JP2015111714A - 基板プロセス装置および方法 - Google Patents
基板プロセス装置および方法 Download PDFInfo
- Publication number
- JP2015111714A JP2015111714A JP2015015084A JP2015015084A JP2015111714A JP 2015111714 A JP2015111714 A JP 2015111714A JP 2015015084 A JP2015015084 A JP 2015015084A JP 2015015084 A JP2015015084 A JP 2015015084A JP 2015111714 A JP2015111714 A JP 2015111714A
- Authority
- JP
- Japan
- Prior art keywords
- stage
- rotary
- motor
- rotary stage
- rotor
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Classifications
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03F—PHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
- G03F7/00—Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
- G03F7/70—Microphotolithographic exposure; Apparatus therefor
- G03F7/70691—Handling of masks or workpieces
- G03F7/70775—Position control, e.g. interferometers or encoders for determining the stage position
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16C—SHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
- F16C32/00—Bearings not otherwise provided for
- F16C32/04—Bearings not otherwise provided for using magnetic or electric supporting means
- F16C32/0406—Magnetic bearings
- F16C32/044—Active magnetic bearings
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/84—Systems specially adapted for particular applications
- G01N21/88—Investigating the presence of flaws or contamination
- G01N21/95—Investigating the presence of flaws or contamination characterised by the material or shape of the object to be examined
- G01N21/9501—Semiconductor wafers
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03F—PHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
- G03F7/00—Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
- G03F7/70—Microphotolithographic exposure; Apparatus therefor
- G03F7/70383—Direct write, i.e. pattern is written directly without the use of a mask by one or multiple beams
- G03F7/704—Scanned exposure beam, e.g. raster-, rotary- and vector scanning
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03F—PHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
- G03F7/00—Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
- G03F7/70—Microphotolithographic exposure; Apparatus therefor
- G03F7/70691—Handling of masks or workpieces
- G03F7/70733—Handling masks and workpieces, e.g. exchange of workpiece or mask, transport of workpiece or mask
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03F—PHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
- G03F7/00—Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
- G03F7/70—Microphotolithographic exposure; Apparatus therefor
- G03F7/708—Construction of apparatus, e.g. environment aspects, hygiene aspects or materials
- G03F7/70808—Construction details, e.g. housing, load-lock, seals or windows for passing light in or out of apparatus
- G03F7/70816—Bearings
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/67—Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
- H01L21/67005—Apparatus not specifically provided for elsewhere
- H01L21/67242—Apparatus for monitoring, sorting or marking
- H01L21/67259—Position monitoring, e.g. misposition detection or presence detection
- H01L21/67265—Position monitoring, e.g. misposition detection or presence detection of substrates stored in a container, a magazine, a carrier, a boat or the like
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/67—Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
- H01L21/683—Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping
- H01L21/687—Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches
- H01L21/68714—Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches the wafers being placed on a susceptor, stage or support
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/67—Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
- H01L21/683—Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping
- H01L21/687—Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches
- H01L21/68714—Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches the wafers being placed on a susceptor, stage or support
- H01L21/68771—Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches the wafers being placed on a susceptor, stage or support characterised by supporting more than one semiconductor substrate
Landscapes
- Engineering & Computer Science (AREA)
- General Physics & Mathematics (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Manufacturing & Machinery (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Immunology (AREA)
- Epidemiology (AREA)
- Mechanical Engineering (AREA)
- Environmental & Geological Engineering (AREA)
- Chemical & Material Sciences (AREA)
- Analytical Chemistry (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- Public Health (AREA)
- Pathology (AREA)
- Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)
- Linear Motors (AREA)
- Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)
- Length Measuring Devices By Optical Means (AREA)
- Drying Of Semiconductors (AREA)
- Length Measuring Devices With Unspecified Measuring Means (AREA)
- Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
Abstract
【課題】スループット短くするためのステージ構造を提供する。
【解決手段】基板プロセス装置100は、支持構造108と、第1及び第2のステージ102、104を含む可動式ステージを備える。可動式ステージは、第1のステージ及び/又は第1のステージの端部に隣接する第2のステージに取り付けられた1つ以上のマグレブユニットを有する。第1のステージは1つ以上の基板101を保持し、第2のステージに対して略固定された第1の軸に対して移動する。第2のステージは、支持構造に対して第2の軸に沿って平行移動する。第1のモータは、ある角速度で回転ステージを維持してもよく及び/又は第1の角速度から第2の角速度へ、ステージを加速又は減速してもよい。第2のモータは静止状態から第1の角速度へステージを加速してもよく及び/又はゼロではない角速度からステージを減速してもよい。
【選択図】図1
【解決手段】基板プロセス装置100は、支持構造108と、第1及び第2のステージ102、104を含む可動式ステージを備える。可動式ステージは、第1のステージ及び/又は第1のステージの端部に隣接する第2のステージに取り付けられた1つ以上のマグレブユニットを有する。第1のステージは1つ以上の基板101を保持し、第2のステージに対して略固定された第1の軸に対して移動する。第2のステージは、支持構造に対して第2の軸に沿って平行移動する。第1のモータは、ある角速度で回転ステージを維持してもよく及び/又は第1の角速度から第2の角速度へ、ステージを加速又は減速してもよい。第2のモータは静止状態から第1の角速度へステージを加速してもよく及び/又はゼロではない角速度からステージを減速してもよい。
【選択図】図1
Description
(政府の利益)
本発明は、国防高等研究計画局(DARPA)から与えられた取り決めHR0011−06−3−0008に基づく政府の支援と共になされた。政府は本発明において所定の権利を有する。
(関連技術の相互参照)
本出願は、2007年、2月2日に出願の米国特許出願番号第11/670,896号の優先権の利益を主張し、この出願は、2006年12月18日に出願の同時係属中の仮特許出願番号第60/870,528号からの優先権の利益を主張し、それらの開示全体は引用することで本明細書において援用される。本出願は、2007年7月9日に出願の同時係属中の仮特許出願番号第60/948,667号の優先権の利益を主張し、その開示全体は引用することで本明細書において援用される。
本発明は、国防高等研究計画局(DARPA)から与えられた取り決めHR0011−06−3−0008に基づく政府の支援と共になされた。政府は本発明において所定の権利を有する。
(関連技術の相互参照)
本出願は、2007年、2月2日に出願の米国特許出願番号第11/670,896号の優先権の利益を主張し、この出願は、2006年12月18日に出願の同時係属中の仮特許出願番号第60/870,528号からの優先権の利益を主張し、それらの開示全体は引用することで本明細書において援用される。本出願は、2007年7月9日に出願の同時係属中の仮特許出願番号第60/948,667号の優先権の利益を主張し、その開示全体は引用することで本明細書において援用される。
本発明は、一般に基板検査およびリソグラフィに関し、より詳細には、基板検査およびリソグラフィにおいて用いられる可動式ステージに関する。
従来、計測および検査システムにおいてリソグラフィおよび走査におけるウエハへの書込みは、基板を平行移動させるために、リニア・ステッピングまたは走査の移動が用いられてきた。直線的な移動が、レンダリング処理において簡易性の利点を有する。なぜならば、半導体ウエハ上のダイは通常、移動の方向に配置されるからである。デカルト(XY)のレチクル書込みにおいて、データパスは、レンダリングされた形状において、主な方向をたどる。しかしながら、スループットを制限する要因は、デカルトのステージにおける機械的移動である。データパスの電子装置が速ければ速いほど、デカルト系の機械的制限はより制限的なものとなり、極座標におけるデータパスのレンダリングは容易となる。データパスのレンダリング速度は、ムーアの法則に従って続き、より新しい世代の半導体を用いて改良されることが期待され、その一方で、デカルトのステージのスループットは精密工学において比較的ゆっくりとした進歩となっている。
往復のステージは、約100ミリ秒の範囲の最後において回転時間の実際の制限を有する。この時間を短くするために、その構造はより高い帯域幅を可能とする必要がある。高性能の材料を使用することで、最も速い走査速度の適度の改良のみが可能となる。その動きの最後における加速の上昇はまた、アクチュエータのパワー、熱放射、振動絶縁システムおよび機械基部上の反応、加速後の収まりなどにおいて、それらの制限を有する。
本発明の実施形態はこの文脈内に現れる。
本発明の目的および利点は、以下の詳細な記載を読み、添付の図面を参照することで明らかとなる。
以下の詳細な記載は、説明を目的として多くの詳細を含むが、当業者であれば誰でも、以下の記載に対する多くの変形および変更が本発明の範囲内にあることを理解する。従って、以下に記載の本発明の例示的実施形態を、特許請求の範囲の発明に対して一般性を失うことなく、かつこれに制約を設けることなく、説明する。
本発明の一実施形態に係る基板プロセス装置100の一例を、図1に示す。装置100は、一般的に第1のステージ102および第2のステージ104を備える。第1のステージ102は、一以上の基板チャック103を携行する。それぞれの基板チャック103は支柱に連結され、基板101を保持する。適切な基板の例としては、半導体ウエハ、または光学リソグラフィ用レチクルが挙げられるが、これらに限定しない。第1のステージ102は、第2のステージ104に対して移動する。一例として、第1のステージ102はz軸回りに回転する回転ステージ102であってもよい。z軸は略垂直方向、略水平方向または水平と垂直の間の他の方向に向けられてもよい。第2のステージ104は、回転ステージ102の回転軸面に平行な方向に直線的に回転ステージ103を移動する、平行移動ステージでもよい。回転ステージ102を支持する1以上のベアリングにより、平行移動ステージ104が支持構造108に対して移動する際に、回転ステージのz軸を略固定位置に、かつ平行移動ステージ104に対する方向に維持するような方法で、回転ステージ102の回転、および回転ステージ102と平行移動ステージ104との間の平行移動力の円滑化を容易にする。一例として、支持構造108は真空チャンバ、真空チャンバの蓋、またはステージ基部構造でもよい。
一例として、回転ステージ102および平行移動ステージ104を真空チャンバ等のチャンバ内に配置し、基板101のプロセス環境制御を提供し、支持構造108の役割としてもよい。赤外、可視または紫外光等の電磁放射の形態、あるいは電子またはイオン等の荷電粒子ビームの形態での放射を用いて基板101の選択位置を探知するために、基板プロセスツール110を用いてもよい。プロセスツール110は、電子ビーム露光カラムまたは光学リソグラフィレンズシステム等の、リソグラフィシステムの一部でもよい。あるいは、ツール110は、基板101の選択部分を放射に曝露し、基板101からの散乱または2次放射を収集する、基板計測または検査ツールの一部でもよい。このようなツールの例としては、光学ウエハ検査ツールおよび走査電子顕微鏡が挙げられる。
らせん経路等の連続した様式で基板101の表面全体を光学カラムが探知するように、回転ステージ102の回転運動と平行移動ステージ104の直線運動とを組み合わせた動きがツール110に対して基板101を動かす。このような運動は、レコードに対するレコード針、またはコンパクトディスク(CD)に対するレーザビームの動きに類似している。主要な相違点は、本発明の実施形態においては、ツール110がチャンバに対して略固定保持され、基板101が回転して固定ツール110に対して直線移動することである。「略固定」とは、位置決めにおいて小規模な変化を調節するための何らかの機構が存在してもよいという意味である。好適には、このような位置決めの変化は、検出センサの能力範囲内であり、ツール110(または本ツールからのビーム)と基板101との間の相対的な位置決めにおいて所望の分解能を維持している間の反作用に対する調節機構の能力範囲内である。このような調節のための機構の詳細は後述する。
従来の非連続的R−θ位置決めステージの往復運動またはR−θ運動とは異なり、連続回転運動は本質的に滑らかである。回転ステージ102の慣性力は本質的に平衡化され、ジャイロ効果により回転軸zの方向を安定化する傾向がある。その結果に、図1に示す種類の装置は、基板101への加速度を高める必要なく、大きな基板を迅速に走査してもよい。代替実施形態において、本ツールは、異なる半径を有する一連の同軸円経路に沿った連続回転運動により、基板101の表面を探知してもよい。このような場合において、直線運動が非連続的である間に回転運動を連続して維持してもよい。
複数基板の構成において、回転するプラッタに複数のチャックを対称配置してもよい。回転ステージ102上のチャック103のレイアウトは単一の半径方向配置とすることが可能で、全てのチャック103はz軸から同一の半径距離に配置される。あるいは、複数行、六方格子、または基板に書き込みかつ探知するための適切な他の配置に、チャック103を配置してもよい。対応するデータ経路ストラテジは、基板レイアウトに従うと考えられる。
例えば、温度センサ、e−ビーム検出器、e−ビーム反射器または位置センサ等、正確な書き込みに重要なパラメータのフィードバックを可能とするセンサを一以上のチャック103に装備してもよい。
ベアリング106が非常に高スループットなステージの要求に見合うために、様々な構成が可能である。例えば、回転ステージ102を支持するために、ベアリング106に磁気浮上(マグレブ)を用いて、回転平行移動ステージを実装してもよい。あるいは、回転平行移動ステージは、磁気浮上の代替としてエアベアリングまたは従来のベアリングを用いてもよい。いくつかの実施形態において、固定の回転ステージを一以上の移動ツールと組み合わせてもよい。例えば、差動ポンプによるエアベアリング回転ステージを、差動ポンプによるエアベアリングツールスライドと組み合わせてもよい。あるいは、従来のベアリング回転ステージを、スライド式密封移動ツールと組み合わせてもよい。
回転ステージ102の周辺に近接して磁気浮上ベアリング106を位置決めする際、ベアリング106による浮遊磁場からツール110を安全距離に保つことに注意すべきである。これにより、特にツール110が電子ビームカラム等の荷電粒子ビームカラムであるときに、ツール操作における当該磁場の効果は大きく低下する。さらにこの同じ考えを、例えば、第1のステージ102が第2のステージに対して固定されたX軸に沿って直線移動し、第2のステージ104がX軸に対してある角度にあるY軸に沿って直線移動する、X−Y平行移動ステージにも同様に適用してもよいことに注意すべきである。
図2A〜図2Eに示す回転−リニアステージ200の好適な実施形態において、回転ステージ202はリニアモータ205を用いるリニアステージ204により携行される。回転ステージ202は複数の基板チャック203を支持する。回転ステージ202は周辺強磁性リング206を備える。中間リニアステージ204に取り付けられる周辺マウント回転ステージ半径方向マグレブユニット207X、207Yは、XおよびY軸に沿って、すなわちそれぞれ回転軸zに交差する力線に沿って、リング206に磁力を印加する。z軸は略垂直方向、略水平方向または水平と垂直の間の他の方向に向けられてもよい。中間リニアステージ204に取り付けられる周辺マウント回転ステージ垂直マグレブユニット207X、207Yは、回転軸zに沿ってリング206に磁力を印加する。
支持構造から電磁浮上ユニット(Zマグレブ)209によりリニアステージ204を保持してもよい。一例として、支持構造は真空チャンバ208の蓋の下側であってもよい。チャンバの蓋は、また、基板プロセスツール210を携行してもよい。一例として、限定せず、ツール210は、e−ビームカラムまたは複数のカラムを備えてもよい。あるいは、ツール210は、基板201上に、光学カラム、または蛍光X線分光等のX線プロセス実施に適切なX線カラムを備えてもよい。反作用力に対する力の経路を減少するため、回転ステージ垂直マグレブ207ZおよびXステージ垂直マグレブ209は、例えば、マグレブ207Z、209が共通の作用線に沿って力を印加するように、隣り合わせまたは背中合わせの構成に、近接して配列してもよい。
一以上の平行リニアモータ205によりリニアステージを平行移動してもよい。好適な構成においては、二つのリニアモータ205が用いられ、移動する直線質量の中心に関して対称配置される。例えば、リニアステージ204の直線移動をガイドするために、リニアモータ205は、平行な強磁性ガイド路214に沿ってリニアステージ204をガイドする極性を反転する、一組の横型電磁石212を備えてもよい。ガイド路216に対してY方向にXステージ204の位置を微調整するために、XステージYマグレブ216を用いてもよい。好適には、回転ステージ202は、少なくとも3個、より好適には4個の回転ステージ半径方向マグレブ207X、207Yにより、Xステージ204に対して支持される。これらの半径方向マグレブは、好適には、リニアステージ204の位置をY方向に調節する、対応するYマグレブ216にごく接近して配置される。反作用力への経路を短縮するため、回転ステージ半径方向マグレブ207Yと背中合わせにXステージYマグレブ216を配置してもよい。最も好適には、4個の回転ステージ半径方向マグレブ207X、207Yを、対応するリニアステージYマグレブ216の電磁石と背中合わせに取り付けてもよい。このようにして、回転ステージ202の不均衡を制御する全ての力は、直接的に固定チャンバ蓋208に伝達され、リニアステージ204の構造上の振動モードを励起しない。
マグレブ207X、207Y、207Z、209および216からの磁気フラックスは、ツール210との干渉を妨げるために制限され、遮蔽される。加えて、マグレブ207X、207Y、207Z、209および216並びに強磁性リング206を周辺配置することにより、これらおよびそのフラックスはツール210から離されるので、これらのフラックスは、電子ビーム結像等に用いられるツール210による磁気レンズ磁場と干渉しない。ツール210への好ましくない影響をさらに低下するために、例えば、セラミック、アルミニウム等の磁気的に透明な材料で回転ステージ202を製作してもよい。加えて、高い電気抵抗率を有する材料で回転ステージ202を製作してもよく、ツール210に含まれる場合、電子ビーム光学カラムからの電子ビームに影響する場合がある渦電流を減少させてもよい。電気抵抗率は、渦電流をわずかなものとするよう十分に高い一方、表面からの電荷を消失できることが望ましい。一例として、限定せず、電気抵抗率は約1オームcmから約1000オームcmの範囲でもよい。適切な高電気抵抗率材料としては、シリコンカーバイド、タングステンカーバイドが挙げられるが、それらに限定されない。加えて、約1000オームcmを超える電気抵抗率を有する絶縁セラミックを、蓄積電荷消去用の表面処理と共に用いてもよい。
図2C〜図2Dに示すように、回転子222および固定子224を有する中央ロータリーモータ220により回転ステージ202を回転してもよい。回転子222は回転ステージ202の中央に取り付けられ、固定子224はリニアステージ204に取り付けられる。図2C〜図2Dにおいて、回転子222は固定子224の内側にあるものとして示されている。固定子224は中央にあってリニアステージ204に取り付けられ、回転子222は外側にあり回転ステージ202に取り付けられるように、モータ220を構成することも可能である。固定子224は、回転ステージ202の重量または回転ステージ202に作用する他のz方向の力に部分的に反作用する磁力を、z軸に沿って回転子222に及ぼしてもよい。
ある実施形態において、回転子222および固定子224を用いて、回転ステージ202の重量の全てまたはほとんど全てを支持することが望ましい場合がある。これは、基板201およびツール210の相対的な位置決めに高い分解能を維持することにおいて、回転ステージ202の回転速度の細かな制御が重要である場合に、特に有用である。とりわけ、回転ステージ202を浮上するために回転ステージ垂直マグレブ207Zに用いられる磁力は、強磁性リング206に渦電流を生じる場合がある。このような渦電流は、回転ステージ202の回転を低速化しうる磁気的なドラグトルクを生じる可能性がある。このようなドラグ力とモータ220からのトルクの対抗により、回転速度制御を不十分にする好ましくないトルクリップルが発生しうる。
このような渦電流を減少させるため、回転子222および固定子224は、回転ステージ202の重量を支えるように構成してもよい。これはエアベアリング、機械式ベアリングまたは磁気浮上を用いて行ってもよい。図2Eに、磁気浮上方式の一例の近接詳細を示す。この例では、ポールピース225および一以上の永久磁石227が、固定子224底部下方の箇所において回転子に取り付けられる。対応するポールピース229が固定子224底部に取り付けられる。回転子ポールピース229は、渦電流を減少するため、貼り合わせでもよい。永久磁石227と固定子ポールピース229との磁気引力は、回転子222により回転ステージ202への垂直方向に伝達される。代替実施形態において、回転子222に替えて固定子224に、または回転子および固定子の両者に、磁石を取り付けてもよい。さらに、磁石ならびに回転子および固定子上のポールピースは、磁気反発により回転ステージ202を浮上するよう、二者択一的に構成してもよい。
回転子222と固定子224との間の力により支持される回転ステージ202重量の全てまたはほとんど、並びに適切に平衡化された回転ステージにより、モータ220からのトルクは、最初に回転ステージ202を所望の回転速度まで「スピンアップ」するために使われる。その後に、モータ220により回転ステージ202に与えられるトルクは、回転ステージがそれ自体の慣性により回転するため、非常に減少する。加えて、回転ステージ垂直マグレブ207Zは、比較的小さな磁力を用いて回転ステージ202の垂直位置を微調整できるので、渦電流はごくわずかである。これにより貼り合わせではない強磁気リング206の使用が可能になり、製造が簡単になり、コストを削減できる。
回転ステージ202の強磁性リング206であり、リング206周辺に近接し、リニアステージ204内に組み込まれる回転モーション固定子224を有する、外部リング等の導電性リングを用いて回転ステージ202の回転運動を駆動することも可能である。一つのこうした構成において、結果として回転モータは、回転ステージ202の周辺に取り付けられる導電性リング内に誘起される渦電流を用いる、誘導ACモータでもよい。この後者の構成は、回転ステージ202がz軸と同軸である単一の基板チャックを支持する場合であっても、モータ由来の浮遊磁場をビームカラム210から離す。
図2A〜図2Eに示す例において、回転ステージ202は、基板201を支持するための6個のチャック203を有する。図2A〜図2Dおよび図2Fに示すチャック203の配置は、モータ220による浮遊磁場から基板を一定距離に離していることに注意すべきである。この具体例は説明を目的とし、本発明のいかなる実施形態に関する限定としても考えられてはならない。回転ステージ202はリニアXステージ204に携行される。回転ステージ202およびXs、Ys軸により画定するその座標系は、図示の方向に各速度ωで回転する。スポーク211上のパターンを検出する光学センサにより、回転ステージ座標系に対する基板201の位置を追跡するための参照系の一部として、パターン化スポーク211を用いてもよい。一例として、スポーク211は、ツール210および別個の基板計測システムの両者から見えるものでもよい。
例えば半導体ウエハ等の基板201は、外径Roから内径Riまでのらせん形態のビームカラム210による放射に曝露される。例えば半導体ウエハ等の基板201は、z軸を画定する回転ステージ中心から半径RWi(i=1,2...N)および角度θWiにおいてチャック203上に置かれる。この例では、基板は、基板配置半径に対し、角度φwi=45°で回転される。ステージ座標系からのそれぞれの基板オフセットおよび回転はわずかに異なり、個々に追跡される。
図2Gに、例えば半径方向マグレブ207X、207Y、XステージYマグレブ216またはZマグレブ209等として、図2A〜図2Fの装置内に用いてもよい、マグレブユニット230を例示する。マグレブユニット230としては、永久磁石232、透磁コア234および巻線コイル236を有する電磁石が挙げられる。コア234は、永久磁石232および電磁石の両者からの磁気フラックスを伝導する。図2Gに示す垂直構成において、永久磁石232はマグレブおよび取り付けられた機器(例えば、回転ステージ202、リニアステージ204およびモータ220を組み合わせた重量の一部)の重量の保持に十分なフラックスを生成する。コイル236は追加のフラックスを生成し、これはマグレブ230と強磁性ガイド路238との間のギャップを制御する。ある実施形態において、例えば、適切に設計されたミュー金属シールドにより、および/またはギャップ周辺での強磁性材料の成形により、コア側部に示す漏洩フラックスを含むことが望ましい場合がある。
ギャップセンサ240は、例えば、パワーアンプ246への信号印加等によりコイル236への電流を平滑化するセンサアンプ242およびコントローラ244に接続してもよい。例えば、ギャップセンサ240より測定されるギャップgの増加として計測されるような、動的な力がマグレブ230を下方に移動する傾向がある場合には、コントローラ244は、追加のフラックスを永久磁石232によるフラックスに加えるために、パワーアンプ246に信号を送り、コイル236への電流を増加させ、これにより引力を増してもよい。ギャップセンサ240による測定としてギャップgが減少する場合は、コントローラ244は、永久磁石232のものと反対方向にフラックスを発生するために、パワーアンプ246に信号を送り、コイル236への電流を調節してもよい。コントローラ244は、一定ギャップgを維持するように、またはステージ合焦動作のような計画的な動きをマグレブにさせるためにギャップにわたって規定の力を発生するように、命令されてもよい。
回転ステージ202は対称z軸回りに回転し、X軸に沿って平行移動する。リニアステージ204は回転ステージ202を直線的経路に維持する。続く計測システムは、回転ステージ202の位置とチャック203上の基板に対する電子ビーム位置とのループを閉じる。ステージ位置のフィードバックは、多数の様々なセンサによってもよい。図2Bに示すように、これらのセンサは、チャンバ蓋208に対する回転ステージ202および/または平行移動ステージ204の水平および垂直移動を検出するための平行移動ステージ204に取り付けられる干渉計250Y、250Zを備えてもよい。一例として、干渉計250Yは、チャンバ蓋208に取り付けられるY参照ミラー254および回転ステージ202の周辺に取り付けられるリングミラー256の円柱状表面を用いて回転ステージ202のY軸移動を追跡してもよい。リングミラー256の円柱状(側面)表面は回転軸zと同軸である。加えて、ロータリーエンコーダ252は回転ステージ202の回転を検出してもよい。別の干渉計は、チャンバ蓋208に取り付けられる参照ミラー258(図2Cに見られる)およびリングミラー256の平坦な(上部)反射表面を用いて、回転ステージのz軸移動を追跡してもよい。リングミラー256の上部反射表面およびz参照ミラー256。
重く強固なチャンバ蓋208は、ステージ計測に対する対照である慣性フレームを形成する。一組の干渉計ミラーが蓋に運動学的に取り付けられ、計測フレームを係止する。この構成により、測定器へのステージの力の効果が低下する。
上述の干渉計およびセンサに対しては、数多くの異なった可能な構成が存在する。例えば、図2Hに示すように、1から4個の半径方向センサr1、r2、r3、r4がXステージ204に対する回転ステージ202の半径方向の移動を測定する一方、1から4個のロータリーエンコーダΘ1、Θ2、Θ3、Θ4が回転ステージ周辺の接線方向の移動を測定してもよい。冗長化センサを用いることにより、回転ステージ202の円柱状表面の完全な円柱からの変動の測定、およびXキャリッジ対照フレームに対する円柱中心の動きの直接測定が可能である。図2Hの半径方向センサr1、r2、r3およびr4は、微分干渉計として、または容量センサ等の他の種類のセンサとして実装されてもよいことに注意すべきである。これらのセンサの帯域幅は約200MS/s以下でもよい。これらのセンサからの回転速度計測を、スポーク211を対照の基礎として光学センサにより位置を更新するフィードバックループに接続してもよい。冗長さが過剰であれば、いくつかのセンサを外してもよい。
微分干渉計x、y、z1、z2、z3は、チャンバ蓋208等の機械的に安定な固定された対照に対する、回転ステージ202の相対位置における変化を追跡する。干渉計は、約100kHzから約1MHzの間の帯域幅により特徴づけられてもよい。干渉計は、約100から300Hzの帯域幅の機械的サーボによって、ツール210に関して回転軸zを安定化するマグレブに対応する、フィードバックループ内で用いられる。このようなシステムは、x、yおよびz方向における後続の誤差が100nm以内であることを特徴とする場合がある。
本発明の実施形態は、ツール210からのビームがチャック203により保持される基板201を交差する所定経路Pをたどるよう、回転ステージの相対的な運動をモニタするために微分干渉計を用いてもよい。例えば、図2Hに示すように、干渉計YSは、y軸に沿って参照システム(例えばチャンバ蓋208に対する)に対するステージ位置を測定してもよい。別の微分干渉計Xc,sは、ツール210に対する回転ステージ202の円柱状の周辺の位置を測定してもよく、これは電子ビームカラムでもよい。Yc干渉計は、ビームカラムに取り付けられるミラー266を用い、y軸に沿う固定の参照ミラー254に対するツール210の場所を差動測定する。Xc,s干渉計は、yz面に平行なチャンバ蓋208に取り付けられる固定の参照ミラーおよびツール210に取り付けられるミラー268を用い、x軸に対するツール210の場所における変化を同様に追跡してもよい。Ys微分干渉計は、参照ミラー254に対する回転ステージ202の位置を測定する。あるいは、上述の干渉計は、非差動の構成に実装されてもよい。
上記干渉計に加えて、回転ステージの残りの自由度を追跡するために後続のセンサを用いてもよく、xおよびy軸に垂直なz方向の固定平面ミラーに対するステージ上部または下部の位置を測定するために、干渉計z1、z2、z3をチャンバ蓋208に運動学的に取り付けられてもよい。3個の干渉計を用いることにより、x軸およびy軸回りのシリンダの傾き(tilt)の追跡が可能である。あるいは、z検出のための4個の干渉計を用いることには、3個の干渉計構成以上の利点がある場合がある。Xステージ204に対する回転ステージ202の、ガイド路214に対するXステージの、およびガイド路214に沿ってXステージを移動するリニアモータ205の位置決めに用いられる様々なマグレブに、図2G〜図2Hに示す干渉計およびセンサからの信号をフィードバックしてもよい。
図2A〜図2Iに関し、上記の種類の装置に対しては様々な測定の構成が存在する。一例として、図2Jに、計測対照フレームとしてチャンバ蓋208を用いる直接カラムおよび基板測定システム(SMS)260についての測定を示す。この例では、光学系SMS260は、ツール210による電子ビーム(e−ビーム)の上流である幅30mmの帯状にダイサイズをカバーする。全ての通路上にある基板201上のまばらなダイ配列マークを取り込むために、もっと狭い(例えば200μm)e−ビーム視野を用いてもよい
SMS260は、基板201に配置される参照構造を検出するために適合された、一以上の光学センサ262を備えてもよい。チャンバ蓋208に対するSMS260の場所を追跡するために、干渉計(図示せず)と連動して参照ミラー264を用いてもよい。光学センサは、基板座標系に対する基板マークのxおよびy位置を測定する。このような参照マークは、例えばスポーク211等の上に位置してもよい。センサはz(焦点)も測定してもよい。SMS260に接続されるプロセスは、光学センサからの信号を補間し、ウエハ表面歪み値のグリッドを生成する。SMS260に対する座標系は、基板201上の対照ダイの一角を原点として有する移動座標系でもよい。プロセッサは一つのウエハをマスターウエハとして指定し、マスターウエハに対する他のウエハの原点シフトを計算してもよい。プロセッサは、また、チャンバ蓋208に対するセンサ位置の干渉測定を用いて、電子ビームのゼロ位置に対する光学センサ位置を更新してもよい。
ツール210およびSMS260の場所が安定しない場合は、差動測定および参照ミラーを用いてこれらを追跡してもよい。SMSクラスタは基板201上に結像するので、xおよびy方向、並びにz軸回りの偏揺れ(yaw)角において追跡してもよい。カラムシフトに対するe−ビームも動的に追跡してもよい。基板座標に対するステージは、例えば、SMS260およびe−ビーム追跡を用いて、回転ステージ202の回転ごとに数回更新してもよい。
チャンバ蓋208に取り付けられるy参照ミラー262に対して参照される微分干渉計Ys、YxおよびYcは、回転ステージ202、Xステージ204およびe−ビームカラム210の位置をそれぞれy軸に沿って追跡する。微分干渉計Z1、Z2、Z3はチャンバ蓋208に取り付けられるミラーに対して参照され、回転ステージ202の垂直位置、傾斜(tip)および傾き(tilt)を追跡する。干渉計X1、X2はチャンバ蓋208に取り付けられるx参照ミラー264に対して参照され、x軸に沿ったXステージ204の位置およびz軸回りのXステージ204の偏揺れ(yaw)を追跡する
図2C〜図2Dに示すように、回転ステージ202を中心回転モータ220により回転してもよい。しかしながら、最初に書き込み速度まで回転ステージ202の重量を加速するため、中心回転モータ220は大きなトルクリップルの発生が必要な場合があり、次いで書き込み中の回転速度に依存して多量に発熱する場合がある。例えば、いくつかの実施形態において、外周部に書き込むための最高速は毎秒約3回転(rps)であり、内周部では約9rpsである。書き込みプロセス中に3rpsから9rpsまでゆっくり加速するためには、静止状態から3rpsまでの、または3rpsまたは9rpsから停止させるまでの、回転ステージを回転するために必要な約10分の1のトルクを有するずっと小型のモータで十分な場合がある。このような小型の中心回転モータが有するトルクリップルは非常に小さい。一例として、トルクリップルは、モータの駆動トルク約1%未満の場合がある。低トルクリップルを容易にするために、モータ220は、非鉄かつモータアンプにより正弦関数的に変換されるものとほとんど完全にマッチする正弦関数的トルクを生成するよう設計された巻線を含む固定子224を備えてもよい。一例として、モータ220は、米国カリフォルニア州ベンチュラのシンギャップ社製ThinGap(登録商標)TG8260型モータでもよい。ThinGap(登録商標)はシンギャップ社の登録商標である。この特定の型式のモータのトルクリップルは駆動トルクの約10-4倍であるが、トルクは低く、運動および低速書き込み速度から高速書き込み速度への穏やかな加速を持続するためにはちょうど適切である。
いくつかのモータにおいて、トルクリップルはトルク自身にも比例する場合がある。従って、低トルクリップルモータの約200倍のトルクを有する大型モータは、約200倍のトルクリップルを有する場合がある。このため、回転ステージ202を静止状態から加速し、基板プロセス中の回転運動を制御するために十分大きなモータのトルクリップルは、基板201の書き込みまたは検査プロセス、あるいは寄生する運動の制御が高レベルで必須である任意の他のプロセスに要する動きの滑らかさを乱す傾向がある。
この克服のために、例えば図2K〜図2Lに示すように、いくつかの代替の実施形態において、回転ステージ202をスピンアップおよびスピンダウンする補助のために、第2のモータ270(本願明細書においてブースタモータとして参照することがある)を用いてもよい。支持基部、例えば、チャンバ蓋208に、または回転ステージ202を支持するリニアステージ204等のキャリッジステージに、第2のモータ270を取り付けてもよい。キャリッジステージは、支持基部に固定、またはこれに対して可動式のいずれでもよい。第2のモータ270は、基板プロセスが実施されず、小さなトルクリップルが求められないときには、回転ステージ202の迅速な速度上昇、低速化、または停止に望ましい高トルクを備えてもよい。図2Kに示すように、ブースタモータ270はチャンバ271に取り付けられ、シャフト272により回転ステージ202に接続される。シャフト272は、例えば、O−リング、リップシールまたはボールシール、あるいは磁性流体シール等の真空シールであるシール274を通じて、チャンバ271内を通過してもよい。図2Kに示す例において、ブースタモータ270は、主要な中心モータ220に接続され、同一の回転軸zを有してもよい。この場合には、モータ220および270の両者がカップリングおよびデカップリングの期間に同一の角速度で回転するよう、エンコーダを同期してもよい。
図2Lに示すように、スピンアップするために、マグレブの軸はブースタモータの軸と一直線上にそろえられ、マグレブコイル229により主モータ220をクラッチプレート276の上まで下げてもよく、これをブースタモータ270のシャフト271に接続してもよい。クラッチプレート276は、例えば電磁クラッチを介して、主モータ220の回転子222と選択的に係合してもよい。一例として、クランプコイル278を励起し、これにより励起時の磁気引力を通じて主回転子222およびクラッチプレート276を結合することにより、電磁クラッチを係合してもよい。好適には、クラッチプレート276は、二つのモータ220および270がスリップしないような、十分に強い摩擦を提供する。クラッチプレート276は、滑り防止のために、主回転子222上の対応する凹部277と係合する1つ以上の突起275を適宜備えてもよい。クラッチプレート276は、クラッチプレートの軸方向の移動、主回転子の軸方向の移動または両者の何らかの組み合わせを通じて、主回転子と係合してもよい。この軸方向の動きは、例えば、軸方向ストロークを延長したマグレブを用いて、またはブースタモータ270を軸方向に移動することにより、または従来の補助的な軸方向係合機構を用いて、達成してもよい。いくつかの実施形態において、クラッチプレート276と主回転子222との係合は、小さなストローク、摩擦係合を通じて達成されてもよい。真空環境においては、正確に機械加工された清浄で固い表面を用いることが望ましく、これらは十分な摩擦力を生み出す高いクランプ力で一体化する。微粒子を生成しないために、いくつかの実施形態において、係合表面には、生成した微粒子を含有させるための迷路状の囲いを設けてもよい。
ブースタモータ270は、最初の書き込み速度まで回転ステージ202を加速し、次いでクラッチプレート276が開放され、マグレブコイル229がブースタモータ270を軸方向に移動して、これを離してもよい。次いで、主モータ220はサーボアセンブリを取り入れてもよい。ブースタモータ270上のトルクはクラッチプレート276のサイズ、およびクランプコイル278のクランプ力に依存してもよい。軸方向ストロークを延長したマグレブを用いて、またはブースタモータ270を軸方向に移動することにより、あるいは従来の補助的な軸方向係合機構を用いることのいずれかにより、軸方向の移動を達成してもよい。
主モータ220と第2のモータ270との係合を容易にするために、同一の角速度でこれらが回転するよう、両者のモータの回転を同期することが望ましい。加えて、主モータ220および第2のモータ270の係合部品が、互いに対して何らかの特定の角度位置に配列するよう、それぞれの回転を同期することが有利である場合がある。一例として、突起275が凹部277に係合するよう、主モータ222およびクラッチプレート276を配列してもよい。例えば、正確なロータリーエンコーダの使用、および係合におけるクラッチプレートおよび主回転子222の相対的な角度位置の校正を介して、このような同期を実装してもよい。係合中には滑りはないので、この点では高い摩擦の必要はない。係合中の摩擦は、回転子を加速または減速するために必要である。係合前、係合時、および駆動時のステップ化されたクラッチを本願明細書に示す。これを行うには大きな軸方向の移動が必要であることに注意されたい。
図2Kに示すように、ブースタモータ270をチャンバ208に固定して取り付けてもよい。リニアステージ204は、主モータ220とブースタモータ270を、二つのモータを加速または減速するための係合に先立ち、一直線上にそろえてもよい。ブースタモータ270をチャンバ208の外側に取り付けることは、チャンバを開放する必要なくブースタにアクセスできるという点で有利な場合がある。加えて、このような構成により、ブースタモータ由来の浮遊磁場を回転ステージ202上の基板201から比較的遠方に離してもよい。
代替実施形態において、ブースタモータ270を回転ステージ202に対して、後者が平行移動する際に、固定して一直線上にそろえるようにして、ブースタモータ270をリニアステージ204に取り付けてもよい。これにより、密封ベアリング274の必要性を避けて、ブースタモータの係合を単純化してもよい。一例として、図2Mに示すように、ブースタモータ270は、例えば、マグレブリング206と係合するブースタモータシャフト271に取り付けられる摩擦駆動部279等に、またはこれの周縁近傍において、回転ステージ202に係合してもよい。摩擦駆動部279は、例えば合成ゴム等の材料層を備えてもよい。摩擦駆動部279とマグレブリング206または回転ステージの他の部分との間が高い静止摩擦係数であるように、この材料を選択してもよい。摩擦駆動部279は、例えば磁気クラッチ等の係合機構の使用を通じて、回転ステージ202と選択的に係合してもよい。
代替実施形態において、回転ステージ202に取り付けられる回転子に直接駆動力を印加する平行移動ステージ204に取り付けられる固定子を用いて、モータ270を構成してもよい。一例として、固定子および回転子を非同期モータ(誘導モータまたは非同期誘導モータとして知られることもある)として構成してもよい。例えば、図2Nに示すように、固定子コイル282および対応するポールピースを平行移動ステージに取り付けてもよい。回転ステージ202に取り付けられる導電リングにそれらが回転フラックスを印加するよう、このコイルを構成してもよい。導電リングは回転子の役割をする。回転フラックスは、フラックスに追従する回転子に渦電流を誘起する。この渦電流は回転フラックスに従う傾向がある。渦電流と回転フラックスとの相互作用により導電性の回転子上にトルクが発生する場合があり、これは回転ステージ202に伝達される。一例として、マグレブリング206または別個のリングに回転フラックスを印加してもよい。図2Nに示すように、磁気コイル282はリング206を交差する磁場を発生し、回転ステージ202を回転する渦電流を誘起してもよい。いくつかの実施形態において、十分な導電性を提供するために、例えば厚さ1mm等の銅の層を用いてマグレブリング206を覆うことが望ましい。あるいは、例えば、マグレブリングがステンレス製であるならば、回転子の役割をするためにマグレブリング206の内側に銅またはアルミニウムのリングを入れることが有利な場合がある。あるいは、一組の固定子コイル283が、ミラーリング256を駆動する回転を提供してもよい。当業者であれば、通常は、変形を避けるためにミラーリング256等の計測部品への駆動力の印加を避けるであろうから、これは幾分、直感に反することである。しかしながら、ミラーリング256の半径が十分大きければ、印加される力とその結果発生する変形は、計測において無視してもよい小さな効果である場合がある。非同期モータは、回転子内の永久磁石またはポールピース等の磁気材料を必用としない点で有利である場合がある。結果として、ブースタモータとしてこのようなモータ設計を用いるときには、浮遊磁場が顕著に低下する場合がある。
モーショントラッキング用に好適な微分干渉計の構成の例を、図3A〜図3Eに示す。特に、図3A〜図3Bに示すように、図2A〜図2Eに示した種類の回転−リニアステージにおいて、参照ミラー254とz軸を同軸とする円柱状の表面257を有するステージリングミラー256との間に微分干渉計310を配置し、光学的モーショントラッキングを実装してもよい。干渉計310は、直線的に平行移動するXステージ204に取り付けられる。参照ミラー254は、Xステージ204に対して固定位置に取り付けられる。一例として、好適な実施形態において、Xステージ204および回転ステージ202を含むチャンバ208の蓋に参照ミラーを取り付けてもよい。図3Aに示す例において、ステージリングミラー256は回転ステージ202の周辺に取り付けられ、実質的に固定位置かつXステージ202に対する方向である回転軸zの回りに回転する。ステージリングミラー256は、回転軸zの回りに対称な円柱状の反射表面を提供する。干渉計310は、折り畳みミラー312、第1および第2の4分の1波長板316A、316Bの間に配置される偏光ビームスプリッタ314、コーナーキューブミラー318および波面補正光学系320を備える。このデザインを有する干渉計の詳細は、2005年8月25日公開の国際特許出願第WO2005/078526A1号、発明の名称「製造物の位置決めシステム(A SYSTEM FOR POSITIONING A PRODUCT)」に記載されている。
レーザ306等の光源からの光は、折り畳みミラー312により偏光ビームスプリッタ314に向けられる。光源306からの光は第1および第2の偏光を含む。この光の第1の偏光を有する光はビームスプリッタを通過し、コーナーキューブ318により反射されて偏光ビームスプリッタを逆に通過して折り畳みミラー312に達し、これが検出器308への光を屈折する。この光は、破線の光路により示す参照ビーム305となる。
第2の偏光を有する光は偏光ビームスプリッタ314の対角線接合315で反射され、第1の4分の1波長板316Aから参照ミラー254まで通過し、第1の4分の1波長板316Aを逆に通過する。第1の4分の1波長板316Aを通じた二つの光跡は、光を第2の偏光から第1の偏光に変換する。結果として、この光は、接合315、第2の4分の1波長板316Bおよび波面補正光学系320を、z軸と同軸である軸を有する円柱状ステージリングミラー256の屈曲表面まで通過することができる。ステージリングミラー256による反射後に、光は波面補正光学系320および第2の4分の1波長板316Bを逆に通過する。第2の4分の1波長板を通じた二つの光跡は、光を第1の偏光から第2の偏光に戻して変換する。結果として、この光は、折り畳みミラー312に光を逆に曲げるコーナーキューブミラー318に向かって、接合315により屈曲される。折り畳みミラー312は、検出器308への光を屈曲する。この光路を進む光は、実線の光路により示す測定ビーム307となる。参照光路305および測定ビーム307からの光は参照ミラー254に対する回転ステージ202の動きにより、二つのビーム経路長における相対的な変化に依存する信号を生成する検出器で干渉する。
図3Bに示す代替実施形態において、周辺リングミラー256に替えて、z軸と同軸の円筒の表面326を有する小型円柱状ミラー324を用いてもよい。いずれの構成においても、波面補正光学系320は、円柱状の反射表面257、326から反射した光が干渉計310を逆に通過して適切な経路を進むように、干渉計310および円柱状の反射表面257、326からの出射波面の円柱状ミラー256、324からの反射が補正されるように構成される。一例として、波面補正光学系320は、円柱状の光学部品または球形の光学部品を備えてもよい。
波面補正光学系320として数多くの構成を用いて、干渉計310と円柱状の反射表面257または326との間で光を結合してもよい。一例として、限定せず、波面補正光学系の可能な二つの可能な構成を、図3Cおよび図3Dに示す。図3Cにおいて、波面補正光学系320は、例えば回転軸z上の、波面補正光学系の湾曲の軸において干渉計310からの平行光を合焦する。このようにして、ミラー256、324の円柱状の表面257、326から反射した光は、基本的に、干渉計310から円柱状のミラー上への入射光と同一の経路を進む。図3Dに示す代替構成において、波面補正光学系は、干渉計310から円柱状ミラー256または324の表面257または326への平行光を合焦するように構成される。このようにして、円柱状ミラー256、324への入射およびこれからの反射の光ビームは、干渉計310を通過する光路に平行に進む。
上述の波面補正光学系320による屈曲反射表面257または326からの反射を用いる回転ステージの運きの追跡は、Xステージ204または蓋208に対する小さな振幅の振動測定に適切であることに注意すべきである。本願明細書に用いる小さな振動の振幅とは、波面補正光学系320の焦点深度よりも大きくない動きを指す。
微分干渉計310はXステージ301の動きにより動作するので、干渉計312は常に回転ステージ303の回転中心に向いており、回転ステージ303と一直線上にそろえられている。回転ステージ周辺のステージリングミラー256を図3Aに示すが、代替として、例えば図3Bに示すように、回転ステージ303中心の小型の円柱状ハブ324が円柱状の反射表面を備えてもよい。図3Aおよび図3Bの両者において、参照ミラー254、レーザ306および検出器308は、これらの構成要素を囲む破線により示すように、Xステージ204および回転ステージ202に対して固定されたままであることに注意すべきである。好適には、これらの構成要素は、Xステージ204、回転ステージ202および干渉計310を含むチャンバの蓋に取り付けられ、これらの構成要素を囲む破線により示すように、x方向に移動する。
干渉計310はXステージ204に携行され、Xステージ204の中心にそろえられる。この干渉計システムに基づくサーボ系は、共に移動して互いに可能な限り接近して追従する、Xステージ204および回転ステージ202の前述した直線運動を維持する。回転ステージ軸zはXステージ204に対して固定されたままである。従って、この動きの結果としては、アライメントは変化しない。
干渉計310は、レーザ306および検出器308に向かってXステージと共に移動するが、一次的には、この動きは検出器308の読み取りに影響しない。検出器308は、円柱状のミラー256と固定した参照ミラー254との光路長差のみを検出する。
図3Eに示すように、z干渉計は異なった構成でもよい。再び、干渉計330が、固定した参照ミラー258とステージリングミラー256との間の光路に沿って、Xステージ204に取り付けられる。図2C〜図2Dに示すように、チャンバ208の蓋に参照ミラー258を取り付けてもよい。この干渉計は、偏光ビームスプリッタ334、4分の1波長板336A、336B、およびコーナーキューブ338を備える。レーザ346からの光は参照光路335および測定光路337に分割され、干渉計330を通過して検出器348に達する。干渉計330の動作は、図3Aに関して上述した干渉計310の動作と同様である。参照ビーム337はステージリングミラー256の平坦上面259から反射するため、干渉計330とステージリングミラー256との間には波面補正光学系は不要である。
回転−リニアステージに関する上述の設計コンセプトのいくつかは、多くの従来のX−Yステージに有利に適用される場合もある。例えば、上述の装置200には、様々なマグレブおよび磁気モータが回転ステージおよびXステージの端部近傍に配置される利点があることに注意すべきである。これにより、当該デバイスにより発生する磁場は、ツール210に対して相当な距離となる。このような構成は、ツールが浮遊磁場に敏感であれば、特に有利であり得る。例えば、ツール210が電子ビームカラムを備える場合に、マグレブからの浮遊磁場は電子ビームを屈曲する場合があるので、結果として位置の誤差を生じる。ビームの屈曲を追跡して補正してもよいが、このような磁気的偏向は避けるかまたは少なくとも顕著に減少させることがより望ましい。回転ステージ202およびXステージ204の端部であって光学カラム210から離してマグレブを配置することにより、マグレブ由来の浮遊磁場に伴う誤差は顕著に低下する場合がある。ツール210の磁気レンズからの磁場が歪められないように、例えばセラミック等の磁気的に透明な材料で回転ステージ202を製作してもよい。
本発明の実施形態に従って、端部に取り付けたマグレブによるステージ支持というこの同じ考えを、X−Yステージに適用してもよい。例えば、図4A〜4Bに、本発明の代替実施形態に係る基板プロセス装置400を示す。装置400は、Xステージ402およびYステージ404を備える。Xステージ402は、基板401を保持するために取り付けられたチャック403を備える。Xステージ402は、Xステージ402の角に取り付けられた垂直マグレブ406Aにより、Yステージ404から浮遊する。例えばリニアモータ405等により、Yステージ404に対するX軸に沿ったXステージ402の移動を制御してもよい。Yステージ404は、Yステージ404の角に取り付けられた垂直マグレブ406Bにより、Yステージ404が、チャンバ蓋408から浮遊する。例えばリニアモータ(図示せず)等を用いてチャンバ蓋408に対するY軸方向におけるYステージ404の移動を制御してもよい。適切なセンサを用いるフィードバックループに結合される、端部マウントされた水平マグレブ406Cを用いて、Y軸に沿ったYステージ404に対するXステージ402の位置を調節してもよい。Xステージ402は、例えば電子ビームカラム等を備えてもよい基板プロセスツール410に対してXおよびY方向に移動してもよい。リニアモータ405、垂直マグレブ406A、406Bおよび水平マグレブ406Cを、基板401から離して配置することにより、カラム410からの電子ビームの好ましくない磁気的偏向を避けてもよい。ツール410の磁気レンズからの磁場を歪めないよう、例えばセラミック等の磁気的に透明な材料でXステージ402を製作してもよい。
ツール410を管理するための計測および基板計測システム(SMS)411は、計測対照フレームとしてチャンバ蓋408を用いてもよい。SMS410は、基板401上への合焦動作時に、xおよびy方向、並びにz軸回りの偏揺れ(yaw)を追跡してもよい。SMS411は、図2Fおよび図2Jにおけるスポーク211に見られるものと類似の対照パターン412を用いてもよい。一例として、SMS411は、全ての経路上にあるまばらなダイ配列マークを取り込むために、e−ビームカラム410の上流とほぼ同じ幅(例えば約30mm)の帯状、およびずっと狭い視野(例えば約200μm)をカバーしてもよい。ステージ402は方向を反転するので、SMS411は二つの光学センサを備えてもよい。Xスキャン方向に配置されるカラム410のそれぞれの側部に、一つのセンサを設けてもよい。カラムおよびSMS位置が差動測定ではない場合には、これらの位置を決定するために参照ミラーを用いてもよい。加えて、基板401上へのカラム410からの電子ビームを正確に位置決めするために、ツール410に対するe−ビーム位置のずれを動的に追跡してもよい。SMSおよびe−ビーム位置情報を用いて、Xステージ402が構成チップ上にあるたびに、基板座標に対するステージを更新してもよい。
チャンバ蓋408に対する様々な構成要素の位置を追跡するために、装置400は一以上の干渉計を用いてもよい。これらとしては、ツール410およびチャンバ蓋408に対するXステージ402のx軸に沿った移動を測定する干渉計X1が挙げられる。第2の干渉計X2はチャンバ蓋408に対するXステージ402の移動を測定し、これによりXステージ402の偏揺れ(yaw)の測定が容易になる。第3の干渉計Yはチャンバ蓋およびツール410に対するXステージ402のy軸に沿った移動を測定する。例えば、図3Eに示すように、チャンバ蓋408に対するXステージ402の上部位置の変化を測定するために、垂直微分干渉計Z1、Z2、Z3を構成してもよい。Xステージ上部から蓋への差分。Yステージ404におけるキャリッジの動きを追跡するために追加の干渉計を用いてもよいが、代替的に、y方向に沿ってYステージ404を支持および/または移動するために用いられるマグレブおよび/またはリニアモータにより、これを達成してもよい。この例において、xおよびy軸は互いに垂直であるが、代替的に、これらを何らかの傾いた角度に向けてもよい。
図4A〜図4Bに示す構成の利点を、例えば図5に示す従来技術のX−Yステージ500と比較して説明することができる。従来技術のX−Yステージ500において、Xステージ502はマグレブユニット506により浮上する。Xステージ502に取り付けられるマウント504は、基板501を保持するチャック503を支持する。XステージおよびYステージは、例えばリニアモータ505を用いてそれぞれxおよびy軸に沿って移動するよう取り付けられる。このような従来技術のX−Yステージの例は、例えば、2005年8月25日公開の国際特許出願第WO2005/078526A1号、発明の名称「製造物の位置決めシステム(A SYSTEM FOR POSITIONING A PRODUCT)」に詳細に記載されている。
下方向きの微分干渉計Z1、Z2は、チャンバ508の基部509に対するXステージ502の垂直z位置の変化を追跡する。ミラー512が、この目的のためにXステージ502の下側に配置される。このデザインにおいて、マグレブユニット506が直接的に基板の下側にあることに注意すべきである。これは、下方向きの干渉計Z1、Z2とのマグレブシステムの干渉を避けるために行われている。マグレブユニット506からの浮遊磁場は電子ビームの経路を屈曲する可能性がある。さらに、このマグレブ506の構成には、比較的高い中心支持部504と、反作用のためにマグレブ506からチャンバ蓋508への対応する長い機械的経路507が必用であり、これは対照質量として用いられる。例えば、Xステージ502の上部とマグレブ506による水平方向の力の印加点との間のモーメントアームは200mmもの長さがある。この構成は、X−Yステージ500を支持するために比較的大きなチャンバを要する。本発明の実施形態においては、それに反して、上方向きの干渉計がチャンバ蓋を対照として用いる。これにより、Xステージまたは回転ステージの端部またはその近傍にマグレブユニットを配置することができる。結果として、反作用力のための機械的経路はずっと短くすることが可能であり、装置はより安定化され、チャンバはより小型でもよい。
本発明の実施形態により、よりコンパクトで安定な回転−平行移動ステージおよびX−Yステージが可能になる。回転ステージに関連する実施形態は、X−Yステージに要する直線的な加速をより低くし、反作用力の経路長をより短くし、ベアリングの構成を安定なものとし、コンパクトなデザインで高い基板スループットをもたらす。X−Yステージに関する本発明の実施形態は、従来技術のX−Yステージよりも、反作用力の経路長をより短くし、安定性を向上し、よりコンパクトなデザインをもたらす。
本発明のいくつかの実施形態は、Xステージおよび回転ステージおよび/またはYステージへのベアリングを設けるために、例えば、機械的ベアリングまたはエアベアリング等、磁気浮上とは異なるものを利用してもよいことに注意すべきである。例えば、図6A〜図6Bに、代替実施形態に係る代替的な基板プロセス装置600を示す。
装置600は、チャンバ608内に回転ステージ602および平行移動ステージ604を備える。回転ステージ602は複数の基板チャックを携行し、これは上述のように構成してもよい。リニアステージ604に取り付けられる中心回転モータ620により、回転ステージ602を回転してもよい。モータ620は、回転ステージ602の中心に取り付けられるスピンドルベアリング622を備える。回転ステージ602はz軸回りに回転し、Xステージ604はx軸に沿って回転ステージを移動する。基板プロセスツール610は、上述のようにチャンバ蓋608に対して多少固定されたままである。図6A〜図2Bに示すように、チャック603の配置により、チャックに取り付けられる基板は、モータ620からの浮遊磁場から離されることは注意するべきである。Xステージ604の端部に取り付けられるリニアモータ605は、チャンバ608に取り付けられる平行な強磁性ガイド路614に沿って、リニアステージ604を移動する。リニアモータ605は、極性を反転する一組の水平電磁石612を備えてもよい。この例においては、Xステージ604とチャンバ608との間の618が、Xステージ604の動きをx軸にそろえていてもよい。一例として、ベアリング618は機械的なクロスベアリングでもよい。ベアリングからのステージ位置決めのノイズが、チャック603に取り付けられる基板の動きを追跡するための計測システムの能力を超えなければ、機械的なベアリングを用いてもよい。代替実施形態において、ベアリング618はエアベアリングでもよい。これらのベアリングが真空内である場合は、エアベアリングのために差動ポンプを用いてもよいことに注意すべきである。さらに、モータ620はエアベアリングを備えてもよいことに注意すべきである。
例えば、干渉計650Zおよび回転ステージ602上の周辺に取り付けられるリングミラー656、並びにチャンバ蓋608に取り付けられる参照ミラー658を用いて、回転ステージ602およびXステージ604の位置決めを上述のようにモニタしてもよい。
好適な発明の実施形態において、回転−リニアステージは、ツールに対する基板の位置を所望の位置の10ナノメートル以内に制御することが、しばしば望ましい。この達成のためには数多くの異なるやり方がある。例えば、上述のように、チャンバ蓋等の対照フレームに対して、基板およびツールの位置を非常に緊密に制御してもよい。一般的に、ステージ位置の検出において、および基板に対するツールからのビームの位置決めにおいて、非常に高い分解能(例えば、1nm未満)を有することが望ましい。本発明の実施形態は、ビームの位置決めにおいて所望の分解能を達成するために、ツールからのビーム位置の正確な制御と連動させて、回転−リニアステージの正確な制御を用いてもよい。例えば、電子ビームツールの場合には、静電的および/または電磁的ビーム偏向機構(例えば、ラスタープレートまたは偏向コイル)と連動する静電的および/または電磁的レンズの使用を通じて、ビームの位置決めを調節してもよい。焦点および/またはX−Yビーム偏向の範囲がいずれも十分に大きくかつ十分に正確であれば、光学カラムに対する基板の位置における変化の度合いを、幾分大きめに許容することも可能である場合がある。例えば、ビーム偏向および焦点合わせの位置決め精度が約1nm未満であり、ビーム位置決めの範囲が約1マイクロメートルであれば、計測システムがこれらの変化を追跡でき、ビーム偏向機構が十分に素早く反応できる場合に、システムは、大まかに1マイクロメートルのステージ位置変化を許容することができる。
電子ビームツールの特定の例において、光学カラムのための所望の位置決め精度を達成するためには、ステージおよび/またはビーム位置を制御する数多くの異なるやり方がある。図7に示すブロック図に関して、ビームおよび/またはステージ位置の制御を理解してもよい。一例として、三組の多入力多出力(MIMO)制御ループ、すなわち、a)ステージループ、b)蓋および光学センサループ、およびc)光学カラム−ビーム位置および焦点制御ループを用いて、上述の種類の回転−リニアステージの制御を実装してもよい。全体的な外側の制御ループにより、上述のようなスポーク参照システム(SRS)および基板計測システム(SMS)を用いて、光学カラムと基板との間のそれぞれの位置を概算してもよい。より低速なステージループおよびより高速なビームループを用いて誤差をゼロ化するために、サーボ機構を用いてもよい。
図7において、ステージセットポイント生成器702は、光学カラムによる基板の探知を実施するために用いられる、xおよびθにおける名目上の軌跡を生成する。加えて、ロードするステージを位置決めし、基板アライメントを行い、書き込み前に基板歪みをマッピングし、光学カラムおよびSMSのための焦点マップを生成するために、このステージセットポイント生成器702を用いてもよい。いくつかの実施形態において、データ読み取りの公知の基板の形状的特徴をデータベースに保存してもよく、これには基板の相対的な配向および厚さ変化に関する情報を含めてもよい。スピンアップ過程の一部としてこれらを測定し、任意のアライメント誤差を補正するための訂正テーブル生成に用いてもよい。
このステージセットポイント生成器702は、また、回転ステージおよび/または基板の熱的および弾性的変形を取り入れる校正データを利用してもよい。例えば、システム内の様々な構成要素の温度と、その結果として生じるCTE差による歪みをモニタしてもよい。歪み値を予め計算し、セットポイント生成器702内に校正データの一部として保存してもよい。ステージセットポイント生成器702は、また、所与の回転ステージ内の不均一を測定するための訂正機能を備えてもよい。さらに、スピンアップ中の遠心力による回転ステージの歪みモデルを、校正データの一部としてセットポイント生成器702に保存してもよい。
ステージ計測システム704は、上述のように、x、yおよびz干渉計測定に加えて、回転ステージのr、θ測定を実施してもよい。ステージ計測システム704は、複数の冗長化したセンサを備えてもよく、このブロックにより表される機能の一つに、ステージ位置の様々な座標の概算を提供するセンサフュージョンアルゴリズムのセットを備えてもよい。ステージ計測システム704は、また、体系的な誤差補正用のセンサのそれぞれについての校正テーブルを含んでもよい。例えば、校正プロセス中に、θ測定における高調波誤差を測定して保存してもよい。次いで、回転ステージ位置の概算を生成する前に、これらの既知誤差を実際の測定から除去してもよい。ステージ計測システム704の一部である他のセンサのために同様の校正データが生成され、用いられる。
光学による基板計測システム(SMS)706は、蓋に保持される光学センサと基板との間での測定を提供してもよい。光学センサがカラムを対照とする場合、SMS706は光学カラムからのビームに対する基板位置の概算を提供してもよい。SMS706は、例えば、相対的な基板の配向および厚さ変化等に関する入力を得るために、基板上の参照マーク707を適宜利用してもよい。
SMS706は、上述の種類のスポークを用いるスポーク参照システム(SRS)708から入力を受信してもよい。SRS708により、SMS706内の、例えば光学センサ等のセンサは、ステージ上のスポークと基板との間の相対的位置測定の提供が可能になる。スポークは、図2Fおよび図2Jに示すもののような回転ステージ上の外観でもよい。基板をロードした後の校正データの一部として、基板位置に対するスポークの当初位置を保存してもよい。
距離、力、および計測経路を最小化するためにチャンバ蓋を対照とするMIMO制御を用いて、回転−リニアステージ710の位置を制御するために、ステージ計測システム704、SMS706、およびSRS708から得られる測定を用いてもよい。一例として、スポーク参照システム708内のスポークに対して、電子ビームを「可視化」してもよい。例えば、スポークを電気的導体とし、ビームがどこで特定のスポークに当たるかを計測できるように構成してもよい。SMS706により、この情報を使用してもよい。例えば、WMS706は、ローパスフィルタ712により濾波されてもよい調節済みの基板位置信号を生成するために、スポーク参照システム708からの情報も用いてもよい。次いで、ステージコントローラ714に送る誤差信号を生成するために、ローパスフィルタ712の出力を、ステージセットポイント生成器702およびステージ計測システム704からの入力と組み合わせてもよい。一例として、ステージコントローラ714は、ステージ710内の回転ステージおよびリニアステージの位置決めを制御する全てのアクチュエータに同時にコマンドを出す、MIMOコントローラでもよい。図2A〜図2Jのシステム200の場合において、コントローラ714は、回転ステージ位置決めマグレブ、x平行移動およびθ回転アクチュエータの作動を調節して、誤差信号をゼロ化してもよい。
このステージ制御ループへのコマンドは、二つの構成要素を有してもよい。第1の構成要素は、ステージセットポイント生成器702からの参照軌跡コマンドである。第2の構成要素は、ローパスフィルタをかけられた、ローパスフィルタ712によるビームから基板位置までの誤差概算である。回転ステージを安定化し、回転ステージの不均衡、歳差運動および首振り運動を排除するために、ステージコントローラ714を用いてもよい。加えて、ステージコントローラ714は、ビームから基板位置への誤差の低周波数部分を修正するために、補正動作を行ってもよい。ステージ状態ベクトル716の形式で、ステージ計測システム704にこれらの補正をフィードバックしてもよい。一例として、ステージ計測システム704は、例えば上述等の、干渉計入射点における位置ずれを測定してもよい。ステージ上の入射点に対するレーザビーム構成を知ることにより、ステージベクトル716を計算してもよい。ステージ状態ベクトル716は、位置ずれ、速度、加速度および存在しうる動き(jerks)(時間に対する加速度の変化率)を、例えば、XYZ、昇降(pitch)、横揺れ(roll)および偏揺れ(yaw)等の全てのステージの自由度において含んでもよい。
ビームから基板位置への誤差を概算するために、ステージ計測システム704、SMS706およびSRS708による測定を同様に用いてもよい。ビームから基板位置への誤差をゼロ化するようなやり方でビームコントローラ718を駆動するために、ビーム位置誤差を用いてもよい。ビームコントローラ718は、指示されたビーム位置と実際に測定されたビーム位置との間の誤差に基づいて動作し、この誤差を最小化しようとしてもよい。ビームコントローラ718は、ハイパスフィルタ720により濾波されたステージ計測システム704からの入力を受信する。ビームコントローラ718は、また、基板計測システム706からの入力も受信する。これらの入力の組み合わせは、ハイパスフィルタをかけたビーム−基板位置誤差の概算値をもたらす。
一例として、ビームコントローラ718は、ビーム偏向機構722および実際のビーム動力学を制御する信号を生成する。ビーム偏向機構722は、静電的偏向器または電磁的偏向器を備えてもよい。基板内ビーム状態ベクトル724を導出するためにビーム偏向制御信号を用いてもよく、当該ベクトルをスポーク参照システム708からのビーム位置測定と組み合わせ、測定された基板中ビーム状態ベクトルを生成してもよい。ビームコントローラ718への入力として、測定された基板内ビーム状態ベクトルを用いてもよい。
ビームコントローラ718は、光学カラムに対するビームの位置を検出するレンズ内ビーム位置検出器(Beam In−Lens Position detector)726から入力を得てもよい。レンズ内ビーム位置検出器726は、光軸に対する光学カラムからの光学または電子ビームの位置を検出してもよい。レンズ内ビーム位置検出器は、ビーム偏向機構722から同様に入力を受信してもよい。いくつかの実施形態において、レンズ内ビーム位置検出器726は焦点検出の仕組みも備えてもよい。
前述の説明から、ステージコントローラ714およびステージ710はビーム−基板位置誤差の低周波数成分に対する補正を提供し、ビームコントローラ718およびビーム偏向器720はビーム−基板位置誤差の高周波数成分に対する補正を提供することが明らかであろう。ステージコントローラ714およびビームコントローラ718は、ハードウェアまたは、例えば最適制御アルゴリズム等のソフトウェアで実装してもよい最適フィルタロジック728から追加の入力を受信してもよい。一例として、最適フィルタロジック728はカルマンフィルタを用いてもよい。最適フィルタロジック728はステージ計測システム704からの入力を受信してもよい。最適フィルタロジック728には数多くの異なる実装が可能である。例えば、x方向に回転ステージを平行移動するために用いられるアクチュエータ間の不均衡は、回転ステージの角速度に変動を生じる場合がある。ステージ計測システム704に用いられるセンサはこの不均衡を検出し、二つのアクチュエータ間の不均衡を補正するために、ステージコントローラによる差動コマンドがxアクチュエータに適用されてもよい。あるいは、回転ステージ制御による反作用力がチャンバ蓋内での動きを発生する場合がある。例えば、動電型アクチュエータを用いて、この反作用力を適切に相殺してもよい。加えて、最適フィルタロジック728は、動作中に基板計測システム706およびスポーク参照システム708からの測定に基づいて、回転ステージおよび/または基板の熱的および弾性的変形の効果を適切に補正してもよい。
回転ステージの回転が比較的低速であり、かつ/または、基板が熱負荷および/または高加速度による顕著な変形の影響下にない場合には、本発明の実施形態は、基板計測システム706無しでのツール−基板の位置決めにおいて、約40nm、または、例えば約2〜40nm等のより良好な分解能を達成可能であることに注意すべきである。
上記には本発明の好適な実施形態を完全に記載してきたが、様々な変更、変形および等価物を用いることが可能である。従って、本発明の範囲は上記記載への参照には限定してはならず、添付の特許請求の範囲を参照し、等価物の全範囲に従って決定すべきである。好適か否かによらず全ての特徴は、好適か否かによらず他の任意の特徴と組み合わせてもよい。下記特許請求の範囲において、不定冠詞「A」または「An」は、特別途に明記しない限り、当該冠詞に続く一以上の事項の量を指す。「する手段」という語句を用いる所与の請求項において限定が明記されない限り、添付特許請求の範囲は、手段に加えて機能の限定を含むものとして解釈してはならない。
上記には本発明の好適な実施形態を完全に記載してきたが、様々な変更、変形および等価物を用いることが可能である。従って、本発明の範囲は上記記載への 参照には限定してはならず、添付の特許請求の範囲を参照し、等価物の全範囲に従って決定すべきである。好適か否かによらず全ての特徴は、好適か否かによら ず他の任意の特徴と組み合わせてもよい。下記特許請求の範囲において、不定冠詞「A」または「An」は、特別途に明記しない限り、当該冠詞に続く一以上の 事項の量を指す。「する手段」という語句を用いる所与の請求項において限定が明記されない限り、添付特許請求の範囲は、手段に加えて機能の限定を含むもの として解釈してはならない。
なお、本発明は、以下のような態様で実現することもできる。
適用例1:
基板プロセス装置であって、
支持構造と、
第1のステージおよび第2のステージを有する可動式ステージとを備え、
前記第1のステージは1つ以上の基板を保持するように適合され、
前記第1のステージは前記第2のステージに対して略固定された位置および方向を有する第1の軸に対して移動するように適合され、
前記第2のステージは第2の軸に沿って前記支持構造に対して移動するように適合され、前記可動式ステージはまた、前記第1のステージおよび/また は前記第1のステージの端部に隣接する前記第2のステージに取り付けられた1つ以上の磁気浮上(マグレブ)ユニットを有する、基板プロセス装置。
適用例2:
前記第1のステージは回転ステージであり、前記第2のステージはリニア平行移動ステージであり、
前記回転ステージは1つ以上の基板を保持するように適合され、
前記回転ステージは前記リニア平行移動ステージに対して略固定された位置および方向を有する回転軸周囲を回転するように適合され、
前記リニア平行移動ステージは平行移動軸に沿って前記支持構造に対して移動するように適合され、前記可動式ステージはまた、前記回転ステージおよ び/または前記回転ステージの端部に隣接する平行移動ステージに取り付けられた1つ以上の磁気浮上(マグレブ)ユニットを有する、適用例1に記載の装置。
適用例3:
前記マグレブユニットは前記リニア平行移動ステージに実装される1つ以上の回転ステージマグレブユニットを備え、
前記装置は、前記回転ステージの周辺に取り付けられた前記回転軸と同軸の強磁性体リングをさらに備え、
前記マグレブユニットは力を前記強磁性体リングに付与するように構成される、適用例2に記載の装置。
適用例4:
前記回転ステージマグレブユニットは、垂直方向の力を前記強磁性体リングに付与するように適合された、1つ以上の回転ステージ垂直マグレブユニットを備える、適用例3に記載の装置。
適用例5:
前記マグレブユニットは、前記平行移動ステージを前記支持構造から浮遊させるように適合された1つ以上の平行移動ステージ垂直マグレブユニットを備える、適用例4に記載の装置。
適用例6:
前記支持構造は、前記可動式ステージを含むチャンバの蓋である、適用例5に記載の装置。
適用例7:
前記平行移動ステージ垂直マグレブユニットは、対応の回転ステージ垂直マグレブと近接した構成にて配置される、適用例5に記載の装置。
適用例8:
前記磁気浮上ユニットは前記平行移動ステージに取り付けられた1つ以上の回転ステージの半径方向のマグレブユニットを備え、前記回転ステージの半径方向のマグレブユニットは半径方向において、力を前記強磁性体リングに付与するように適合される、適用例3に記載の装置。
適用例9:
前記半径方向のマグレブユニットは、前記回転軸および前記平行移動軸の両方に対して直交するY方向において、力を前記強磁性体リングに付与するように適合された1つ以上のY半径方向のマグレブユニットを含む、適用例8に記載の装置。
適用例10:
前記Y方向において、力を前記平行移動ステージに付与するように適合された1つ以上の平行移動ステージのYマグレブユニットをさらに備える、適用例9に記載の装置。
適用例11:
前記平行移動ステージのYマグレブユニットは、対応の回転ステージのYマグレブユニットと近接した構成にて配置される、適用例10に記載の装置。
適用例12:
前記回転ステージは、磁気的に透明な材料からなる、適用例2に記載の装置。
適用例13:
計測対照フレームに対する、前記回転ステージおよび/またはリニアステージおよび/または基板処理ツールの位置における変化を検知するように適合された1つ以上の干渉計をさらに備える、適用例2に記載の装置。
適用例14:
前記計測対照フレームは、前記可動式ステージを含むチャンバの蓋に固定される、適用例13に記載の装置。
適用例15:
1つ以上の干渉計は1つ以上の微分干渉計を備える、適用例14に記載の装置。
適用例16:
前記1つ以上の干渉計は、光源と光学センサとの間における1つ以上の光学経路に沿って配置された干渉計を備え、前記1つ以上の光学経路は参照ビーム経路および測定ビーム経路を備え、
前記測定ビーム経路は、前記チャンバの蓋に実装された第1の参照ミラーと、前記回転ステージ、前記平行移動ステージ、または前記支持構造に対して 略固定された位置にある、基板処理ツールに実装された第2の参照ミラーとの間における一部分を備える、適用例14に記載の装置。
適用例17:
前記第1の参照ミラーは前記平行移動軸および前記回転軸に平行に方向付けられたY参照ミラーである、適用例16に記載の装置。
適用例18:
前記1つ以上の干渉計は前記平行移動ステージに実装された干渉計を備え、
前記第2の参照ミラーは前記回転ステージに取り付けられた円柱状ミラーであり、
前記円柱状ミラーは前記回転軸に略同軸である円柱状反射表面を有する、適用例17に記載の装置。
適用例19:
前記円柱状反射表面は前記回転ステージの周辺に位置される、適用例18に記載の装置。
適用例20:
前記円柱状反射表面は前記回転ステージの半径よりも短い半径を有する、適用例18に記載の装置。
適用例21:
前記平行移動ステージに実装された前記干渉計は、ビームスプリッタと前記円柱状ミラーとの間に配置される波面補正光学装置を備え、前記波面補正光学装置は、前記円柱状反射表面において、前記測定ビームから光の反射を補正するように構成される、適用例18に記載の装置。
適用例22:
前記波面補正光学装置は、前記回転軸において、前記ビームスプリッタから平行光の焦点を合わせるように適合される、適用例21に記載の装置。
適用例23:
前記波面補正光学装置は、前記円柱状反射表面において、前記ビームスプリッタから平行光の焦点を合わせるように適合される、適用例21に記載の装置。
適用例24:
前記第1の参照ミラーは、前記回転軸に対して直交する方向に向けられたZ参照ミラーである、適用例16に記載の装置。
適用例25:
前記1つ以上の干渉計は、前記平行移動ステージに実装された干渉計を備え、
前記第2の参照ミラーは前記回転ステージに取り付けられるか、またはその一部であり、
前記第2の参照ミラーは前記回転軸に対して略直交する反射表面を備える、適用例24に記載の装置。
適用例26:
前記回転ステージによって支持された1つ以上の基板を処理するように適合された基板処理ツールをさらに備え、
光学カラムは、前記支持構造に対して略固定された位置にある、適用例2に記載の装置。
適用例27:
前記基板処理ツールは電子ビームの光学カラムを備える、適用例26に記載の装置。
適用例28:
前記回転ステージに取り付けられた中心回転子および前記リニアステージに取り付けられた固定子をさらに備え、
前記回転子および前記固定子は前記回転軸の周囲にある前記回転ステージに回転運動を分与するように適合され、
前記回転子および前記固定子は、前記回転ステージの重さを支持するように構成される、適用例2に記載の装置。
適用例29:
前記回転子および固定子は、前記回転子上の前記固定子によってもたらされた磁力が前記回転ステージの重さの全てまたは殆どを支持するのに十分であるように構成される、適用例28に記載の装置。
適用例30:
前記第1のステージは第1の平行移動ステージであり、前記第2のステージは第2の平行移動ステージであり、
前記第1の平行移動ステージは1つ以上の基板を保持するように適合され、
前記第1の平行移動ステージは前記第2の平行移動ステージに対して略固定された位置および方向を有する第1の軸に対して直線的に移動するように適合され、
前記第2の平行移動ステージは、前記第1の軸に対して傾いている第2の軸に沿って前記支持構造に対して平行移動するように適合され、
前記1つ以上の磁気浮上(マグレブ)ユニットは、前記第1の平行移動ステージおよび/または前記第1の平行移動ステージの端部に隣接する前記第2の平行移動ステージに取り付けられ、
前記マグレブユニットは、前記第1の平行移動ステージと前記第2の平行移動ステージとの間において磁力をもたらすように適合される、適用例1に記載の装置。
適用例31:
前記支持構造は前記X−Yステージを含むチャンバの蓋である、適用例30に記載の装置。
適用例32:
前記マグレブユニットは、前記第2の軸に平行する方向に沿って、前記第1の平行移動ステージと前記第2の平行移動ステージとの間に力を付与するように構成される1つ以上のマグレブユニットを備える、適用例30に記載の装置。
適用例33:
前記マグレブユニットは、前記第1および第2の軸に直交する方向において、前記第1の平行移動ステージと前記第2の平行移動ステージとの間に力を付与するように適合された1つ以上の垂直マグレブユニットを備える、適用例30に記載の装置。
適用例34:
前記マグレブユニットは、前記第1および第2の軸に直交する方向において、前記支持構造と前記第2の平行移動ステージとの間に力を付与することに よって、前記支持構造から前記第2の平行移動ステージを浮遊させるように適合された1つ以上の垂直マグレブユニットを備える、適用例30に記載の装置。
適用例35:
前記支持構造は前記可動式ステージを含むチャンバの蓋である、適用例34に記載の装置。
適用例36:
前記第1および/または第2の平行移動ステージは磁気的に透明な材料からなる、適用例30の装置。
適用例37:
前記第1の平行移動ステージおよび/または第2の平行移動ステージおよび/または前記支持構造に対して略固定された、光学カラムの位置における変 化を検知するように適合され、かつ計測対照フレームに対して、前記第1の平行移動ステージによって支持される1つ以上の基板へ放射を向けるように適合され た、1つ以上の干渉計をさらに備える、適用例30に記載の装置。
適用例38:
前記計測対照フレームは、前記可動式ステージを含むチャンバの蓋に固定される、適用例37に記載の装置。
適用例39:
1つ以上の干渉計が1つ以上の微分干渉計を含む、適用例37に記載の装置。
適用例40:
前記1つ以上の干渉計は、光源と光学センサとの間における1つ以上の光学経路に沿って配置された干渉計を備え、前記1つ以上の光学経路は、参照ビーム経路および測定ビーム経路を備え、
前記測定ビーム経路は、前記チャンバの蓋に実装される第1の参照ミラーと、前記回転ステージ、前記平行移動ステージ、または基板処理ツールに実装される第2の参照ミラーとの間の一部分を備える、適用例37に記載の装置。
適用例41:
前記第1の参照ミラーは、前記第1および第2の軸と略平行に向けられたZ参照ミラーである、適用例40に記載の装置。
適用例42:
前記1つ以上の干渉計は、前記第2の平行移動ステージに実装された干渉計を備え、
前記第2の参照ミラーは前記第1の平行移動ステージに取り付けられ、
前記第2の参照ミラーは前記第1および第2の軸に対して略直交する反射表面を備える、適用例41に記載の装置。
適用例43:
前記第1の平行移動ステージによって支持された1つ以上の基板を処理するように適合された基板処理ツールをさらに備え、
前記光学カラムは、前記支持構造に対して略固定された位置にある、適用例30に記載の装置。
適用例44:
前記基板処理ツールは電子ビームの光学カラムを備える、適用例43に記載の装置。
適用例45:
支持構造と、
回転ステージおよびリニア平行移動ステージを有する回転−リニアステージであって、
前記回転ステージは複数の基板を保持するように適合され、
前記回転ステージは、前記リニア平行移動ステージに対して、略固定された位置および方向を有する回転軸の周囲を、連続した動きで回転するように適合され、
前記リニア平行移動ステージは平行移動軸に沿って、前記支持構造に対して移動するように適合される、回転−リニアステージと、
前記支持構造に対して略固定された位置にある、リソグラフィ、検査、または計測ツールと、
前記ツールに対する前記基板の位置を、所望の位置から10ナノメートル以内に制御するように適合される制御システムと
を備える、基板プロセス装置。
適用例46:
前記リソグラフィ、検査、または計測ツールは電子ビームの光学カラムを備える、適用例45に記載の装置。
適用例47:
前記制御システムは、前記回転ステージ、1つ以上の前記基板、および/または前記電子ビームの位置を検知するように適合される1つ以上のセンサを含み、
前記制御システムは、前記支持構造に対する前記回転ステージの位置を調節するように適合された1つ以上のアクチュエータを備え、
前記電子ビームの光学カラムは、ビーム偏向機構を備え、
前記制御システムは、前記1つ以上のアクチュエータに結合されたステージコントローラおよび前記ビーム偏向機構に結合されたビームコントローラを備え、
前記ステージコントローラは、ビーム−基板位置誤差の低周波数成分を補正するように適合され、前記ビーム偏向機構は前記ビーム−基板位置誤差の高周波数成分を補正するように適合される、適用例46に記載の装置。
適用例48:
前記回転ステージに取り付けられた中心回転子および前記リニアステージに取り付けられた固定子をさらに備え、
前記回転子および前記固定子は前記回転軸の周囲にある前記回転ステージに回転運動を分与するように適合され、
前記回転子および前記固定子は、前記回転ステージの重さを支持するように構成される、適用例45に記載の装置。
適用例49:
前記回転子および固定子は、前記回転子上の前記固定子によってもたらされた磁力が前記回転ステージの重さの全てまたは殆どを支持するのに十分であるように構成される、適用例48に記載の装置。
適用例50:
回転ステージ上に複数の基板を保持することと、
前記回転ステージを、リニア平行移動ステージに対して略固定された位置および方向を有する回転軸の周囲を連続した動きで回転させることと、
平行移動軸に沿って支持構造に対して前記リニア平行移動ステージを平行移動させることと、
前記支持構造に対して略固定された位置にあるリソグラフィ、検査、または計測ツールを用いて前記基板を処理することと、
前記ツールに対する前記基板の位置を、所望の位置から10ナノメートル以内に制御することと
を含む、基板処理方法。
適用例51:
前記ツールに対する前記基板の位置を制御することは、前記回転ステージに取り付けられた中心回転子および前記リニアステージに取り付けられた固定子を用いて、前記回転ステージの重さを支持することを含む、適用例50に記載の方法。
適用例52:
前記回転ステージの重さを支持することは、前記回転ステージの重さの全てまたはその殆どを支持するために、前記回転子と前記固定子との間の磁力を用いることを含む、適用例51に記載の方法。
適用例53:
キャリアステージと、
1つ以上の基板を保持するように適合され、前記ステージに対して略固定された位置および方向を有する回転軸の周囲を、前記キャリアステージに対して回転するように適合された、回転ステージと、
所望の角速度にて前記回転ステージを維持するように適合され、および/または第1の角速度から第2の角速度へ、前記回転ステージを回転加速または回転減速するように適合された第1のモータと、
静止状態から前記第1の角速度へ、前記回転ステージを回転加速するように適合され、および/または、ゼロではない角速度から停止へ、前記回転ステージを回転減速するように適合された第2のモータと
を備える、基板プロセス装置。
適用例54:
前記第1のモータは、前記ステージに取り付けられた固定子および前記回転ステージに取り付けられた回転子を有する電気モータである、適用例53に記載の装置。
適用例55:
前記第2のモータは、前記ステージに取り付けられた固定子を有する電気モータであり、回転子および係合機構は、前記回転ステージまたは前記第1のモータの前記回転子に、前記第2のモータの前記回転子を選択的に係合するように構成される、適用例54に記載の装置。
適用例56:
前記係合機構は摩擦駆動を備える、適用例55に記載の装置。
適用例57:
前記摩擦駆動は、前記回転ステージを、前記回転ステージの縁に隣接して係合するように構成される、適用例56に記載の装置。
適用例58:
前記係合機構は、前記第2のモータのシャフトに取り付けられたクラッチプレートを備え、前記クラッチプレートおよび前記第1のモータの回転子は、相互に選択的な機械的係合のために構成される、適用例55に記載の装置。
適用例59:
前記係合機構は、前記クラッチプレート上の第1の接面および前記第1の回転子の回転子上の第2の接面を備える、適用例58に記載の装置。
適用例60:
前記係合機構は、前記第1および第2の接面を係合するために、前記クラッチプレートと前記第1のモータの前記回転子との間に相対的な軸方向運動を分与するように構成される、適用例59に記載の装置。
適用例61:
前記第1および第2の接面の一方が突起部を備え、前記第1および第2の接面の他方が、対応の凹部を備える、適用例59に記載の装置。
適用例62:
前記第1および第2のモータは、前記突起部と前記凹部とを係合するために、前記第1および第2の接面を互いに角度的に調整するように構成される、適用例59に記載の装置。
適用例63:
前記第1のモータおよび前記第2のモータは前記回転軸の周囲を回転するように構成される、適用例54に記載の装置。
適用例64:
前記第2のモータの前記回転子は前記回転ステージに取り付けられた導電性リングを備え、
前記導電性リングは前記回転軸と同軸であり、
前記第2のモータの前記固定子は、前記導電性リングにおいて、渦電流を誘発する回転磁気フラックスを生成するように構成され、
前記渦電流と前記回転フラックスとの間の作用が前記導電性リング上にトルクをもたらす、適用例63に記載の装置。
適用例65:
前記第1のモータは相対的に低いトルクリップルによって特徴付けられ、前記第2のモータは、前記第1のモータと比較して相対的に高いトルクリップルによって特徴付けられる、適用例53に記載の装置。
適用例66:
支持構造をさらに備え、
前記キャリアステージは、平行移動軸に沿って、前記支持構造に対して平行移動するように適合されたリニア平行移動ステージであり、前記回転ステージは、前記リニア平行移動ステージに沿って、前記支持構造に対して平行移動する、適用例53に記載の装置。
適用例67:
前記第1のモータは、前記キャリアステージに取り付けられた固定子および前記回転ステージに取り付けられた回転子を有する電気モータである、適用例66に記載の装置。
適用例68:
前記回転子および固定子は、前記回転子上の前記固定子によってもたらされた磁力が、前記回転ステージの重さの全てまたはその殆どを支持するのに十分である、適用例67に記載の装置。
適用例69:
前記第2のモータは前記支持構造に取り付けられ、前記装置は、前記第2のモータを、前記回転ステージまたは前記第1のモータの前記回転子に選択的に係合するように構成された係合機構をさらに備える、適用例67に記載の装置。
適用例70:
前記係合機構は磁気クラッチを備える、適用例69に記載の装置。
適用例71:
前記支持構造は、前記キャリアステージ、または前記キャリアステージおよび前記回転ステージを含むチャンバの蓋を支持するステージ基部である、適用例66に記載の装置。
適用例72:
前記回転ステージ、および/または前記回転ステージの端部に隣接する平行移動ステージに取り付けられた1つ以上の磁気浮上(マグレブ)ユニットをさらに備える、適用例66に記載の装置。
適用例73:
計測対照フレームに対する、前記回転ステージおよび/またはキャリアステージおよび/または基板処理ツールの位置における変化を検知するように適合された1つ以上のセンサをさらに備える、適用例53に記載の装置。
適用例74:
前記計測対照フレームは、前記キャリアステージ、および前記回転ステージ、または前記キャリアステージおよび回転ステージを含むチャンバを支持する基部に対して固定される、適用例73に記載の装置。
適用例75:
1つ以上のセンサは1つ以上の微分干渉計を含む、適用例73に記載の装置。
適用例76:
支持構造と、
回転ステージおよびリニア平行移動ステージを有する回転−リニアステージであって、
前記回転ステージは複数の基板を保持するように適合され、
前記回転ステージは、前記リニア平行移動ステージに対して、略固定された位置および方向を有する回転軸の周囲を、持続する運動にて回転するように適合され、
前記リニア平行移動ステージは平行移動軸に沿って、前記支持構造に対して平行移動するように適合される、回転−リニアステージと、
所望の角速度にて前記回転ステージを維持し、および/または第1の角速度から第2の角速度へ、前記回転ステージを加速または減速するように適合される第1のモータと、
静止状態から前記第1の角速度へ、前記回転ステージを加速し、および/またはゼロではない角速度から停止状態へ、前記回転ステージを減速するように適合される第2のモータと、
前記支持構造に対して略固定された位置にある、リソグラフィ、検査、または計測ツールと
を備える、基板プロセス装置。
適用例77:
前記リソグラフィ、検査、または計測ツールは、電子ビームのカラム、光学カラム、またはX線のカラムを備える、適用例76の装置。
適用例78:
前記ツールに対する前記基板の位置を、所望の位置から40ナノメートル以内に制御するように適合された制御システムをさらに備える、適用例76に記載の装置。
適用例79:
前記第1のモータは、前記キャリアステージに取り付けられた固定子および前記回転ステージに取り付けられた回転子を有する電気モータである、適用例76に記載の装置。
適用例80:
前記回転子および固定子は、前記回転子上の前記固定子によってもたらされた磁力が、前記回転ステージの重さの全てまたはその殆どを支持するのに十分であるように構成される、適用例79に記載の装置。
適用例81:
前記第2のモータは、前記キャリアステージに取り付けられた固定子を有する電気モータであり、回転子および係合機構は、前記第2のモータの前記回転子を、前記回転ステージまたは前記第1のモータの前記回転子に選択的に係合するように構成される、適用例79に記載の装置。
適用例82:
前記係合機構は摩擦駆動を備える、適用例81に記載の装置。
適用例83:
前記摩擦駆動は、前記回転ステージを、前記回転ステージの縁に隣接して係合するように構成される、適用例82に記載の装置。
適用例84:
前記係合機構は、前記第2のモータのシャフトに取り付けられたクラッチプレートを備え、前記クラッチプレートおよび前記第1のモータの回転子は、相互に選択的な機械的係合のために構成される、適用例83に記載の装置。
適用例85:
前記係合機構は、前記クラッチプレート上の第1の接面および前記第1の回転子の回転子上の第2の接面を備える、適用例84に記載の装置。
適用例86:
前記係合機構は、前記第1および第2の接面を係合するために、前記クラッチプレートと前記第1のモータの前記回転子との間に相対的な軸方向運動を分与するように構成される、適用例85に記載の装置。
適用例87:
前記第1および第2の接面の一方が突起部を備え、前記第1および第2の接面の他方が、対応の凹部を備える、適用例85に記載の装置。
適用例88:
前記第1および第2のモータは、前記突起部と前記凹部とを係合するために、前記第1および第2の接面を互いに角度的に調整するように構成される、適用例85に記載の装置。
適用例89:
前記第1のモータおよび前記第2のモータは前記回転軸の周囲を回転するように構成される、適用例76に記載の装置。
適用例90:
前記第2のモータの前記回転子は前記回転ステージに取り付けられた導電性リングを備え、
前記導電性リングは前記回転軸と同軸であり、
前記第2のモータの前記固定子は、前記導電性リングにおいて、渦電流を誘発する回転磁気フラックスを生成するように構成され、
前記渦電流と前記回転フラックスとの間の作用が前記導電性リング上にトルクをもたらす、適用例89に記載の装置。
適用例91:
前記第1のモータは相対的に低いトルクリップルによって特徴付けられ、前記第2のモータは、前記第1のモータと比較して相対的に高いトルクによって特徴付けられる、適用例90に記載の装置。
適用例92:
前記キャリアステージは、平行移動軸に沿って、前記支持構造に対して平行移動するように適合されたリニア平行移動ステージであり、前記回転ステージは、前記リニア平行移動ステージに沿って、前記支持構造に対して平行移動する、適用例76に記載の装置。
適用例93:
前記第1のモータは、前記キャリアステージに取り付けられた固定子および前記回転ステージに取り付けられた回転子を有する電気モータである、適用例92に記載の装置。
適用例94:
前記回転子および固定子は、前記回転子上の前記固定子によってもたらされた磁力が、前記回転ステージの重さの全てまたはその殆どを支持するのに十分であるように構成される、適用例93に記載の装置。
適用例95:
前記第2のモータは前記支持構造に取り付けられ、前記装置は、前記第2のモータを、前記回転ステージまたは前記第1のモータの前記回転子に選択的に係合するように構成された係合機構をさらに備える、適用例93に記載の装置。
適用例96:
前記係合機構は磁気クラッチを備える、適用例95に記載の装置。
適用例97:
前記支持構造は、前記キャリアステージ、または前記キャリアステージおよび前記回転ステージを含むチャンバを支持する基部である、適用例76に記載の装置。
適用例98:
前記回転ステージ、および/または前記回転ステージの端部に隣接する平行移動ステージに取り付けられた1つ以上の磁気浮上(マグレブ)ユニットをさらに備える、適用例76に記載の装置。
適用例99:
回転ステージ上に複数の基板を保持することと、
ブースタモータを用いて、静止状態から第1の角速度へ、キャリアステージに対して回転加速し、および/または、ゼロではない角速度から停止状態へ、前記回転ステージを減速することと、
所望の角速度にて前記回転ステージを維持し、および/または、相対的に低いトルクリップルによって特徴付けられる第1のモータを用いて、第1の角速度から第2の角速度へ、前記回転ステージを回転加速または回転減速することと、
支持構造に対して略固定された位置にあるリソグラフィ、検査、または計測ツールを用いて前記基板を処理しながら、平行移動軸に沿って前記支持構造に対してリニア平行移動ステージを平行移動することと、
を含む、基板処理方法。
適用例100:
前記ツールに対する前記基板の位置を、所望の位置から40ナノメートル以内に制御することをさらに含む、適用例99に記載の方法。
適用例101:
前記ツールに対する前記基板の位置を制御することは、前記回転ステージに取り付けられた中心回転子および前記リニア平行移動ステージに取り付けられた固定子を用いる前記回転ステージの重さを支持することを含む、適用例100に記載の方法。
適用例102:
前記回転ステージの重さを支持することは、前記回転ステージの重さの全てまたはその殆どを支持するために、前記回転子と前記固定子との間に磁力を用いることを含む、適用例101に記載の方法。
適用例103:
前記ブースタモータを前記回転ステージから選択的に係合および解除することをさらに含む、適用例99に記載の方法。
適用例104:
前記ブースタモータを選択的に係合および解除することは、前記ブースタモータの回転子と前記回転ステージとを同じ角速度で回転させることを含む、適用例103に記載の方法。
適用例105:
前記ブースタモータを選択的に係合および解除することは、前記回転ステージに対して前記ブースタモータの前記回転子を角度的に調整することをさらに含む、適用例104に記載の方法。
適用例106:
前記第1のモータは、キャリアステージに取り付けられた固定子および前記回転ステージに取り付けられた回転子を有する電気モータである、適用例99に記載の方法。
適用例107:
前記第2のモータは、前記リニア平行移動ステージに取り付けられた固定子を有する電気モータである、適用例106に記載の方法。
適用例108:
前記ブースタモータを用いて、静止状態から前記第1の角速度へ、前記回転ステージを回転加速し、および/またはゼロではない角速度から停止状態 へ、前記回転ステージを減速することは、前記ブースタモータで前記回転ステージの縁に隣接する前記回転ステージに駆動力を付与することを含む、適用例99 に記載の方法。
適用例109:
前記第1のモータおよび前記第2のモータは、前記回転軸の周囲を回転するように構成される、適用例99に記載の方法。
適用例110:
前記回転ステージを回転加速することは、回転磁気フラックスを、前記回転ステージに取り付けられた導電性リングに付与することを含み、
前記導電性リングは前記回転軸と同軸であり、
前記回転フラックスは前記導電性リングにおいて渦電流を誘発し、
前記渦電流と前記回転フラックスとの間における作用が前記導電性リング上にトルクをもたらして、前記回転ステージを回転加速する、適用例99に記載の方法。
なお、本発明は、以下のような態様で実現することもできる。
適用例1:
基板プロセス装置であって、
支持構造と、
第1のステージおよび第2のステージを有する可動式ステージとを備え、
前記第1のステージは1つ以上の基板を保持するように適合され、
前記第1のステージは前記第2のステージに対して略固定された位置および方向を有する第1の軸に対して移動するように適合され、
前記第2のステージは第2の軸に沿って前記支持構造に対して移動するように適合され、前記可動式ステージはまた、前記第1のステージおよび/また は前記第1のステージの端部に隣接する前記第2のステージに取り付けられた1つ以上の磁気浮上(マグレブ)ユニットを有する、基板プロセス装置。
適用例2:
前記第1のステージは回転ステージであり、前記第2のステージはリニア平行移動ステージであり、
前記回転ステージは1つ以上の基板を保持するように適合され、
前記回転ステージは前記リニア平行移動ステージに対して略固定された位置および方向を有する回転軸周囲を回転するように適合され、
前記リニア平行移動ステージは平行移動軸に沿って前記支持構造に対して移動するように適合され、前記可動式ステージはまた、前記回転ステージおよ び/または前記回転ステージの端部に隣接する平行移動ステージに取り付けられた1つ以上の磁気浮上(マグレブ)ユニットを有する、適用例1に記載の装置。
適用例3:
前記マグレブユニットは前記リニア平行移動ステージに実装される1つ以上の回転ステージマグレブユニットを備え、
前記装置は、前記回転ステージの周辺に取り付けられた前記回転軸と同軸の強磁性体リングをさらに備え、
前記マグレブユニットは力を前記強磁性体リングに付与するように構成される、適用例2に記載の装置。
適用例4:
前記回転ステージマグレブユニットは、垂直方向の力を前記強磁性体リングに付与するように適合された、1つ以上の回転ステージ垂直マグレブユニットを備える、適用例3に記載の装置。
適用例5:
前記マグレブユニットは、前記平行移動ステージを前記支持構造から浮遊させるように適合された1つ以上の平行移動ステージ垂直マグレブユニットを備える、適用例4に記載の装置。
適用例6:
前記支持構造は、前記可動式ステージを含むチャンバの蓋である、適用例5に記載の装置。
適用例7:
前記平行移動ステージ垂直マグレブユニットは、対応の回転ステージ垂直マグレブと近接した構成にて配置される、適用例5に記載の装置。
適用例8:
前記磁気浮上ユニットは前記平行移動ステージに取り付けられた1つ以上の回転ステージの半径方向のマグレブユニットを備え、前記回転ステージの半径方向のマグレブユニットは半径方向において、力を前記強磁性体リングに付与するように適合される、適用例3に記載の装置。
適用例9:
前記半径方向のマグレブユニットは、前記回転軸および前記平行移動軸の両方に対して直交するY方向において、力を前記強磁性体リングに付与するように適合された1つ以上のY半径方向のマグレブユニットを含む、適用例8に記載の装置。
適用例10:
前記Y方向において、力を前記平行移動ステージに付与するように適合された1つ以上の平行移動ステージのYマグレブユニットをさらに備える、適用例9に記載の装置。
適用例11:
前記平行移動ステージのYマグレブユニットは、対応の回転ステージのYマグレブユニットと近接した構成にて配置される、適用例10に記載の装置。
適用例12:
前記回転ステージは、磁気的に透明な材料からなる、適用例2に記載の装置。
適用例13:
計測対照フレームに対する、前記回転ステージおよび/またはリニアステージおよび/または基板処理ツールの位置における変化を検知するように適合された1つ以上の干渉計をさらに備える、適用例2に記載の装置。
適用例14:
前記計測対照フレームは、前記可動式ステージを含むチャンバの蓋に固定される、適用例13に記載の装置。
適用例15:
1つ以上の干渉計は1つ以上の微分干渉計を備える、適用例14に記載の装置。
適用例16:
前記1つ以上の干渉計は、光源と光学センサとの間における1つ以上の光学経路に沿って配置された干渉計を備え、前記1つ以上の光学経路は参照ビーム経路および測定ビーム経路を備え、
前記測定ビーム経路は、前記チャンバの蓋に実装された第1の参照ミラーと、前記回転ステージ、前記平行移動ステージ、または前記支持構造に対して 略固定された位置にある、基板処理ツールに実装された第2の参照ミラーとの間における一部分を備える、適用例14に記載の装置。
適用例17:
前記第1の参照ミラーは前記平行移動軸および前記回転軸に平行に方向付けられたY参照ミラーである、適用例16に記載の装置。
適用例18:
前記1つ以上の干渉計は前記平行移動ステージに実装された干渉計を備え、
前記第2の参照ミラーは前記回転ステージに取り付けられた円柱状ミラーであり、
前記円柱状ミラーは前記回転軸に略同軸である円柱状反射表面を有する、適用例17に記載の装置。
適用例19:
前記円柱状反射表面は前記回転ステージの周辺に位置される、適用例18に記載の装置。
適用例20:
前記円柱状反射表面は前記回転ステージの半径よりも短い半径を有する、適用例18に記載の装置。
適用例21:
前記平行移動ステージに実装された前記干渉計は、ビームスプリッタと前記円柱状ミラーとの間に配置される波面補正光学装置を備え、前記波面補正光学装置は、前記円柱状反射表面において、前記測定ビームから光の反射を補正するように構成される、適用例18に記載の装置。
適用例22:
前記波面補正光学装置は、前記回転軸において、前記ビームスプリッタから平行光の焦点を合わせるように適合される、適用例21に記載の装置。
適用例23:
前記波面補正光学装置は、前記円柱状反射表面において、前記ビームスプリッタから平行光の焦点を合わせるように適合される、適用例21に記載の装置。
適用例24:
前記第1の参照ミラーは、前記回転軸に対して直交する方向に向けられたZ参照ミラーである、適用例16に記載の装置。
適用例25:
前記1つ以上の干渉計は、前記平行移動ステージに実装された干渉計を備え、
前記第2の参照ミラーは前記回転ステージに取り付けられるか、またはその一部であり、
前記第2の参照ミラーは前記回転軸に対して略直交する反射表面を備える、適用例24に記載の装置。
適用例26:
前記回転ステージによって支持された1つ以上の基板を処理するように適合された基板処理ツールをさらに備え、
光学カラムは、前記支持構造に対して略固定された位置にある、適用例2に記載の装置。
適用例27:
前記基板処理ツールは電子ビームの光学カラムを備える、適用例26に記載の装置。
適用例28:
前記回転ステージに取り付けられた中心回転子および前記リニアステージに取り付けられた固定子をさらに備え、
前記回転子および前記固定子は前記回転軸の周囲にある前記回転ステージに回転運動を分与するように適合され、
前記回転子および前記固定子は、前記回転ステージの重さを支持するように構成される、適用例2に記載の装置。
適用例29:
前記回転子および固定子は、前記回転子上の前記固定子によってもたらされた磁力が前記回転ステージの重さの全てまたは殆どを支持するのに十分であるように構成される、適用例28に記載の装置。
適用例30:
前記第1のステージは第1の平行移動ステージであり、前記第2のステージは第2の平行移動ステージであり、
前記第1の平行移動ステージは1つ以上の基板を保持するように適合され、
前記第1の平行移動ステージは前記第2の平行移動ステージに対して略固定された位置および方向を有する第1の軸に対して直線的に移動するように適合され、
前記第2の平行移動ステージは、前記第1の軸に対して傾いている第2の軸に沿って前記支持構造に対して平行移動するように適合され、
前記1つ以上の磁気浮上(マグレブ)ユニットは、前記第1の平行移動ステージおよび/または前記第1の平行移動ステージの端部に隣接する前記第2の平行移動ステージに取り付けられ、
前記マグレブユニットは、前記第1の平行移動ステージと前記第2の平行移動ステージとの間において磁力をもたらすように適合される、適用例1に記載の装置。
適用例31:
前記支持構造は前記X−Yステージを含むチャンバの蓋である、適用例30に記載の装置。
適用例32:
前記マグレブユニットは、前記第2の軸に平行する方向に沿って、前記第1の平行移動ステージと前記第2の平行移動ステージとの間に力を付与するように構成される1つ以上のマグレブユニットを備える、適用例30に記載の装置。
適用例33:
前記マグレブユニットは、前記第1および第2の軸に直交する方向において、前記第1の平行移動ステージと前記第2の平行移動ステージとの間に力を付与するように適合された1つ以上の垂直マグレブユニットを備える、適用例30に記載の装置。
適用例34:
前記マグレブユニットは、前記第1および第2の軸に直交する方向において、前記支持構造と前記第2の平行移動ステージとの間に力を付与することに よって、前記支持構造から前記第2の平行移動ステージを浮遊させるように適合された1つ以上の垂直マグレブユニットを備える、適用例30に記載の装置。
適用例35:
前記支持構造は前記可動式ステージを含むチャンバの蓋である、適用例34に記載の装置。
適用例36:
前記第1および/または第2の平行移動ステージは磁気的に透明な材料からなる、適用例30の装置。
適用例37:
前記第1の平行移動ステージおよび/または第2の平行移動ステージおよび/または前記支持構造に対して略固定された、光学カラムの位置における変 化を検知するように適合され、かつ計測対照フレームに対して、前記第1の平行移動ステージによって支持される1つ以上の基板へ放射を向けるように適合され た、1つ以上の干渉計をさらに備える、適用例30に記載の装置。
適用例38:
前記計測対照フレームは、前記可動式ステージを含むチャンバの蓋に固定される、適用例37に記載の装置。
適用例39:
1つ以上の干渉計が1つ以上の微分干渉計を含む、適用例37に記載の装置。
適用例40:
前記1つ以上の干渉計は、光源と光学センサとの間における1つ以上の光学経路に沿って配置された干渉計を備え、前記1つ以上の光学経路は、参照ビーム経路および測定ビーム経路を備え、
前記測定ビーム経路は、前記チャンバの蓋に実装される第1の参照ミラーと、前記回転ステージ、前記平行移動ステージ、または基板処理ツールに実装される第2の参照ミラーとの間の一部分を備える、適用例37に記載の装置。
適用例41:
前記第1の参照ミラーは、前記第1および第2の軸と略平行に向けられたZ参照ミラーである、適用例40に記載の装置。
適用例42:
前記1つ以上の干渉計は、前記第2の平行移動ステージに実装された干渉計を備え、
前記第2の参照ミラーは前記第1の平行移動ステージに取り付けられ、
前記第2の参照ミラーは前記第1および第2の軸に対して略直交する反射表面を備える、適用例41に記載の装置。
適用例43:
前記第1の平行移動ステージによって支持された1つ以上の基板を処理するように適合された基板処理ツールをさらに備え、
前記光学カラムは、前記支持構造に対して略固定された位置にある、適用例30に記載の装置。
適用例44:
前記基板処理ツールは電子ビームの光学カラムを備える、適用例43に記載の装置。
適用例45:
支持構造と、
回転ステージおよびリニア平行移動ステージを有する回転−リニアステージであって、
前記回転ステージは複数の基板を保持するように適合され、
前記回転ステージは、前記リニア平行移動ステージに対して、略固定された位置および方向を有する回転軸の周囲を、連続した動きで回転するように適合され、
前記リニア平行移動ステージは平行移動軸に沿って、前記支持構造に対して移動するように適合される、回転−リニアステージと、
前記支持構造に対して略固定された位置にある、リソグラフィ、検査、または計測ツールと、
前記ツールに対する前記基板の位置を、所望の位置から10ナノメートル以内に制御するように適合される制御システムと
を備える、基板プロセス装置。
適用例46:
前記リソグラフィ、検査、または計測ツールは電子ビームの光学カラムを備える、適用例45に記載の装置。
適用例47:
前記制御システムは、前記回転ステージ、1つ以上の前記基板、および/または前記電子ビームの位置を検知するように適合される1つ以上のセンサを含み、
前記制御システムは、前記支持構造に対する前記回転ステージの位置を調節するように適合された1つ以上のアクチュエータを備え、
前記電子ビームの光学カラムは、ビーム偏向機構を備え、
前記制御システムは、前記1つ以上のアクチュエータに結合されたステージコントローラおよび前記ビーム偏向機構に結合されたビームコントローラを備え、
前記ステージコントローラは、ビーム−基板位置誤差の低周波数成分を補正するように適合され、前記ビーム偏向機構は前記ビーム−基板位置誤差の高周波数成分を補正するように適合される、適用例46に記載の装置。
適用例48:
前記回転ステージに取り付けられた中心回転子および前記リニアステージに取り付けられた固定子をさらに備え、
前記回転子および前記固定子は前記回転軸の周囲にある前記回転ステージに回転運動を分与するように適合され、
前記回転子および前記固定子は、前記回転ステージの重さを支持するように構成される、適用例45に記載の装置。
適用例49:
前記回転子および固定子は、前記回転子上の前記固定子によってもたらされた磁力が前記回転ステージの重さの全てまたは殆どを支持するのに十分であるように構成される、適用例48に記載の装置。
適用例50:
回転ステージ上に複数の基板を保持することと、
前記回転ステージを、リニア平行移動ステージに対して略固定された位置および方向を有する回転軸の周囲を連続した動きで回転させることと、
平行移動軸に沿って支持構造に対して前記リニア平行移動ステージを平行移動させることと、
前記支持構造に対して略固定された位置にあるリソグラフィ、検査、または計測ツールを用いて前記基板を処理することと、
前記ツールに対する前記基板の位置を、所望の位置から10ナノメートル以内に制御することと
を含む、基板処理方法。
適用例51:
前記ツールに対する前記基板の位置を制御することは、前記回転ステージに取り付けられた中心回転子および前記リニアステージに取り付けられた固定子を用いて、前記回転ステージの重さを支持することを含む、適用例50に記載の方法。
適用例52:
前記回転ステージの重さを支持することは、前記回転ステージの重さの全てまたはその殆どを支持するために、前記回転子と前記固定子との間の磁力を用いることを含む、適用例51に記載の方法。
適用例53:
キャリアステージと、
1つ以上の基板を保持するように適合され、前記ステージに対して略固定された位置および方向を有する回転軸の周囲を、前記キャリアステージに対して回転するように適合された、回転ステージと、
所望の角速度にて前記回転ステージを維持するように適合され、および/または第1の角速度から第2の角速度へ、前記回転ステージを回転加速または回転減速するように適合された第1のモータと、
静止状態から前記第1の角速度へ、前記回転ステージを回転加速するように適合され、および/または、ゼロではない角速度から停止へ、前記回転ステージを回転減速するように適合された第2のモータと
を備える、基板プロセス装置。
適用例54:
前記第1のモータは、前記ステージに取り付けられた固定子および前記回転ステージに取り付けられた回転子を有する電気モータである、適用例53に記載の装置。
適用例55:
前記第2のモータは、前記ステージに取り付けられた固定子を有する電気モータであり、回転子および係合機構は、前記回転ステージまたは前記第1のモータの前記回転子に、前記第2のモータの前記回転子を選択的に係合するように構成される、適用例54に記載の装置。
適用例56:
前記係合機構は摩擦駆動を備える、適用例55に記載の装置。
適用例57:
前記摩擦駆動は、前記回転ステージを、前記回転ステージの縁に隣接して係合するように構成される、適用例56に記載の装置。
適用例58:
前記係合機構は、前記第2のモータのシャフトに取り付けられたクラッチプレートを備え、前記クラッチプレートおよび前記第1のモータの回転子は、相互に選択的な機械的係合のために構成される、適用例55に記載の装置。
適用例59:
前記係合機構は、前記クラッチプレート上の第1の接面および前記第1の回転子の回転子上の第2の接面を備える、適用例58に記載の装置。
適用例60:
前記係合機構は、前記第1および第2の接面を係合するために、前記クラッチプレートと前記第1のモータの前記回転子との間に相対的な軸方向運動を分与するように構成される、適用例59に記載の装置。
適用例61:
前記第1および第2の接面の一方が突起部を備え、前記第1および第2の接面の他方が、対応の凹部を備える、適用例59に記載の装置。
適用例62:
前記第1および第2のモータは、前記突起部と前記凹部とを係合するために、前記第1および第2の接面を互いに角度的に調整するように構成される、適用例59に記載の装置。
適用例63:
前記第1のモータおよび前記第2のモータは前記回転軸の周囲を回転するように構成される、適用例54に記載の装置。
適用例64:
前記第2のモータの前記回転子は前記回転ステージに取り付けられた導電性リングを備え、
前記導電性リングは前記回転軸と同軸であり、
前記第2のモータの前記固定子は、前記導電性リングにおいて、渦電流を誘発する回転磁気フラックスを生成するように構成され、
前記渦電流と前記回転フラックスとの間の作用が前記導電性リング上にトルクをもたらす、適用例63に記載の装置。
適用例65:
前記第1のモータは相対的に低いトルクリップルによって特徴付けられ、前記第2のモータは、前記第1のモータと比較して相対的に高いトルクリップルによって特徴付けられる、適用例53に記載の装置。
適用例66:
支持構造をさらに備え、
前記キャリアステージは、平行移動軸に沿って、前記支持構造に対して平行移動するように適合されたリニア平行移動ステージであり、前記回転ステージは、前記リニア平行移動ステージに沿って、前記支持構造に対して平行移動する、適用例53に記載の装置。
適用例67:
前記第1のモータは、前記キャリアステージに取り付けられた固定子および前記回転ステージに取り付けられた回転子を有する電気モータである、適用例66に記載の装置。
適用例68:
前記回転子および固定子は、前記回転子上の前記固定子によってもたらされた磁力が、前記回転ステージの重さの全てまたはその殆どを支持するのに十分である、適用例67に記載の装置。
適用例69:
前記第2のモータは前記支持構造に取り付けられ、前記装置は、前記第2のモータを、前記回転ステージまたは前記第1のモータの前記回転子に選択的に係合するように構成された係合機構をさらに備える、適用例67に記載の装置。
適用例70:
前記係合機構は磁気クラッチを備える、適用例69に記載の装置。
適用例71:
前記支持構造は、前記キャリアステージ、または前記キャリアステージおよび前記回転ステージを含むチャンバの蓋を支持するステージ基部である、適用例66に記載の装置。
適用例72:
前記回転ステージ、および/または前記回転ステージの端部に隣接する平行移動ステージに取り付けられた1つ以上の磁気浮上(マグレブ)ユニットをさらに備える、適用例66に記載の装置。
適用例73:
計測対照フレームに対する、前記回転ステージおよび/またはキャリアステージおよび/または基板処理ツールの位置における変化を検知するように適合された1つ以上のセンサをさらに備える、適用例53に記載の装置。
適用例74:
前記計測対照フレームは、前記キャリアステージ、および前記回転ステージ、または前記キャリアステージおよび回転ステージを含むチャンバを支持する基部に対して固定される、適用例73に記載の装置。
適用例75:
1つ以上のセンサは1つ以上の微分干渉計を含む、適用例73に記載の装置。
適用例76:
支持構造と、
回転ステージおよびリニア平行移動ステージを有する回転−リニアステージであって、
前記回転ステージは複数の基板を保持するように適合され、
前記回転ステージは、前記リニア平行移動ステージに対して、略固定された位置および方向を有する回転軸の周囲を、持続する運動にて回転するように適合され、
前記リニア平行移動ステージは平行移動軸に沿って、前記支持構造に対して平行移動するように適合される、回転−リニアステージと、
所望の角速度にて前記回転ステージを維持し、および/または第1の角速度から第2の角速度へ、前記回転ステージを加速または減速するように適合される第1のモータと、
静止状態から前記第1の角速度へ、前記回転ステージを加速し、および/またはゼロではない角速度から停止状態へ、前記回転ステージを減速するように適合される第2のモータと、
前記支持構造に対して略固定された位置にある、リソグラフィ、検査、または計測ツールと
を備える、基板プロセス装置。
適用例77:
前記リソグラフィ、検査、または計測ツールは、電子ビームのカラム、光学カラム、またはX線のカラムを備える、適用例76の装置。
適用例78:
前記ツールに対する前記基板の位置を、所望の位置から40ナノメートル以内に制御するように適合された制御システムをさらに備える、適用例76に記載の装置。
適用例79:
前記第1のモータは、前記キャリアステージに取り付けられた固定子および前記回転ステージに取り付けられた回転子を有する電気モータである、適用例76に記載の装置。
適用例80:
前記回転子および固定子は、前記回転子上の前記固定子によってもたらされた磁力が、前記回転ステージの重さの全てまたはその殆どを支持するのに十分であるように構成される、適用例79に記載の装置。
適用例81:
前記第2のモータは、前記キャリアステージに取り付けられた固定子を有する電気モータであり、回転子および係合機構は、前記第2のモータの前記回転子を、前記回転ステージまたは前記第1のモータの前記回転子に選択的に係合するように構成される、適用例79に記載の装置。
適用例82:
前記係合機構は摩擦駆動を備える、適用例81に記載の装置。
適用例83:
前記摩擦駆動は、前記回転ステージを、前記回転ステージの縁に隣接して係合するように構成される、適用例82に記載の装置。
適用例84:
前記係合機構は、前記第2のモータのシャフトに取り付けられたクラッチプレートを備え、前記クラッチプレートおよび前記第1のモータの回転子は、相互に選択的な機械的係合のために構成される、適用例83に記載の装置。
適用例85:
前記係合機構は、前記クラッチプレート上の第1の接面および前記第1の回転子の回転子上の第2の接面を備える、適用例84に記載の装置。
適用例86:
前記係合機構は、前記第1および第2の接面を係合するために、前記クラッチプレートと前記第1のモータの前記回転子との間に相対的な軸方向運動を分与するように構成される、適用例85に記載の装置。
適用例87:
前記第1および第2の接面の一方が突起部を備え、前記第1および第2の接面の他方が、対応の凹部を備える、適用例85に記載の装置。
適用例88:
前記第1および第2のモータは、前記突起部と前記凹部とを係合するために、前記第1および第2の接面を互いに角度的に調整するように構成される、適用例85に記載の装置。
適用例89:
前記第1のモータおよび前記第2のモータは前記回転軸の周囲を回転するように構成される、適用例76に記載の装置。
適用例90:
前記第2のモータの前記回転子は前記回転ステージに取り付けられた導電性リングを備え、
前記導電性リングは前記回転軸と同軸であり、
前記第2のモータの前記固定子は、前記導電性リングにおいて、渦電流を誘発する回転磁気フラックスを生成するように構成され、
前記渦電流と前記回転フラックスとの間の作用が前記導電性リング上にトルクをもたらす、適用例89に記載の装置。
適用例91:
前記第1のモータは相対的に低いトルクリップルによって特徴付けられ、前記第2のモータは、前記第1のモータと比較して相対的に高いトルクによって特徴付けられる、適用例90に記載の装置。
適用例92:
前記キャリアステージは、平行移動軸に沿って、前記支持構造に対して平行移動するように適合されたリニア平行移動ステージであり、前記回転ステージは、前記リニア平行移動ステージに沿って、前記支持構造に対して平行移動する、適用例76に記載の装置。
適用例93:
前記第1のモータは、前記キャリアステージに取り付けられた固定子および前記回転ステージに取り付けられた回転子を有する電気モータである、適用例92に記載の装置。
適用例94:
前記回転子および固定子は、前記回転子上の前記固定子によってもたらされた磁力が、前記回転ステージの重さの全てまたはその殆どを支持するのに十分であるように構成される、適用例93に記載の装置。
適用例95:
前記第2のモータは前記支持構造に取り付けられ、前記装置は、前記第2のモータを、前記回転ステージまたは前記第1のモータの前記回転子に選択的に係合するように構成された係合機構をさらに備える、適用例93に記載の装置。
適用例96:
前記係合機構は磁気クラッチを備える、適用例95に記載の装置。
適用例97:
前記支持構造は、前記キャリアステージ、または前記キャリアステージおよび前記回転ステージを含むチャンバを支持する基部である、適用例76に記載の装置。
適用例98:
前記回転ステージ、および/または前記回転ステージの端部に隣接する平行移動ステージに取り付けられた1つ以上の磁気浮上(マグレブ)ユニットをさらに備える、適用例76に記載の装置。
適用例99:
回転ステージ上に複数の基板を保持することと、
ブースタモータを用いて、静止状態から第1の角速度へ、キャリアステージに対して回転加速し、および/または、ゼロではない角速度から停止状態へ、前記回転ステージを減速することと、
所望の角速度にて前記回転ステージを維持し、および/または、相対的に低いトルクリップルによって特徴付けられる第1のモータを用いて、第1の角速度から第2の角速度へ、前記回転ステージを回転加速または回転減速することと、
支持構造に対して略固定された位置にあるリソグラフィ、検査、または計測ツールを用いて前記基板を処理しながら、平行移動軸に沿って前記支持構造に対してリニア平行移動ステージを平行移動することと、
を含む、基板処理方法。
適用例100:
前記ツールに対する前記基板の位置を、所望の位置から40ナノメートル以内に制御することをさらに含む、適用例99に記載の方法。
適用例101:
前記ツールに対する前記基板の位置を制御することは、前記回転ステージに取り付けられた中心回転子および前記リニア平行移動ステージに取り付けられた固定子を用いる前記回転ステージの重さを支持することを含む、適用例100に記載の方法。
適用例102:
前記回転ステージの重さを支持することは、前記回転ステージの重さの全てまたはその殆どを支持するために、前記回転子と前記固定子との間に磁力を用いることを含む、適用例101に記載の方法。
適用例103:
前記ブースタモータを前記回転ステージから選択的に係合および解除することをさらに含む、適用例99に記載の方法。
適用例104:
前記ブースタモータを選択的に係合および解除することは、前記ブースタモータの回転子と前記回転ステージとを同じ角速度で回転させることを含む、適用例103に記載の方法。
適用例105:
前記ブースタモータを選択的に係合および解除することは、前記回転ステージに対して前記ブースタモータの前記回転子を角度的に調整することをさらに含む、適用例104に記載の方法。
適用例106:
前記第1のモータは、キャリアステージに取り付けられた固定子および前記回転ステージに取り付けられた回転子を有する電気モータである、適用例99に記載の方法。
適用例107:
前記第2のモータは、前記リニア平行移動ステージに取り付けられた固定子を有する電気モータである、適用例106に記載の方法。
適用例108:
前記ブースタモータを用いて、静止状態から前記第1の角速度へ、前記回転ステージを回転加速し、および/またはゼロではない角速度から停止状態 へ、前記回転ステージを減速することは、前記ブースタモータで前記回転ステージの縁に隣接する前記回転ステージに駆動力を付与することを含む、適用例99 に記載の方法。
適用例109:
前記第1のモータおよび前記第2のモータは、前記回転軸の周囲を回転するように構成される、適用例99に記載の方法。
適用例110:
前記回転ステージを回転加速することは、回転磁気フラックスを、前記回転ステージに取り付けられた導電性リングに付与することを含み、
前記導電性リングは前記回転軸と同軸であり、
前記回転フラックスは前記導電性リングにおいて渦電流を誘発し、
前記渦電流と前記回転フラックスとの間における作用が前記導電性リング上にトルクをもたらして、前記回転ステージを回転加速する、適用例99に記載の方法。
Claims (110)
- 基板プロセス装置であって、
支持構造と、
第1のステージおよび第2のステージを有する可動式ステージとを備え、
前記第1のステージは1つ以上の基板を保持するように適合され、
前記第1のステージは前記第2のステージに対して略固定された位置および方向を有する第1の軸に対して移動するように適合され、
前記第2のステージは第2の軸に沿って前記支持構造に対して移動するように適合され、前記可動式ステージはまた、前記第1のステージおよび/または前記第1のステージの端部に隣接する前記第2のステージに取り付けられた1つ以上の磁気浮上(マグレブ)ユニットを有する、基板プロセス装置。 - 前記第1のステージは回転ステージであり、前記第2のステージはリニア平行移動ステージであり、
前記回転ステージは1つ以上の基板を保持するように適合され、
前記回転ステージは前記リニア平行移動ステージに対して略固定された位置および方向を有する回転軸周囲を回転するように適合され、
前記リニア平行移動ステージは平行移動軸に沿って前記支持構造に対して移動するように適合され、前記可動式ステージはまた、前記回転ステージおよび/または前記回転ステージの端部に隣接する平行移動ステージに取り付けられた1つ以上の磁気浮上(マグレブ)ユニットを有する、請求項1に記載の装置。 - 前記マグレブユニットは前記リニア平行移動ステージに実装される1つ以上の回転ステージマグレブユニットを備え、
前記装置は、前記回転ステージの周辺に取り付けられた前記回転軸と同軸の強磁性体リングをさらに備え、
前記マグレブユニットは力を前記強磁性体リングに付与するように構成される、請求項2に記載の装置。 - 前記回転ステージマグレブユニットは、垂直方向の力を前記強磁性体リングに付与するように適合された、1つ以上の回転ステージ垂直マグレブユニットを備える、請求項3に記載の装置。
- 前記マグレブユニットは、前記平行移動ステージを前記支持構造から浮遊させるように適合された1つ以上の平行移動ステージ垂直マグレブユニットを備える、請求項4に記載の装置。
- 前記支持構造は、前記可動式ステージを含むチャンバの蓋である、請求項5に記載の装置。
- 前記平行移動ステージ垂直マグレブユニットは、対応の回転ステージ垂直マグレブと近接した構成にて配置される、請求項5に記載の装置。
- 前記磁気浮上ユニットは前記平行移動ステージに取り付けられた1つ以上の回転ステージの半径方向のマグレブユニットを備え、前記回転ステージの半径方向のマグレブユニットは半径方向において、力を前記強磁性体リングに付与するように適合される、請求項3に記載の装置。
- 前記半径方向のマグレブユニットは、前記回転軸および前記平行移動軸の両方に対して直交するY方向において、力を前記強磁性体リングに付与するように適合された1つ以上のY半径方向のマグレブユニットを含む、請求項8に記載の装置。
- 前記Y方向において、力を前記平行移動ステージに付与するように適合された1つ以上の平行移動ステージのYマグレブユニットをさらに備える、請求項9に記載の装置。
- 前記平行移動ステージのYマグレブユニットは、対応の回転ステージのYマグレブユニットと近接した構成にて配置される、請求項10に記載の装置。
- 前記回転ステージは、磁気的に透明な材料からなる、請求項2に記載の装置。
- 計測対照フレームに対する、前記回転ステージおよび/またはリニアステージおよび/または基板処理ツールの位置における変化を検知するように適合された1つ以上の干渉計をさらに備える、請求項2に記載の装置。
- 前記計測対照フレームは、前記可動式ステージを含むチャンバの蓋に固定される、請求項13に記載の装置。
- 1つ以上の干渉計は1つ以上の微分干渉計を備える、請求項14に記載の装置。
- 前記1つ以上の干渉計は、光源と光学センサとの間における1つ以上の光学経路に沿って配置された干渉計を備え、前記1つ以上の光学経路は参照ビーム経路および測定ビーム経路を備え、
前記測定ビーム経路は、前記チャンバの蓋に実装された第1の参照ミラーと、前記回転ステージ、前記平行移動ステージ、または前記支持構造に対して略固定された位置にある、基板処理ツールに実装された第2の参照ミラーとの間における一部分を備える、請求項14に記載の装置。 - 前記第1の参照ミラーは前記平行移動軸および前記回転軸に平行に方向付けられたY参照ミラーである、請求項16に記載の装置。
- 前記1つ以上の干渉計は前記平行移動ステージに実装された干渉計を備え、
前記第2の参照ミラーは前記回転ステージに取り付けられた円柱状ミラーであり、
前記円柱状ミラーは前記回転軸に略同軸である円柱状反射表面を有する、請求項17に記載の装置。 - 前記円柱状反射表面は前記回転ステージの周辺に位置される、請求項18に記載の装置。
- 前記円柱状反射表面は前記回転ステージの半径よりも短い半径を有する、請求項18に記載の装置。
- 前記平行移動ステージに実装された前記干渉計は、ビームスプリッタと前記円柱状ミラーとの間に配置される波面補正光学装置を備え、前記波面補正光学装置は、前記円柱状反射表面において、前記測定ビームから光の反射を補正するように構成される、請求項18に記載の装置。
- 前記波面補正光学装置は、前記回転軸において、前記ビームスプリッタから平行光の焦点を合わせるように適合される、請求項21に記載の装置。
- 前記波面補正光学装置は、前記円柱状反射表面において、前記ビームスプリッタから平行光の焦点を合わせるように適合される、請求項21に記載の装置。
- 前記第1の参照ミラーは、前記回転軸に対して直交する方向に向けられたZ参照ミラーである、請求項16に記載の装置。
- 前記1つ以上の干渉計は、前記平行移動ステージに実装された干渉計を備え、
前記第2の参照ミラーは前記回転ステージに取り付けられるか、またはその一部であり、
前記第2の参照ミラーは前記回転軸に対して略直交する反射表面を備える、請求項24に記載の装置。 - 前記回転ステージによって支持された1つ以上の基板を処理するように適合された基板処理ツールをさらに備え、
光学カラムは、前記支持構造に対して略固定された位置にある、請求項2に記載の装置。 - 前記基板処理ツールは電子ビームの光学カラムを備える、請求項26に記載の装置。
- 前記回転ステージに取り付けられた中心回転子および前記リニアステージに取り付けられた固定子をさらに備え、
前記回転子および前記固定子は前記回転軸の周囲にある前記回転ステージに回転運動を分与するように適合され、
前記回転子および前記固定子は、前記回転ステージの重さを支持するように構成される、請求項2に記載の装置。 - 前記回転子および固定子は、前記回転子上の前記固定子によってもたらされた磁力が前記回転ステージの重さの全てまたは殆どを支持するのに十分であるように構成される、請求項28に記載の装置。
- 前記第1のステージは第1の平行移動ステージであり、前記第2のステージは第2の平行移動ステージであり、
前記第1の平行移動ステージは1つ以上の基板を保持するように適合され、
前記第1の平行移動ステージは前記第2の平行移動ステージに対して略固定された位置および方向を有する第1の軸に対して直線的に移動するように適合され、
前記第2の平行移動ステージは、前記第1の軸に対して傾いている第2の軸に沿って前記支持構造に対して平行移動するように適合され、
前記1つ以上の磁気浮上(マグレブ)ユニットは、前記第1の平行移動ステージおよび/または前記第1の平行移動ステージの端部に隣接する前記第2の平行移動ステージに取り付けられ、
前記マグレブユニットは、前記第1の平行移動ステージと前記第2の平行移動ステージとの間において磁力をもたらすように適合される、請求項1に記載の装置。 - 前記支持構造は前記X−Yステージを含むチャンバの蓋である、請求項30に記載の装置。
- 前記マグレブユニットは、前記第2の軸に平行する方向に沿って、前記第1の平行移動ステージと前記第2の平行移動ステージとの間に力を付与するように構成される1つ以上のマグレブユニットを備える、請求項30に記載の装置。
- 前記マグレブユニットは、前記第1および第2の軸に直交する方向において、前記第1の平行移動ステージと前記第2の平行移動ステージとの間に力を付与するように適合された1つ以上の垂直マグレブユニットを備える、請求項30に記載の装置。
- 前記マグレブユニットは、前記第1および第2の軸に直交する方向において、前記支持構造と前記第2の平行移動ステージとの間に力を付与することによって、前記支持構造から前記第2の平行移動ステージを浮遊させるように適合された1つ以上の垂直マグレブユニットを備える、請求項30に記載の装置。
- 前記支持構造は前記可動式ステージを含むチャンバの蓋である、請求項34に記載の装置。
- 前記第1および/または第2の平行移動ステージは磁気的に透明な材料からなる、請求項30の装置。
- 前記第1の平行移動ステージおよび/または第2の平行移動ステージおよび/または前記支持構造に対して略固定された、光学カラムの位置における変化を検知するように適合され、かつ計測対照フレームに対して、前記第1の平行移動ステージによって支持される1つ以上の基板へ放射を向けるように適合された、1つ以上の干渉計をさらに備える、請求項30に記載の装置。
- 前記計測対照フレームは、前記可動式ステージを含むチャンバの蓋に固定される、請求項37に記載の装置。
- 1つ以上の干渉計が1つ以上の微分干渉計を含む、請求項37に記載の装置。
- 前記1つ以上の干渉計は、光源と光学センサとの間における1つ以上の光学経路に沿って配置された干渉計を備え、前記1つ以上の光学経路は、参照ビーム経路および測定ビーム経路を備え、
前記測定ビーム経路は、前記チャンバの蓋に実装される第1の参照ミラーと、前記回転ステージ、前記平行移動ステージ、または基板処理ツールに実装される第2の参照ミラーとの間の一部分を備える、請求項37に記載の装置。 - 前記第1の参照ミラーは、前記第1および第2の軸と略平行に向けられたZ参照ミラーである、請求項40に記載の装置。
- 前記1つ以上の干渉計は、前記第2の平行移動ステージに実装された干渉計を備え、
前記第2の参照ミラーは前記第1の平行移動ステージに取り付けられ、
前記第2の参照ミラーは前記第1および第2の軸に対して略直交する反射表面を備える、請求項41に記載の装置。 - 前記第1の平行移動ステージによって支持された1つ以上の基板を処理するように適合された基板処理ツールをさらに備え、
前記光学カラムは、前記支持構造に対して略固定された位置にある、請求項30に記載の装置。 - 前記基板処理ツールは電子ビームの光学カラムを備える、請求項43に記載の装置。
- 支持構造と、
回転ステージおよびリニア平行移動ステージを有する回転−リニアステージであって、
前記回転ステージは複数の基板を保持するように適合され、
前記回転ステージは、前記リニア平行移動ステージに対して、略固定された位置および方向を有する回転軸の周囲を、連続した動きで回転するように適合され、
前記リニア平行移動ステージは平行移動軸に沿って、前記支持構造に対して移動するように適合される、回転−リニアステージと、
前記支持構造に対して略固定された位置にある、リソグラフィ、検査、または計測ツールと、
前記ツールに対する前記基板の位置を、所望の位置から10ナノメートル以内に制御するように適合される制御システムと
を備える、基板プロセス装置。 - 前記リソグラフィ、検査、または計測ツールは電子ビームの光学カラムを備える、請求項45に記載の装置。
- 前記制御システムは、前記回転ステージ、1つ以上の前記基板、および/または前記電子ビームの位置を検知するように適合される1つ以上のセンサを含み、
前記制御システムは、前記支持構造に対する前記回転ステージの位置を調節するように適合された1つ以上のアクチュエータを備え、
前記電子ビームの光学カラムは、ビーム偏向機構を備え、
前記制御システムは、前記1つ以上のアクチュエータに結合されたステージコントローラおよび前記ビーム偏向機構に結合されたビームコントローラを備え、
前記ステージコントローラは、ビーム−基板位置誤差の低周波数成分を補正するように適合され、前記ビーム偏向機構は前記ビーム−基板位置誤差の高周波数成分を補正するように適合される、請求項46に記載の装置。 - 前記回転ステージに取り付けられた中心回転子および前記リニアステージに取り付けられた固定子をさらに備え、
前記回転子および前記固定子は前記回転軸の周囲にある前記回転ステージに回転運動を分与するように適合され、
前記回転子および前記固定子は、前記回転ステージの重さを支持するように構成される、請求項45に記載の装置。 - 前記回転子および固定子は、前記回転子上の前記固定子によってもたらされた磁力が前記回転ステージの重さの全てまたは殆どを支持するのに十分であるように構成される、請求項48に記載の装置。
- 回転ステージ上に複数の基板を保持することと、
前記回転ステージを、リニア平行移動ステージに対して略固定された位置および方向を有する回転軸の周囲を連続した動きで回転させることと、
平行移動軸に沿って支持構造に対して前記リニア平行移動ステージを平行移動させることと、
前記支持構造に対して略固定された位置にあるリソグラフィ、検査、または計測ツールを用いて前記基板を処理することと、
前記ツールに対する前記基板の位置を、所望の位置から10ナノメートル以内に制御することと
を含む、基板処理方法。 - 前記ツールに対する前記基板の位置を制御することは、前記回転ステージに取り付けられた中心回転子および前記リニアステージに取り付けられた固定子を用いて、前記回転ステージの重さを支持することを含む、請求項50に記載の方法。
- 前記回転ステージの重さを支持することは、前記回転ステージの重さの全てまたはその殆どを支持するために、前記回転子と前記固定子との間の磁力を用いることを含む、請求項51に記載の方法。
- キャリアステージと、
1つ以上の基板を保持するように適合され、前記ステージに対して略固定された位置および方向を有する回転軸の周囲を、前記キャリアステージに対して回転するように適合された、回転ステージと、
所望の角速度にて前記回転ステージを維持するように適合され、および/または第1の角速度から第2の角速度へ、前記回転ステージを回転加速または回転減速するように適合された第1のモータと、
静止状態から前記第1の角速度へ、前記回転ステージを回転加速するように適合され、および/または、ゼロではない角速度から停止へ、前記回転ステージを回転減速するように適合された第2のモータと
を備える、基板プロセス装置。 - 前記第1のモータは、前記ステージに取り付けられた固定子および前記回転ステージに取り付けられた回転子を有する電気モータである、請求項53に記載の装置。
- 前記第2のモータは、前記ステージに取り付けられた固定子を有する電気モータであり、回転子および係合機構は、前記回転ステージまたは前記第1のモータの前記回転子に、前記第2のモータの前記回転子を選択的に係合するように構成される、請求項54に記載の装置。
- 前記係合機構は摩擦駆動を備える、請求項55に記載の装置。
- 前記摩擦駆動は、前記回転ステージを、前記回転ステージの縁に隣接して係合するように構成される、請求項56に記載の装置。
- 前記係合機構は、前記第2のモータのシャフトに取り付けられたクラッチプレートを備え、前記クラッチプレートおよび前記第1のモータの回転子は、相互に選択的な機械的係合のために構成される、請求項55に記載の装置。
- 前記係合機構は、前記クラッチプレート上の第1の接面および前記第1の回転子の回転子上の第2の接面を備える、請求項58に記載の装置。
- 前記係合機構は、前記第1および第2の接面を係合するために、前記クラッチプレートと前記第1のモータの前記回転子との間に相対的な軸方向運動を分与するように構成される、請求項59に記載の装置。
- 前記第1および第2の接面の一方が突起部を備え、前記第1および第2の接面の他方が、対応の凹部を備える、請求項59に記載の装置。
- 前記第1および第2のモータは、前記突起部と前記凹部とを係合するために、前記第1および第2の接面を互いに角度的に調整するように構成される、請求項59に記載の装置。
- 前記第1のモータおよび前記第2のモータは前記回転軸の周囲を回転するように構成される、請求項54に記載の装置。
- 前記第2のモータの前記回転子は前記回転ステージに取り付けられた導電性リングを備え、
前記導電性リングは前記回転軸と同軸であり、
前記第2のモータの前記固定子は、前記導電性リングにおいて、渦電流を誘発する回転磁気フラックスを生成するように構成され、
前記渦電流と前記回転フラックスとの間の作用が前記導電性リング上にトルクをもたらす、請求項63に記載の装置。 - 前記第1のモータは相対的に低いトルクリップルによって特徴付けられ、前記第2のモータは、前記第1のモータと比較して相対的に高いトルクリップルによって特徴付けられる、請求項53に記載の装置。
- 支持構造をさらに備え、
前記キャリアステージは、平行移動軸に沿って、前記支持構造に対して平行移動するように適合されたリニア平行移動ステージであり、前記回転ステージは、前記リニア平行移動ステージに沿って、前記支持構造に対して平行移動する、請求項53に記載の装置。 - 前記第1のモータは、前記キャリアステージに取り付けられた固定子および前記回転ステージに取り付けられた回転子を有する電気モータである、請求項66に記載の装置。
- 前記回転子および固定子は、前記回転子上の前記固定子によってもたらされた磁力が、前記回転ステージの重さの全てまたはその殆どを支持するのに十分である、請求項67に記載の装置。
- 前記第2のモータは前記支持構造に取り付けられ、前記装置は、前記第2のモータを、前記回転ステージまたは前記第1のモータの前記回転子に選択的に係合するように構成された係合機構をさらに備える、請求項67に記載の装置。
- 前記係合機構は磁気クラッチを備える、請求項69に記載の装置。
- 前記支持構造は、前記キャリアステージ、または前記キャリアステージおよび前記回転ステージを含むチャンバの蓋を支持するステージ基部である、請求項66に記載の装置。
- 前記回転ステージ、および/または前記回転ステージの端部に隣接する平行移動ステージに取り付けられた1つ以上の磁気浮上(マグレブ)ユニットをさらに備える、請求項66に記載の装置。
- 計測対照フレームに対する、前記回転ステージおよび/またはキャリアステージおよび/または基板処理ツールの位置における変化を検知するように適合された1つ以上のセンサをさらに備える、請求項53に記載の装置。
- 前記計測対照フレームは、前記キャリアステージ、および前記回転ステージ、または前記キャリアステージおよび回転ステージを含むチャンバを支持する基部に対して固定される、請求項73に記載の装置。
- 1つ以上のセンサは1つ以上の微分干渉計を含む、請求項73に記載の装置。
- 支持構造と、
回転ステージおよびリニア平行移動ステージを有する回転−リニアステージであって、
前記回転ステージは複数の基板を保持するように適合され、
前記回転ステージは、前記リニア平行移動ステージに対して、略固定された位置および方向を有する回転軸の周囲を、持続する運動にて回転するように適合され、
前記リニア平行移動ステージは平行移動軸に沿って、前記支持構造に対して平行移動するように適合される、回転−リニアステージと、
所望の角速度にて前記回転ステージを維持し、および/または第1の角速度から第2の角速度へ、前記回転ステージを加速または減速するように適合される第1のモータと、
静止状態から前記第1の角速度へ、前記回転ステージを加速し、および/またはゼロではない角速度から停止状態へ、前記回転ステージを減速するように適合される第2のモータと、
前記支持構造に対して略固定された位置にある、リソグラフィ、検査、または計測ツールと
を備える、基板プロセス装置。 - 前記リソグラフィ、検査、または計測ツールは、電子ビームのカラム、光学カラム、またはX線のカラムを備える、請求項76の装置。
- 前記ツールに対する前記基板の位置を、所望の位置から40ナノメートル以内に制御するように適合された制御システムをさらに備える、請求項76に記載の装置。
- 前記第1のモータは、前記キャリアステージに取り付けられた固定子および前記回転ステージに取り付けられた回転子を有する電気モータである、請求項76に記載の装置。
- 前記回転子および固定子は、前記回転子上の前記固定子によってもたらされた磁力が、前記回転ステージの重さの全てまたはその殆どを支持するのに十分であるように構成される、請求項79に記載の装置。
- 前記第2のモータは、前記キャリアステージに取り付けられた固定子を有する電気モータであり、回転子および係合機構は、前記第2のモータの前記回転子を、前記回転ステージまたは前記第1のモータの前記回転子に選択的に係合するように構成される、請求項79に記載の装置。
- 前記係合機構は摩擦駆動を備える、請求項81に記載の装置。
- 前記摩擦駆動は、前記回転ステージを、前記回転ステージの縁に隣接して係合するように構成される、請求項82に記載の装置。
- 前記係合機構は、前記第2のモータのシャフトに取り付けられたクラッチプレートを備え、前記クラッチプレートおよび前記第1のモータの回転子は、相互に選択的な機械的係合のために構成される、請求項83に記載の装置。
- 前記係合機構は、前記クラッチプレート上の第1の接面および前記第1の回転子の回転子上の第2の接面を備える、請求項84に記載の装置。
- 前記係合機構は、前記第1および第2の接面を係合するために、前記クラッチプレートと前記第1のモータの前記回転子との間に相対的な軸方向運動を分与するように構成される、請求項85に記載の装置。
- 前記第1および第2の接面の一方が突起部を備え、前記第1および第2の接面の他方が、対応の凹部を備える、請求項85に記載の装置。
- 前記第1および第2のモータは、前記突起部と前記凹部とを係合するために、前記第1および第2の接面を互いに角度的に調整するように構成される、請求項85に記載の装置。
- 前記第1のモータおよび前記第2のモータは前記回転軸の周囲を回転するように構成される、請求項76に記載の装置。
- 前記第2のモータの前記回転子は前記回転ステージに取り付けられた導電性リングを備え、
前記導電性リングは前記回転軸と同軸であり、
前記第2のモータの前記固定子は、前記導電性リングにおいて、渦電流を誘発する回転磁気フラックスを生成するように構成され、
前記渦電流と前記回転フラックスとの間の作用が前記導電性リング上にトルクをもたらす、請求項89に記載の装置。 - 前記第1のモータは相対的に低いトルクリップルによって特徴付けられ、前記第2のモータは、前記第1のモータと比較して相対的に高いトルクによって特徴付けられる、請求項90に記載の装置。
- 前記キャリアステージは、平行移動軸に沿って、前記支持構造に対して平行移動するように適合されたリニア平行移動ステージであり、前記回転ステージは、前記リニア平行移動ステージに沿って、前記支持構造に対して平行移動する、請求項76に記載の装置。
- 前記第1のモータは、前記キャリアステージに取り付けられた固定子および前記回転ステージに取り付けられた回転子を有する電気モータである、請求項92に記載の装置。
- 前記回転子および固定子は、前記回転子上の前記固定子によってもたらされた磁力が、前記回転ステージの重さの全てまたはその殆どを支持するのに十分であるように構成される、請求項93に記載の装置。
- 前記第2のモータは前記支持構造に取り付けられ、前記装置は、前記第2のモータを、前記回転ステージまたは前記第1のモータの前記回転子に選択的に係合するように構成された係合機構をさらに備える、請求項93に記載の装置。
- 前記係合機構は磁気クラッチを備える、請求項95に記載の装置。
- 前記支持構造は、前記キャリアステージ、または前記キャリアステージおよび前記回転ステージを含むチャンバを支持する基部である、請求項76に記載の装置。
- 前記回転ステージ、および/または前記回転ステージの端部に隣接する平行移動ステージに取り付けられた1つ以上の磁気浮上(マグレブ)ユニットをさらに備える、請求項76に記載の装置。
- 回転ステージ上に複数の基板を保持することと、
ブースタモータを用いて、静止状態から第1の角速度へ、キャリアステージに対して回転加速し、および/または、ゼロではない角速度から停止状態へ、前記回転ステージを減速することと、
所望の角速度にて前記回転ステージを維持し、および/または、相対的に低いトルクリップルによって特徴付けられる第1のモータを用いて、第1の角速度から第2の角速度へ、前記回転ステージを回転加速または回転減速することと、
支持構造に対して略固定された位置にあるリソグラフィ、検査、または計測ツールを用いて前記基板を処理しながら、平行移動軸に沿って前記支持構造に対してリニア平行移動ステージを平行移動することと、
を含む、基板処理方法。 - 前記ツールに対する前記基板の位置を、所望の位置から40ナノメートル以内に制御することをさらに含む、請求項99に記載の方法。
- 前記ツールに対する前記基板の位置を制御することは、前記回転ステージに取り付けられた中心回転子および前記リニア平行移動ステージに取り付けられた固定子を用いる前記回転ステージの重さを支持することを含む、請求項100に記載の方法。
- 前記回転ステージの重さを支持することは、前記回転ステージの重さの全てまたはその殆どを支持するために、前記回転子と前記固定子との間に磁力を用いることを含む、請求項101に記載の方法。
- 前記ブースタモータを前記回転ステージから選択的に係合および解除することをさらに含む、請求項99に記載の方法。
- 前記ブースタモータを選択的に係合および解除することは、前記ブースタモータの回転子と前記回転ステージとを同じ角速度で回転させることを含む、請求項103に記載の方法。
- 前記ブースタモータを選択的に係合および解除することは、前記回転ステージに対して前記ブースタモータの前記回転子を角度的に調整することをさらに含む、請求項104に記載の方法。
- 前記第1のモータは、キャリアステージに取り付けられた固定子および前記回転ステージに取り付けられた回転子を有する電気モータである、請求項99に記載の方法。
- 前記第2のモータは、前記リニア平行移動ステージに取り付けられた固定子を有する電気モータである、請求項106に記載の方法。
- 前記ブースタモータを用いて、静止状態から前記第1の角速度へ、前記回転ステージを回転加速し、および/またはゼロではない角速度から停止状態へ、前記回転ステージを減速することは、前記ブースタモータで前記回転ステージの縁に隣接する前記回転ステージに駆動力を付与することを含む、請求項99に記載の方法。
- 前記第1のモータおよび前記第2のモータは、前記回転軸の周囲を回転するように構成される、請求項99に記載の方法。
- 前記回転ステージを回転加速することは、回転磁気フラックスを、前記回転ステージに取り付けられた導電性リングに付与することを含み、
前記導電性リングは前記回転軸と同軸であり、
前記回転フラックスは前記導電性リングにおいて渦電流を誘発し、
前記渦電流と前記回転フラックスとの間における作用が前記導電性リング上にトルクをもたらして、前記回転ステージを回転加速する、請求項99に記載の方法。
Applications Claiming Priority (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US87052806P | 2006-12-18 | 2006-12-18 | |
US60/870,528 | 2006-12-18 | ||
US11/670,896 | 2007-02-02 | ||
US11/670,896 US7633070B2 (en) | 2006-12-18 | 2007-02-02 | Substrate processing apparatus and method |
US94866707P | 2007-07-09 | 2007-07-09 | |
US60/948,667 | 2007-07-09 |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2013212848A Division JP2014042048A (ja) | 2006-12-18 | 2013-10-10 | 基板プロセス装置および方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2015111714A true JP2015111714A (ja) | 2015-06-18 |
Family
ID=39359425
Family Applications (3)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2009541643A Expired - Fee Related JP5453104B2 (ja) | 2006-12-18 | 2007-12-18 | 基板プロセス装置 |
JP2013212848A Pending JP2014042048A (ja) | 2006-12-18 | 2013-10-10 | 基板プロセス装置および方法 |
JP2015015084A Pending JP2015111714A (ja) | 2006-12-18 | 2015-01-29 | 基板プロセス装置および方法 |
Family Applications Before (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2009541643A Expired - Fee Related JP5453104B2 (ja) | 2006-12-18 | 2007-12-18 | 基板プロセス装置 |
JP2013212848A Pending JP2014042048A (ja) | 2006-12-18 | 2013-10-10 | 基板プロセス装置および方法 |
Country Status (3)
Country | Link |
---|---|
EP (1) | EP2097790A2 (ja) |
JP (3) | JP5453104B2 (ja) |
WO (1) | WO2008077048A2 (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2019512064A (ja) * | 2017-03-16 | 2019-05-09 | アプライド マテリアルズ インコーポレイテッドApplied Materials,Incorporated | 物体を保持し、位置付け、かつ/又は動かすための装置、及び、物体を保持し、位置付け、かつ/又は動かすための装置を動作させる方法 |
Families Citing this family (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101847978B1 (ko) * | 2011-06-10 | 2018-04-12 | 엘지디스플레이 주식회사 | 유기발광소자 제조장비 |
WO2013036615A1 (en) * | 2011-09-06 | 2013-03-14 | Kla-Tencor Corporation | Linear stage for reflective electron beam lithography |
JP5886084B2 (ja) * | 2012-03-05 | 2016-03-16 | 住友重機械工業株式会社 | ステージ装置 |
US10910253B2 (en) * | 2016-11-09 | 2021-02-02 | Tel Manufacturing And Engineering Of America, Inc. | Magnetically levitated and rotated chuck for processing microelectronic substrates in a process chamber |
TWI765936B (zh) | 2016-11-29 | 2022-06-01 | 美商東京威力科創Fsi股份有限公司 | 用以對處理腔室中之微電子基板進行處理的平移與旋轉夾頭 |
KR102493551B1 (ko) | 2017-01-27 | 2023-01-30 | 티이엘 매뉴팩처링 앤드 엔지니어링 오브 아메리카, 인크. | 프로세스 챔버에서 기판을 회전 및 병진시키기 위한 시스템 및 방법 |
US11545387B2 (en) | 2018-07-13 | 2023-01-03 | Tel Manufacturing And Engineering Of America, Inc. | Magnetic integrated lift pin system for a chemical processing chamber |
CN112165277B (zh) * | 2020-10-14 | 2023-05-16 | 福建师范大学 | 用于三维显示的磁悬浮旋转装置和三维显示系统 |
CN113899748A (zh) * | 2021-10-29 | 2022-01-07 | 中航电测仪器(西安)有限公司 | 一种基于机器视觉的应变计缺陷识别设备及方法 |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6314497B2 (ja) * | 1981-12-10 | 1988-03-31 | Dainippon Screen Mfg | |
JP2003121574A (ja) * | 2001-07-04 | 2003-04-23 | Shinko Electric Co Ltd | テーブル装置 |
Family Cites Families (19)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2860609B2 (ja) * | 1991-02-06 | 1999-02-24 | キヤノン株式会社 | 半導体露光装置 |
JP2505952B2 (ja) * | 1992-04-17 | 1996-06-12 | キヤノン株式会社 | 半導体製造装置 |
JP3250282B2 (ja) * | 1992-10-20 | 2002-01-28 | ソニー株式会社 | ウェハ表面検査装置 |
JPH07208964A (ja) * | 1994-01-13 | 1995-08-11 | Fujitsu Ltd | 回路パターン検査装置及び方法並びにこの方法に適した回路パターン配置 |
JPH0997764A (ja) * | 1995-09-29 | 1997-04-08 | Toshiba Corp | 基板処理装置 |
US5818137A (en) * | 1995-10-26 | 1998-10-06 | Satcon Technology, Inc. | Integrated magnetic levitation and rotation system |
JPH09320948A (ja) * | 1996-05-27 | 1997-12-12 | Nikon Corp | 基板の受け渡し方法及び露光装置 |
JP3652912B2 (ja) * | 1999-03-08 | 2005-05-25 | 日本電子株式会社 | 欠陥検査装置 |
DE69900557T2 (de) * | 1999-08-16 | 2002-05-23 | Advantest Corp., Tokio/Tokyo | Vorrichtung zur Kontrolle und/oder Bearbeitung eines Musters |
JP2002083758A (ja) * | 2000-09-07 | 2002-03-22 | Pioneer Electronic Corp | 露光装置 |
US6515742B1 (en) * | 2000-11-28 | 2003-02-04 | Memc Electronic Materials, Inc. | Defect classification using scattered light intensities |
US20030230323A1 (en) * | 2002-06-14 | 2003-12-18 | Taiwan Semiconductor Manufacturing Co., Ltd. | Apparatus and method for improving scrubber cleaning |
US6706999B1 (en) * | 2003-02-24 | 2004-03-16 | Electro Scientific Industries, Inc. | Laser beam tertiary positioner apparatus and method |
WO2005078526A1 (en) * | 2004-02-11 | 2005-08-25 | Koninklijke Philips Electronics N.V. | A system for positioning a product |
US20080266037A1 (en) * | 2004-06-17 | 2008-10-30 | Mark Williams | Magnetic Levitation Lithography Apparatus and Method |
US20060054494A1 (en) * | 2004-09-16 | 2006-03-16 | Veeco Instruments Inc. | Physical vapor deposition apparatus for depositing thin multilayer films and methods of depositing such films |
US20060092399A1 (en) * | 2004-10-29 | 2006-05-04 | Asml Netherlands B.V. | Lithographic apparatus, a control system for controlling a lithographic apparatus, and a device manufacturing method |
JP2006203113A (ja) * | 2005-01-24 | 2006-08-03 | Nikon Corp | ステージ装置、ステージ制御方法、露光装置及び方法、並びにデバイス製造方法 |
JP2006292642A (ja) * | 2005-04-14 | 2006-10-26 | Ricoh Co Ltd | 光測長器、光ディスク原盤露光装置、及び加工装置 |
-
2007
- 2007-12-18 JP JP2009541643A patent/JP5453104B2/ja not_active Expired - Fee Related
- 2007-12-18 WO PCT/US2007/087953 patent/WO2008077048A2/en active Application Filing
- 2007-12-18 EP EP07869445A patent/EP2097790A2/en not_active Withdrawn
-
2013
- 2013-10-10 JP JP2013212848A patent/JP2014042048A/ja active Pending
-
2015
- 2015-01-29 JP JP2015015084A patent/JP2015111714A/ja active Pending
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6314497B2 (ja) * | 1981-12-10 | 1988-03-31 | Dainippon Screen Mfg | |
JP2003121574A (ja) * | 2001-07-04 | 2003-04-23 | Shinko Electric Co Ltd | テーブル装置 |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2019512064A (ja) * | 2017-03-16 | 2019-05-09 | アプライド マテリアルズ インコーポレイテッドApplied Materials,Incorporated | 物体を保持し、位置付け、かつ/又は動かすための装置、及び、物体を保持し、位置付け、かつ/又は動かすための装置を動作させる方法 |
Also Published As
Publication number | Publication date |
---|---|
EP2097790A2 (en) | 2009-09-09 |
JP5453104B2 (ja) | 2014-03-26 |
WO2008077048A2 (en) | 2008-06-26 |
JP2010514167A (ja) | 2010-04-30 |
JP2014042048A (ja) | 2014-03-06 |
WO2008077048A3 (en) | 2008-12-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5453104B2 (ja) | 基板プロセス装置 | |
US7633070B2 (en) | Substrate processing apparatus and method | |
US8058628B2 (en) | Substrate processing apparatus and method | |
US7897942B1 (en) | Dynamic tracking of wafer motion and distortion during lithography | |
US6353271B1 (en) | Extreme-UV scanning wafer and reticle stages | |
US6639225B2 (en) | Six-axis positioning system having a zero-magnetic-field space | |
US6777833B1 (en) | Magnetic levitation stage apparatus and method | |
TW574632B (en) | Stage apparatus and exposure apparatus | |
JP2003197519A (ja) | 露光装置および露光方法 | |
CN100444023C (zh) | 极紫外光刻精密磁悬浮工件台 | |
JP2010514167A5 (ja) | 基板プロセス装置 | |
US7025005B2 (en) | Stage device and angle detecting device | |
JP3720613B2 (ja) | 位置決め装置、露光装置およびデバイス製造方法ならびに位置決め方法 | |
TW201830156A (zh) | 馬達總成、微影裝置及器件製造方法 | |
KR101688905B1 (ko) | 리소그래피 장치 및 디바이스 제조 방법 | |
JP2005046941A (ja) | ケーブル微動ユニット付きステージ装置 | |
JP2018536188A (ja) | 位置決めデバイス、リソグラフィ装置、及びデバイス製造方法 | |
TWI836101B (zh) | 將一工件定位於一載台上的系統及方法 | |
KR20010112467A (ko) | 스테이지 장치 및 노광장치 | |
KR20120031074A (ko) | 노광 장치 및 디바이스 제조 방법 | |
JP2005142501A (ja) | ステージ装置および露光装置ならびにデバイス製造方法 | |
JP4198338B2 (ja) | ステージ装置 | |
JPS5990926A (ja) | 局部的真空エンベロプを組み込んだ荷電粒子ビ−ムリソグラフイ装置 | |
JP2002343706A (ja) | ステージ装置及びステージの駆動方法、露光装置及び露光方法、並びにデバイス及びその製造方法 | |
JP2016219178A (ja) | 荷電粒子線装置及び試料昇降装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20160225 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20160301 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20161004 |