JP2015067847A - 真空蒸着装置 - Google Patents

真空蒸着装置 Download PDF

Info

Publication number
JP2015067847A
JP2015067847A JP2013201690A JP2013201690A JP2015067847A JP 2015067847 A JP2015067847 A JP 2015067847A JP 2013201690 A JP2013201690 A JP 2013201690A JP 2013201690 A JP2013201690 A JP 2013201690A JP 2015067847 A JP2015067847 A JP 2015067847A
Authority
JP
Japan
Prior art keywords
crucible
nozzle
heater
temperature
heat transfer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2013201690A
Other languages
English (en)
Inventor
三宅 竜也
Tatsuya Miyake
竜也 三宅
武司 玉腰
Takeshi Tamakoshi
武司 玉腰
英明 峰川
Hideaki Minekawa
英明 峰川
松浦 宏育
Hiroyasu Matsuura
宏育 松浦
智彦 尾方
Tomohiko Ogata
智彦 尾方
楠 敏明
Toshiaki Kusunoki
敏明 楠
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi High Tech Fine Systems Corp
Original Assignee
Hitachi High Tech Fine Systems Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi High Tech Fine Systems Corp filed Critical Hitachi High Tech Fine Systems Corp
Priority to JP2013201690A priority Critical patent/JP2015067847A/ja
Publication of JP2015067847A publication Critical patent/JP2015067847A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Electroluminescent Light Sources (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

【課題】真空蒸着装置において、蒸気を噴出するノズルに蒸着材料が堆積して、ノズルの径が小さくなったり、ノズルが目詰まりをしたりすることを防止する。【解決手段】蒸着材料6を収納し、先端に蒸気を噴出するノズル1が形成されている坩堝7において、坩堝7の周りに坩堝7を加熱するためのヒーター3が配置され、ヒーター3と坩堝7の間に坩堝7の温度分布を調整するための伝熱部材5が配置され、ヒーター3の存在範囲をノズル1側から、坩堝7の全長の1/3以上で2/3以下の範囲とする。【選択図】図1

Description

本発明は、真空蒸着装置に関する。
近年、有機EL素子が新たな産業分野として注目されている。有機ELディスプレイは液晶ディスプレイやプラズマディスプレイに代わる次世代ディスプレイとして、また有機EL照明はLED照明と並ぶ次世代照明として期待されている。このような動きに伴い、有機ELパネルの製造装置マーケットも今後拡大すると予測されている。
有機EL素子は、有機化合物からなる発光層、正孔注入層、正孔輸送層、電子輸送層、電子注入層などを積層した多層構造を、陽極と陰極からなる電極対で挟み込んだ構造になっている。電極に電圧を印加することにより陽極側から正孔が、陰極側から電子が発光層に注入され、それらが再結合して生じる励起子(エキシトン)の失活により発光する。
発光層を形成する有機材料には高分子材料と低分子材料がある。このうち現在主流である低分子材料は、真空蒸着によって成膜される。その他の層を形成する際にも真空蒸着が用いられる。
真空蒸着に用いられる蒸発源は、蒸着材料を封入する坩堝、蒸着材料を噴射するノズル、坩堝を加熱するヒーター、坩堝の保温性を向上するためのリフレクタ、坩堝、ヒーターやリフレクタなどを格納するハウジングを有する。ヒーターにより加熱された坩堝から蒸着材料を蒸発あるいは昇華させて、真空容器内に設置した基板上にノズルから気化した蒸着材料を噴射して各層を形成する。カラー表示の有機EL素子を作成するには、基板とメタルマスクをアライメントした状態で、異なる発光をする有機EL材料を画素ごとに塗り分けて成膜する。
有機や無機および金属材料を真空蒸着により成膜する場合、有機材料の蒸発あるいは昇華には数百℃、無機や金属材料の蒸発あるいは昇華には千℃前後の高温プロセスが要求される。高温の坩堝からは熱輻射と呼ばれる電磁波が放射される。ノズルから基板に向かって放射される熱輻射により熱が奪われ、ノズル周辺は坩堝本体より温度が低下する傾向にある。
有機ELパネルの製造装置では、製造コストを低減するために長時間連続して稼働する必要がある。真空蒸着装置において、蒸発源からの熱輻射によってノズル温度が低下すると、その付近に気化した材料が析出し易くなる。ノズル周辺で材料が析出すると、ノズル詰まりが発生する要因となる。ノズル詰まりは蒸着速度や蒸着分布などの品質に影響を及ぼすため、連続稼働を阻害する要因となる。また、坩堝内に析出した材料の除去や洗浄などのメンテナンス上の問題も生じる。
ノズル詰まりを防止する技術として、特許文献1および2が開示されている。特許文献1では「前記加熱部2により加熱される位置に配設され前記ルツボ体1の外周面部とは別の被加熱補助部5と、この被加熱補助部5に連設し伝導加熱され、少なくとも前記ルツボ体1の上部であって前記蒸発口3の周囲に配設される伝導加熱部6とにより構成された均熱蓋部7を設けて、前記ルツボ体1の上部の蒸発口3周囲の加熱時の温度を上昇させる蒸着装置における蒸発源」が開示されている。特許文献2では「前記ヒーターから熱の伝達を直接受ける伝熱部材を坩堝に近接させるが、それらの間に隙間を設けると共に、同伝熱部材と前記出射口を設けた遮蔽部材とを一体とするかまたは連結したことを特長とする薄膜堆積用分子線源セル」が開示されている。
特許第4090039号 特許第4491449号
特許文献1及び2では、伝熱部材がヒーターから受け取った熱を、ノズルへ直接伝えるため、坩堝温度に対してノズル温度を高くし易い構造となっている。しかし特許文献1及び2では、ヒーターが坩堝全体にわたって配置されているので、ノズル付近を効果的に昇温するのが必ずしも容易ではない。また特許文献1及び2では、伝熱部材がノズルへの熱伝導性向上の観点から導入されているが、熱輻射の影響については十分に考慮されていない。
本発明の課題は、従来例の課題を踏まえ、より効果的にノズルの温度を坩堝体の温度より高く保持し、ノズル付近での材料析出が生じにくく、ノズル詰まりが発生しにくい蒸発源を提供することである。
本発明は上記課題を解決するものであり、代表的な手段は次のとおりである。すなわち、蒸着材料を収納する坩堝と、基板に対向する面に蒸着材料を噴出するノズルと、前記坩堝の回りに加熱用のヒーターと、基板に対向する前記面及び前記ヒーターと前記坩堝の間で前記ノズル側から前記坩堝を覆うように設けられた伝熱部材とを備え、前記ヒーターは前記ノズル側から前記坩堝の全長の1/10以上で2/3以下の範囲に存在していることを特徴とする。この場合、伝熱部材も前記坩堝の全長の1/10以上で2/3以下の範囲に存在していることが望ましい。なお、前記伝熱部材は前記ヒーターの外側に存在してもよい。
本発明によれば、ノズル温度を坩堝温度より効果的に高く維持することができ、ノズル詰まりが発生しにくい蒸発源を提供することができる。
本発明の第1の実施例における蒸発源の断面の模式図である。 蒸着装置における基板とマスクと蒸発源の関係を示す斜視図である。 ヒーターの存在範囲と坩堝の温度分布との関係を示すグラフである。 特許文献1の蒸発源における坩堝の温度分布である。 特許文献2の蒸発源における坩堝の温度分布である。 実施例1の第1の形態の蒸発源おける坩堝の温度分布である。 実施例1の第2の形態の蒸発源おける坩堝の温度分布である。 第1の比較例の蒸発源における坩堝の温度分布である。 第2の比較例の蒸発源における坩堝の温度分布である。 本発明の第2実施例における蒸発源の断面図である。 本発明の第3実施例における蒸発源の断面図である。 本発明の実施の形態である真空蒸着装置の構成の概略を示す模式図である。
以下、実施例および図を用いて本発明の内容を説明する。
以下では、本発明の真空蒸着装置の一例として、有機ELデバイスの製造に適用した例を説明する。以下の説明は本発明の内容の具体例を示すものであり、本発明がこれらの説明だけに限定されるものではなく、本明細書に開示される技術的思想の範囲内において当業者による様々な変更および修正が可能である。
図12は、本発明の実施形態である真空蒸着装置20の構成の概略を示す模式図である。真空蒸着装置20は、水平に配置された基板10に下から蒸着して成膜する水平真空蒸着装置である。真空蒸着装置20は、真空蒸着室25内に、成膜される基板10、蒸着材料を有する蒸発源9、及び膜厚モニタ27がある。また、真空蒸着室25外には、基板10に成膜される膜厚を制御するための膜厚制御計28、蒸発源9の温度を制御するための蒸発源電源29、及び膜厚制御計28と蒸発源電源29を連動させて制御し、蒸着データを記録するための制御用パソコン26がある。
本発明の実施例である蒸発源9は、図12に示すように、ノズル1が一列に配設されたリニア蒸発源である。ノズル1から、基板10に成膜する蒸着材料の蒸気22が放出される。本発明は、リニア蒸発源の代わりに、ポイント蒸発源のクヌードセンセル(Kセル)型の蒸発源に適用可能であり、それらを並べて設置した真空蒸着装置で成膜可能である。また、本発明の蒸発源は、横型蒸着装置だけでなく、垂直に配置された基板10に成膜する縦型蒸着装置に適用する蒸発源にも適用可能である。
以下、本発明の特徴である蒸発源について説明する。
(実施例1)
図1は、本発明の第1の実施例である蒸発源を示す蒸発源9の断面図である。図2は、本発明の実施例1における蒸発源と有機EL表示装置用基板および蒸着用メタルマスクの配置を模式的に示す斜視図である。図2において、蒸発源9から放射された蒸気22が、メタルマスク11の開口部14を介して基板保持部に保持される基板10に蒸着される。メタルマスク11は、基板10に対する蒸着場所を規定する開口部14を有するマスクシート13とマスクシート13を支えるフレーム12とから構成されている。
図2において、蒸発源9は縦方向の白矢印41のように移動し基板10をスキャンすることによって、基板10に蒸発物を均一な膜厚で蒸着することが出来る。また、蒸発源9は、図2の横方向の白矢印42のように移動することが出来るようになっている。これは、2枚の基板を交互に蒸着するような場合に、蒸着源9を移動させることが出来るようにするためである。
図1または図2において、蒸発源9は、蒸着材料6を封入する容器である坩堝7と、坩堝7の側面に加熱用のヒーター3と、ヒーター3の外周に坩堝7の保温性を向上するための複数枚のリフレクタ4を有し、ヒーター3の輻射熱を外部に漏らさないよう水冷した容器(ハウジング)8に格納したものである。坩堝7は、基板10に蒸着材料6を噴出するノズル1を有する。
また、蒸着材料6のガスが坩堝7の外側の蒸発源9内に進入し、ヒーター3周辺に付着することで短絡や性能低下を及ぼさないように、ノズル1を取り囲むようにラッパ状の防着板2が設けられている。その他、図1には記載されていないが、蒸発源9には、坩堝7のノズル1を開閉するための蒸着シャッター、蒸着速度を計測する膜厚モニタ27(図12参照)を有する。もちろん蒸発源9の構造は、図1および図2に示した構造に限定されるものではない。また、坩堝7は、ステンレス、チタン、モリブデン、グラファイト、セラミック(アルミナ、ジルコニア、PBN(Pyrolitic Boron Nitride))などの耐反応性や耐熱性に優れた材料で形成される。またノズル1と坩堝7は一体ものでもよいし、分離していてもよい。
ヒーター3の形状は、坩堝7の形状に依存する。例えば、図1は、線状のヒーター3が坩堝を複数回巻いている断面を示している。ヒーター3の巻き方は様々であるが、坩堝7を温める以上、少なくとも坩堝7の側面を部分的に覆う構成になっている必要がある。図1において、坩堝7の全長はLで、ヒーター3が坩堝7の側面を覆う領域の範囲はdである。
ヒーター3の材質には、様々な選択肢がありうる。有機蒸発源などの低温プロセスでは、ニクロム線やシースヒーターなどを用いることが可能である。金属蒸発源などの高温プロセスでは、モリブデン、タンタル、PBN、グラファイトなどを用いることが可能である。
伝熱部材5の形状は、坩堝7の形状に依存する。例えば、長方形型の坩堝7であれば、伝熱部材5は長方形の薄板を採用すればよい。円筒形の坩堝7であれば、伝熱部材5は円筒形の薄板を用いればよい。この薄板がノズル1に備え付けられる部分の形状も、その取り付け方によって、様々な形状をとることが出来る。
伝熱部材5の材質にも様々な選択肢がありうる。有機蒸発源などの低温プロセスでは、チタン、ステンレスなどを用いることが可能である。金属蒸発源などの高温プロセスでは、モリブデン、タンタル、PBN、グラファイトなどを用いることが可能である。
蒸発源9は、基板10に蒸着材料6を噴出するための開口部であるノズル1を有する。蒸着材料6を噴出するとともに、坩堝7から基板10への輻射熱が生ずるため、ノズル1周辺の温度は坩堝7本体の温度よりも低下する傾向にある。
従来例では、ノズル1付近の温度を低下させないよう、ヒーター3からの輻射熱を伝熱部材5で受け取り、熱伝導でノズル1へ熱を伝えている。しかし、ヒーター3から坩堝7への伝熱は、伝熱部材5を介したノズル1への熱伝導と、ヒーター3あるいは伝熱部材5から坩堝7本体への熱輻射の二通りの経路が存在する。そして後者の寄与が大きく影響するため、従来例では必ずしもノズル1の温度が坩堝7本体よりも高くなるとは限らない。
本発明の実施例1である蒸発源9は、基板10に対向する面と、少なくとも坩堝7の側面とヒーター3の間に伝熱部材5を有し、前記伝熱部材5は、前記ノズル1の両側の坩堝7の上部に備えつけられ、ヒーター3が坩堝7側壁のノズル1側の領域を覆い、その領域の比率d/Lが10分の1以上で3分の2以下であることを特徴とする。このようにヒーター3がノズル1側を集中的に覆うように配置することで、ヒーター3から坩堝7側壁への熱輻射を、ノズル1が温まるよう制御し、さらに伝熱部材5からの熱伝導により、より効果的にヒーター3からの熱をノズル1へ伝えることができる。
(計算例)
図1で示した蒸発源9において、坩堝7の温度分布のシミュレーションをおこなった。具体的には、蒸発源9の2次元の定常輻射伝熱計算を行った。金属材料の蒸着プロセスを想定して、ヒーター温度を1600℃に設定した。坩堝7、ヒーター3、伝熱部材5の材質はモリブデンとし、リフレクタ4、ハウジング8、防着板2の材質はSUS304とした。蒸発源9の内部は真空として扱い、ハウジング8は常温の外部環境と輻射で熱のやりとりをする。
ノズル1先端から底までの坩堝7全長は、L=154ミリメートルとし、ヒーター3が配置される領域は、ノズル1の先からそれぞれ、d=151、142、133、124、115、106、97ミリメートルとした。ヒーター3と坩堝7側壁との間には、ヒーター3を覆うように伝熱部材5が配置され、ノズル1に取り付けられている。なお、図1において、伝熱部材5はヒーター3を覆う範囲に設けている。
図3は、坩堝7の温度分布のシミュレーション結果であり、横軸にd、縦軸に摂氏温度をとり、坩堝7の最大温度およびノズル1の温度を示したグラフである。図3において、坩堝本体の温度の最大値が生ずる位置は、dの値によって変化する。条件d=151,142,133,124,115ミリメートルでは、ノズル1の温度が坩堝7の最大温度よりも低い。一方、条件d=106,97ミリメートルでは、ノズル1の温度が坩堝7の最大温度と等しくなっている。言い換えると、ノズル1が、坩堝7における最大温度なっている。このような構成によって、ノズル1の温度を坩堝7の温度より高く維持すれば、ノズル1付近での材料析出が起こりにくく、ノズル詰まりが発生しにくい。
以上の検討により、坩堝7の全長Lに対して、ヒーター3が配置される領域dの比率が、106/154、つまり約2/3以下であればよいことを見出した。なお、図3は、L=154ミリメートルのみの結果を示しているが、Lが変わっても相対的な比d/Lは同じになる。
以下、従来例による蒸発源、本実施例による蒸発源、比較例の蒸発源ついて、熱輻射シミュレーションで得られた坩堝7の温度分布の結果を述べる。図4は、第1の従来例における坩堝の温度分布である。図5は、第2の従来例における坩堝の温度分布である。図6は、本実施例における第1の形態の坩堝の温度分布である。図7は本実施例における第2の形態の坩堝の温度分布である。図8は、第1の比較例の坩堝の温度分布である。図9は第2の比較例の坩堝の温度分布である。
図4(a)は特許文献1の蒸発源の断面図である。伝熱部材5は存在せず、ヒーター3が坩堝7の全長に渡って配置されている。図4(b)は、坩堝7の温度分布を示す。横軸はハウジング8先端を原点とした位置を表し、単位はメートルである。縦軸は坩堝7の表面温度を示す。坩堝7表面は、図4(a)における坩堝7の断面の上側外面、上側内面、下側外面、下側内面などから構成される。したがって、図4(b)には曲線が4本存在するが、坩堝の大部分の領域において同じ温度を有するので一本の線に見える。ただし図4(b)において、坩堝7のノズル1の先端部分では、坩堝7の内面B、即ちノズル1の内面は、坩堝の外面Aよりも温度が低く、内面と外面で2本の分岐に分かれて見える。
図4(b)において、坩堝7の最も温度が高い部分は、坩堝7の中央部よりもやや底側に寄った部分で、ハウジング8の先端から0.12mの位置であり、1320℃程度である。これに対して、ノズル1の内面の温度は、1260℃程度である。ノズル1の内面の温度は、坩堝7の最高温度の部分よりも60℃程度低く、ノズルの内面に蒸発物質が付着しやすくなっている。
図5は特許文献2における坩堝7の温度分布を示す図である。図5(a)は、特許文献2における蒸発源の断面図である。図5(a)において、ヒーター3も伝熱部材5も坩堝7の先端から坩堝長さ全体にわたって存在している。図5(b)は図5(a)の蒸発源における坩堝7の温度分布を示すグラフである。図5(b)における各曲線の定義は図4(b)と同様である。図5(b)において、坩堝7本体の最高温度は、ノズル1側から0.12mの場所であり、1255℃程度である。一方、ノズルの内面Bにおける温度は、1228℃であり、温度差は27℃程度ある。第1の従来例よりも温度差は小さくなっているが、それでもノズル1に蒸発物質が付着しやすい。また坩堝7本体の温度分布は、材料室からノズル1側に向かって大きく低下している。
特許文献2では、ノズル1の温度を低下させないよう、ヒーター3からの輻射熱を伝熱部材5で受け取り、熱伝導でノズル1へ熱を伝えている。しかし、ヒーター3から坩堝7への伝熱は、伝熱部材5を介してのノズル1への熱伝導と、ヒーター3および伝熱部材5から坩堝7本体への熱輻射の二通りの経路が存在する。そして後者の寄与が大きく影響するため、ノズル1の温度が坩堝7本体の温度よりもかなり低くなっている。
図6は本発明の実施例1の第1の実施の形態である蒸発源9の坩堝7およびノズル1の温度分布を示す図である。図6(a)は、本実施の形態の蒸発源9の断面図である。図6(a)において、伝熱部材5は坩堝7の先端から坩堝長さの2/3の長さにわたって存在している。伝熱部材5はノズル1に取り付けられ、ヒーター3と坩堝7側面の間を遮るように設けられている。ヒーター3は、伝熱部材5と同様に坩堝7のノズル1の位置から坩堝長さの2/3の長さにわたって存在している。これは、略、図1におけるLが154mm、dが106mmの場合に対応している。
図6(b)は、本実施の形態の坩堝7の温度分布を示すグラフである。図6(b)において、坩堝7本体の温度は、底部からノズル1に向かって増加あるいは非減少である。坩堝7の最高温度はノズル1の外面Aで1180℃程度となっている。ノズル1の最も温度が低い部分、すなわち、ノズル1の内面Bでも1173℃であり、坩堝本体の最高温度の部分に比較して、7℃低いだけである。このような温度分布であれば、ノズル部分に蒸発物質が付着、堆積する現象を防止することが出来る。このように、本実施の形態は、従来例に比較して、坩堝7の温度分布を大幅に改善することが出来る。
図7は実施例1の第2の実施の形態である蒸発源9の坩堝7およびノズル1の温度分布を示す図である。図7(a)は、実施の形態2の蒸発源9の断面図である。図7(a)において、ヒーター3は、実施の形態1である図6と同様に坩堝7のノズル1の位置から坩堝長さの2/3の長さにわたって存在している。しかし、伝熱部材5は第2の従来例同様に、坩堝7の先端から坩堝7の長さ全体にわたって存在している点が実施の形態1と異なっている。
図7(b)は、実施の形態2の坩堝7の温度分布を示すグラフである。図7(b)において、
坩堝7本体(内外面)の温度は、底部からノズル1に向かって増加あるいは非減少である。坩堝7の最高温度は、坩堝7の外面A、即ちノズル1の外面Aで1180℃程度となっている。
坩堝7本体における最高温度は、坩堝7のノズル側に存在しており、1177℃程度である。ノズル1の内面Bの温度は低くなっており、1170℃程度である。したがって、ノズル1の最も温度が低い部分、すなわち内面Bでも、坩堝本体の最高温度の部分に比較して7℃低いだけである。このような温度分布であれば、ノズル部分に蒸発物質が付着、堆積する現象を防止することが出来る。このように、実施の形態2においても、実施の形態1の場合と同様、従来例に比較して、坩堝7の温度分布を大幅に改善することが出来る。
図8は、実施例1の第1の比較例における坩堝7およびノズル1の温度分布を示す図である。図8(a)は、比較例1の蒸発源の断面図である。図8(a)において、坩堝7のノズル1側には、伝熱部材5が取り付けられている。伝熱部材5は坩堝7の先端から坩堝長さの40%の長さにわたって存在している。一方、ヒーター3は坩堝7全長にわたって存在している。図8(b)において、坩堝7の最も温度が高い部分は、坩堝7の中央部よりもやや底側に寄った部分で、ハウジング8の先端から0.115mの位置であり、1300℃程度である。これに対して、ノズル1の内側Bの温度は、1255℃程度である。ノズル1の内面Bの温度は、坩堝7の最高温度の部分よりも45℃程度低い。
比較例1では、ノズル1の温度を低下させないよう、ヒーター3からの輻射熱を伝熱部材5で受け取り、熱伝導でノズル1へ熱を伝えている。しかし、ヒーター3から坩堝7への伝熱は、伝熱部材5を介してのノズル1への熱伝導と、ヒーター3および伝熱部材5から坩堝7本体への熱輻射の二通りの経路が存在する。そして後者の寄与が大きく影響するため、ノズル1の温度が坩堝7本体の温度よりもかなり低くなっている。
したがって、比較例1の構成では、蒸発物質がノズル付近に堆積する危険が存在する。以上のように、比較例1と比較して、実施例1の実施の形態1および2はノズル詰りを発生するリスクが小さく優れた特性を示している。
図9は実施例1の第2の比較例における坩堝7およびノズル1の温度分布を示す図である。図9(a)は、比較例2の蒸発源の断面図である。図9(a)においては、従来例1のように伝熱部材5は存在していない。ヒーター3は、坩堝7の先端から坩堝長さの2/3の長さにわたって存在している。図9(b)は図9(a)の蒸発源における坩堝7の温度分布を示すグラフである。図9(b)において、坩堝7本体の最高温度は、ノズル1側から0.083mmの場所であり、1217℃程度である。一方、ノズルの内面Bにおける温度は、1185℃であり、温度差は32℃程度ある。また、ノズル付近の温度は、ノズル本体の温度よりも低くなっている。したがって、比較例2の構成では、蒸発物質がノズル付近に堆積する危険が存在する。このように、比較例2に対しても、実施例1である実施の形態1および2は優れた特性を示している。
以上のように、本実施例における実施の形態1および実施の形態2は、従来例および比較例に比較して非常に優れた特性を示している。ところで、実施の形態1および実施の形態2は、ヒーター3および伝熱部材5の存在範囲が重要である。図6および図7において、ヒーター3の存在範囲は、坩堝7のノズル1側から2/3の範囲まで存在することによって、坩堝7に対して適切な温度分布を設定することが出来る。ヒーター3の存在範囲をさらにノズル1側に限定すると、坩堝7におけるノズル1側の温度を上げることになるので、ノズル1に蒸発物質が体積する現象は防止することが出来る。しかし、この場合は、坩堝7全体の温度を上げるためには、ヒーター3に過大な電力を注入する必要があり、電力消費と電源の問題が生ずる。したがって、ヒーター3の存在範囲は、実用的に坩堝7の温度を所定の温度に上げることができる長さ、ノズル1側から坩堝7の全長Lの1/10以上とすることが必要である。そうすると、ヒーター3の存在範囲は、坩堝7のノズル1側から1/10〜2/3である必要がある。
一方、伝熱部材5の存在範囲が極めて小さければ、伝熱部材5の役割を発揮することが出来ない。つまり、伝熱部材5の存在範囲も坩堝7全長の1/10以上は必要である。したがって、伝熱部材5の存在範囲は、坩堝7のノズル1側から1/10以上である必要がある。一方、伝熱部材5の上限は、図7からもわかるように、坩堝7の全長と同じとしても、坩堝7の必要な温度分布を確保することが出来る。
以上のように、実施例1は、従来例、比較例のいずれに対しても際立って優れた特性を示している。実施例1の蒸発源を用いることによって、蒸発物質がノズルの堆積する現象を防止することが出来る。
(実施例2)
図10は、本発明の第2の実施例における蒸発源9の断面図である。実施例2では、ヒーター3をノズル1側のヒーター31と坩堝7本体側のヒーター32に分割し、個別に制御する構成としている。その他の点は実施例1と同様である。
実施例2では、ノズル1側のヒーター31のみを加熱することで、実施例1と同様の条件を作り出すことができる。したがって、図2において、基板に蒸着をするときの坩堝7あるいはノズル1の温度特性は、実施例1における図6で説明したのと同様な特性となる。
実施例2では、ヒーター31用とヒーター32用の制御電源を用意する。坩堝7の昇温時には、両方のヒーター31および32で加熱することにより、実施例1に比べて、坩堝7の温度を速やかに目標値まで上昇させることができる。そして、坩堝7の温度が目標値付近に到達した後には、坩堝7本体側のヒーター32の電力をオフにする、あるいは小さくして、ノズル1側のヒーター31に制御を移すことで、実施例1と同様に、ノズル1の温度を坩堝7本体より高くすることが可能である。
実施例2における伝熱部材5は、ノズル1側のヒーター31と坩堝7本体の間に設置すればよい。ただし、伝熱部材5は、ノズル1側のヒーター31にのみ存在してもよいし、ノズル1側のヒーター31と坩堝7本体側のヒーター32の両方の側に存在してもよい。
(実施例3)
図11は、本発明の第3の実施例における蒸発源9の断面図である。実施例3は、前述した実施例1および実施例2と異なり、伝熱部材5がヒーター3の外側あるいは両側に配置されているのが特徴である。図11では、伝熱部材5はヒーター3の外側のみに配置されている。この構成によれば、伝熱部材5はより効果的にヒーター3からの輻射熱を受け取ることができ、熱伝導によってノズル1へ熱を伝え、ノズル1の温度を坩堝7へ伝えることができる。
伝熱部材5およびヒーター3の存在する範囲は、実施例1における実施の形態1あるいは実施の形態2と同様である。このような構成とすることによって、ノズル1付近の温度を坩堝7本体の温度と同等かあるいは高く設定することが出来る。
実施例3は、実施例2におけるように、ヒーターを第1のヒーターと第2のヒーターに分け、基板に蒸着を行うときは第1のヒーターのみを使用し、蒸発源を所定の温度まで加熱するプロセスにおいては、第1のヒーターと第2のヒーターの両方を使用するような構成においても適用することが出来る。
なお、本発明は上記した実施例に限定されるものではなく、様々な変形例が含まれる。例えば、上記した実施例は本発明を分かりやすく説明するために詳細に説明したものであり、必ずしも説明した全ての構成を備えるものに限定されるものではない。また、ある実施例の構成の一部を他の実施例の構成に置き換えることが可能であり、また、ある実施例の構成に他の実施例の構成を加えることも可能である。また、各実施例の構成の一部について、他の構成の追加・削除・置換をすることが可能である。
1:ノズル 2:防着板
3:ヒーター 4:リフレクタ
5:伝熱部材 6:蒸着材料
7:坩堝 8:ハウジング
9:蒸発源 10:基板
11:メタルマスク 12:フレーム
13:マスクシート 14:開口部
20:真空蒸着装置 22:蒸気
25:真空蒸着室 26:制御用パソコン
27:膜厚モニタ 28:膜厚制御計
29:蒸発源電源 31:第1のヒーター
32:第2のヒーター

Claims (6)

  1. 蒸着材料を収納する坩堝と、
    前記坩堝から前記蒸着材料を基板に対向する面に噴出するノズルと、
    前記ノズルの側から前記坩堝の全長の1/10以上で2/3以下の範囲に存在して前記坩堝の外周を囲み、前記坩堝を加熱するヒーターと、
    前記基板に対向する前記面と、前記ノズルの側から前記坩堝を覆うように設けられた伝熱部材とを備えていることを特徴とする真空蒸着装置。
  2. 前記伝熱部材は、前記ヒーターに対して外側あるいは内側から前記坩堝を覆うように設けられていることを特徴とする請求項1に記載の真空蒸着装置。
  3. 前記伝熱部材は、前記ノズルの側から前記ヒーターと同じ範囲に存在していることを特徴とする請求項1または2に記載の真空蒸着装置。
  4. 前記伝熱部材は、前記ノズルの側から前記坩堝の全長の1/10以上で、かつ、前記坩堝の全長と同じ長さの範囲に存在していることを特徴とする請求項1又は2に記載の真空蒸着装置。
  5. 前記ノズルの側から前記坩堝の全長の2/3より長く前記坩堝の全長までの範囲に存在して前記坩堝の外周を囲み、前記坩堝を加熱する第2のヒーターを有し、
    前記ヒーター及び前記第2のヒーターを別個に制御する制御電源を備えていることを特徴とする請求項3又は4記載の真空蒸着装置。
  6. 前記基板を保持する基板保持部を備えていることを特徴とする請求項1乃至5のいずれかに記載の真空蒸着装置。
JP2013201690A 2013-09-27 2013-09-27 真空蒸着装置 Pending JP2015067847A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013201690A JP2015067847A (ja) 2013-09-27 2013-09-27 真空蒸着装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013201690A JP2015067847A (ja) 2013-09-27 2013-09-27 真空蒸着装置

Publications (1)

Publication Number Publication Date
JP2015067847A true JP2015067847A (ja) 2015-04-13

Family

ID=52834853

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013201690A Pending JP2015067847A (ja) 2013-09-27 2013-09-27 真空蒸着装置

Country Status (1)

Country Link
JP (1) JP2015067847A (ja)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105586571A (zh) * 2016-03-09 2016-05-18 苏州新材料研究所有限公司 基于电子束蒸发的双钨坩埚结构
KR101846692B1 (ko) * 2016-08-05 2018-04-06 주식회사 제이몬 스피팅 방지 구조체를 구비한 증착장치용 증발원
CN109082630A (zh) * 2018-09-06 2018-12-25 武汉华星光电半导体显示技术有限公司 蒸镀装置
KR20190024543A (ko) 2017-08-28 2019-03-08 캐논 톡키 가부시키가이샤 증발원 용기 및 증발원 장치
KR20190070239A (ko) 2017-12-12 2019-06-20 캐논 톡키 가부시키가이샤 증발원 장치 및 증착 장치
CN110573647A (zh) * 2017-04-26 2019-12-13 株式会社爱发科 蒸发源和成膜装置
CN113388816A (zh) * 2020-03-11 2021-09-14 Tos株式会社 具备可变温度调节装置的金属氧化物电子束蒸发源
CN115404447A (zh) * 2022-09-29 2022-11-29 京东方科技集团股份有限公司 坩埚组件以及具有其的蒸镀装置

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105586571B (zh) * 2016-03-09 2018-03-16 苏州新材料研究所有限公司 基于电子束蒸发的双钨坩埚结构
CN105586571A (zh) * 2016-03-09 2016-05-18 苏州新材料研究所有限公司 基于电子束蒸发的双钨坩埚结构
KR101846692B1 (ko) * 2016-08-05 2018-04-06 주식회사 제이몬 스피팅 방지 구조체를 구비한 증착장치용 증발원
CN110573647A (zh) * 2017-04-26 2019-12-13 株式会社爱发科 蒸发源和成膜装置
KR20190024543A (ko) 2017-08-28 2019-03-08 캐논 톡키 가부시키가이샤 증발원 용기 및 증발원 장치
KR20220017446A (ko) 2017-12-12 2022-02-11 캐논 톡키 가부시키가이샤 증발원 장치 및 증착 장치
KR20190070239A (ko) 2017-12-12 2019-06-20 캐논 톡키 가부시키가이샤 증발원 장치 및 증착 장치
CN109913818A (zh) * 2017-12-12 2019-06-21 佳能特机株式会社 蒸发源装置和蒸镀装置
KR20220154060A (ko) 2017-12-12 2022-11-21 캐논 톡키 가부시키가이샤 증발원 장치 및 증착 장치
CN109082630A (zh) * 2018-09-06 2018-12-25 武汉华星光电半导体显示技术有限公司 蒸镀装置
CN113388816A (zh) * 2020-03-11 2021-09-14 Tos株式会社 具备可变温度调节装置的金属氧化物电子束蒸发源
JP2021143417A (ja) * 2020-03-11 2021-09-24 ティー オー エス カンパニー リミテッドT.O.S Co., Ltd. 可変温度調節装置を備えた金属−酸化物電子ビーム蒸発源
JP7206244B2 (ja) 2020-03-11 2023-01-17 ティー オー エス カンパニー リミテッド 可変温度調節装置を備えた金属-酸化物電子ビーム蒸発源
US11692260B2 (en) 2020-03-11 2023-07-04 T.O.S. Co., Ltd. Metal-oxide semiconductor evaporation source equipped with variable temperature control module
CN115404447A (zh) * 2022-09-29 2022-11-29 京东方科技集团股份有限公司 坩埚组件以及具有其的蒸镀装置
CN115404447B (zh) * 2022-09-29 2024-06-04 京东方科技集团股份有限公司 坩埚组件以及具有其的蒸镀装置

Similar Documents

Publication Publication Date Title
JP2015067847A (ja) 真空蒸着装置
TWI420721B (zh) 氣相沈積源及方法
KR101363147B1 (ko) 증착 방법 및 증착 장치
KR100805531B1 (ko) 증발원
US20100154710A1 (en) In-vacuum deposition of organic materials
KR100761079B1 (ko) 냉각수단을 갖는 증발원 및 이를 이용한 증착 장치
KR20130035863A (ko) 증발원 및 성막 장치
KR100666573B1 (ko) 증발원 및 이를 이용한 증착 장치
KR100952313B1 (ko) 원료 공급 유닛과 원료 공급 방법 및 박막 증착 장치
KR101787367B1 (ko) 선형 증발 증착 장치
WO2013122059A1 (ja) 成膜装置
KR100962967B1 (ko) 증발원
KR101553619B1 (ko) Oled 제조용 인라인 증착장치
JP2015067865A (ja) 蒸発源とこれを用いた真空蒸着装置
JP2005154903A (ja) 蒸着膜形成方法及び蒸着膜形成装置
KR20170049008A (ko) 유도 가열 선형 증발 증착 장치
KR102190640B1 (ko) 선형 증착원
KR100583044B1 (ko) 선형 증착물질 가열장치
KR100629476B1 (ko) 증착물질 가열장치
KR100583056B1 (ko) 증착물질 가열장치
KR101649739B1 (ko) 리니어 증발 소스
KR101909210B1 (ko) 박막증착장치의 증발원 및 그를 가지는 박막증착장치
JP2013237915A (ja) 蒸発源及び真空蒸着装置
KR102221609B1 (ko) 증착 장치
KR20130031445A (ko) 박막 증착 장치