JP2015116936A - ハイブリッド車両の制御装置 - Google Patents

ハイブリッド車両の制御装置 Download PDF

Info

Publication number
JP2015116936A
JP2015116936A JP2013261612A JP2013261612A JP2015116936A JP 2015116936 A JP2015116936 A JP 2015116936A JP 2013261612 A JP2013261612 A JP 2013261612A JP 2013261612 A JP2013261612 A JP 2013261612A JP 2015116936 A JP2015116936 A JP 2015116936A
Authority
JP
Japan
Prior art keywords
clutch
vehicle
engine
speed
hybrid vehicle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013261612A
Other languages
English (en)
Other versions
JP6340605B2 (ja
Inventor
守洋 長嶺
Morihiro Nagamine
守洋 長嶺
亮 高野
Ryo Takano
亮 高野
隆之 奥田
Takayuki Okuda
隆之 奥田
山本 明弘
Akihiro Yamamoto
明弘 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
JATCO Ltd
Original Assignee
Nissan Motor Co Ltd
JATCO Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd, JATCO Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2013261612A priority Critical patent/JP6340605B2/ja
Publication of JP2015116936A publication Critical patent/JP2015116936A/ja
Application granted granted Critical
Publication of JP6340605B2 publication Critical patent/JP6340605B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles

Abstract

【課題】 EVモードからHEVモードによる走行に安定して切り替えることが可能なハイブリッド車両の制御装置を提供すること。
【解決手段】 本発明によるハイブリッド車両の制御装置は、運転状態に応じてエンジン及びモータの出力と、クラッチの締結及び解放と、無段変速機の変速比とを制御する制御手段を備えたハイブリッド車両の制御装置において、クラッチを解放し、エンジンを停止してモータの駆動力により走行しているときに車両が停車直前と判断されたときは、エンジンを停止したままクラッチを締結して無段変速機をダウンシフトすることとした。
【選択図】図5

Description

本発明は、エンジンおよび電動モータを動力源として搭載し、電動モータのみにより走行する電気走行モード(EVモード)と、電動モータおよびエンジンにより走行するハイブリッド走行モード(HEVモード)とを選択可能なハイブリッド車両の制御装置に関する。
このようなハイブリッド車両として、例えば特許文献1に記載のようなものが知られている。このハイブリッド車両は、エンジンが無段変速機およびクラッチを順次介して駆動輪に切り離し可能に結合され、電動モータが駆動輪に常時結合されている。また、エンジンに駆動される機械式オイルポンプを備え、無段変速機やクラッチへ油を供給している。
このハイブリッド車両は、エンジンを停止すると共に上記のクラッチを解放することで電動モータのみによるEVモードでの電気走行(EV走行)が可能であり、エンジンを始動させると共に当該クラッチを締結することにより電動モータおよびエンジンによるHEVモードでのハイブリッド走行(HEV走行)が可能である。
なお、EV走行中にクラッチを解放することで、停止状態のエンジンや無段変速機が駆動輪から切り離されるため、EV走行中におけるエンジンや無段変速機のフリクションを低減することができ、その分のエネルギー損失を回避することでエネルギー効率を高めることができる。
特開2000−199442号公報
しかしながら、上記従来技術にあっては、HEVモードからEVモードに切り替わった後、無段変速機の変速比をどのように制御すべきか、という点について検討の余地が有った。
すなわち、上記従来技術では、EVモード中に無段変速機の変速比制御を一切行っていないため、High側変速比で停車してしまうと、発進性能の確保が難しい。また、EVモード中にLow側に変速してしまうと、走行意図が変更されてHEVモードに切り替えるにあたってクラッチを接続すると、エンジン回転数を引き上げる際に駆動輪側の回転数を引き下げる力が作用することで引きショックが発生するという問題があった。
本発明は上記課題に着目し、HEVモードからEVモードに切り替わった時に無段変速機の変速比を適正に制御することで、安定して走行することが可能なハイブリッド車両の制御装置を提供することを目的とする。
この目的のため、本発明によるハイブリッド車両の制御装置は、運転状態に応じてエンジン及びモータの出力と、クラッチの締結及び解放と、無段変速機の変速比とを制御する制御手段を備えたハイブリッド車両の制御装置において、クラッチを解放し、エンジンを停止してモータの駆動力により走行しているときに車両が停車直前と判断されたときは、エンジンを停止したままクラッチを締結して無段変速機をダウンシフトすることとした。
すなわち、モータの駆動力により走行しているときは、車両が停車直前でない場合はダウンシフトせず、車両が停車直前となったときにダウンシフトするため、停車状態からの発進性能と停車前の減速状態からの再加速性能とを両立させることができる。
実施例1のハイブリッド車両の駆動系およびその全体制御システムを示す概略系統図である。 実施例1のハイブリッド車両において、 (a)は、当該ハイブリッド車両の駆動系およびその全体制御システムを示す概略系統図であり、 (b)は、当該ハイブリッド車両の駆動系におけるVベルト式無段変速機に内蔵された副変速機内におけるクラッチの締結論理図である。 実施例1のハイブリッド車両の走行モードが設定されたモードマップである。 HEVモードからEVモードに遷移し、再度HEVモードに遷移した場合に、変速比がHigh側の場合とLow側の場合を表すタイムチャートである。 実施例1のEVモード時における変速制御処理を表すフローチャートである。 実施例1の無段変速機におけるアクセル開度に応じた最適燃費となる変速比と、物理的に取り得る最High側変速比及び最Low側変速比を表す特性図である。 実施例1のEV回生状態から摩擦ブレーキに切り替わったときのダウンシフト作用を表すタイムチャートである。 実施例1のHEVモードからEVモードによるコースト走行後に車両停止し、再度HEVモードにより発進する場合のダウンシフト作用を表すタイムチャートである。
〔実施例1〕
図1は、実施例1のハイブリッド車両の駆動系およびその全体制御システムを示す概略系統図である。図1のハイブリッド車両は、エンジン1および電動モータ2を動力源として搭載され、エンジン1は、スタータモータ3により始動する。エンジン1は、Vベルト式の無段変速機4を介して駆動輪5に適宜切り離し可能に駆動結合する。
無段変速機4のバリエータCVTは、プライマリプーリ6と、セカンダリプーリ7と、これらプーリ6,7間に掛け渡したVベルト8(無端可撓部材)とからなるVベルト式無段変速機構である。尚、Vベルト8は複数のエレメントを無端ベルトによって束ねる構成を採用したが、チェーン方式等であってもよく特に限定しない。プライマリプーリ6はトルクコンバータT/Cを介してエンジン1のクランクシャフトに結合し、セカンダリプーリ7はクラッチCLおよびファイナルギヤ組9を順次介して駆動輪5に結合する。尚、本実施例にあっては、動力伝達経路を断接する要素(クラッチやブレーキ等)を総称してクラッチと記載する。図1は、動力伝達経路を概念的に示すものであり、後述する副変速機31内に設けられたハイクラッチH/C,リバースブレーキR/B及びローブレーキL/Bを、総称してクラッチCLと記載している。クラッチCLが締結状態のとき、エンジン1からの動力はトルクコンバータT/Cを経てプライマリプーリ6へ入力され、その後Vベルト8、セカンダリプーリ7、クラッチCLおよびファイナルギヤ組9を順次経て駆動輪5に達し、ハイブリッド車両の走行に供される。
エンジン動力伝達中、プライマリプーリ6のプーリV溝幅を小さくしつつ、セカンダリプーリ7のプーリV溝幅を大きくすることで、Vベルト8とプライマリプーリ6との巻き掛け円弧径を大きくすると同時にセカンダリプーリ7との巻き掛け円弧径を小さくする。これにより、バリエータCVTはHigh側プーリ比(High側変速比)へのアップシフトを行う。High側変速比へのアップシフトを限界まで行った場合、変速比は最高変速比に設定される。
逆にプライマリプーリ6のプーリV溝幅を大きくしつつ、セカンダリプーリ7のプーリV溝幅を小さくすることで、Vベルト8とプライマリプーリ6との巻き掛け円弧径を小さくすると同時にセカンダリプーリ7との巻き掛け円弧径を大きくする。これにより、バリエータCVTはLow側プーリ比(Low側変速比)へのダウンシフトを行う。Low側変速比へのダウンシフトを限界まで行った場合、変速は最低変速比に設定される。
バリエータCVTは、プライマリプーリ6の回転数を検出するプライマリ回転数センサ6aと、セカンダリプーリ7の回転数を検出するセカンダリ回転数センサ7aとを有し、これら両回転数センサにより検出された回転数に基づいて実変速比を算出し、この実変速比が目標変速比となるように各プーリの油圧制御等が行われる。
電動モータ2はファイナルギヤ組11を介して駆動輪5に常時結合され、この電動モータ2は、バッテリ12の電力によりインバータ13を介して駆動される。
インバータ13は、バッテリ12の直流電力を交流電力に変換して電動モータ2へ供給すると共に、電動モータ2への供給電力を加減することにより、電動モータ2を駆動力制御および回転方向制御する。
なお電動モータ2は、上記のモータ駆動のほかに発電機としても機能し、回生制動の用にも供する。この回生制動時はインバータ13が、電動モータ2に回生制動力分の発電負荷をかけることにより、電動モータ2を発電機として作用させ、電動モータ2の発電電力をバッテリ12に蓄電する。
実施例1のハイブリッド車両は、クラッチCLを解放すると共にエンジン1を停止させた状態で電動モータ2を駆動することで、電動モータ2の動力のみがファイナルギヤ組11を経て駆動輪5に達し、電動モータ2のみによる電気走行モード(EVモード)で走行を行う。この間、クラッチCLを解放することで、停止状態のエンジン1及びバリエータCVTのフリクションを低減し、EV走行中の無駄な電力消費を抑制する。
上記のEVモードによる走行状態において、エンジン1をスタータモータ3により始動させると共にクラッチCLを締結させると、エンジン1からの動力がトルクコンバータT/C、プライマリプーリ6、Vベルト8、セカンダリプーリ7、クラッチCLおよびファイナルギヤ組9を順次経て駆動輪5に達するようになり、ハイブリッド車両はエンジン1および電動モータ2によるハイブリッド走行モード(HEVモード)で走行する。
ハイブリッド車両を上記の走行状態から停車させる、もしくは、この停車状態に保つに際しては、駆動輪5と共に回転するブレーキディスク14をキャリパ15により挟圧して制動することで目的を達する。キャリパ15は、運転者が踏み込むブレーキペダル16の踏力に応動する負圧式ブレーキブースタ17による倍力下で、ブレーキペダル踏力対応のブレーキ液圧を出力するマスタシリンダ18に接続されている。マスタシリンダ18により発生したブレーキ液圧によりキャリパ15を作動させてブレーキディスク14の摩擦制動を行う。ハイブリッド車両はEVモードおよびHEVモードのいずれにおいても、運転者がアクセルペダル19を踏み込んで指令する駆動力指令に応じたトルクで車輪5を駆動し、運転者の要求に応じた駆動力をもって走行する。
ハイブリッドコントローラ21は、ハイブリッド車両の走行モード選択と、エンジン1の出力制御と、電動モータ2の回転方向制御および出力制御と、バリエータCVTの変速制御と、副変速機31の変速制御及びクラッチCLの締結、解放制御と、バッテリ12の充放電制御とを実行する。このとき、ハイブリッドコントローラ21は、対応するエンジンコントローラ22、モータコントローラ23、変速機コントローラ24、およびバッテリコントローラ25を介してこれら制御を行う。
ハイブリッドコントローラ21には、ブレーキペダル16を踏み込む制動時にOFFからONに切り替わる常開スイッチであるブレーキスイッチ26からの信号と、アクセルペダル踏み込み量(アクセルペダル開度)APOを検出するアクセルペダル開度センサ27からの信号とが入力される。ハイブリッドコントローラ21は更に、エンジンコントローラ22、モータコントローラ23、変速機コントローラ24、およびバッテリコントローラ25との間で、内部情報のやり取りを行う。
エンジンコントローラ22は、ハイブリッドコントローラ21からの指令に応答して、エンジン1を出力制御し、モータコントローラ23は、ハイブリッドコントローラ21からの指令に応答してインバータ13を介し電動モータ2の回転方向制御および出力制御を行う。変速機コントローラ24は、ハイブリッドコントローラ21からの指令に応答し、エンジン駆動される機械式オイルポンプO/P(もしくはポンプ用モータに駆動される電動式オイルポンプEO/P)からのオイルを媒体として、バリエータCVT(Vベルト式無段変速機構CVT)の変速制御および副変速機31の変速制御及びクラッチCLの締結、解放制御を行う。バッテリコントローラ25は、ハイブリッドコントローラ21からの指令に応答し、バッテリ12の充放電制御を行う。
図2(a)は、実施例1のハイブリッド車両の駆動系およびその全体制御システムを示す概略系統図であり、図2(b)は、実施例1のハイブリッド車両の駆動系における無段変速機4に内蔵された副変速機31内におけるクラッチCL(具体的には、H/C, R/B, L/B)の締結論理図である。図2(a)に示すように、副変速機31は、複合サンギヤ31s-1および31s-2と、インナピニオン31pinと、アウタピニオン31poutと、リングギヤ31rと、ピニオン31pin, 31poutを回転自在に支持したキャリア31cとからなるラビニョオ型プラネタリギヤセットで構成する。
複合サンギヤ31s-1および31s-2のうち、サンギヤ31s-1は入力回転メンバとして作用するようセカンダリプーリ7に結合し、サンギヤ31s-2はセカンダリプーリ7に対し同軸に配置するが自由に回転し得るようにする。
サンギヤ31s-1にインナピニオン31pinを噛合させ、このインナピニオン31pinおよびサンギヤ31s-2をそれぞれアウタピニオン31poutに噛合させる。
アウタピニオン31poutはリングギヤ31rの内周に噛合させ、キャリア31cを出力回転メンバとして作用するようファイナルギヤ組9に結合する。
キャリア31cとリングギヤ31rとをクラッチCLであるハイクラッチH/Cにより適宜結合可能となし、リングギヤ31rをクラッチCLであるリバースブレーキR/Bにより適宜固定可能となし、サンギヤ31s-2をクラッチCLであるローブレーキL/Bにより適宜固定可能となす。
副変速機31は、ハイクラッチH/C、リバースブレーキR/BおよびローブレーキL/Bを、図2(b)に○印により示す組み合わせで締結させ、それ以外を図2(b)に×印で示すように解放させることにより前進第1速、第2速、後退の変速段を選択することができる。ハイクラッチH/C、リバースブレーキR/BおよびローブレーキL/Bを全て解放すると、副変速機31は動力伝達を行わない中立状態であり、この状態でローブレーキL/Bを締結すると、副変速機31は前進第1速選択(減速)状態となり、ハイクラッチH/Cを締結すると、副変速機31は前進第2速選択(直結)状態となり、リバースブレーキR/Bを締結すると、副変速機31は後退選択(逆転)状態となる。
図2(a)の無段変速機4は、全てのクラッチCL(H/C, R/B, L/B)を解放して副変速機31を中立状態にすることで、バリエータCVT(セカンダリプーリ7)と駆動輪5との間を切り離すことができる。
図2(a)の無段変速機4は、エンジン駆動される機械式オイルポンプO/Pもしくはポンプ用モータに駆動される電動式オイルポンプEO/Pからのオイルを作動媒体として制御されるもので、変速機コントローラ24がライン圧ソレノイド35、ロックアップソレノイド36、プライマリプーリ圧ソレノイド37-1、セカンダリプーリ圧ソレノイド37-2、ローブレーキ圧ソレノイド38、ハイクラッチ圧&リバースブレーキ圧ソレノイド39およびスイッチバルブ41を介し、バリエータCVTの当該制御を以下のように制御する。尚、変速機コントローラ24には、図1につき前述した信号に加えて、車速VSPを検出する車速センサ32からの信号、および車両加減速度Gを検出する加速度センサ33からの信号を入力する。
ライン圧ソレノイド35は、変速機コントローラ24からの指令に応動し、機械式オイルポンプO/Pからのオイルを車両要求駆動力対応のライン圧PLに調圧する。また、機械式オイルポンプO/Pとライン圧ソレノイド35との間には電動式オイルポンプEO/Pが接続されており、変速機コントローラ24からの指令に応動してポンプ吐出圧を供給する。
ロックアップソレノイド36は、変速機コントローラ24からのロックアップ指令に応動し、ライン圧PLを適宜トルクコンバータT/Cに向かわせることで、トルクコンバータT/Cを所要に応じて入出力要素間が直結されたロックアップ状態にする。
プライマリプーリ圧ソレノイド37-1は、変速機コントローラ24からのCVT変速比指令に応動してライン圧PLをプライマリプーリ圧に調圧し、これをプライマリプーリ6へ供給することにより、プライマリプーリ6のV溝幅と、セカンダリプーリ7のV溝幅とを、CVT変速比が変速機コントローラ24からの指令に一致するよう制御して変速機コントローラ24からのCVT変速比指令を実現する。
セカンダリプーリ圧ソレノイド37-2は、変速機コントローラ24からのクランプ力指令に応じてライン圧PLをセカンダリプーリ圧に調圧し、これをセカンダリプーリ7に供給することにより、セカンダリプーリ7がVベルト8をスリップしないよう挟圧する。
ローブレーキ圧ソレノイド38は、変速機コントローラ24が副変速機31の第1速選択指令を発しているとき、ライン圧PLをローブレーキ圧としてローブレーキL/Bに供給することによりこれを締結させ、第1速選択指令を実現する。
ハイクラッチ圧&リバースブレーキ圧ソレノイド39は、変速機コントローラ24が副変速機31の第2速選択指令または後退選択指令を発しているとき、ライン圧PLをハイクラッチ圧&リバースブレーキ圧としてスイッチバルブ41に供給する。
実施例1の電動式オイルポンプEO/Pの最大吐出能力は、機械式オイルポンプO/Pに比べて小さく設定されており、電動式オイルポンプEO/Pのモータ及びポンプの小型化を図っている。
第2速選択指令時はスイッチバルブ41が、ソレノイド39からのライン圧PLをハイクラッチ圧としてハイクラッチH/Cに向かわせ、これを締結することで副変速機31の第2速選択指令を実現する。
後退選択指令時はスイッチバルブ41が、ソレノイド39からのライン圧PLをリバースブレーキ圧としてリバースブレーキR/Bに向かわせ、これを締結することで副変速機31の後退選択指令を実現する。
〔変速制御処理について〕
次に変速制御処理について説明する。変速機コントローラ24は、予め設定された変速マップを参照しながら、車両の運転状態(実施例1では車速VSP、プライマリ回転速度Npri、アクセルペダル開度APO)に応じて、無段変速機4を制御する。この変速マップでは、従来のベルト式無段変速機の変速マップと同様に、アクセルペダル開度APO毎に変速線が設定されており、無段変速機4の変速はアクセルペダル開度APOに応じて選択される変速線に従って行われる。この変速マップ上には副変速機31の変速を行うモード切換変速線が設定される。そして、無段変速機4の動作点がモード切換変速線を横切った場合、変速機コントローラ24はバリエータCVTと副変速機31の両方で協調変速を行い、高速モード−低速モード間の切換えを行う。
〔モード切り替え制御について〕
図3は実施例1のハイブリッド車両の走行モードが設定されたモードマップである。図3のモードマップでは、縦軸の0より上はアクセルペダル開度に応じて設定され、0より下についてはブレーキスイッチ26のオン・オフ状態に応じて設定されている。アクセルペダル19が踏み込まれたEV力行領域にあっては、力行車速VSPXまでEVモードによる力行領域が設定されている。また、アクセルペダル19がほとんど踏み込まれていない状態(例えば、1/8よりも十分に小さなアクセルペダル開度)を表す領域には、力行車速VSPXよりも更に高車速の所定車速VSP1までEVモードによる力行領域が設定されている。この所定車速VSP1以下の領域はアクセルペダル19が踏み込まれた状態ではほとんど選択されることはない。
一方、HEVモードによる走行中にアクセルペダル19を解放してコースティング(惰性)走行へ移行した場合や、HEVモードによる力行状態からブレーキペダル16を踏み込んで車両を制動する場合、電動モータ2による回生制動によって車両の運動エネルギーを電力に変換し、これをバッテリ12に蓄電しておくことでエネルギー効率の向上を図る(HEV回生状態)。また、制動トルクが所定値b1より大きな制動トルクとなったときには、電動モータ2のみによる回生制動では制動力が不足すると判断してHEV回生制動状態とする。これにより、摩擦ブレーキも併用し、制動トルクを確保する。また、制動トルクが所定値b1未満であっても、車速が所定車速Vc以下のときには、EV回生状態から摩擦ブレーキによる制動に切り替える。電動モータ2が低回転状態で高い回生トルクを発生させることは望ましくないからである。
ところでHEVモードのまま回生制動(HEV回生状態)を行うときは、クラッチCLが締結状態であるため、エンジン1の逆駆動力(エンジンブレーキ)分および無段変速機4のフリクション分だけ回生制動エネルギーの低下を招くこととなり、エネルギー回生効率が悪い。そのため、HEVモードによる走行中に回生制動が開始され、所定車速VSP1を下回ると、クラッチCLの解放によりエンジン1およびバリエータCVTを駆動輪5から切り離してEVモードによる走行へと移行する。これによりEV回生状態とし、エンジン1および無段変速機4によるフリクションを低減し、その分だけエネルギー回生量を稼げるようにする。また、EVモードにより走行する際には、燃費の観点からコースティング走行中に実行されていたエンジン1への燃料噴射の中止(フューエルカット)がクラッチCLの解放時も継続されるよう、エンジン1への燃料噴射の再開(フューエルリカバー)を禁止することでエンジン1を停止させる。
〔HEVモードからEVモードに遷移したときの変速制御について〕
次に、HEVモードからEVモードに遷移したときの変速制御に伴う課題について説明する。図4はHEVモードからEVモードに遷移し、再度HEVモードに遷移した場合に、変速比がHigh側の場合とLow側の場合を表すタイムチャートである。従来は、EVモード中に無段変速機の変速比制御を一切行っていないため、EVモード中の変速比は、EVモードへ切り替わる直前のHEVモード時の変速比となる。よって、EVモードへ切り替わる直前のHEVモード中の変速比がHigh側の変速比であった場合、EVモード中の変速比もHigh側となるため、この状態で車両停止すると、停車中の変速比もHigh側の変速比となっている。このとき、再発進要求に基づいてHEVモードによる発進を行うと、変速比がHigh側にあるため、エンジントルクが変速機により減少して駆動輪に伝達されるため、運転者の要求駆動力を満たすことができないという問題がある。
一方、停車状態からの発進性能を考えると、EVモード中にLow側にダウンシフトしておくことが好ましいと言える。ところが、HEVモードからEVモードに切り替わった後、すぐにLow側の変速比にダウンシフトしてしまうと、以下に示す問題がある。すなわち、図4の時刻t1からt2に示すように、EVモードとなってLow側にダウンシフトを行い、その後、運転者の走行意図が変更され、アクセルペダルが踏み込まれることで再びHEVモードによる加速が要求されること(以下、チェンジマインドと記載する。)が想定される(図4の時刻t3)。この場合、HEVモードによりクラッチを接続すると、無段変速機の入力側回転数(エンジン回転数)が非常に高回転となってしまう。言い換えると、現在の走行状態でHEVモード走行していると仮定したときに設定される変速比(図4の実線で示すHigh側変速比)と、上述のLow側にダウンシフトした変速比とが乖離しているため、クラッチをスリップ締結する際に、エンジン回転数の吹け上がりが発生すると共に、駆動輪側の回転数を引き下げる力が作用することで引きショックが発生するという問題があった。
また、乖離をなくすために実変速比を所望のHigh側変速比までアップシフトしてからクラッチを締結するようにすると、図4の時刻t3以降の点線に示すように、クラッチ締結の開始がアップシフト時間分だけ遅れてしまい、加速要求を満たすことが困難となる。よって、減速状態からの再加速性能を考えると、EVモード中に無条件でLow側の変速比にダウンシフトすることは好ましくない。
そこで、実施例1では、EVモードにより走行しているときに車両が停車直前と判断されたときは、エンジン1を停止したままクラッチを締結して無段変速機4をダウンシフトすることとした。言い換えると、車両が停車直前ではないと判断されたときは、ダウンシフトを行わないこととした。
〔EVモード及びHEVモード時における変速制御処理〕
図5は実施例1のEVモード時における変速制御処理を表すフローチャートである。
ステップS1では、EVモードでコースト走行中であり、ブレーキペダルが踏まれており、電動式オイルポンプEO/Pが作動しており、プライマリプーリ油圧が作用しており、セカンダリプーリ油圧が作用している、というすべての条件が満たされているか否かを判断し、条件を満たしているときはステップS2に進み、それ以外の場合は本ステップを繰り返す。
ステップS2では、急減速が発生しているか否かを判断し、急減速のときはステップS12に進み、それ以外のときはステップS3へ進む。急減速とは、車両に発生している減速度が所定値b1以上のときを表し、この場合は回生トルクのみの制動トルクではなく、HEVモードによる回生制動によって摩擦ブレーキによる制動トルクを発生させる。
ステップS3では、APOが0か否かを判断し、0のときはステップS4に進み、それ以外のときは本制御フローを終了する。
ステップS4では、バリエータCVTの変速比VAL_Ratioが最Lowか否かを判断し、最Low変速比の場合は本制御フローを終了し、それ以外の変速比の場合はステップS5に進む。
ステップS5では、停止直前か否かを判断し、停止直前の場合はステップS6へ進み、それ以外の場合はステップS3に戻ってコースト走行状態を継続する。言い換えると、停止直前と判断されるまでの間は、特に変速比制御が行われることなく、HEVモードからEVモードに切り替わった時点での変速比が維持される。ここで、停止直前か否かを判断する判断基準について説明する。実施例1では、停車直前か否かを判断するにあたり、車速が所定車速Vc以下か否かに基づいて判断する。この所定車速Vcとは、図3のモードマップに示すように、EV回生状態から摩擦ブレーキによる制動に切り替える車速である。すなわち、バリエータCVTの変速比を変化させるためには、クラッチを締結して駆動輪の回転をバリエータCVTに与える必要があるが、バリエータCVTに回転を与えると、トルクコンバータT/C、エンジン1などが連れまわり、フリクションを発生させてしまう。そのため、クラッチを締結することでフリクション分のエネルギーを回生することができず、回生量の減少を招く。一方、回生ブレーキには回生可能な下限回転数があり、この回転以下では回生を行うことができなくなる。この回転数=車速Vc以下であれば回生量を犠牲にすることなくバリエータCVTをダウンシフトすることができるため、所定車速Vcを停車直前の判断閾値として設定している。
更に、この所定車速Vcは、アクセル開度が最小のときに最Lowとなる車速の最高車速でもある。図6は実施例1の無段変速機におけるアクセル開度に応じた最適燃費となる変速比と、物理的に取り得る最High側変速比及び最Low側変速比を表す特性図である。APOが0のとき、最Low側変速比と交差するポイントよりも若干低車速側に所定車速Vcが存在する(一致していてもよい)。この特性図からも分かるように、車速がVc以下では、どのようなAPOとなった場合でも、設定される変速比は必ず最Low側変速比となるため、仮に、所定車速Vc以下でのEVモードにおいて、アクセルペダルが踏み込まれ、HEVモードに切り替わるような場合、バリエータCVTの変速比としては必ず最Low側変速比が要求される。よって、所定車速Vcになれば、停車直前と判断し、最Low側へのダウンシフトを行うことで、再加速要求時や車両停止からの再発進時において引きショックを招くことがない。また、再加速要求の場合にダウンシフトを待つ必要もなく、応答性を確保できる。
ステップS6では、プライマリ油圧がOFFとされ、セカンダリ油圧がONとされ、クラッチ油圧がONとされ、これによりバリエータCVTのLow側への変速が行われる。尚、クラッチは、ハイクラッチH/CではなくローブレーキL/BがONとされるため、より素早くバリエータCVTの回転数を高めることができる。また、クラッチをONとするときには、指令値として最大締結圧指令が出力されるため、バリエータCVTの回転数を高めることができる。変速速度はバリエータCVTの回転数が速いほど早くなるため、これら制御によって変速速度を速めることができる。また、プライマリ油圧がOFFとされ、セカンダリ油圧がONとされることで、バリエータCVTの差推力が最大となるように設定されるため、最も早い変速速度で変速制御が行われる。
ステップS7では、APOが0か否かを判断し、0のときはステップS8に進み、それ以外のときは本制御フローを終了する。言い換えると、コースト走行が継続している間はステップS6によるダウンシフトを継続する。
ステップS8では、急減速が発生しているか否かを判断し、急減速のときはステップS9に進み、それ以外のときはステップS12へ進む。急減速時はHEVモードで対応すべきだからである。
ステップS9では、バリエータCVTの変速比VAL_Ratioが最Lowか否かを判断し、最Low変速比の場合はステップS11に進み、それ以外の場合はステップS10に進む。
ステップS10では、車両停止か否かを判断し、車両が停止しているときにはステップS11に進み、それ以外の場合はステップS7に戻って変速を継続する。
ステップS11では、プライマリ油圧をOFF、セカンダリ油圧をOFF、クラッチ油圧をOFFとし、電動式オイルポンプEO/PもOFFとし、Low側の変速を終了する。
ステップS12では、エンジン1を再始動すると共に、クラッチを締結する。
ステップS13では、電動式オイルポンプEO/Pを停止し、Low側への変速を開始する。
ステップS14では、バリエータCVTの変速比VAL_Ratioが最Lowか否かを判断し、最Low変速比の場合はステップS20に進み、それ以外の場合はステップS15に進む。
ステップS15では、APOが0か否かを判断し、0のときはステップS8に進み、それ以外のときはステップS20へ進んで本制御フローを終了する。言い換えると、コースト走行が継続している間はステップS13によるダウンシフトを継続する。
ステップS16では、車両停止か否かを判断し、車両が停止しているときにはステップS17に進み、それ以外の場合はステップS15に戻ってダウンシフトを継続する。
ステップS17では、クラッチをOFFとし、エンジン1のアイドル回転数を所定回転数だけ上昇し、車両停止状態でのダウンシフトを継続する。アイドル回転数を上昇させてダウンシフトを行うことで変速速度を速めることができる。
ステップS18では、APOが0か否かを判断し、0のときはステップS19に進み、それ以外のときはステップS20へ進んで本制御フローを終了する。言い換えると、車両停止状態が継続している間はステップS17によるダウンシフトを継続する。
ステップS19では、バリエータCVTの変速比VAL_Ratioが最Lowか否かを判断し、最Low変速比の場合はステップS20に進み、それ以外の場合はステップS18に進んでダウンシフトを継続する。
ステップS20では、ダウンシフトが完了したとしてアイドル回転数を所定回転数アップした状態から通常の回転数に戻し、本制御フローを終了する。
(変速制御処理に基づく作用)
次に、上記EVモード及びHEVモード時における変速制御処理に基づく作用について説明する。図7は実施例1のEV回生状態から摩擦ブレーキに切り替わったときのダウンシフト作用を表すタイムチャートである。尚、前提条件として電動式オイルポンプEO/Pは作動状態であり、バリエータCVTの各プーリに油圧が供給されている。尚、CL_Targetは締結圧指令値であり、CL_OPは実締結圧である。また、VAL_REVはプライマリ回転数(エンジン回転数に相当)であり、PRI_TargetやSEC_Targetは油圧指令値であり、PRI_OPやSEC_OPは実油圧であり、VAL_RatioはバリエータCVTの実変速比である。
アクセルペダルを解放したEVモードのコースト走行状態している時刻t11において、運転者がブレーキペダルを踏み込むと、車両が減速を開始する。そして、時刻t12において、車速が所定車速Vcを下回ると、クラッチに対して最大締結圧指令が出力されると共に、プライマリ油圧がゼロとされ、セカンダリ油圧が最大圧に設定される。これにより、バリエータCVTがダウンシフトされる。
時刻t13において、車両が停止すると、クラッチが解放され、セカンダリ油圧も0に設定される。尚、この時点で最Low側変速比までダウンシフトが完了した例を示したが、仮にダウンシフトが完了していない場合であっても、ダウンシフトによって再発進時における発進性能を向上できる。
図8は実施例1のHEVモードからEVモードによるコースト走行後に車両停止し、再度HEVモードにより発進する場合のダウンシフト作用を表すタイムチャートである。前提条件等は図7と同様である。
アクセルペダルを踏み込んだHEVモードによる走行中の時刻t21において、運転者がアクセルペダルを解放し、ブレーキペダルを踏み込むと、EVモードに遷移してコースト走行状態となる。このとき、クラッチはOFFとされるが、車速が所定車速Vc以上であるため、変速比は維持される。
時刻t22において、車速が所定車速Vcを下回ると、クラッチに対して最大締結指令が出力されると共に、プライマリ油圧がゼロとされ、セカンダリ油圧が最大圧に設定される。これによりバリエータCVTがダウンシフトされる。
時刻t23において車両が停止すると、クラッチがOFFとされ、セカンダリ油圧も0に設定される。そして、時刻t24において、運転者がアクセルペダルを踏み込むと、クラッチがONとされ、最Low側変速比のまま車両が発進する。
ここで、仮に、時刻t22において変速比をHigh側変速比のままとした場合、時刻t24の車両発進時には、バリエータCVTのダウンシフトを行いつつ発進することとなり、エンジントルクがバリエータCVTにより減少されて駆動輪に伝達されるため、十分な加速性能が得られず、発進性を確保できない。これに対し、所定車速Vc以下のときにダウンシフトを実行することで、発進性能を確保できる。
以上説明したように、実施例1にあっては下記に列挙する作用効果が得られる。
(1)エンジン1と、エンジン1の出力軸に結合されたバリエータCVT(無段変速機4)と、バリエータCVTの出力軸に結合されたクラッチと、クラッチの出力軸に結合された駆動輪5と、駆動輪5に結合された電動モータ2と、運転状態に応じてエンジン1及び電動モータ2の出力と、クラッチの締結及び解放と、無段変速機4の変速比とを制御するハイブリッドコントローラ21(制御手段)と、を備えたハイブリッド車両の制御装置において、車両が停車直前か否かを判断するステップS5(停車判断手段)を備え、ハイブリッドコントローラ21は、クラッチを解放し、エンジン1を停止して、電動モータ2の駆動力により走行しているときに、車両が停車直前と判断されたときは、エンジン1を停止したままクラッチを締結してバリエータCVTをダウンシフトすることを特徴とするハイブリッド車両の制御装置。
すなわち、電動モータ2の駆動力により走行しているときは、車両が停車直前でない場合はダウンシフトせず、車両が停車直前となったときにダウンシフトするため、停車状態からの発進性能と停車前の減速状態からの再加速性能とを両立させることができる。
(2)ステップS5は、車速が所定車速Vc以下となったときに車両が停車直前であると判断することを特徴とするハイブリッド車両の制御装置。
停車直前の判定手段に車速を用いることで、既存の車速センサで判別することができ、追加のデバイスが不要となりコストアップを招くことなく機能を追加することができる。
(3)所定車速Vcは、電動モータ2による回生制動から液圧ブレーキによる摩擦制動に切り替える車速であることを特徴とするハイブリッド車両の制御装置。
よって、EVモードによる回生領域に影響を与えることが無く、回生効率の低下を招くことなくダウンシフトを実行できる。
(4)所定車速Vcは、アクセルペダルが最小のときに変速比が最Lowとなる車速の最高車速であることを特徴とするハイブリッド車両の制御装置。
よって、運転者がチェンジマインドによりアクセルペダルを踏み込んでHEVモードに遷移した場合であっても、走行状況にみあった変速比であるため、引きショックを招くことが無い。また、エンジン始動後に変速比をLow側に戻すといった動作手順が不要となり、良好な応答性を確保できる。
(5)ステップS6では、バリエータCVTの変速速度が最大となるようにクラッチ及びバリエータCVTに制御指令を出力することを特徴とするハイブリッド車両の制御装置。
具体的には、クラッチに最大締結圧指令を出力することでバリエータCVTの回転速度を高めることで変速速度を速めると共に、プライマリ油圧をOFFとし、セカンダリ油圧をONすなわち最大圧に設定することで最大差推力を確保し、更に変速速度を上昇できる。
(6)ステップS12〜S17では、所定の条件の成立によりエンジン1が作動しているときは、バリエータCVTの変速比が最Lowとなるまでダウンシフトさせ、停車時点でダウンシフトが最Lowまで到達していないときは、クラッチを解放してダウンシフトを継続することを特徴とするハイブリッド車両の制御装置。
すなわち、停車時に変速比が最Lowに戻っていない場合において、再発進時になんらかの原因でモータ駆動力が出力できないとき、通常のエンジン車両と同様にエンジンの駆動力を無段変速機4によって増幅して発進する必要がある。しかし、変速比が最Lowとなっていない場合、通常のエンジン車両よりも駆動力が劣ってしまい、坂道などの必要駆動力が大きい状態では発進性が悪化し、また、発進に時間がかかってしまう。これに対し、エンジン1が作動していれば、クラッチを切り離すことでバリエータCVTの回転数を確保できるため、車両停止後もダウンシフトをさせることで、最Low側の変速比を達成することができ、発進性能を確保できる。
(7)ステップS17では、クラッチを解放してダウンシフトを継続するときは、エンジン回転数をアイドル回転数よりも高くすることを特徴とするハイブリッド車両の制御装置。
よって、エンジン回転数を上昇させることでバリエータCVTの回転数を上昇させることができ、変速速度を早くすることができる。また、オイルポンプO/Pの供給油量が増大するため、バリエータCVTへの圧力供給を増加させることができ、短時間で最Low側へ変速することができる。
(8)クラッチは、遊星歯車と複数のクラッチとを有する副変速機のハイクラッチH/C及びローブレーキL/Bであり、ステップS6は、ダウンシフトのときに締結するクラッチとして、複数のクラッチのうち最低変速段のクラッチであるローブレーキL/Bを選択することを特徴とするハイブリッド車両の制御装置。
副変速機などの変速段を選択可能な機構をプーリの出力側に持つ無段変速機4では、駆動輪側から回転を入力する際、ローブレーキL/Bを選択することでバリエータCVTへの入力回転が増速される。よって、ダウンシフトを素早く行うことができ、ダウンシフトを短時間で完了することができる。
(他の実施例)
以上、本願発明を各実施例に基づいて説明したが、上記構成に限られず、他の構成であっても本願発明に含まれる。実施例ではスタータモータ3によりエンジン再始動を行う構成を示したが、他の構成であっても構わない。具体的には、近年、アイドリングストップ機能付き車両であって、オルタネータをモータ・ジェネレータに置き換え、このモータ・ジェネレータにオルタネータ機能を加えてエンジン始動機能を付加することにより、アイドリングストップからのエンジン再始動時に、スタータモータではなく、このモータ・ジェネレータによりエンジン再始動を行う技術が実用化されている。本願発明も上記のようなモータ・ジェネレータによりエンジン再始動を行う構成としてもよい。
また、実施例では、モードマップ内での判断に関し、縦軸の負の領域についてブレーキスイッチ26のONもしくはOFFに基づいて判断したが、これに限定されるものではなく、ブレーキペダル16のストロークセンサの出力値に基づいて判断する、もしくはマスタシリンダ圧等を検出するブレーキ液圧センサの出力値に基づいて判断するようにしてもよい。
1 エンジン(動力源)
2 電動モータ(動力源)
3 スタータモータ
4 Vベルト式無段変速機
5 駆動輪
6 プライマリプーリ
7 セカンダリプーリ
8 Vベルト
CVT バリエータ(無段変速機構)
T/C トルクコンバータ
9,11 ファイナルギヤ組
12 バッテリ
13 インバータ
14 ブレーキディスク
15 キャリパ
16 ブレーキペダル
19 アクセルペダル
21 ハイブリッドコントローラ
22 エンジンコントローラ
23 モータコントローラ
24 変速機コントローラ
25 バッテリコントローラ
26 ブレーキスイッチ
27 アクセルペダル開度センサ
O/P オイルポンプ
31 副変速機
CL クラッチ
H/C ハイクラッチ
R/B リバースブレーキ
L/B ローブレーキ
32 車速センサ

Claims (8)

  1. エンジンと、
    前記エンジンの出力軸に結合された無段変速機と、
    前記無段変速機の出力軸に結合されたクラッチと、
    前記クラッチの出力軸に結合された駆動輪と、
    前記駆動輪に結合されたモータと、
    運転状態に応じて前記エンジン及び前記モータの出力と、前記クラッチの締結及び解放と、前記無段変速機の変速比とを制御する制御手段と、
    を備えたハイブリッド車両の制御装置において、
    車両が停車直前か否かを判断する停車判断手段を備え、
    前記制御手段は、前記クラッチを解放し、前記エンジンを停止して、前記モータの駆動力により走行しているときに、車両が停車直前と判断されたときは、前記エンジンを停止したまま前記クラッチを締結して前記無段変速機をダウンシフトすることを特徴とするハイブリッド車両の制御装置。
  2. 請求項1に記載のハイブリッド車両の制御装置において、
    前記停車判断手段は、車速が所定車速以下となったときに車両が停車直前であると判断することを特徴とするハイブリッド車両の制御装置。
  3. 請求項2に記載のハイブリッド車両の制御装置において、
    前記所定車速は、前記モータによる回生制動から液圧ブレーキによる摩擦制動に切り替える車速であることを特徴とするハイブリッド車両の制御装置。
  4. 請求項2に記載のハイブリッド車両の制御装置において、
    前記所定車速は、アクセルペダルが最小のときに変速比が最Lowとなる車速の最高車速であることを特徴とするハイブリッド車両の制御装置。
  5. 請求項1ないし4いずれか1つに記載のハイブリッド車両の制御装置において、
    前記制御手段は、前記無段変速機の変速速度が最大となるように前記クラッチ及び前記無段変速機に制御指令を出力することを特徴とするハイブリッド車両の制御装置。
  6. 請求項1ないし5いずれか1つに記載のハイブリッド車両の制御装置において、
    前記制御手段は、所定の条件の成立により前記エンジンが作動しているときは、前記無段変速機の変速比が最Lowとなるまでダウンシフトさせ、停車時点でダウンシフトが最Lowまで到達していないときは、前記クラッチを解放してダウンシフトを継続することを特徴とするハイブリッド車両の制御装置。
  7. 請求項5に記載のハイブリッド車両の制御装置において、
    前記制御手段は、前記クラッチを解放してダウンシフトを継続するときは、前記エンジン回転数をアイドル回転数よりも高くすることを特徴とするハイブリッド車両の制御装置。
  8. 請求項1ないし7いずれか1つに記載のハイブリッド車両の制御装置において、
    前記クラッチは、遊星歯車と複数のクラッチとを有する副変速機のクラッチであり、
    前記制御手段は、前記ダウンシフトのときに締結するクラッチとして、前記複数のクラッチのうち最低変速段のクラッチを選択することを特徴とするハイブリッド車両の制御装置。
JP2013261612A 2013-12-18 2013-12-18 ハイブリッド車両の制御装置 Active JP6340605B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013261612A JP6340605B2 (ja) 2013-12-18 2013-12-18 ハイブリッド車両の制御装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013261612A JP6340605B2 (ja) 2013-12-18 2013-12-18 ハイブリッド車両の制御装置

Publications (2)

Publication Number Publication Date
JP2015116936A true JP2015116936A (ja) 2015-06-25
JP6340605B2 JP6340605B2 (ja) 2018-06-13

Family

ID=53530062

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013261612A Active JP6340605B2 (ja) 2013-12-18 2013-12-18 ハイブリッド車両の制御装置

Country Status (1)

Country Link
JP (1) JP6340605B2 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110997438A (zh) * 2017-08-07 2020-04-10 加特可株式会社 车辆的控制装置及控制方法
CN111114281A (zh) * 2018-10-31 2020-05-08 比亚迪股份有限公司 动力驱动系统及车辆
JP2020152240A (ja) * 2019-03-20 2020-09-24 株式会社Subaru 車両の制御装置
JPWO2020021941A1 (ja) * 2018-07-24 2021-08-02 ボッシュ株式会社 ハイブリッド車両の制御装置及び制御方法
US11407403B2 (en) 2019-03-20 2022-08-09 Subaru Corporation Vehicle control apparatus

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08312741A (ja) * 1995-05-15 1996-11-26 Nissan Motor Co Ltd 無段自動変速機の制御装置
JP2009292312A (ja) * 2008-06-05 2009-12-17 Nissan Motor Co Ltd 複合ブレーキの協調制御装置
JP2012106711A (ja) * 2010-10-27 2012-06-07 Nissan Motor Co Ltd ハイブリッド車輌の制御装置
JP2012197904A (ja) * 2011-03-23 2012-10-18 Jatco Ltd 無段変速機搭載車の制御装置
JP2013133078A (ja) * 2011-12-27 2013-07-08 Fuji Heavy Ind Ltd ハイブリッド車両の制御装置
WO2013146175A1 (ja) * 2012-03-26 2013-10-03 ジヤトコ株式会社 ハイブリッド車両の電気走行減速時変速制御装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08312741A (ja) * 1995-05-15 1996-11-26 Nissan Motor Co Ltd 無段自動変速機の制御装置
JP2009292312A (ja) * 2008-06-05 2009-12-17 Nissan Motor Co Ltd 複合ブレーキの協調制御装置
JP2012106711A (ja) * 2010-10-27 2012-06-07 Nissan Motor Co Ltd ハイブリッド車輌の制御装置
JP2012197904A (ja) * 2011-03-23 2012-10-18 Jatco Ltd 無段変速機搭載車の制御装置
JP2013133078A (ja) * 2011-12-27 2013-07-08 Fuji Heavy Ind Ltd ハイブリッド車両の制御装置
WO2013146175A1 (ja) * 2012-03-26 2013-10-03 ジヤトコ株式会社 ハイブリッド車両の電気走行減速時変速制御装置

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110997438A (zh) * 2017-08-07 2020-04-10 加特可株式会社 车辆的控制装置及控制方法
CN110997438B (zh) * 2017-08-07 2023-02-28 加特可株式会社 车辆的控制装置及控制方法
JPWO2020021941A1 (ja) * 2018-07-24 2021-08-02 ボッシュ株式会社 ハイブリッド車両の制御装置及び制御方法
CN111114281A (zh) * 2018-10-31 2020-05-08 比亚迪股份有限公司 动力驱动系统及车辆
CN111114281B (zh) * 2018-10-31 2021-07-09 比亚迪股份有限公司 动力驱动系统及车辆
JP2020152240A (ja) * 2019-03-20 2020-09-24 株式会社Subaru 車両の制御装置
US11383697B2 (en) 2019-03-20 2022-07-12 Subaru Corporation Vehicle control apparatus
US11407403B2 (en) 2019-03-20 2022-08-09 Subaru Corporation Vehicle control apparatus
JP7273575B2 (ja) 2019-03-20 2023-05-15 株式会社Subaru 車両の制御装置

Also Published As

Publication number Publication date
JP6340605B2 (ja) 2018-06-13

Similar Documents

Publication Publication Date Title
JP6113910B2 (ja) ハイブリッド車両の制御装置
JP6115978B2 (ja) ハイブリッド車両の制御装置
JP5992537B2 (ja) ハイブリッド車両のモード切り替え制御装置
JP5936703B2 (ja) ハイブリッド車両のモード切り替え制御装置
JP5835500B2 (ja) ハイブリッド車両の制御装置
KR101712760B1 (ko) 하이브리드 차량
JP6052775B2 (ja) ハイブリッド車両の制御装置
WO2013146175A1 (ja) ハイブリッド車両の電気走行減速時変速制御装置
JP6340605B2 (ja) ハイブリッド車両の制御装置
JP2014180965A (ja) ハイブリッド車両の制御装置
JP6569095B2 (ja) ハイブリッド車両の制御装置
WO2014065302A1 (ja) ハイブリッド車両のモード切り替え制御装置
JP6330190B2 (ja) ハイブリッド車両の制御装置
JP6303783B2 (ja) ハイブリッド車両の制御装置
JP6273505B2 (ja) ハイブリッド車両の制御装置
JP2014113902A (ja) ハイブリッド車両のモード切り替え制御装置
WO2014087819A1 (ja) ハイブリッド車両のモード切り替え制御装置
WO2014091838A1 (ja) ハイブリッド車両の制御装置
JP2015143050A (ja) ハイブリッド車両の制御装置
JP2014091438A (ja) ハイブリッド車両の変速制御装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20161024

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170629

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170711

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170824

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20180130

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180228

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20180309

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180417

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180417

R150 Certificate of patent or registration of utility model

Ref document number: 6340605

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150