JP2015080327A - モータ制御システム - Google Patents

モータ制御システム Download PDF

Info

Publication number
JP2015080327A
JP2015080327A JP2013215489A JP2013215489A JP2015080327A JP 2015080327 A JP2015080327 A JP 2015080327A JP 2013215489 A JP2013215489 A JP 2013215489A JP 2013215489 A JP2013215489 A JP 2013215489A JP 2015080327 A JP2015080327 A JP 2015080327A
Authority
JP
Japan
Prior art keywords
inverter
control
power supply
terminal
current detection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2013215489A
Other languages
English (en)
Inventor
佑季 石井
Yuki Ishii
佑季 石井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2013215489A priority Critical patent/JP2015080327A/ja
Publication of JP2015080327A publication Critical patent/JP2015080327A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility

Landscapes

  • Electric Propulsion And Braking For Vehicles (AREA)
  • Control Of Ac Motors In General (AREA)
  • Inverter Devices (AREA)

Abstract

【課題】2重三相モータに対して信頼性の高いフォルトトレラント性を有するモータ制御システムを得る。【解決手段】2重三相モータ1を駆動する第1のインバータ11および第2のインバータ21と、第1のインバータ11を駆動する第1の駆動回路12と、第1のインバータ11と駆動電源2の接続を遮断する第1の遮断手段14と、第1のインバータ11に印加される電流を検出する第1の電流検出手段13と、第2のインバータ21を駆動する第2の駆動回路22と、第2のインバータ21と駆動電源2の接続を遮断する第2の遮断手段24と、第2のインバータ21に印加される電流を検出する第2の電流検出手段23と、第1の駆動回路12、第2の遮断手段24および第2の電流検出手段23に、電力を供給する第1の制御電源16と、第2の駆動回路22、第1の遮断手段14および第1の電流検出手段13に、電力を供給する第2の制御電源26とで構成した。【選択図】 図1

Description

この発明は、電気自動車を駆動する2重三相モータ制御システムに適したモータ制御システムに関する。
従来、電気自動車を駆動する車載用モータシステムとしては、三相巻線により構成される固定子を2組有する2重三相モータと、2組の固定子の各々に接続される2つのインバータとから構成される車載用2重三相モータシステムがある。
電気自動車を駆動するモータ制御システムにおいては、安全性を確保することがもっとも重要な課題であり、その対策の一環として、フォルトトレラント性を考慮したシステム設計が行われている。例えば、電気自動車が走行中に突然故障した場合でも、電気自動車を停止することなく、走行し続ける最低限の機能を備えることが挙げられる。
従来技術におけるフォルトトレラント性を考慮した2重三相モータ制御システムでは、インバータの故障検出手段と、駆動電源とインバータとの接続を遮断する遮断手段を備えており、一方のインバータが故障した場合、故障した方のインバータと駆動電源との接続を遮断することにより、故障した方のインバータによる駆動電源の電力の消費を抑制し、正常に動作している方のインバータにより2重三相モータの駆動を維持する機能を備えている。
そのため、このようなモータ制御システムを搭載した電気自動車が、走行中に突然インバータの故障を起しても、電気自動車を停止することなく、走行し続けることが可能である(例えば、特許文献1参照)。
特開平6−276778
従来のモータ制御システムでは、2基のインバータのうち1基が故障した際、故障した方のインバータを駆動する駆動回路や駆動回路に電力を供給する制御電源に、接続された配線を経由し過電流が流入するなどの現象が起こり、連鎖的に駆動回路や制御電源も故障する可能性がある。
制御電源が故障すると、故障した方のインバータと駆動電源とを遮断する遮断手段が、故障した方の制御電源から作動用の電力を供給されている場合、この遮断手段が動作不能に陥ることが懸念される。その際、故障した方のインバータが、駆動電源の電力を急激に消費し、正常に動作している方のインバータによる2重三相モータの駆動を維持できなくなることが考えられる。よって、このようなモータ制御システムを搭載した電気自動車においては、走行を維持できなくなる問題があった。
この発明は、上述のような課題を解決するためになされたもので、一方のインバータが故障し、連鎖的に制御電源も故障した場合にも、2重三相モータの駆動を維持し、電気自動車においては、停止することなく走行し続けることができる機能を備えたモータ制御システムを提供するものである。
この発明に係るモータ制御システムにおいては、各々のインバータに流入する電流を検知するための電流検知手段と、各々の駆動回路と遮断手段と電流検知手段に作動用の電力を供給する制御電源を備え、
一方の制御電源は、一方のインバータの駆動回路と、他方のインバータに接続された遮断手段と電流検知手段に作動用の電力を供給し、他方の制御電源は、他方のインバータの駆動回路と、一方のインバータに接続された遮断手段と電流検知手段に作動用の電力を供給するように構成したものである。
この発明によれば、一方のインバータが故障し、連鎖的にそのインバータに接続する制御電源まで故障した場合でも、故障した方のインバータに接続された遮断手段および電流検出手段は、他方の制御電源から電力を供給されているために機能停止する可能性は低い。このため、故障した方のインバータに接続された遮断手段および電流検出手段を正常に動作することにより、故障した方のインバータと駆動電源との接続を遮断することができるので、正常な方のインバータによるモータの駆動を維持することができる。
よって、いずれか一方のインバータが故障し、故障した方のインバータに接続する制御電源まで故障が及んだ場合においても、正常な方のインバータにより、モータの駆動を維持することができる。
この発明の実施の形態1に係るモータ制御システムを示すブロック図である。 この発明の実施の形態1に係るモータ制御システムにおける第1の電流検出手段を示すブロック図である。 この発明の実施の形態1に係るモータ制御システムにおける第2の電流検出手段を示すブロック図である。 この発明の実施の形態1に係るモータ制御システムにおける第1の遮断手段を示すブロック図である。 この発明の実施の形態1に係るモータ制御システムにおける第2の遮断手段を示すブロック図である。 この発明の実施の形態1に係るモータ制御システムにおける第1の制御手段を示すブロック図である。 この発明の実施の形態1に係るモータ制御システムにおける第2の制御手段を示すブロック図である。 この発明の実施の形態2に係るモータ制御システムを示すブロック図である。 この発明の実施の形態2に係るモータ制御システムにおける第1の電力消費手段を示すブロック図である。 この発明の実施の形態2に係るモータ制御システムにおける第2の電力消費手段を示すブロック図である。 この発明の実施の形態3に係るモータ制御システムを示すブロック図である。 この発明の実施の形態3に係るモータ制御システムにおける第1の切離し手段を示すブロック図である。 この発明の実施の形態3に係るモータ制御システムにおける第2の切離し手段を示すブロック図である。 この発明の実施の形態4に係るモータ制御システムを示すブロック図である。 この発明の実施の形態4に係るモータ制御システムにおける電力遮断手段を示すブロック図である。
実施の形態1.
図1は、この発明を実施するための実施の形態1におけるモータ制御システムを示すブロック図である。このシステムは、2重三相モータ1の駆動軸(図示せず)に、自動車の車輪を接続して駆動することにより自動車を走行させる。
2重三相モータ1は、共通の駆動軸に独立した三相巻線により構成される固定子(図示せず)を2組備えた構造を有し、一方の固定子は第1のインバータ11に接続され、他方の固定子は第2のインバータ21に接続される。
第1のインバータ11の入力側の低電位側は、駆動電源2の低電位側に接続され、第1のインバータ11の入力側の高電位側は、第1の電流検出手段13と第1の遮断手段14を介して、駆動電源2の高電位側に接続される。駆動電源2からは2重三相モータ1を駆動するための電力が供給される。さらに、第1のインバータ11は、第1の駆動回路12に接続され、第1の駆動回路12が生成する信号により制御される。
同様に、第2のインバータ21の入力側の低電位側は、駆動電源2の低電位側に接続され、第2のインバータ21の入力側の高電位側は、第2の電流検出手段23と第2の遮断手段24を介して、駆動電源2の高電位側に接続される。駆動電源2からは2重三相モータ1を駆動するための電力が供給される。さらに、第2のインバータ21は、第2の駆動回路22に接続され、第2の駆動回路22が生成する信号により制御される。
第1の電流検出手段13と第1の遮断手段14と第1の制御手段15および第2の駆動回路22は、第2の制御電源26に接続され、第2の制御電源26から作動用の電力が供給される。また、第2の電流検出手段23と第2の遮断手段24と第2の制御手段25および第1の駆動回路12は、第1の制御電源16に接続され、第1の制御電源16から作動用の電力が供給される。
つぎに各部位の詳細な接続状態と動作について説明する。図2は、第1の電流検出手段13の一例を示すブロック図である。端子131は、後述する第1の遮断手段14の端子142に接続され、端子132は、第1のインバータ11の入力側の高電位側に接続される。端子133は、第2の制御電源26の高電位側に、端子134は、第2の制御電源26の低電位側にそれぞれ接続され、第1の電流検出手段13には第2の制御電源26から作動用の電力が供給される。端子135は、後述する第1の制御手段15の端子151に接続される。
第1の電流検出手段13の内部において、端子131と端子132の間には、電流検知素子136が接続される。電流検知素子136は、端子131と端子132の間を流れる電流、すなわち、駆動電源2から第1のインバータ11に印加される電流に応じ電圧値を出力する機能を有する。電流量出力回路137は、電流検知素子136から入力された電圧値に応じた電圧を、端子135から出力する。
図3は、第2の電流検出手段23の一例を示すブロック図である。端子231は、後述する第2の遮断手段24の端子242に接続され、端子232は、第2のインバータ21の入力側の高電位側に接続される。端子233は、第1の制御電源16の高電位側に、端子234は、第1の制御電源16の低電位側にそれぞれ接続され、第2の電流検出手段23には第1の制御電源16から作動用の電力が供給される。端子235は、後述する第2の制御手段25の端子251に接続される。
第2の電流検出手段23の内部において、端子231と端子232の間には、電流検知素子236が接続される。電流検知素子236は、端子231と端子232の間を流れる電流、すなわち、駆動電源2から第2のインバータ21に印加される電流に応じ電圧値を出力する機能を有する。電流量出力回路237は、電流検知素子236から入力された電圧値に応じた電圧を、端子235から出力する。
なお、電流検知素子136と電流検知素子236には、電流量に応じて発生した磁束密度に相当する電圧を発生する磁束計測方式や、抵抗器を電流の経路に配し抵抗器の両端に発生した電圧を出力する抵抗器方式などの方式のものが用いられる。
図4は、第1の遮断手段14の一例を示すブロック図である。端子141は、駆動電源2の高電位側に接続され、端子142は、図2に示す第1の電流検出手段13の端子131に接続される。端子144は、第2の制御電源26の高電位側に、端子145は、第2の制御電源26の低電位側に、それぞれ接続されて、第1の遮断手段14には、第2の制御電源26から作動用の電力が供給される。端子143は、後述する第1の制御手段15の端子152に接続される。
第1の遮断手段14の内部において、端子141と端子142の間には、常閉接点146が接続されて、端子144と端子145の間には、電磁石147とスイッチ回路148が、直列に接続される。
端子143に入力される信号がローレベルからハイレベルになった場合、スイッチ回路148は開状態から閉状態になり、電磁石147に電流が流れて電磁石147が励磁されると、常閉接点146は閉状態から開状態になる。
なお、常閉接点146が閉状態で、端子141と端子142の間が電気的に導通した状態を、第1の遮断手段14の導通状態と称し、常閉接点146が開状態で、端子141と端子142の間が電気的に遮断した状態を、第1の遮断手段14の遮断状態と称する。
図5は、第2の遮断手段24の一例を示すブロック図である。端子241は、駆動電源2の高電位側に接続され、端子242は、図3に示す第2の電流検出手段23の端子231に接続される。端子244は、第1の制御電源16の高電位側に、端子245は、第1の制御電源16の低電位側に、それぞれ接続されて、第2の遮断手段24には、第1の制御電源16から作動用の電力が供給される。また、端子243は、後述する第2の制御手段25の端子252に接続される。
第2の遮断手段24の内部において、端子241と端子242の間には、常閉接点246が接続されて、端子244と端子245の間には、電磁石247とスイッチ回路248が、直列に接続される。
端子243に入力される信号がローレベルからハイレベルになった場合、スイッチ回路248は開状態から閉状態になり、電磁石247に電流が流れて電磁石247が励磁されると、常閉接点246は閉状態から開状態になる。
なお、常閉接点246が閉状態で、端子241と端子242の間が電気的に導通した状態を、第2の遮断手段24の導通状態と称し、常閉接点246が開状態で、端子241と端子242の間が電気的に遮断した状態を、第2の遮断手段24の遮断状態と称する。
図6は、第1の制御手段15の一例を示すブロック図である。端子151は、図2に示す第1の電流検出手段13の端子135に接続され、端子152は、図4に示す第1の遮断手段14の端子143に接続される。端子153は第2の制御電源26の高電位側に、端子154は第2の制御電源26の低電位側にそれぞれ接続されて、第1の制御手段15には第2の制御電源26から作動用の電力が供給される。
第1の制御手段15の内部において、端子151は、上限コンパレータ155の正側入力部と下限コンパレータ156の負側入力部とに接続される。さらに、上限コンパレータ155の出力と下限コンパレータ156の出力は、論理和回路157の2つの入力部にそれぞれ入力される。また、上限コンパレータ155の負側入力部には、上限定電圧出力回路158の出力が入力され、下限コンパレータ156の正側入力部には、下限定電圧出力回路159の出力が入力される。
上限定電圧出力回路158の出力電圧は、予め第1のインバータ11の入力側の高電位側に流れる電流の上限値に相当する電圧に設定され、下限定電圧出力回路159の出力電圧は、予め第1のインバータ11の入力側の高電位側に流れる電流の下限値に相当する電圧に設定される。
よって、端子151に、第1のインバータ11の入力側の高電位側に流れる電流の上限値超に相当する電圧あるいは下限値未満に相当する電圧が入力されると、端子152の出力はハイレベルになり、端子151に、第1のインバータ11の入力側の高電位側に流れる電流の上限値以下かつ下限値以上に相当する電圧が入力されると、端子152の出力はローレベルになる。
図7は、第2の制御手段25の一例を示すブロック図である。端子251は、図3に示す第2の電流検出手段23の端子235に接続され、端子252は、図5に示す第2の遮断手段24の端子243に接続される。端子253は第1の制御電源16の高電位側に、端子254は第1の制御電源16の低電位側にそれぞれ接続されて、第2の制御手段25には第1の制御電源16から作動用の電力が供給される。
第2の制御手段25の内部において、端子251は、上限コンパレータ255の正側入力部と下限コンパレータ256の負側入力部とに接続される。さらに、上限コンパレータ255の出力と下限コンパレータ256の出力は、論理和回路257の2つの入力部にそれぞれ入力される。さらに、上限コンパレータ255の負側入力部には、上限定電圧出力回路258の出力が入力され、下限コンパレータ256の正側入力部には、下限定電圧出力回路259の出力が入力される。
上限定電圧出力回路258の出力電圧は、予め第2のインバータ21の入力側の高電位側に流れる電流の上限値に相当する電圧に設定され、下限定電圧出力回路259の出力電圧は、予め第2のインバータ21の入力側の高電位側に流れる電流の下限値に相当する電圧に設定される。
よって、端子251に、第2のインバータ21の入力側の高電位側に流れる電流の上限値超に相当する電圧あるいは下限値未満に相当する電圧が入力されると、端子252の出力はハイレベルになり、端子251に、第2のインバータ21の入力側の高電位側に流れる電流の上限値以下かつ下限値以上に相当する電圧が入力されると、端子252の出力はローレベルになる。
つぎに本実施の形態1の動作について説明する。通常の2重三相モータ1の駆動時においては、第1のインバータ11と第2のインバータ21に、それぞれ接続された2重三相モータ1の固定子に電力を供給し、2重三相モータ1を駆動する。その際、第1のインバータ11と第2のインバータ21から出力される電流の位相を制御することにより、2重三相モータ1の回転時のトルクリップルが低減される。
そのため、電気自動車に本実施の形態1のモータ制御システムを搭載した場合、振動や騒音が少なく、快適な走行を得ることができる。なお、図1に示すアクセル操作などの運転者の要求に基づいた電流指令値Aは、第1の駆動回路12と第2の駆動回路22に送信され、それに応じて、第1の駆動回路12は、第1のインバータ11の駆動信号を生成し、第1のインバータ11を駆動する。同様に、第2の駆動回路22は、第2のインバータ21の駆動信号を生成し、第2のインバータ21を駆動する。
第1の電流検出手段13は、駆動電源2から第1のインバータ11に供給される電流値をモニターし、その状態を第1の制御手段15に送信する。第1の電流検出手段13が検出する電流値が上限値以下かつ下限値以上の場合、第1の制御手段15は、第1の遮断手段14に導通状態を維持するように指示する。すなわち、第1の制御手段15は、ローレベルを出力する。
同様に、第2の電流検出手段23は、駆動電源2から第2のインバータ21に供給される電流値をモニターし、その状態を第2の制御手段25に送信する。第2の電流検出手段23が検出する電流値が上限値以下かつ下限値以上の場合、第2の制御手段25は、第2の遮断手段24に導通状態を維持するように指示する。すなわち、第2の制御手段25は、ローレベルを出力する。
第1のインバータ11が何らかの原因により故障し、駆動電源2から第1のインバータ11に供給される電流が、上限値超あるいは下限値未満になった場合、第1の電流検出手段13からの信号により、第1の制御手段15は、第1のインバータ11の故障を検知し、第1の遮断手段14を遮断状態になるように指示する。すなわち、第1の制御手段15は、ハイレベルを出力する。
この場合、第1のインバータ11に接続された固定子による2重三相モータ1の駆動は停止するが、第2のインバータ21に接続された固定子による2重三相モータ1の駆動は継続する。
なお、第1のインバータ11の故障に伴って、第1の駆動回路12および第1の制御電源16が、故障に至り機能を失っても、第1の電流検知手段13および第1の遮断手段14は、第1のインバータ11と直接接続されていないので、連鎖的な故障が第1の電流検知手段13および第1の遮断手段14に及ぶ可能性が低い。よって、第1のインバータ11の故障時においては、第1の電流検知手段13および第1の遮断手段14の正常な動作を期待することができる。また、第2の遮断手段24は、第1の制御電源16からの電力供給を失っても、第2のインバータ21と駆動電源2との接続を維持するので、第2のインバータ21に接続された固定子による2重三相モータ1の駆動は継続することができる。
同様に、第2のインバータ21が何らかの原因により故障し、駆動電源2から第2のインバータ21に供給される電流が、上限値超あるいは下限値未満になった場合、第2の電流検出手段23からの信号により、第2の制御手段25は、第2のインバータ21の故障を検知し、第2の遮断手段24を遮断状態になるように指示する。すなわち、第2の制御手段25は、ハイレベルを出力する。
この場合、第2のインバータ21に接続された固定子による2重三相モータ1の駆動は停止するが、第1のインバータ11に接続された固定子による2重三相モータ1の駆動は継続する。
なお、第2のインバータ21の故障に伴って、第2の駆動回路22および第2の制御電源26が、故障に至り機能を失っても、第2の電流検知手段23および第2の遮断手段24は、第2のインバータ21と直接接続されていないので、連鎖的な故障が第2の電流検知手段23および第2の遮断手段24に及ぶ可能性が低い。よって、第2のインバータ21の故障時においては、第2の電流検知手段23および第2の遮断手段24の正常な動作を期待することができる。また、第1の遮断手段14は、第2の制御電源26からの電力供給を失っても、第1のインバータ11と駆動電源2との接続を維持するので、第1のインバータ11に接続された固定子による2重三相モータ1の駆動は継続することができる。
本実施の形態1のモータ制御システムを搭載した電気自動車においては、第1のインバータ11と第1の制御電源16、あるいは、第2のインバータ21と第2の制御電源26の何れか一方が故障に至っても、電気自動車を停止することなく継続して走行することができる。
実施の形態2.
実施の形態1では、第1のインバータ11が故障し連鎖的に第1の制御電源16が機能を失っても、第1の電流検出手段13と第1の遮断手段14は動作し続け、第1のインバータ11と駆動電源2との接続を遮断し、同様に第2のインバータ21が故障し連鎖的に第2の制御電源26が機能を失っても、第2の電流検出手段23と第2の遮断手段24は動作し続け、第2のインバータ21と駆動電源2との接続を遮断する形態を示した。
この場合、故障した方のインバータが、2重三相モータ1に接続された状態のままになる。この状態で、正常な方のインバータにより2重三相モータ1を駆動すると、2重三相モータ1に回生電力が発生し、故障したインバータに回生電力が印加される状態になる。このような状態は、故障したインバータを経由し他の部位に過電流の流入や高電圧の印加などが発生し、2次的に他の部位が故障する可能性がある。
本実施の形態2では、このような懸念を払拭するため、他の部位に影響を及ぼさないように、故障したインバータに印加された回生電力を消費する電力消費手段を備えた実施の形態を説明する。
図8は、実施の形態2におけるモータ制御システムを示すブロック図である。図1と同一番号あるいは同一符号は、実施の形態1に示す構成要素と同一品あるは同等品であるので、その詳細な説明は省略する。
第1の電力消費手段17の一端は、第1の電流検出手段13を介して、第1のインバータ11の入力側の高電位側に接続され、もう一端は、第1のインバータ11の入力側の低電位側に接続される。第2の電力消費手段27の一端は、第2の電流検出手段23を介して、第2のインバータ21の入力側の高電位側に接続され、もう一端は、第2のインバータ21の入力側の低電位側に接続される。また、第1の電力消費手段17には、第2の制御電源26から作動用の電力が供給され、第2の電力消費手段27には、第1の制御電源16から作動用の電力が供給される。
つぎに第1の電力消費手段17と第2の電力消費手段27の詳細な接続状態と動作について説明する。
図9は、第1の電流消費手段17の一例を示すブロック図である。端子171は、図2に示す第1の電流検出手段13の端子131を経由し第1のインバータ11の入力側の高電位側に接続され、端子172は第1のインバータ11の入力側の低電位側に接続される。
端子174は第2の制御電源26の高電位側に、端子175には第2の制御電源26の低電位側にそれぞれ接続されて、第1の電流消費手段17には第2の制御電源26から作動用の電力が供給される。また、端子173は、図6に示す第1の制御手段15の端子152に接続される。
第1の電流消費手段17の内部において、端子171と端子172の間には、常開接点176と抵抗器177が直列に接続されて、端子174と端子175の間には、電磁石178とスイッチ回路179が、直列に接続される。
端子173に入力される信号がローレベルからハイレベルになった場合、スイッチ回路179は開状態から閉状態になり、電磁石178に電流が印加され電磁石178が励磁されると、常開接点176は開状態から閉状態になる。
なお、常開接点176が閉状態で、端子171と端子172の間が電気的に接続した状態を、第1の電流消費手段17の接続状態と称し、常開接点176が開状態で、端子171と端子172の間が電気的に絶縁した状態を、第1の電流消費手段17の絶縁状態と称する。
図10は、第2の電流消費手段27の一例を示すブロック図である。端子271は、図3に示す第2の電流検出手段23の端子231を経由し第2のインバータ21の入力側の高電位側に接続され、端子272は第2のインバータ21の入力側の低電位側に接続される。
端子274は第1の制御電源16の高電位側に、端子275は第1の制御電源16の低電位側にそれぞれ接続されて、第2の電流消費手段27には第1の制御電源16から作動用の電力が供給される。また、端子273は、図7に示す第2の制御手段25の端子252に接続される。
第2の電流消費手段27の内部において、端子271と端子272の間には、常開接点276と抵抗器277が直列に接続されて、端子274と端子275の間には、電磁石278とスイッチ回路279が、直列に接続される。
端子273に入力される信号がローレベルからハイレベルになった場合、スイッチ回路279は開状態から閉状態になり、電磁石278に電流が印加され電磁石278が励磁されると、常開接点276は開状態から閉状態になる。
なお、常開接点276が閉状態で、端子271と端子272の間が電気的に接続した状態を、第2の電流消費手段27の接続状態と称し、常開接点276が開状態で、端子271と端子272の間が電気的に絶縁した状態を、第2の電流消費手段27の絶縁状態と称する。
つぎに本実施の形態2の動作について説明する。通常の2重三相モータ1の駆動時においては、実施の形態1と同様に、第1のインバータ11と第2のインバータ21に、それぞれ接続された2重三相モータ1の固定子に電力を供給し、2重三相モータ1を駆動する。
2重三相モータ1の駆動中において、第1の電流検出手段13は、駆動電源2から第1のインバータ11に供給される電流値をモニターし、その状態を第1の制御手段15に送信する。
第1の制御手段15は、第1の電流検出手段13が検出する電流値が上限値以下かつ下限値以上の場合、第1の遮断手段14に導通状態を維持するように指示し、第1の電力消費手段17に絶縁状態を維持するように指示する。すなわち、第1の制御手段15は、ローレベルを出力する。
同様に、第2の電流検出手段23は、駆動電源2から第2のインバータ21に供給される電流値をモニターし、その状態を第2の制御手段25に送信する。
第2の制御手段25は、第2の電流検出手段23が検出する電流値が上限値以下かつ下限値以上の場合、第2の遮断手段24に導通状態を維持するように指示し、第2の電力消費手段27に絶縁状態を維持するように指示する。すなわち、第2の制御手段25は、ローレベルを出力する。
第1のインバータ11が何らかの原因により故障し、駆動電源2から第1のインバータ11に供給される電流が、上限値超あるいは下限値未満になった場合、第1の電流検出手段13からの信号により、第1の制御手段15は、第1のインバータ11の故障を検知し、第1の遮断手段14を遮断状態になるように指示し、第1の電力消費手段17を接続状態になるように指示する。すなわち、第1の制御手段15は、ハイレベルを出力する。
この場合、第1のインバータ11に接続された固定子による2重三相モータ1の駆動は停止するが、第2のインバータ21に接続された固定子による2重三相モータ1の駆動は継続する。
なお、第1のインバータ11の故障に伴って、第1の駆動回路12および第1の制御電源16が、故障に至り機能を失っても、第1の電流検知手段13と第1の遮断手段14および第1の電力消費手段17は、第1のインバータ11と直接接続されていないので、連鎖的な故障が、第1の電流検知手段13と第1の遮断手段14および第1の電力消費手段17に及ぶ可能性が低い。そのため、第1のインバータ11の故障時においては、第1の電流検知手段13と第1の遮断手段14および第1の電力消費手段17の正常な動作を期待することができる。
よって、2重三相モータ1の駆動により回生電力が発生し、第1のインバータ11に印加されても、第1の遮断手段14により、第1のインバータ11の入力側の高電位側は、駆動電源2とは遮断されるので、駆動電源2に回生電力が流入することはない。また、第1の電力消費手段17により、抵抗器177を介して、第1のインバータ11の入力側の高電位側と入力側の低電位側が接続されるので、発生した回生電力は抵抗器177で消費される。また、第2の遮断手段24は、第1の制御電源16からの電力供給を失っても、第2のインバータ21と駆動電源2との接続を維持するので、第2のインバータ21に接続された固定子による2重三相モータ1の駆動は継続することができる。
同様に、第2のインバータ21が何らかの原因により故障し、駆動電源2から第2のインバータ21に供給される電流が、上限値超あるいは下限値未満になった場合、第2の電流検出手段23からの信号により、第2の制御手段25は、第2のインバータ21の故障を検知し、第2の遮断手段24を遮断状態になるように指示し、第2の電力消費手段27を接続状態になるように指示する。すなわち、第2の制御手段25は、ハイレベルを出力する。
この場合、第2のインバータ21に接続された固定子による2重三相モータ1の駆動は停止するが、第1のインバータ11に接続された固定子による2重三相モータ1の駆動は継続する。
なお、第2のインバータ21の故障に伴って、第2の駆動回路22および第2の制御電源26が、故障に至り機能を失っても、第2の電流検知手段23と第2の遮断手段24および第2の電力消費手段27は、第2のインバータ21と直接接続されていないので、連鎖的な故障が、第2の電流検知手段23と第2の遮断手段24および第2の電力消費手段27に及ぶ可能性が低い。そのため、第2のインバータ21の故障時においては、第2の電流検知手段23と第2の遮断手段24および第2の電力消費手段27の正常な動作を期待することができる。
よって、2重三相モータ1の駆動により回生電力が発生し、第2のインバータ21に印加されても、第2の遮断手段24により、第2のインバータ21の入力側の高電位側は、駆動電源2とは遮断されるので、駆動電源2に回生電力が流入することはない。また、第2の電力消費手段27により、抵抗器277を介して、第2のインバータ21の入力側の高電位側と入力側の低電位側が接続されるので、発生した回生電力は抵抗器277で消費される。また、第1の遮断手段14は、第2の制御電源26からの電力供給を失っても、第1のインバータ11と駆動電源2との接続を維持するので、第1のインバータ11に接続された固定子による2重三相モータ1の駆動は継続することができる。
本実施の形態2では、第1のインバータ11が故障に至った際、第1の遮断手段14と第1の電力消費手段17とを同時に動作する実施の形態を説明した。使用環境などにより、第1の遮断手段14の導通状態から遮断状態への動作が、第1の電力消費手段17の遮断状態から接続状態への動作に比べ、瞬間的に遅れることにより、駆動電源2から電力消費手段17に電流が流入することが想定される。その際の電力消費手段17の耐電流性を考慮すると、電力消費手段17の製造コストが上がってしまう可能性がある。
そのため、第1の遮断手段14の閉状態から開状態への動作が完了後、第1の電力消費手段17の絶縁状態から接続状態への動作を行うように、第1の遮断手段14および第1の電力消費手段17を、制御するのが好ましい場合がある。
同様に、第2のインバータ21が故障に至った際、第2の遮断手段24と第2の電力消費手段27とを同時に動作する実施の形態を説明した。使用環境などにより、第2の遮断手段24の導通状態から遮断状態への動作が、第2の電力消費手段27の絶縁状態から接続状態への動作に比べ、瞬間的に遅れることが想定される。その際の電力消費手段27の耐電流性を考慮すると、電力消費手段27の製造コストが上がってしまう可能性がある。
そのため、第2の遮断手段24の閉状態から開状態への動作が完了後、第2の電力消費手段27の絶縁状態から導通状態への動作を行うように、第2の遮断手段24および第2の電力消費手段27を、制御するのが好ましい場合がある。
本実施の形態2のモータ制御システムを搭載した電気自動車においては、第1のインバータ11と第1の制御電源16、あるいは、第2のインバータ21と第2の制御電源26の何れか一方が故障に至っても、電気自動車を停止することなく継続して走行されることができ、2重三相モータ1の駆動により発生する回生電力が、故障したインバータを経由し、他の部位に及ぶことを低減することができる。
実施の形態3.
実施の形態2では、実施の形態1に備わる機能に加え、2重三相モータ1の駆動により発生する回生電力が、故障したインバータを経由し、他の部位に影響が及ぶことがないように、第1の電力消費手段17および第2の電力消費手段27により、回生電力を消費する実施の形態を説明した。
この場合、2重三相モータ1から回生される電力を消費するのに十分な容量を有する第1の電力消費手段13と第2の電力消費手段23とを備える必要があり、実施の形態2のモータ制御システム全体の容積が増大する場合がある。
本実施の形態3では、2重三相モータとインバータとの間に十分なスペースを確保できる場合には、2重三相モータとインバータの接続を切離す切離し手段を備えた実施の形態を説明する。
図11は、実施の形態3におけるモータ制御システムを示すブロック図である。図1と同一番号あるいは同一符号は、実施の形態1に示す構成要素と同一品あるは同等品であるので、その詳細な説明は省略する。
第1の切離し手段18の一端は、第1のインバータ11の出力側に接続され、もう一端は、2重三相モータ1に接続される。第2の切離し手段28の一端は、第2のインバータ21の出力側に接続され、もう一端は、2重三相モータ1に接続される。また、第1の切離し手段18には、第2の制御電源26から作動用の電力が供給され、第2の切離し手段28には、第1の制御電源16から作動用の電力が供給される。
つぎに第1の切離し手段18と第2の切離し手段28の詳細な接続状態と動作について説明する。
図12は、第1の切離し手段18の一例を示すブロック図である。三相端子181は第1のインバータ11の出力側に接続され、三相端子182は2重三相モータ1に接続される。
端子184は第2の制御電源26の高電位側に、端子185は第2の制御電源26の低電位側にそれぞれ接続されて、第1の切離し手段18は第2の制御電源26から作動用の電力が供給される。また、端子183は、図6に示す第1の制御手段15の端子152に接続される。
第1の切離し手段18の内部において、三相端子181と三相端子182の間には三相用常閉接点186が接続されて、端子184と端子185の間には電磁石187とスイッチ回路188が、直列に接続される。
端子183に入力される信号がローレベルからハイレベルになった場合、スイッチ回路188は開状態から閉状態になり、電磁石187に電流が印加され電磁石187が励磁されると、三相用常閉接点186は閉状態から開状態になる。
なお、三相用常閉接点186が閉状態で、三相端子181と三相端子182の間が電気的に導通した状態を、第1の切離し手段18の導通状態と称し、三相用常閉接点186が開状態で、三相端子181と三相端子182の間が電気的に遮断した状態を、第1の切離し手段18の遮断状態と称する。
図13は、第2の切離し手段28の一例を示すブロック図である。三相端子281は、第2のインバータ21の出力側に接続され、三相端子282は、2重三相モータ1に接続される。
端子284は第1の制御電源16の高電位側に、端子285は第1の制御電源16の低電位側にそれぞれ接続されて、第2の切離し手段28には第1の制御電源16から作動用の電力が供給される。また、端子283は、図7に示す第2の制御手段25の端子252に接続される。
第2の切離し手段28の内部において、三相端子281と三相端子282の間には、三相用常閉接点286が接続されて、端子284と端子285の間には、電磁石287とスイッチ回路288が、直列に接続される。
端子283に入力される信号がローレベルからハイレベルになった場合、スイッチ回路288は開状態から閉状態になり、電磁石287に電流が印加され電磁石287が励磁されると、三相用常閉接点286は閉状態から開状態になる。
なお、三相用常閉接点286が閉状態で、三相端子281と三相端子282の間が電気的に導通した状態を、第2の切離し手段28の導通状態と称し、三相用常閉接点286が開状態で、三相端子281と三相端子282の間が電気的に遮断した状態を、第2の切離し手段28の遮断状態と称する。
つぎに本実施の形態3の動作について説明する。通常の2重三相モータ1の駆動時においては、実施の形態1と同様に、第1のインバータ11と第2のインバータ21に、それぞれ接続された2重三相モータ1の固定子に電力を供給し、2重三相モータ1を駆動する。
第1の電流検出手段13は、駆動電源2から第1のインバータ11に供給される電流をモニターし、その状態を第1の制御手段15に送信する。
第1の制御手段15は、第1の電流検出手段13が検出する電流値が上限値以下かつ下限値以上の場合、第1の遮断手段14に導通状態を維持するように指示し、第1の切離し手段18にも導通状態を維持するように指示する。すなわち、第1の制御手段15は、ローレベルを出力する。
同様に、第2の電流検出手段23は、駆動電源2から第2のインバータ21に供給される電流をモニターし、その状態を第2の制御手段25に送信する。
第2の制御手段25は、第2の電流検出手段23が検出する電流値が上限値以下かつ下限値以上の場合、第2の遮断手段24に導通状態を維持するように指示し、第2の切離し手段28にも導通状態を維持するように指示する。すなわち、第2の制御手段25は、ローレベルを出力する。
第1のインバータ11が何らかの原因により故障し、駆動電源2から第1のインバータ11に供給される電流が、上限値超あるいは下限値未満になった場合、第1の電流検出手段13からの信号により、第1の制御手段15は、第1のインバータ11の故障を検知し、第1の遮断手段14に遮断状態になるように指示し、第1の切離し手段18にも遮断状態になるように指示する。すなわち、第1の制御手段15は、ハイレベルを出力する。
この場合、第1のインバータ11に接続された固定子による2重三相モータ1の駆動は停止するが、第2のインバータ21に接続された固定子による2重三相モータ1の駆動は継続する。
なお、第1のインバータ11の故障に伴って、第1の駆動回路12および第1の制御電源16が、故障に至り機能を失っても、第1の電流検知手段13と第1の遮断手段14および第1の切離し手段18は、第1のインバータ11と直接接続されていないので、連鎖的な故障が、第1の電流検知手段13と第1の遮断手段14および第1の切離し手段18に及ぶ可能性が低い。そのため、第1のインバータ11の故障時においては、第1の電流検知手段13と第1の遮断手段14および第1の切離し手段18の正常な動作を期待することができる。
よって、2重三相モータ1の駆動により回生電力が発生し、第1のインバータ11に印加されても、第1の切離し手段18により、第1のインバータ11の出力は、2重三相モータ1とは、遮断されるので、第1のインバータ11に回生電力が流入することはない。また、第2の遮断手段24は、第1の制御電源16からの電力供給を失っても、第2のインバータ21と駆動電源2との接続を維持するので、第2のインバータ21に接続された固定子による2重三相モータ1の駆動は継続することができる。
同様に、第2のインバータ21が何らかの原因により故障し、駆動電源2から第2のインバータ21に供給される電流が、上限値超あるいは下限値未満になった場合、第2の電流検出手段23からの信号により、第2の制御手段25は、第2のインバータ21の故障を検知し、第2の遮断手段24に遮断状態になるように指示し、第2の切離し手段28にも遮断状態になるように指示する。すなわち、第2の制御手段25は、ハイレベルを出力する。
この場合、第2のインバータ21に接続された固定子による2重三相モータ1の駆動は停止するが、第1のインバータ11に接続された固定子による2重三相モータ1の駆動は継続する。
なお、第2のインバータ21の故障に伴って、第2の駆動回路22および第2の制御電源26が、故障に至り機能を失っても、第2の電流検知手段23と第2の遮断手段24および第2の切離し手段28は、第2のインバータ21と直接接続されていないので、連鎖的な故障が、第2の電流検知手段23と第2の遮断手段24および第2の切離し手段28に及ぶ可能性が低い。そのため、第2のインバータ21の故障時においては、第2の電流検知手段23と第2の遮断手段24および第2の切離し手段28の正常な動作を期待することができる。
よって、2重三相モータ1の駆動により回生電力が発生し、第2のインバータ21に印加されても、第2の切離し手段28により、第2のインバータ21の出力は、2重三相モータ1とは、遮断されるので、第2のインバータ21に回生電力が流入することはない。また、第1の遮断手段14は、第2の制御電源26からの電力供給を失っても、第1のインバータ11と駆動電源2との接続を維持するので、第2のインバータ11に接続された固定子による2重三相モータ1の駆動は継続することができる。
本実施の形態3では、第1のインバータ11が故障に至った際、第1の遮断手段14と第1の切離し手段18とを同時に動作する実施の形態を説明した。使用環境などにより、第1の遮断手段14の閉状態から開状態への動作が、第1の切離し手段18の導通状態から遮断状態への動作に比べ、瞬間的に遅れることが想定される。その場合、第1の切離し手段18の動作により、第1のインバータ11に過電圧が発生し他の部位に故障が波及する可能性がある。
そのため、第1の遮断手段14の閉状態から開状態への動作が完了後、第1の切離し手段18の導通状態から遮断状態への動作を行うように、第1の切離し手段18を、制御するのが好ましい場合がある。
同様に、第2のインバータ21が故障に至った際、第2の遮断手段24と第2の切離し手段28とを同時に動作する実施の形態を説明した。使用環境などにより、第2の遮断手段24の閉状態から開状態への動作が、第2の切離し手段28の導通状態から遮断状態への動作に比べ、瞬間的に遅れることが想定される。その場合、第2の切離し手段28の動作により、第2のインバータ21に過電圧が発生し他の部位に故障が波及する可能性がある。
そのため、第2の遮断手段24の閉状態から開状態への動作が完了後、第2の切離し手段28の導通状態から遮断状態への動作を行うように、第2の切離し手段28を、制御するのが好ましい場合がある。
本実施の形態3のモータ制御システムを搭載した電気自動車においては、第1のインバータ11と第1の制御電源16、あるいは、第2のインバータ21と第2の制御電源26の何れか一方が故障に至っても、電気自動車を停止することなく継続して走行されることができ、2重三相モータ1の駆動により発生する回生電力が、故障したインバータを経由し、他の部位に及ぶことを低減することができる。
なお、本実施の形態3と実施の形態2に示す電力消費手段を組み合わせることも、可能である。
実施の形態4.
実施の形態1から3においては、何らかの原因により、第1の制御電源15と第2の制御電源25とが共に、故障し機能を失った場合、第1の制御手段15と第2の制御手段25とが動作せず、第1のインバータ11と第2のインバータ21は駆動電源2との接続を、維持したままになる。このような場合、第1のインバータ11と第2のインバータ21に駆動電源2から電力が供給され続け、駆動電源2の電力が消失することや、2次的に他の部位が故障する可能性がある。
本実施の形態4では、このような懸念を払拭するため、実施の形態1に備わる機能に加え、第1の制御電源15と第2の制御電源25とが共に機能を失った場合に、駆動電源2を他の部位から遮断する電力遮断手段30を備えた実施の形態を説明する。
図14は、実施の形態4におけるモータ制御システムを示すブロック図である。図1と同一番号あるいは同一符号は、実施の形態1に示す構成要素と同一品あるは同等品であるので、その詳細な説明は省略する。
電力遮断手段30の一端は、駆動電源2に接続される。もう一端は、第1の遮断手段14と第1の電流検出手段13を介して、第1のインバータ11の入力側の高電位側に接続され、さらに、第2の遮断手段24と第2の電流検出手段23を介して、第2のインバータ21の入力側の高電位側に接続される。
また、電力遮断手段30には、第1の制御電源16と第2の制御電源26から作動用の電力が供給される。
図15は、電力遮断手段30の一例を示すブロック図である。端子301は、駆動電源2の高電位側に接続され、端子302は、図4に示す第1の遮断手段14の端子141と、図5に示す第2の遮断手段24の端子241に接続される。
端子303は第1の突合せダイオード19のカソード側と第2の突合せダイオード29のカソード側に接続される。さらに、第1の突合せダイオード19のアノード側は、第1の制御電源16の高電位側に接続され、第2の突合せダイオード29のアノード側は、第2の制御電源26の高電位側に接続される。
端子304は、第1の制御電源16の低電位側と第2の制御電源26の低電位側に接続される。
電力遮断手段30の内部において、端子301と端子302の間には、常開接点305が接続されて、端子303と端子304の間には、電磁石306が接続される。
端子303と端子304の間に電圧が印加された状態では、電磁石306に電流が流れて電磁石306が励磁され、常開接点305は閉状態になる。なお、端子303と端子304の間の電圧が低下した状態あるいは電圧が印加されない状態では、常開接点305は開状態になる。
なお、常開接点305が閉状態で、端子301と端子302の間が電気的に導通した状態を、電力遮断手段30の導通状態と称し、常開接点305が開状態で、端子301と端子302の間が電気的に遮断した状態を、電力遮断手段30の遮断状態と称する。
つぎに本実施の形態4の動作について説明する。通常の2重三相モータ1の駆動時においては、実施の形態1と同様に、第1のインバータ11と第2のインバータ21に、それぞれ接続された2重三相モータ1の固定子に電力を供給し、2重三相モータ1を駆動する。
2重三相モータ1の駆動中において、何らかの原因により、第1の制御電源16が故障し電圧の低下を招いた場合、電力遮断手段30は、第2の制御電源26から電力が供給されるので、常開接点305の導通状態を維持する。
また、何らかの原因により、第2の制御電源26が故障し電圧の低下を招いた場合、電力遮断手段30は、第1の制御電源16から電力が供給されるので、電力遮断手段30は導通状態を維持する。
すなわち、第1の制御電源16あるいは第2の制御電源26の何れか一方が故障した場合でも、電力遮断手段30は、常開接点305の導通状態を維持する。
なお、第1の制御電源16と第2の制御電源26の両方が故障した場合、電力遮断手段30は、第1の制御電源16と第2の制御電源26の両方から電力が供給されなくなるので、電力遮断手段30は遮断状態になる。
よって、第1のインバータ11と第2のインバータ21への電力の供給が遮断されるので、2重三相モータ1の駆動は停止する。
本実施の形態4のモータ制御システムを搭載した電気自動車においては、第1の制御電源16と第2の制御電源26とが共に故障に至った場合は、電気自動車は停止し、駆動電源2の電力が消失することや、2次的に他の部位が故障することを低減することができる。
なお、本実施の形態4と実施の形態2に示す電力消費手段や実施の形態3に示す切離し手段とを、組み合わせることも可能である。
実施の形態1から実施の形態4おいては、モータ制御システムの構造および動作について説明した。なお、この発明によるモータ制御システムを自動車全体のシステムを統括する上位制御系に接続することにより、故障後の状態を上位制御系に伝達することができる。
例えば、電流検出手段の出力を上位制御系に伝達するような機能を備えることにより、一方のインバータが故障した場合においても、連鎖的に故障した方のインバータに接続された方の電流検出手段が故障する可能性が低いため、上位制御系は、故障した方のインバータに流入する電流値をモニターし、故障した方のインバータを監視することができる。
さらに、制御手段の出力を上位制御系に伝達するような機能を備えることにより、一方のインバータが故障した場合においても、連鎖的に故障した方のインバータに接続された方の制御手段が故障する可能性が低いため、上位制御系は、故障した方のインバータに対して制御手段が動作したか否かを、認知することができる。
なお、遮断手段と電力消費手段および切離し手段に関しても同様に、故障した方のインバータの方のこれらの手段は、インバータの故障後も機能停止する可能性が低いので、上位制御系はこれらからの信号により、上位制御系は故障時およびその後の状態を認知することができる。
なお、実施の形態1から実施の形態4においては、電流検出手段と遮断手段と電力消費手段と切離し手段および電力遮断手段の詳細な構造を説明した。この発明は、これらの詳細な構造に限定されるものではない。
さらに、実施の形態1から形態4において、この発明を電気自動車に適用に関した例を記したが、この発明が適用される装置は、これらに限定されるものではない。例えば、自動車の電動パワーステアリングやエレベータのモータ制御システムなどが挙げられる。
さらに、この発明は、その発明の範囲内において、各実施の形態を自由に組み合わせたり、各実施の形態を適宜変更、省略することが可能である。
1 2重三相モータ、2 駆動電源、11 第1のインバータ、12 第1の駆動回路、13 第1の電流検出手段、14 第1の遮断手段、15 第1の制御手段、16 第1の制御電源、17 第1の電力消費手段、18 第1の切離し手段、21 第2のインバータ、22 第2の駆動回路、23 第2の電流検出手段、24 第2の遮断手段、25 第2の制御手段、26 第2の制御電源、27 第2の電力消費手段、28 第2の切離し手段、30 電力遮断手段。

Claims (6)

  1. 共通の駆動軸に独立した第1の固定子と第2の固定子を有するモータと、
    前記第1の固定子と接続され、前記モータを駆動する第1のインバータと、
    前記第1のインバータを駆動する第1の駆動回路と、
    前記第2の固定子と接続され、前記モータを駆動する第2のインバータと、
    前記第2のインバータを駆動する第2の駆動回路と、
    前記第1のインバータおよび前記第2のインバータに接続され、前記モータに駆動用の電力を供給する駆動電源と、
    前記駆動電源から前記第1のインバータに印加される電流を検出する第1の電流検出手段と、
    前記第1のインバータと前記駆動電源との接続を遮断する第1の遮断手段と、
    前記第1の電流検出手段の出力から、前記第1のインバータの故障を判断し、前記第1の遮断手段に遮断指示を行う第1の制御手段と、
    前記駆動電源から前記第2のインバータに印加される電流を検出する第2の電流検出手段と、
    前記第2のインバータと前記駆動電源との接続を遮断する第2の遮断手段と、
    前記第2の電流検出手段の出力から、前記第2のインバータの故障を判断し、前記第2の遮断手段に遮断指示を行う第2の制御手段と、
    前記第1の駆動回路と前記第2の電流検出手段と前記第2の遮断手段と前記第2の制御手段とに接続され、作動用の電力を供給する第1の制御電源と、
    前記第2の駆動回路と前記第1の電流検出手段と前記第1の遮断手段と前記第1の制御手段とに接続され、作動用の電力を供給する第2の制御電源とを備えることを特徴とするモータ制御システム。
  2. 第2の制御電源に接続され、第1の制御手段の出力により、第1のインバータの高電位側の入力端と低電位側の入力端を接続する第1の電力消費手段と、
    第1の制御電源に接続され、第2の制御手段の出力により、第2のインバータの高電位側の入力端と低電位側の入力端を接続する第2の電力消費手段とを備えたことを特徴とする請求項1に記載のモータ制御システム。
  3. 第2の制御電源に接続され、第1の制御手段の出力により、モータと第1のインバータの接続を遮断する第1の切離し手段と、
    第1の制御電源に接続され、第2の制御手段の出力により、前記モータと第2のインバータの接続を遮断する第2の切離し手段とを備えたことを特徴とする請求項1または請求項2に記載のモータ制御システム。
  4. 第1の制御手段は、第1の電流検出手段の出力により、第1のインバータの故障を検知した際、第1の遮断手段により前記第1のインバータと駆動電源の接続を遮断した後、第1の電力消費手段により前記第1のインバータの高電位側の入力端と低電位側の入力端を接続させ、
    第2の制御手段は、第2の電流検出手段の出力により、第2のインバータの故障を検知した際、第2の遮断手段により前記第2のインバータと前記駆動電源の接続を遮断した後、第2の電力消費手段により前記第2のインバータの高電位側の入力端と低電位側の入力端の接続させることを特徴とする請求項2に記載のモータ制御システム。
  5. 第1の制御手段は、第1の電流検出手段の出力により、第1のインバータの故障を検知した際、第1の遮断手段により前記第1のインバータと駆動電源の接続を遮断した後、第1の切離し手段によりモータと前記第1のインバータの接続を遮断させ、
    第2の制御手段は、第2の電流検出手段の出力により、第2のインバータの故障を検知した際、第2の遮断手段により前記第2のインバータと前記駆動電源の接続を遮断した後、第2の切離し手段により前記モータと前記第2のインバータの接続を遮断させることを特徴とする請求項3に記載のモータ制御システム。
  6. 第1の制御電源と第2の制御電源の異常を検知し、第1のインバータおよび第2のインバータと駆動電源との接続を遮断する電力遮断手段を備えたことを特徴とする請求項1乃至請求項5のいずれか1項に記載のモータ制御システム。
JP2013215489A 2013-10-16 2013-10-16 モータ制御システム Pending JP2015080327A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013215489A JP2015080327A (ja) 2013-10-16 2013-10-16 モータ制御システム

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013215489A JP2015080327A (ja) 2013-10-16 2013-10-16 モータ制御システム

Publications (1)

Publication Number Publication Date
JP2015080327A true JP2015080327A (ja) 2015-04-23

Family

ID=53011306

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013215489A Pending JP2015080327A (ja) 2013-10-16 2013-10-16 モータ制御システム

Country Status (1)

Country Link
JP (1) JP2015080327A (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3219579A1 (en) 2016-03-17 2017-09-20 Jtekt Corporation Motor control device and steering control device
WO2019026492A1 (ja) * 2017-07-31 2019-02-07 日本電産株式会社 電力変換装置、モータモジュールおよび電動パワーステアリング装置
JP2020048371A (ja) * 2018-09-21 2020-03-26 日立オートモティブシステムズ株式会社 電子制御装置
WO2020110875A1 (ja) * 2018-11-27 2020-06-04 日本電産株式会社 モータ制御装置
CN112311266A (zh) * 2020-10-26 2021-02-02 中国矿业大学 双三电平逆变器拓扑的开绕组电机桥臂故障的容错方法

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10003286B2 (en) 2016-03-17 2018-06-19 Jtekt Corporation Motor control device and steering control device
EP3219579A1 (en) 2016-03-17 2017-09-20 Jtekt Corporation Motor control device and steering control device
JP7184038B2 (ja) 2017-07-31 2022-12-06 日本電産株式会社 電力変換装置、モータモジュールおよび電動パワーステアリング装置
WO2019026492A1 (ja) * 2017-07-31 2019-02-07 日本電産株式会社 電力変換装置、モータモジュールおよび電動パワーステアリング装置
JPWO2019026492A1 (ja) * 2017-07-31 2020-06-11 日本電産株式会社 電力変換装置、モータモジュールおよび電動パワーステアリング装置
US11356050B2 (en) 2017-07-31 2022-06-07 Nidec Corporation Power conversion device, motor module, electric power steering device
JP2020048371A (ja) * 2018-09-21 2020-03-26 日立オートモティブシステムズ株式会社 電子制御装置
WO2020110875A1 (ja) * 2018-11-27 2020-06-04 日本電産株式会社 モータ制御装置
CN113165687A (zh) * 2018-11-27 2021-07-23 日本电产株式会社 马达控制装置
JPWO2020110875A1 (ja) * 2018-11-27 2021-10-21 日本電産株式会社 モータ制御装置
JP7420079B2 (ja) 2018-11-27 2024-01-23 ニデック株式会社 モータ制御装置
CN112311266A (zh) * 2020-10-26 2021-02-02 中国矿业大学 双三电平逆变器拓扑的开绕组电机桥臂故障的容错方法
CN112311266B (zh) * 2020-10-26 2022-05-20 中国矿业大学 双三电平逆变器拓扑的开绕组电机桥臂故障的容错方法

Similar Documents

Publication Publication Date Title
JP6519713B2 (ja) 電力変換装置
JP6157752B2 (ja) 多相交流モータ駆動用インバータ装置
KR20110045426A (ko) Dc/dc 컨버터 고장시 차량 운전 유지를 위한 비상 동작 장치 및 방법
CN105636820A (zh) 用于电驱动单元的安全电路设备
JP2010074915A (ja) モータ制御装置及び電動パワーステアリング装置
JP2015080327A (ja) モータ制御システム
WO2019039263A1 (ja) 電源システム及び電気自動車
US20170036622A1 (en) Power transmission device and vehicle electrical system
WO2017183400A1 (ja) リレー装置及び車載システム
JP2013240165A (ja) 車両用電源装置
JP5067359B2 (ja) 電子制御システムの故障診断装置
JP2009248885A (ja) 電動パワーステアリング装置の補助電源システム
JP2013062979A (ja) 車両用電源装置
JP5696614B2 (ja) コンデンサの放電回路
CN108879611B (zh) 一种永磁电机系统的故障控制方法及系统
JP6176186B2 (ja) 自動車の電源装置
JP2021002942A (ja) 回転電機制御装置
WO2018211889A1 (ja) モータ駆動装置
WO2019044573A1 (ja) 接続ユニット及び電源システム
JP5389758B2 (ja) 車両用制御装置および故障検出方法
BR112014014864B1 (pt) Sistema de acionametno de motor de tração e método para isolar seletivamente condições de falha em um sistema de acionamento de motor de tração
JP2007189829A (ja) 車両用駆動装置
JP2006280132A (ja) 電気車制御装置
US10243501B2 (en) Inverter control device
JP2015221594A (ja) 自動車の電源装置