Telefonaktiebolaget L M Ericsson (Publ) Method and a network node for determining an offset for selection of a cell of a first radio network node
US20120250662A1 (en) * 2011-03-29 2012-10-04 Innovative Sonic Corporation Method and apparatus to avoid higher random access (ra) failure rate due to a solution for in-device coexistence interference in a wireless communication system
EP2550756B1 (en) * 2011-03-31 2015-11-25 Nec Corporation Method and apparatus for performing relay node configuration and re-configuration in relay enhanced networks
WO2012136812A1 (en) * 2011-04-06 2012-10-11 Nec Europe Ltd. Method and a system for distributing of user equipment context in an evolved packet system
US9615275B2 (en) * 2011-05-03 2017-04-04 Samsung Electronics Co., Ltd. Method and apparatus for computing layer 2 load conditions in a wireless network environment
JP5484399B2 (ja) * 2011-05-31 2014-05-07 株式会社Nttドコモ 移動通信方法、リレーノード及び無線基地局
CN102905312B (zh) * 2011-07-27 2016-03-02 华为技术有限公司 移动负载均衡处理方法、中继节点、宿主基站、和通讯系统
US20130039257A1 (en) * 2011-08-11 2013-02-14 Te-Ming Chen Method of Handling Handover of a Relay Node and Related Communication Device
EP3534642A1 (en) * 2011-11-04 2019-09-04 Mitsubishi Electric Corporation Handover of a movable relay device from a base station being a movement origin to a base station being a movement destination
JP5873103B2 (ja) * 2011-11-07 2016-03-01 パナソニック インテレクチュアル プロパティ コーポレーション オブアメリカPanasonic Intellectual Property Corporation of America 中継局、基地局及び帯域割当方法
EP2782380B1 (en) * 2011-11-17 2019-06-26 Nec Corporation Communication system, base station device, data transmission method and computer-readable medium on which a program is stored in non-temporary fashion.
JP5726717B2 (ja) * 2011-12-09 2015-06-03 株式会社Nttドコモ 無線基地局及び無線システム間遷移制御方法
KR101992278B1 (ko) * 2011-12-26 2019-06-24 삼성전자주식회사 무선 통신 시스템 및 그 무선 통신 시스템에서 과부하 제어를 위한 rrc 연결 방법
EP2749057B1 (en) * 2011-12-27 2016-05-18 Telefonaktiebolaget LM Ericsson (publ) Method in a radio network node for controlling usage of rat and frequency bandwidth in a radio communication system
EP2813023A1 (en) * 2012-02-10 2014-12-17 Nokia Solutions and Networks Oy Inter-site carrier aggregation
US9531630B2 (en) * 2012-02-20 2016-12-27 Telefonaktiebolaget Lm Ericsson (Publ) Capacity estimates using burst-trailer trains
KR20130111157A (ko) * 2012-03-29 2013-10-10 삼성전자주식회사 무선 통신 시스템의 혼잡 관리를 위한 방법 및 장치
EP2824981B1 (en) 2012-03-08 2019-02-27 Samsung Electronics Co., Ltd. Method for controlling service in radio communication system
WO2013167205A1 (en) * 2012-05-11 2013-11-14 Nokia Siemens Networks Oy OFFLOADING OF TRAFFIC FROM THE ANCHOR DeNB IN A MOBILE RELAY SYSTEM
US20130336283A1 (en) * 2012-06-15 2013-12-19 Nokia Siemens Networks Oy Overload control in mobility management entity
EP2868140A1 (en) * 2012-06-29 2015-05-06 Telefonaktiebolaget L M Ericsson (Publ) Method and relay node for implementing multiple wireless backhauls
CN102868546B (zh) * 2012-08-09 2016-02-10 中兴通讯股份有限公司 统计数据无线承载弃包率的方法及装置
WO2014028555A1 (en) 2012-08-14 2014-02-20 Apple Inc. Methods and apparatus for radio link imbalance compensation
CN103596212B (zh) * 2012-08-17 2017-09-29 电信科学技术研究院 异构网络下的层二测量及结果处理方法和设备
WO2014043665A2 (en) * 2012-09-17 2014-03-20 Interdigital Patent Holdings, Inc. Self-optimization of backhaul radio reseources and small cell backhaul delay estimation
CN102904775B (zh) * 2012-09-29 2015-04-29 华为技术有限公司 网络丢包测量方法、设备和系统
CN103731920B (zh) * 2012-10-10 2019-04-23 中兴通讯股份有限公司 Un子帧配置方法及装置
US10356640B2 (en) 2012-11-01 2019-07-16 Intel Corporation Apparatus, system and method of cellular network communications corresponding to a non-cellular network
US9414392B2 (en) 2012-12-03 2016-08-09 Intel Corporation Apparatus, system and method of user-equipment (UE) centric access network selection
US9100863B2 (en) * 2012-12-20 2015-08-04 T-Mobile Usa, Inc. Cellular backhaul load distribution
EP2946607B1 (en) 2013-01-17 2018-08-22 Intel IP Corporation Apparatus, system and method of communicating non-cellular access network information over a cellular network
CN109217985B (zh) * 2013-01-31 2021-07-02 中兴通讯股份有限公司 一种信息指示方法及装置
US9160515B2 (en) 2013-04-04 2015-10-13 Intel IP Corporation User equipment and methods for handover enhancement using scaled time-to-trigger and time-of-stay
CN104247504B (zh) 2013-04-16 2018-05-11 华为技术有限公司 小区切换方法及设备
EP2996395A4 (en) * 2013-05-10 2016-10-19 Kyocera Corp COMMUNICATION CONTROL METHOD AND USER DEVICE
WO2014179979A1 (en) * 2013-05-10 2014-11-13 Qualcomm Incorporated SIGNALING OF ENHANCED POWER CONTROL FOR eIMTA INTERFERENCE MITIGATION
US10512064B1 (en) * 2013-07-09 2019-12-17 Sprint Spectrum L.P. Allocating wireless communication link resources in a control channel
US20160295597A1 (en) * 2013-07-26 2016-10-06 Intel IP Corporation Signaling interference information for user equipment assistance
EP2833672A1 (en) * 2013-08-01 2015-02-04 Alcatel Lucent Methods and systems for LTE multi-carrier load balancing based on user traffic profile
EP3036937B1 (en) 2013-08-19 2021-07-21 Nokia Solutions and Networks Oy Radio access network (ran) transport evolved packet core (epc) synergy
JP6178186B2 (ja) * 2013-09-24 2017-08-09 Kddi株式会社 通信制御装置、無線通信システム、通信制御方法およびコンピュータプログラム
US9826412B2 (en) 2013-10-24 2017-11-21 At&T Intellectual Property I, L.P. Facilitating adaptive key performance indicators in self-organizing networks
KR20150073825A (ko) 2013-12-20 2015-07-01 삼성전자주식회사 이동 통신 시스템에서 음성 호 설정 시간을 단축시키는 방법 및 장치
US9516564B2 (en) 2014-04-25 2016-12-06 At&T Intellectual Property I, L.P. Enhancement of a cell reselection parameter in heterogeneous networks
US9635566B2 (en) 2014-04-25 2017-04-25 At&T Intellectual Property I, L.P. Enhancement of access points to support heterogeneous networks
US9554397B2 (en) 2014-05-05 2017-01-24 Blackberry Limited Identifying a subframe containing information relating to an uplink grant
GB2525935A (en) 2014-05-09 2015-11-11 Nec Corp Communication system
KR102232787B1 (ko) * 2014-06-30 2021-03-26 삼성전자 주식회사 무선 통신 시스템에서 서비스 연속성을 제어하는 방법 및 장치
US10021608B2 (en) * 2014-08-08 2018-07-10 Telefonaktiebolaget Lm Ericsson (Publ) Radio network node, and method for determining whether a wireless device is a suitable candidate for handover to a target cell for load balancing reasons
EP3186995A1 (en) * 2014-08-28 2017-07-05 Telefonaktiebolaget LM Ericsson (publ) Methods receiving radiation pattern information and related network nodes and base stations
US9681448B2 (en) 2014-08-28 2017-06-13 Telefonaktiebolaget L M Ericsson (Publ) Methods communicating radiation pattern information and related network nodes and base stations
JP6404453B2 (ja) * 2014-09-15 2018-10-10 インテル アイピー コーポレーション ミリ波キャリアアグリゲーションを用いる中継バックホーリングの装置、システムおよび方法
US9621294B2 (en) 2014-10-02 2017-04-11 At&T Intellectual Property I, L.P. Enhancement of inter-cell interference coordination with adaptive reduced-power almost blank subframes based on neighbor cell profile data
US9930566B2 (en) 2014-12-01 2018-03-27 Cellwize Wireless Technologies Ltd. Method of controlling traffic in a cellular network and system thereof
JP6469454B2 (ja) * 2015-01-19 2019-02-13 株式会社Nttドコモ 通信システム及び通信制御方法
US10015781B2 (en) * 2015-01-27 2018-07-03 Telefonaktiebolaget Lm Ericsson (Publ) GSM evolution packet data traffic channel resource transmission management—fixed uplink allocation technique
KR102135394B1 (ko) * 2016-01-18 2020-07-17 엘지전자 주식회사 무선 통신 시스템에서 혼잡 제어 방법 및 이를 위한 장치
CN107801217A (zh) * 2016-08-29 2018-03-13 上海中兴软件有限责任公司 一种用户负荷均衡的方法及装置
US20180084464A1 (en) * 2016-09-22 2018-03-22 Qualcomm Incorporated Long term evolution (lte) handover with the same secondary link
CN112333760B (zh) 2016-09-30 2023-12-29 华为技术有限公司 测量和上报方法、终端及基站
US10834663B2 (en) 2016-10-06 2020-11-10 At&T Mobility Ii Llc Blind multi-frequency band indicator selection
CN109845308B (zh) * 2016-10-21 2022-07-05 瑞典爱立信有限公司 用于无线局域网的可扩展无线电资源管理的系统和方法
RU2736884C2 (ru) * 2016-11-08 2020-11-23 Телефонактиеболагет Лм Эрикссон (Пабл) Защита от нагрузки со стороны неисправных устройств
WO2018172548A1 (en) * 2017-03-24 2018-09-27 Telefonaktiebolaget Lm Ericsson (Publ) Qos flows inactivity counters
CN109245845B (zh) * 2017-05-05 2022-05-13 中兴通讯股份有限公司 一种信令传输方法及设备
US10064099B1 (en) * 2017-05-16 2018-08-28 At&T Intellectual Property I, L.P. Method and apparatus for adaptive load balancing in wireless networks
US10484918B2 (en) 2017-06-14 2019-11-19 At&T Intellectual Property I, L.P. Load balancing in wireless networks for improved user equipment throughput
US10963375B1 (en) * 2018-03-23 2021-03-30 Amazon Technologies, Inc. Managing maintenance operations for a distributed system
CN110392403B (zh) * 2018-04-19 2021-03-30 华为技术有限公司 一种通信方法及装置
CN110430602B (zh) * 2018-04-27 2021-12-07 成都鼎桥通信技术有限公司 中继切换方法及装置
US11064411B2 (en) 2018-06-08 2021-07-13 At&T Intellectual Property I, L.P. Load balancing in wireless networks to enhance user experience
CN110636570B (zh) * 2018-06-25 2022-08-02 中兴通讯股份有限公司 Iab网络中iab节点信息的处理方法及装置
WO2020054642A1 (ja) * 2018-09-14 2020-03-19 三菱電機株式会社 通信システム、通信端末および基地局
CN111294131B (zh) * 2018-12-07 2021-10-01 华为技术有限公司 通信方法及装置
EP4038804A1 (en) * 2019-10-03 2022-08-10 Telefonaktiebolaget Lm Ericsson (Publ) Method and device for providing resource status information
WO2021159238A1 (zh) * 2020-02-10 2021-08-19 华为技术有限公司 一种数据处理方法、通信装置和通信系统
US11832140B2 (en) * 2020-04-30 2023-11-28 Qualcomm Incorporated Inter-donor cell management in wireless communication network
US11838989B1 (en) 2020-06-10 2023-12-05 Sprint Spectrum Llc Reducing scope of service of relay in response to donor access node air-interface load
US11425620B1 (en) * 2020-07-27 2022-08-23 T-Mobile Innovations Llc Donor selection for 5G EN-DC capable relays
CN114071771A (zh) * 2020-07-31 2022-02-18 华为技术有限公司 一种逻辑信道lch的配置的方法、通信装置和通信系统
CN116325849A (zh) * 2020-08-06 2023-06-23 京瓷株式会社 通信控制方法
DE102021204774A1 (de) 2021-05-11 2022-11-17 Continental Automotive Technologies GmbH Verfahren zur Relaisauswahl basierend auf einer Verbundlastmetrik mehrerer Schnittstellen
EP4378279A1 (en) 2021-07-26 2024-06-05 Continental Automotive Technologies GmbH Method for ue-to-ue relaying resource management

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010101442A2 (ko) * 2009-03-06 2010-09-10 삼성전자주식회사 이동 중계국을 지원하는 광대역 무선통신 시스템의 그룹 핸드오버 방법 및 장치
WO2010120828A1 (en) * 2009-04-13 2010-10-21 Qualcomm Incorporated Device mobility for split-cell relay networks
JP2011082979A (ja) * 2009-10-02 2011-04-21 Research In Motion Ltd リレーを有するネットワークに対するリンク品質の決定

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100532263B1 (ko) * 2001-12-29 2005-11-29 삼성전자주식회사 이동통신시스템에서 단말에 의해 방송서비스를 개시하기 위한 장치 및 방법
KR100929087B1 (ko) * 2006-02-09 2009-11-30 삼성전자주식회사 이동통신 시스템에서 핸드오버시 업링크 타이밍싱크 프로시져 수행 방법 및 장치
CN101287268B (zh) * 2007-04-13 2012-05-09 中兴通讯股份有限公司 一种无线中继站连接关系更新的方法
WO2008131589A1 (en) * 2007-04-28 2008-11-06 Huawei Technologies Co., Ltd. Method and system for handover from a source cell to a target cell in a cellular communication system
US9380503B2 (en) * 2007-04-30 2016-06-28 Google Technology Holdings LLC Method and apparatus for handover in a wireless communication system
CN101370266B (zh) * 2007-08-19 2013-03-20 华为技术有限公司 切换方法、终端重新附着方法
EP2120493A1 (en) * 2008-03-19 2009-11-18 Nokia Siemens Networks Oy Mechanism for automated re-configuration of an access network element
GB0812632D0 (en) * 2008-07-10 2008-08-20 Vodafone Plc Security architecture for LTE relays
US8971822B2 (en) * 2008-09-18 2015-03-03 Nokia Siemens Networks Oy Inter-cell coordination for feeding relay nodes
US8902805B2 (en) * 2008-10-24 2014-12-02 Qualcomm Incorporated Cell relay packet routing
CN101841872B (zh) * 2009-03-17 2013-01-30 电信科学技术研究院 一种实现小区切换的方法和中继设备
WO2010121661A1 (en) * 2009-04-24 2010-10-28 Nokia Siemens Networks Oy Method, apparatus, and related computer program product for load balancing in a relay network
JP4937296B2 (ja) * 2009-04-27 2012-05-23 株式会社エヌ・ティ・ティ・ドコモ 移動通信システム
KR101521892B1 (ko) * 2009-05-13 2015-05-20 삼성전자주식회사 무선통신 시스템에서 핸드오버 장치 및 방법
CA2765797A1 (en) * 2009-06-16 2010-12-23 Interdigital Patent Holdings, Inc. Method and apparatus for synchronous harq operation and interference avoidance
US20100329216A1 (en) * 2009-06-29 2010-12-30 Yu-Chih Jen Method of Handling Mobile Device Mobility and Related Communication Device
CN101626565B (zh) * 2009-07-28 2011-11-09 重庆邮电大学 一种移动中继系统中组用户的切换方法
US8406192B2 (en) * 2009-10-02 2013-03-26 Research In Motion Limited Handover mechanisms with synchronous PDCP protocol under various relay architectures
US8938238B2 (en) * 2009-11-06 2015-01-20 Qualcomm Incorporated Restricting access point transmissions
CN101707808A (zh) * 2009-11-30 2010-05-12 中兴通讯股份有限公司 一种长期演进系统中调度的方法和装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010101442A2 (ko) * 2009-03-06 2010-09-10 삼성전자주식회사 이동 중계국을 지원하는 광대역 무선통신 시스템의 그룹 핸드오버 방법 및 장치
WO2010120828A1 (en) * 2009-04-13 2010-10-21 Qualcomm Incorporated Device mobility for split-cell relay networks
JP2011082979A (ja) * 2009-10-02 2011-04-21 Research In Motion Ltd リレーを有するネットワークに対するリンク品質の決定

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022158830A (ja) * 2021-03-31 2022-10-17 スターライト テクノロジーズ リミテッド オープン無線アクセスネットワーク環境におけるハンドオーバーのためのターゲットセル推薦方法

Also Published As

Publication number Publication date
KR20140023429A (ko) 2014-02-26
TW201220875A (en) 2012-05-16
BR112013011154A2 (pt) 2016-08-02
KR101592842B1 (ko) 2016-02-05
EP2636243B1 (en) 2015-04-15
TWI575977B (zh) 2017-03-21
EP2922335B1 (en) 2018-03-07
EP2922335A1 (en) 2015-09-23
KR101680947B1 (ko) 2016-11-29
CN202634702U (zh) 2012-12-26
BR112013011154B1 (pt) 2022-02-22
US20130250918A1 (en) 2013-09-26
US9088926B2 (en) 2015-07-21
JP6267151B2 (ja) 2018-01-24
CN103202052A (zh) 2013-07-10
WO2012061680A3 (en) 2012-11-15
CN103202052B (zh) 2016-05-04
JP2014500662A (ja) 2014-01-09
RU2013125769A (ru) 2014-12-10
KR20130095786A (ko) 2013-08-28
CN105792297A (zh) 2016-07-20
EP2636243A2 (en) 2013-09-11
US8467351B2 (en) 2013-06-18
US20120314569A1 (en) 2012-12-13
JP5728586B2 (ja) 2015-06-03
CN105792297B (zh) 2019-05-31
RU2547821C2 (ru) 2015-04-10
TWM438778U (en) 2012-10-01
KR20150065909A (ko) 2015-06-15
WO2012061680A2 (en) 2012-05-10

Similar Documents

Publication Publication Date Title
JP6267151B2 (ja) 中継ノードのインタフェースに関連するレイヤ2測定およびネットワーク負荷平衡時の中継ノードの扱い
EP2781123B1 (en) Performing mobility load balancing and mobility robustness optimization between access nodes for only a subset of user equipment
JP2022002405A (ja) 中継ノードを介した通信をサポートするための方法および装置
JP5993524B2 (ja) 補助ベアラを確立するノードおよび方法
JP2023155461A (ja) デバイスツーデバイス(d2d)通信のモバイル中継器の実現
US9572193B2 (en) Device-to-device communication
US9173131B2 (en) Mobility load balance processing method, relay node, donor base station, and communication system
US11310852B2 (en) Apparatus and method related to dual connectivity
CN112020897A (zh) 无线通信网络中的用户设备、网络节点以及方法
EP4145735A1 (en) Method and system for protocol layer enhancements in data offload over small cells
US20160021581A1 (en) Packet data convergence protocol (pdcp) placement
BR112015019401B1 (pt) Rede de acesso via rádio de evolução de longo prazo
JP2017513427A (ja) ローカルオフロードおよびスモールセルアーキテクチャ(sca)
EP3915213B1 (en) Network nodes and methods supporting multiple connectivity
US20230188273A1 (en) Systems and methods for intelligent differentiated retransmissions
US9667363B2 (en) Reporting a modified signal quality value during antenna diversity imbalance
US20220232448A1 (en) User equipment for communication over a cellular network and method for operating a user equipment for communication over a cellular network

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150507

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160308

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20160608

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160721

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170110

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20170410

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170710

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20171024

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20171122

R150 Certificate of patent or registration of utility model

Ref document number: 6267151

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250