JP2015056297A - 二次電池の製造方法および二次電池用組付け装置 - Google Patents

二次電池の製造方法および二次電池用組付け装置 Download PDF

Info

Publication number
JP2015056297A
JP2015056297A JP2013189264A JP2013189264A JP2015056297A JP 2015056297 A JP2015056297 A JP 2015056297A JP 2013189264 A JP2013189264 A JP 2013189264A JP 2013189264 A JP2013189264 A JP 2013189264A JP 2015056297 A JP2015056297 A JP 2015056297A
Authority
JP
Japan
Prior art keywords
battery
power generation
generation element
vibration
frequency
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2013189264A
Other languages
English (en)
Inventor
英毅 篠原
Hideki Shinohara
英毅 篠原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Astemo Ltd
Original Assignee
Hitachi Automotive Systems Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Automotive Systems Ltd filed Critical Hitachi Automotive Systems Ltd
Priority to JP2013189264A priority Critical patent/JP2015056297A/ja
Publication of JP2015056297A publication Critical patent/JP2015056297A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Secondary Cells (AREA)

Abstract

【課題】電池缶を振動させながら発電要素を効率的に電池缶に挿入する方法を提供する。【解決手段】発電要素40を電池缶1に挿入する際、電池缶1の固有振動数を含む可聴周波数帯域の周波数の振動を電池缶1に与える。電池缶1を振動させながら発電要素40を電池缶1に挿入する。【選択図】図11

Description

この発明は、二次電池の製造方法および二次電池用組付け装置に関し、より詳細には、発電要素を電池容器の開口部から電池容器内に挿入する二次電池の製造方法および二次電池用組付け装置に関する。
電気自動車等の車両用の電源用電池として、エネルギー密度の高いリチウムイオン電池やニッケル水素電池等の二次電池が用いられている。二次電池は、通常、正・負極電極を、セパレータを介して捲回して発電要素を形成し、この発電要素を電池容器内に収容し、電池容器内に電解液を注入して作製される。
発電要素は、通常、電池容器と絶縁するための絶縁フィルムで覆った後、電池容器の開口部から挿入される。二次電池は、外形を小さくし、かつ、電池容器内に注入される電解液の量を少なくするため、発電要素と電池缶との隙間は可能な限り小さくされている。このため、発電要素を覆った絶縁フィルムを電池缶に挿入する際、絶縁フィルムが電池容器内面に接触して摩擦力が生じる。発電要素の電池缶への挿入は、このような摩擦力に抗する作業が必要とされるため、作業性が悪い。
特許文献1には、鉛蓄電池の製造方法において、正・負極板および隔離板を備えたエレメントを電池の電槽に挿入する際、エレメントを超音波振動させながら行うことにより、生産性を向上させることが記載されている。
特開平6−251798号公報
特許文献1に記載された方法では、超音波振動を用いる方法であり、超音波振動子等の高価な超音波設備が必要とされ、効率的な生産方法を確立することができない。
本発明の二次電池の製造方法は、正・負極電極を有する発電要素を、直接または絶縁シートで覆った状態で電池缶の開口部から挿入して電池缶に収容し、発電要素の正・負極電極に接続される正・負極外部端子が設けられた電池蓋により電池缶の開口部を密封し、電池缶内に電解液を注入して二次電池を製造する方法であって、発電要素を電池缶に挿入する際、電池缶の固有振動数を含む可聴周波数帯域の周波数の振動を電池缶に与える。
また、本発明の二次電池用組付け装置は、発電要素を、直接または絶縁フィルムを介して電池缶の開口部から挿入する際、前記電池缶を振動させる。そして、この二次電池用組付け装置は、可聴周波数帯域の交流信号を発生する振動発生用電気信号発生装置と、振動発生用電気信号発生装置で発生する交流信号の周波数を調整する周波数調整装置と、振動発生用電気信号発生装置で発生された交流信号を機械振動に変換する機械振動変換部と、機械振動変換部から出力される振動が伝達される機械振動伝達部とを備え、周波数調整装置は、発電要素の電池缶に対する挿入深さに対応して定まる固有振動数の交流信号を発生するように振動発生用電気信号発生装置を調整する。
この発明によれば、電池缶を振動させながら発電要素を電池缶内に挿入するので、発電要素挿入時の電池缶との摩擦力が低減し、挿入を効率的に行うことができる。特に、振動周波数を可聴周波数とするので安価な振動発生装置を適用することが可能である。また、振動周波数には、電池缶の固有振動数が含まれているため、電池缶の振動振幅を大きくすることができ、振動発生装置により発生するエネルギーによる振動振幅への変換効率を高いものとすることができる。
本発明による二次電池の製造方法が適用される一実施の形態としての角形二次電池の外観斜視図。 図1に示された角形二次電池の分解斜視図。 角形二次電池内に収納された発電要素の、捲回終端部側を展開した状態の斜視図。 図1に図示された角形二次電池において、発電要素を電池缶に収納して密封するまでの工程を示す図。 図1に図示された角形二次電池において、発電要素を電池缶に挿入する方法を説明するための斜視図。 発電要素の挿入深さに対する電池缶の振動振幅の計測点を説明するための図。 一面固定における電池缶の固定点を説明するための斜視図。 (a)は、発電要素を電池缶に挿入する前の状態を示す斜視図、(b)は、発電要素と電池缶とが(a)に示す位置関係における、電池缶の固有振動強度データを示す。 (a)は、発電要素を電池缶の第1中間位置まで挿入した状態を示す斜視図、(b)は、電池缶に対する発電要素の挿入位置が(a)に示す状態における、電池缶の固有振動強度データを示す。 (a)は、発電要素全体が電池缶内に挿入される第2中間位置に達した状態を示す斜視図であり、(b)は、電池缶に対する発電要素の挿入位置が(a)に示す状態における、電池缶の固有振動強度データを示す。 (a)は、本発明による二次電池用組付け装置のブロック回路図、(b)は、二次電池用組付け装置により電池缶を振動させる方法を説明するための斜視図。 (a)、(b)は、三面固定における電池缶の固定点を説明するための斜視図。 図12に示す電池缶の固定位置に関するものであり、(a)は、発電要素を電池缶に挿入する前の状態を示す斜視図、(b)は、発電要素と電池缶とが(a)に示す位置関係における、電池缶の固有振動強度データを示す。 図12に示す電池缶の固定位置に関するものであり、(a)は、発電要素を電池缶の第1中間位置まで挿入した状態を示す斜視図、(b)は、電池缶に対する発電要素の挿入位置が(a)に示す状態における、電池缶の固有振動強度データを示す。 図12に示す電池缶の固定位置に関するものであり、(a)は、発電要素全体が電池缶内に挿入される第2中間位置に達した状態を示す斜視図であり、(b)は、電池缶に対する発電要素の挿入位置が(a)に示す状態における、電池缶の固有振動強度データを示す。 (a)、(b)は、エッジ固定における電池缶の固定点を説明するための斜視図。 図16に示す電池缶の固定位置に関するものであり、(a)は、発電要素を電池缶に挿入する前の状態を示す斜視図、(b)は、発電要素と電池缶とが(a)に示す位置関係における、電池缶の固有振動強度データを示す。 図16に示す電池缶の固定位置に関するものであり、(a)は、発電要素を電池缶の第1中間位置まで挿入した状態を示す斜視図、(b)は、電池缶に対する発電要素の挿入位置が(a)に示す状態における、電池缶の固有振動強度データを示す。 図16に示す電池缶の固定位置に関するものであり、(a)は、発電要素全体が電池缶内に挿入される第2中間位置に達した状態を示す斜視図であり、(b)は、電池缶に対する発電要素の挿入位置が(a)に示す状態における、電池缶の固有振動強度データを示す。 電池缶を加振する加振処理フロー。
[角形二次電池の全体構造]
以下、この発明の二次電池の製造方法および二次電池用組付け装置の一実施の形態を図面と共に説明する。
図1は、本発明による二次電池の製造方法が適用される一実施の形態としての角形二次電池の外観斜視図であり、図2は、図1に示された角形二次電池の分解斜視図である。
以下の説明では、二次電池を、リチウムイオン角形電池として説明する。
角形二次電池C1は、電池缶1および電池蓋6を備える。電池缶1及び電池蓋6の材料としては、アルミニウム系金属が用いられる。電池缶1は、矩形の底面22と、底面22から立ち上がる角筒状の側壁部21と、側壁部21の上端で上方に向かって開放された開口部1a(図2参照)とを有している。側壁部21は、一対の幅広側面21aと一対の幅狭側面21bとを有している。電池缶1内には、発電要素40が収納され、電池缶1の開口部1aが電池蓋6によって封止されている。
電池蓋6は、その周縁部が電池缶1の開口部1aの周縁部にレーザ溶接により接合され、電池缶1と電池蓋6によって密閉された電池容器10が構成される。電池蓋6には、正極外部端子8Aと、負極外部端子8Bが設けられている。
正極外部端子8Aはアルミニウム系金属により形成され、負極外部端子8Bは銅系金属により形成されている。正極外部端子8Aと負極外部端子8Bとは、材料が異なる以外は、同一の構造を有する。
正極外部端子8Aと負極外部端子8Bを介して発電要素40が充電され、また、発電要素40から外部負荷に電力が供給されることにより、放電する。電池蓋6には、ガス排出弁12が一体的に設けられており、電池容器10内の圧力が上昇すると、ガス排出弁12が開いて内部からガスが排出され、電池容器10内の圧力が低減される。これによって、角形二次電池C1の安全性が確保される。
電池蓋6には、ガス排出弁12に隣接して注液栓11が設けられている。電池容器10内に発電要素40を収納し、電池容器10の開口部1aを電池蓋6により密封し、電池蓋6に設けられた注液口9から非水電解液を電池缶1内に注入した後、注液口9を注液栓11により封口する。
非水電解液としては、例えば、エチレンカーボネートとジメチルカーボネートとを体積比で1:2の割合で混合した混合溶液中へ六フッ化リン酸リチウム(LiPF)を1モル/リットルの濃度で溶解したものを用いることができる。
[発電要素]
図3は、発電要素40の斜視図である。図3では、発電要素40は、その捲回終端部側を展開した状態で図示されている。
発電要素40は、正極電極41と負極電極42とを、セパレータ43、44を介在して軸芯C−Cの周囲に捲回して、扁平直方体状に形成されている。
正極電極41は、アルミニウム系金属からなる正極金属箔41aの表・裏両面に正極合剤が塗工された正極合剤塗工部41bを有する。正極合剤塗工部41bは、正極金属箔41aの一側縁に、正極金属箔41aが露出された正極合剤未塗工部41cが形成されるように正極金属箔41aに正極合剤を塗工して形成される。
負極電極42は、銅系金属からなる負極金属箔42aの表・裏両面に負極合剤が塗工された負極合剤塗工部42bを有する。負極合剤塗工部42bは、正極合剤未塗工部41cの側縁と反対側に配置された他側縁に、負極金属箔42aが露出された負極合剤未塗工部42cが形成されるように負極金属箔42aに負極合剤を塗工して形成される。
セパレータ43、44は、正極金属箔41aと負極金属箔42aとを絶縁する。負極電極42の負極合剤塗工部42bは、正極電極41の正極合剤塗工部41bよりも幅方向および長手方向に大きく形成され、これにより正極合剤塗工部41bは、始端部から周端部までの全領域が負極合剤塗工部42bに覆われている。
図3に図示されるように、発電要素40は、高さ方向の両端部に形成された一対の円弧状の湾曲部40Tと、両湾曲部40Tの間に位置する一対の平坦部40Pとを有し、扁平直方体形状に形成されている。平坦部40Pは、僅かに、中央部が厚い湾曲状とされていることもある。
発電要素40は、一方の湾曲部40Tを下に向け、軸芯C−Cを電池缶1の底面22と平行にして、電池缶1内に収容されている。電池缶1内に収容された状態では、発電要素40の一対の平坦部40Pは、それぞれ、電池缶1の幅広側面21aにほぼ平行に対面している。
図2を参照して、角形二次電池C1の電池缶1には、絶縁シート2を介して発電要素40が収容されている。
上述した如く、発電要素40は、セパレータ43、44を介して正極電極41と負極電極42を扁平形状に捲回した電極群であり、捲回軸方向の両端面側には、正極合剤および負極合剤が塗布されていない正極合剤未塗工部41cおよび負極合剤未塗工部42cが設けられている。
発電要素40は、一方の湾曲部40T側から電池缶1内に挿入され、他方の湾曲部40T側が電池缶1の開口部1a側に配置される。
発電要素40の電極箔露出部である正極合剤未塗工部41cおよび負極合剤未塗工部42cは、少なくとも一部が束ねられて平板状とされており、それぞれ、正極集電板4Aおよび負極集電板4Bに、超音波溶接により接合されている。このとき、重ね合わされた正極合剤未塗工部41c同士および負極合剤未塗工部42c同士も、それぞれ、相互に接合されている。
正極集電板4Aの他端と負極集電板4Bの他端は、正極外部端子8Aと負極外部端子8Bにそれぞれ接続されている。
正極集電板4Aと負極集電板4B、および正極外部端子8Aと負極外部端子8Bを、それぞれ電池蓋6から電気的に絶縁するために、ガスケット5および絶縁板7が電池蓋6に設けられている。
正極接続部14a、負極接続部14bのそれぞれは、正極外部端子8A、負極外部端子8Bの下面から突出しており、その先端が電池蓋6の正極側貫通孔6A、負極側貫通孔6Bに挿入可能な円柱形状を有している。正極接続部14a、負極接続部14bは、電池蓋6を貫通し、さらに正極集電板4A、負極集電板4Bの正極集電板基部41A、負極集電板基部41Bを貫通して電池缶1の内部側に突出して先端がかしめられている。このかしめにより、正極外部端子8A、負極外部端子8Bと、正極集電板4A、負極集電板4Bを電池蓋6に一体に固定され、これにより電池蓋組立体20が構成されている。
正極集電板4Aは、電池蓋6の下面に対向して配置される矩形板状の正極集電板基部41Aと、正極集電板基部41Aの側端で折曲されて、電池缶1の幅広側面21aに沿って底面22側に向かって延出され、発電要素40の正極合剤未塗工部41cに対向して重ね合わされた状態で接続される正極側接続端部45Aとを有している。負極集電板4Bは、電池蓋6の下面に対向して配置される矩形板状の負極集電板基部41Bと、負極集電板基部41Bの側端で折曲されて、電池缶1の幅広側面21aに沿って底面22側に向かって延出され、発電要素40の負極合剤未塗工部42cに対向して重ね合わされた状態で接続される負極側接続端部45Bを有している。正極集電板基部41A、負極集電板基部41Bのそれぞれには、正極接続部14aが挿通される正極側開口孔43A、負極接続部14bが挿通される、負極側開口孔43Bがそれぞれ形成されている。
発電要素40は絶縁シート2により覆われて電池缶1に挿入される。つまり、発電要素40は折り畳まれた絶縁シート2に包まれた状態、すなわち、発電要素40の下部側および全周囲が絶縁シートで覆われた状態で、電池缶1に挿入される。
[二次電池製造方法の概要]
図4は、図1に図示された角形二次電池において、発電素子を電池缶に収納して電池蓋6により密封するまでの工程を示す図である。
ステップS1で、電池蓋組立体20(図2参照)を作製する。
電池蓋6の上方にガスケット5を、電池蓋6の下方に、絶縁板7および正極集電板4Aを、それぞれ、電池蓋6の正極側貫通孔6Aに、ガスケット5の貫通孔、絶縁板7の貫通孔および正極集電板4Aの正極集電板基部41Aの正極側開口孔43Aを位置合せして配置する。正極外部端子8Aの正極接続部14aを、ガスケット5の貫通孔、電池蓋6の正極側貫通孔6A、絶縁板7の貫通孔および正極集電板4Aの正極集電板基部41Aの正極側開口孔43Aに挿通する。正極集電板4Aの正極集電板基部41Aの下面側において正極外部端子8Aの正極接続部14aをかしめ、電池蓋6に正極外部端子8A、ガスケット5、絶縁板7および正極集電板4Aを固定する。
同様に、電池蓋6の上方にガスケット5を、電池蓋6の下方に、絶縁板7および負極集電板4Bを、それぞれ、電池蓋6の負極側貫通孔6Bに、ガスケット5の貫通孔、絶縁板7の貫通孔および負極集電板4Bの負極集電板基部41Bの負極側開口孔43Bを位置合せして配置する。負極外部端子8Bの負極接続部14bを、ガスケット5の貫通孔、電池蓋6の負極側貫通孔6B、絶縁板7の貫通孔および負極集電板4Bの負極集電板基部41Bの負極側開口孔43Bに挿通する。負極集電板4Bの負極集電板基部41Bの下面側において負極外部端子8Bの負極接続部14bをかしめ、電池蓋6に負極外部端子8B、ガスケット5、絶縁板7および負極集電板4Bを固定する。これにより、電池蓋組立体20が作製される。
ステップS2で、電池蓋・発電要素組立体30(図2参照)を作製する。
予め、図3に図示される発電要素40を作製しておく。発電要素40の正極合剤未塗工部41cの最外周の部分に電池蓋組立体20の正極集電板4Aを積層し、超音波溶接により接合する。このとき、捲回されて重ね合わされた正極合剤未塗工部41c同士も接合される。同様に、発電要素40の負極合剤未塗工部42cの最外周の部分に電池蓋組立体20の負極集電板4Bを積層し、超音波溶接により接合する。このとき、捲回されて重ね合わされた負極合剤未塗工部42c同士も接合される。これにより、電池蓋・発電要素組立体30が作製される。
ステップS3で、電池蓋・発電要素組立体30を電池缶1内に収容する。
この工程は、上述したように、発電要素40を絶縁シート2で覆った状態で、図2に図示するように、発電要素40の一方の湾曲部40T側を電池缶1の開口部1aから挿入していく。発電要素40は、軸芯C−Cが電池缶1の底面22および一対の幅広側面21aと平行な状態に収容される。つまり、発電要素40の下側の湾曲部40Tは、絶縁シート2を介して電池缶1の底面22と僅かな隙間を存して平行に収容され、発電要素40の一対の平坦部40Pのそれぞれは、絶縁シート2を介して電池缶1の一対の幅広側面21aと僅かな隙間を存して平行に収納される。電池缶1と発電要素40との隙間は、可能な限り小さく設定されており、挿入時には、絶縁シート2は電池缶1に接触し、両部材間に大きな摩擦力が作用するので、挿入作業は時間を要する。このため、本実施形態では、電池缶1を振動させながら発電要素40を挿入する。この詳細は後述する。
発電要素40を電池缶1内に収容したら、ステップS4に示すように、電池蓋6で電池缶1の開口部1aを覆い、電池蓋6の周縁部を電池缶1の開口部1aの周縁部にレーザ溶接により接合して密封する。そして、ステップS5で電池蓋6に設けられた注液口9から非水電解液を電池缶1内に注入し、レーザ溶接等により注液栓11を電池蓋6に接合して封口する。これにより、図1に図示される角形二次電池C1が作製される。
次に、発電要素40を電池缶1内に挿入する際、電池缶1を振動させる方法、つまり、電池缶の加振方法について説明する。
[電池缶の加振方法]
図5は、図1に図示された角形二次電池において、発電素子を電池缶に挿入する方法を説明するための斜視図である。但し、図5においては、電池蓋組立体20および絶縁シート2は、図示を省略してある。
電池缶1は、厚さ0.6mmmの材質アルミニウム合金A3003で形成されており、密度2730kg/m3、弾性率69GPa、ポアソン比0.33の機械的特性を有する。
上述したように、発電要素40は、電池蓋・発電要素組立体30の状態で、発電要素40の一方側の湾曲部40T側を電池缶1の開口部1aから挿入していく。
このとき、図5の白抜き矢印に示すように、電池缶1を電池蓋・発電要素組立体30の挿入方向に対する垂直方向に加振する。つまり、電池缶1の幅広側面21aを垂直方向に振動させる。すなわち、電池缶1に付与する振動の方向は、発電要素挿入時において発電要素40と電池缶1が接触する電池缶側面21aに対して垂直方向である。したがって、効率よく、電池缶1と発電要素40の接触面での摩擦を低減することができる。
2つの摺動物体間に作用する摩擦力は、振動振幅を増加させると低減することが知られている(例えば、日本機械学会論文集(C編)67巻637号(2001−5)P.23−P.28「超音波振動による摩擦低減に関する基礎研究」Fig.7(P.25)参照)。しかし、固定された容器内に摺動により部材を挿入する際の具体的な事例に関する記載は無い。
そこで、発電要素40と、電池缶1の低摩擦化について以下に示す確認を行った。
電池缶1を加振する場合、電池缶1の固定点は、発電要素40との間に間隙が有る位置が好ましい。そこで、電池缶1の固定点を下記の3つの位置とした場合について、電池缶1の固有振動強度を計測した。
(I)電池缶の固定点を電池缶の底面とする(一面固定)。
(II)電池缶の固定点を、電池缶の底面22および一対の幅狭側面21bとする(三面固定)。
(III)電池缶の固定点を、電池缶の底面22のエッジおよび一対の幅狭側面21bのエッジとする(エッジ固定)。
発電要素40が電池缶1内に挿入されていくに伴って、発電要素40と電池缶1とが接触する領域が増大すると共に電池缶1内における空間深さが縮小するので、電池缶1における振動条件が変化する。そこで、電池缶の固有振動強度の計測において、電池缶1の振動振幅が最大となる位置、換言すれば、電池缶1内における空間深さのほぼ中間となるように、発電要素40の電池缶1への挿入深さに対応して、計測位置を変えた。
図6は、発電要素の挿入深さに対する電池缶の振動振幅の計測点を説明するための図である。
計測点Aは、発電要素40が電池缶1に挿入する前および挿入し始める時の計測点である。計測点Aは、電池缶1の幅広側面21aの高さのほぼ中央位置である。
計測点Aは、発電要素40が電池缶1の第1中間位置(高さのほぼ半分)に挿入された状態の計測点である。具体的な一例では、計測点Aは、計測点Aの下方15mmであり、このとき、発電要素40の電池缶1への挿入深さ、換言すれば、発電要素40と電池缶1との高さ方向における接触面の長さは30mmである。
計測点Aは、発電要素40のほぼ全体が電池缶1内に挿入された、第2中間位置の計測点である。具体的な一例では、計測点Aは計測点Aの下方15mmであり、このとき、発電要素40の電池缶への挿入深さ、換言すれば、発電要素40と電池缶1との高さ方向における接触面の長さは60mmである。発電要素40は、さらに、下方に挿入されるが、既に、その全面積が電池缶1内に挿入されているので、以降は、発電要素40と電池缶1との高さ方向における接触面の長さ60mmは変化しない。
図11(a)は、本発明による加振装置(二次電池用組付け装置)のブロック回路図であり、図11(b)は、加振装置により電池缶を振動させる方法を説明するための斜視図である。
加振装置80により電池缶1を加振する振動数は、設備導入費を廉価にするために可聴周波数帯域とした。
加振装置80は、コントローラ85と機械振動付与部86とを備えている。コントローラ85は、振動発生用電気信号発生部81と、電気信号増幅部82と、周波数調整装置83とを備えている。振動発生用電気信号発生部81では、可聴周波数帯域の正弦波の交流信号を発生し出力する。電気信号増幅部82では、振動発生用電気信号発生部81から出力される交流信号を増幅する。周波数調整装置83は、振動発生用電気信号発生装置81で発生する交流信号の周波数を調整する。
機械振動付与部86は、伝送部87を介して送られる交流信号を機械振動に変換する機械振動変換部84と、機械振動変換部84で変換された機械振動を電池缶に付与する機械振動伝達部88とを備えている、機械振動変換部84は、例えば、圧電素子と、圧電素子を挟む一対の金属板を含んで構成され、電気信号増幅部82から出力される交流信号を機械的振動に変換する。
従って、機械振動伝達部88のケースを保持して、振動機構部を電池缶1の幅広側面21aに押し当てることにより、電池缶1を振動させる。上述した如く、振動機構部の振動方向は、電池缶1の幅広側面21aに垂直方向とする。また、振動機構部の押し当て位置は、電池缶1内に挿入される発電要素40の挿入深さに応じて、例えば、計測点A〜Aの位置に順次に変えることが好ましい。但し、最初から最後まで、発電要素40の電池缶1への挿入が完了した状態で、発電要素40と電池缶1との間の空間に対応する位置、例えば、計測点Aの位置に固定しておいてもよい。なお、機械振動伝達部88による電池缶1の幅広側面21aへの圧力は、100kPaとした。
なお、コントローラ85は、ROM、RAMおよび演算装置等を有しており、後述する処理フローにより、発電要素40の電池缶1への挿入深さに対応して、異なる周波数の機械的振動を出力するように構成されている。
[電池缶一面固定]
先ず、電池缶の固定点を一面(電池缶一面固定)とした場合について説明する。
図7は、一面固定における電池缶の固定点を説明するための斜視図である。
図7(a)は、電池缶1を斜め上方から観た斜視図であり、図7(b)は電池缶1を反対側側面側の斜め下方から観た斜視図である。
以下の図8〜図10の(b)は、第1の拘束条件で測定した電池缶の固有振動数強度データを示しているが、その拘束条件、すなわち、シミュレーション条件は次のとおりである。電池缶1の固定点は底面22であり、底面22を法線方向に拘束する。但し、底面22は、その面内においては非拘束とされ、振動可能である。
図8〜図10は、上記電池缶一面固定に関する図である。
図8(a)は、発電要素を電池缶に挿入する前(および挿入初期)の状態を示す斜視図であり、図8(b)は、発電要素と電池缶とが図8(a)に示す位置関係における、電池缶の固有振動強度データを示す。
図9(a)は、発電要素を電池缶の第1中間位置まで挿入した状態を示す斜視図であり、図9(b)は、電池缶に対する発電要素の挿入位置が図9(a)に示す状態における、電池缶の固有振動強度データを示す。
図10(a)は発電要素全体が電池缶内の第2中間位置まで挿入した状態を示す斜視図であり、図10(b)は、電池缶に対する発電要素の挿入位置が図10(a)に示す状態における、電池缶の固有振動強度データを示す。
なお、図8〜図10に図示された固有振動強度データにおける電池缶の変位量は、最大変位量を1とする相対値である。
図8(a)に図示されるように、発電要素40を電池缶1に挿入する前(なお、挿入初期も同様)の状態では、図8(b)に図示されるように、周波数915Hzと5520Hzにおいて、電池缶1の振動振幅に大きな変位が生じた。特に、周波数5520Hzにおける変位が大きい。なお、図6には、変位量が0(ゼロ)の等高線Bを図示してある。
すなわち、発電要素40を電池缶1に挿入し始める状態では、915Hz付近または5520Hz付近に電池缶1の固有振動数を有すると考えられる。振動振幅を大きくすると2つの摺動物体間に作用する摩擦力が低減することが知られている。従って、電池缶1を固有振動数で振動させながら、挿入装置を用いて、または手作業により、電池蓋・発電要素組立体30を電池缶1に挿入すれば、発電要素40と電池缶1との摩擦力が低減され、円滑に挿入することができる。
図9(a)に図示されるように、発電要素40を電池缶1の第1中間位置まで挿入した状態では、図9(b)に図示されるように、周波数4855Hz、7675Hzおよび13615Hzにおいて、電池缶1の振動振幅に大きな変位が生じた。特に、周波数7675Hzにおける変位量が大きい。
図10(a)に図示されるように、発電要素40を電池缶1の第2中間位置まで挿入した状態では、図10(b)に図示されるように、周波数13980Hz、17235Hzおよび20000Hzにおいて、電池缶1の振動振幅に大きな変位が生じた。特に、周波数20000Hzにおける変位量が大きい。発電要素40は、第2中間位置から、さらに、数mm程度あるいはそれ以上、電池缶1の底面22側に挿入される。しかし、上述したように、第2中間位置以降は、発電要素40は、その全体が電池缶1内に挿入されているため、最終挿入位置まで、電池缶との高さ方向における接触の長さは一定であり、変化しない。
上記各電池缶の固有振動強度データから、発電要素40の電池缶1への挿入深さにより、電池缶1の固有振動数が変化することが判る。従って、発電要素40の電池缶1への挿入深さに対応して、電池缶1を加振する加振周波数を、電池缶1の振動振幅が最も大きくなる固有振動数に切替えると、発電要素40の電池缶1への挿入を、挿入開始から終了までの全体に亘り能率的とすることができる。
図20は、加振装置80のコントローラ85に設けられた加振処理フローである。
電池蓋・発電要素組立体30は、不図示の挿入装置により保持され、電池缶1の開口部1aから挿入され、挿入される。挿入装置は、電池蓋・発電要素組立体30が電池缶1内に挿入された深さを検出する挿入深さ検出センサを備えており、検出結果を、逐次、加振装置に送信する。コントローラ85には、予め、発電要素40が電池缶1に挿入される前の固有振動数(5520Hz)、発電要素40が第1中間位置(接触長30mm)における固有振動数(7675Hz)および発電要素40が第2中間位置(接触長60mm)における固有振動数(20000Hz)が記憶されている。
図20に図示された加振処理フローは、不図示の電池蓋・発電要素組立体30の挿入装置のスタートと同時にスタートする。すなわち、加振処理はコントローラ80に予め格納したプログラムを実行してスタートする。加振処理がスタートされると、ステップS11で、直ちに、振動発生用電気信号発生部81において、発電要素40が電池缶1に挿入される前の固有振動数(5520Hz)に対応する第1の周波数の信号を発生させる。第1の周波数の信号は、電気信号増幅部82で増幅され、機械振動変換部84で機械的信号に変換されて機械振動伝達部88に伝達される。これにより、電池缶1は、第1の固有振動数(5520Hz)で振動され、これと共に、電池蓋・発電要素組立体30は、不図示の挿入装置により電池缶1内に挿入される。
ステップS12では、発電要素40が電池缶1の第1中間位置(接触長30mm)に達したか否かが判断される。ステップS12で否定されると、ステップS11に戻る。
ステップS12で肯定されると、ステップS13に進み、コントローラ85の制御により、第1中間位置における電池缶1の固有振動数(7675Hz)の機械的振動が、機械振動変換部84から出力され、機械振動伝達部88に伝達される。これにより、電池缶1が第2の固有振動数(7675Hz)で振動し、これと共に電池蓋・発電要素組立体30は、不図示の挿入装置により、さらに、電池缶1内に挿入される。
ステップS14では、発電要素40が電池缶1の第2中間位置(接触長60mm)に達したか否かが判断される。ステップS14で否定されると、ステップS13に戻る。
ステップS14で肯定されると、ステップS15に進み、コントローラ85の制御により、第2中間位置における電池缶1の固有振動数(20000Hz)の機械的振動が、機械振動変換部84から出力され、機械振動伝達部88に伝達される。これにより、電池缶1が第2の固有振動数(20000Hz)で振動し、これと共に電池蓋・発電要素組立体30は、不図示の挿入装置により、さらに、電池缶1内に挿入される。
図20の処理手順により、発電要素挿入開始から挿入完了までの期間において、発電要素40が電池缶1に挿入された深さに対応して電池缶1に付与する振動の周波数が切換えられる、すなわち変更される。
ステップS16では、発電要素40が電池缶1の挿入最終位置に達したか否かが判断される。ステップS16で否定されると、ステップS15に戻る。ステップS16で肯定されると処理が終了する。
上記加振処理フローでは、電池缶1を加振する固有振動数の切換えを発電要素40の電池缶1への挿入深さに関連付けておこなうものとして例示した。しかし、電池缶1を加振する固有振動数の切換えを、各固有振動数で駆動する時間に関連付けて行うようにしてもよい。この場合には、第1、第2、第3の固有振動数(5520Hz,7675Hz、20000Hz)で振動させる時間を予め設定しておき、設定時間に達したら順次切換える。このような時間管理切換えの場合には、挿入処理時間が一律に定まるので、生産量の管理には都合がよい。
あるいは、発電要素40の電池缶1に対する挿入深さに対応して定まる複数の固有振動数を含む可聴周波数帯域の所定の帯域の交流信号を生成して振動を与えてもよい。
[電池缶三面固定]
図12は、三面固定における電池缶の固定点(電池缶三面固定)を説明するための斜視図である。
図12(a)は、電池缶1を反対側側面側の斜め上方から観た斜視図であり、図12(b)は電池缶1を反対側側方の斜め下方から観た斜視図である。
以下の図13〜図15の(b)は、第2の拘束条件で測定した電池缶の固有振動数強度データを示しているが、その拘束条件、すなわち、シミュレーション条件は次のとおりである。電池缶1の固定点は、底面22および底面22両側の幅狭側面21bであり、各面を法線方向に拘束する。但し、底面22および両幅狭側面21bの各面は、その面内においては非拘束とされ、振動変形可能である。
図13〜図15は、上記電池缶三面固定に関する図である。
図13(a)は、発電要素を電池缶に挿入する前の状態を示す斜視図であり、図13(b)は、発電要素と電池缶とが図13(a)に示す位置関係における、電池缶の固有振動強度データを示す。
図14(a)は、発電要素を電池缶の第1中間位置まで挿入した状態を示す斜視図であり、図14(b)は、電池缶に対する発電要素の挿入位置が図14(a)に示す状態における、電池缶の固有振動強度データを示す。
図15(a)は、発電要素全体が電池缶内に挿入される第2中間位置まで挿入した状態を示す斜視図であり、図15(b)は、電池缶に対する発電要素の挿入位置が図15(a)に示す状態における、電池缶の固有振動強度データを示す。
なお、図13〜図15に図示された固有振動強度データにおける電池缶の変位量は、最大変位量を1とする相対値である。
図13(a)に図示されるように、発電要素40を電池缶1に挿入する前の状態では、図13(b)に図示されるように、周波数970Hz、2400Hzおよび4270Hzにおいて、電池缶1の振動振幅に大きな変位が生じた。特に、周波数970Hzにおける変位が大きい。
図14(a)に図示されるように、発電要素40を電池缶1の第1中間位置まで挿入した状態では、図14(b)に図示されるように、周波数4880Hz、7900Hzおよび14150Hzにおいて、電池缶1の振動振幅に大きな変位が生じた。特に、周波数4880Hzにおける変位量が大きい。
15(a)に図示されるように、発電要素40を電池缶1の第2中間位置まで挿入した状態では、図15(b)に図示されるように、周波数14960Hzにおいて、電池缶1の振動振幅に大きな変位が生じた。
[電池缶のエッジ固定]
図16は、エッジ固定における電池缶の固定点(電池缶エッジ固定)を説明するための斜視図である。
図16(a)は、電池缶1を斜め上方から観た斜視図であり、図16(b)は電池缶1を反対側側方の斜め下方から観た斜視図である。
以下の図17〜図19の(b)は、第3の拘束条件で測定した電池缶の固有振動数強度データを示しているが、その拘束条件、すなわち、シミュレーション条件は次のとおりである。電池缶1の固定点は、図16(a)、(b)において、太い実線で図示するように、底面22の長手方向に延出される一対のエッジ25、幅方向に延出される一対のエッジ26、一対の幅狭側面21bそれぞれの高さ方向に延出される一対のエッジ27である。各エッジ25〜27は、それぞれの面に垂直な方向、換言すれば、幅広側面21a幅狭側面21bまたは底面22のそれぞれに平行な二方向から拘束される。電池缶1をこのように拘束する部材の具体的な一例としては、例えば、電池缶1の底面22および一対の幅狭側面21bを嵌入する溝を有し、各溝に、電池缶1のエッジ25〜27のそれぞれに当接する傾斜状のエッジが形成された保持部材が挙げられる。
図17〜図19は、上記電池缶のエッジ固定に関する図である。
図17(a)は、発電要素40を電池缶1に挿入する前の状態を示す斜視図であり、図17(b)は、発電要素と電池缶とが図17(a)に示す位置関係における、電池缶の固有振動強度データを示す。
図18(a)は、発電要素40を電池缶1の第1中間位置まで挿入した状態を示す斜視図であり、図18(b)は、電池缶に対する発電要素の挿入位置が図18(a)に示す状態における、電池缶の固有振動強度データを示す。
図19(a)は、発電要素40を電池缶1の第2中間位置まで挿入した状態を示す斜視図であり、図19(b)は、電池缶に対する発電要素40の挿入位置が図19(a)に示す状態における、電池缶の固有振動強度データを示す。
なお、図17〜図19に図示された固有振動強度データにおける電池缶の変位量は、最大変位量を1とする相対値である。
図17(a)に図示されるように、発電要素40を電池缶1に挿入する前の状態では、図17(b)に図示されるように、周波数1040Hzおよび13480Hzにおいて、電池缶1の振動振幅に大きな変位が生じた。特に、周波数13480Hzにおける変位が大きい。
図18(a)に図示されるように、発電要素40を電池缶1の第1中間位置まで挿入した状態では、図18(b)に図示されるように、周波数5130Hz、8290Hzおよび14950Hzにおいて、電池缶1の振動振幅に大きな変位が生じた。特に、周波数5130Hzにおける変位量が大きい。
図19(a)に図示されるように、発電要素全体が電池缶1内に挿入される第2中間位置に達した状態では、図19(b)に図示されるように、周波数17180Hzにおいて、電池缶1の振動振幅に大きな変位が生じた。
以上説明した通り、電池缶1の固定点を変えることにより、発電要素40を含む電池缶1の固有振動数が変化することが判った。しかし、いずれの固定点においても、可聴周波数帯域の範囲内に、振動振幅の変位量を大きくする固有振動数が有ることを確認することができた。従って、発電要素40を電池缶1に挿入する際、可聴周波数帯域において電池缶1を振動させながら発電要素40を挿入する方法を採用することができる。
なお、上記一実施の形態では、電池缶1の加振を1つの固有振動数で行う方法で例示した。しかし、電発電要素40の電池缶1に対する挿入深さに対応して定まる複数の固有振動数を含む可聴周波数帯域の所定の帯域の交流信号を生成して振動を与えてもよい。さらには、電池缶1の加振をホワイトノイズ信号で行うようにしてもよい。
[ホワイトノイズによる加振]
ホワイトノイズは、すべての周波数で同じ強度となるノイズである。フーリエ変換を行い、パワースペクトルにするとすべての周波数で同じ強度となる。
一般的にも、可聴域のホワイトノイズを指すことが多いが、本明細書においては、特に、可聴域のホワイトノイズを指すものとする。
上述したように、可聴域において、電池缶1の固有振動数が存することを確認することができた。よって、可聴域のホワイトノイズは、電池缶1の少なくとも1つの固有振動数が含まれていることが明らかであり、ホワイトノイズにより電池缶1を振動させながら発電要素40を挿入するようにした場合においても、発電要素40と電池缶1との摩擦力を低減することができる。
以上説明した実施形態の二次電池の製造方法は、正・負極電極を有する発電要素40を、直接または絶縁シート2で覆った状態で電池缶1の開口部1aから挿入して電池缶に収容し、発電要素40の正・負極電極41c,42cに接続される正・負極外部端子8A,8Bが設けられた電池蓋6により電池缶1の開口部1aを密封し、電池缶1に電解液を注入して二次電池を製造する。そして、発電要素40を電池缶1に挿入する際、電池缶1の固有振動数を含む可聴周波数帯域の周波数の振動を電池缶1に与える。
ここで、固有振動数は、発電要素40と電池蓋1を一体にした電池蓋・発電要素組立体30を電池缶1に挿入する際の電池缶1の固有振動数である。したがって、小さいエネルギで大きな振幅を電池缶に発生させることができる。
このような一実施の形態による二次電池の製造方法は下記の効果を奏する。
(1)電池缶1を、可聴数周波数で電池缶1の固有振動数の1つの周波数またはホワイトノイズ信号により振動させながら発電要素40を電池缶1内に挿入するようにした。このため、発電要素40挿入時に電池缶1との摩擦力が低減し、挿入を効率的に行うことができる。特に、振動周波数を可聴周波数とするので、適用することが可能である。また、振動周波数には、電池缶1の固有振動数の少なくとも1つが含まれているため、電池缶1の振動振幅を大きくすることが可能であり、振動発生装置により発生するエネルギーによる振動振幅への変換効率を高いものとすることができる。
(2)発電要素40が電池缶1に挿入する深さに応じて、そのときの電池缶1の固有振動数が含まれるように段階的に切り換えるようにした。電池缶1の固有振動数は、発電要素40が挿入される電池缶1への深さに対応して変化するが、段階的にそのときの電池缶1の固有振動数に切替えることにより、電池缶1を固有振動数付近で振動させる期間を長くすることができ、挿入初期から挿入完了までの作業の効率を向上することができる。
なお、上記一実施の形態では、発電要素40を絶縁シート2で覆う構造として例示した。しかし、絶縁シート2を用いず、電池缶1の内面に、絶縁処理を施すようにしてもよい。
上記一実施の形態では、発電要素40は、両端部の湾曲部40Tの間が平坦部40Pであるとして例示したが、平坦部40Pは、平坦ではなく、多少、円弧状に湾曲する形状であってもよい。
上記一実施の形態では、角形二次電池C1をリチウムイオン電池として説明した。しかし、本発明は、ニッケル水素電池またはニッケル・カドミウム電池、鉛蓄電池のように水溶性電解液を用いる角形二次電池C1にも適用が可能である。
その他、本発明は、発明の趣旨の範囲内において種々変形して適用することができるものであり、要は、電池缶を、可聴周波数帯域内の、電池缶の固有振動数の少なくとも1つを含む周波数で振動させながら、発電要素を前記電池缶に挿入するものであればよい。
1 電池缶
2 絶縁シート
6 電池蓋
8A 正極外部端子
8B 負極外部端子
10 電池容器
20 電池蓋組立体
21 側壁部
21a 幅広側面
21b 幅狭側面
22 底面
30 電池蓋・発電要素組立体
40 発電要素
40P 平坦部
40T 湾曲部
41 正極電極
42 負極電極
80 加振装置
81 振動発生用電気信号発生部
82 電気信号増幅部
83 機械振動変換部
85 コントローラ
86 機械振動伝達部
〜A 計測点
B 変位量0の等高線
C1 角形二次電池


Claims (7)

  1. 正・負極電極を有する発電要素を、直接または絶縁シートで覆った状態で電池缶の開口部から挿入して前記電池缶に収容し、
    前記発電要素の正・負極電極に接続される正・負極外部端子が設けられた電池蓋により前記電池缶の開口部を密封し、
    前記電池缶内に電解液を注入して二次電池を製造する方法であって、
    前記発電要素を前記電池缶に挿入する際、前記電池缶の固有振動数を含む可聴周波数帯域の周波数の振動を前記電池缶に与える、二次電池の製造方法。
  2. 請求項1に記載の二次電池の製造方法において、
    前記固有振動数は、前記発電要素と前記電池蓋を一体にした電池蓋・発電要素組立体を前記電池缶に挿入する際の前記電池缶の固有振動数である、二次電池の製造方法。
  3. 請求項1に記載の二次電池の製造方法において、
    前記電池缶に付与する振動の方向は、発電要素挿入時において前記発電要素と前記電池缶が接触する電池缶側面に対して垂直方向である、二次電池の製造方法。
  4. 請求項1に記載の二次電池の製造方法において、
    発電要素挿入開始から挿入完了までの期間において、前記発電要素が前記電池缶に挿入された深さに対応して前記電池缶に付与する振動の周波数を変更する、二次電池の製造方法。
  5. 請求項1に記載の二次電池の製造方法において、
    前記電池缶に付与する振動の周波数は、前記発電要素の前記電池缶に対する挿入深さに対応して定まる複数の固有振動数を含む可聴周波数帯域の所定の帯域の周波数である、二次電池の製造方法。
  6. 請求項1に記載の二次電池の製造方法において、
    前記電池缶に付与する振動は、前記発電要素の前記電池缶に対する挿入深さに対応して定まる複数の固有振動数を含む可聴帯域のホワイトノイズ信号に基づいて生成する、二次電池の製造方法。
  7. 発電要素を、直接または絶縁フィルムを介して電池缶の開口部から挿入する際、前記電池缶を振動させる二次電池用組付け装置であって、
    可聴周波数帯域の交流信号を発生する振動発生用電気信号発生装置と、
    前記振動発生用電気信号発生装置で発生する交流信号の周波数を調整する周波数調整装置と、
    前記振動発生用電気信号発生装置で発生された交流信号を機械振動に変換する機械振動変換部と、
    前記機械振動変換部から出力される振動が伝達される機械振動伝達部とを備え、
    前記周波数調整装置は、前記発電要素の前記電池缶に対する挿入深さに対応して定まる固有振動数の交流信号を発生するように前記振動発生用電気信号発生装置を調整する、二次電池用組付け装置。
JP2013189264A 2013-09-12 2013-09-12 二次電池の製造方法および二次電池用組付け装置 Pending JP2015056297A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013189264A JP2015056297A (ja) 2013-09-12 2013-09-12 二次電池の製造方法および二次電池用組付け装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013189264A JP2015056297A (ja) 2013-09-12 2013-09-12 二次電池の製造方法および二次電池用組付け装置

Publications (1)

Publication Number Publication Date
JP2015056297A true JP2015056297A (ja) 2015-03-23

Family

ID=52820567

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013189264A Pending JP2015056297A (ja) 2013-09-12 2013-09-12 二次電池の製造方法および二次電池用組付け装置

Country Status (1)

Country Link
JP (1) JP2015056297A (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20170059078A (ko) * 2015-11-20 2017-05-30 주식회사 엘지화학 공명 진동 인가부를 포함하는 전해액 함침 장치 및 이를 이용한 전지셀 제조 방법
US11114698B2 (en) 2018-03-26 2021-09-07 Lg Chem, Ltd. Method of preparing pouch type secondary battery

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20170059078A (ko) * 2015-11-20 2017-05-30 주식회사 엘지화학 공명 진동 인가부를 포함하는 전해액 함침 장치 및 이를 이용한 전지셀 제조 방법
KR102114670B1 (ko) * 2015-11-20 2020-05-25 주식회사 엘지화학 공명 진동 인가부를 포함하는 전해액 함침 장치 및 이를 이용한 전지셀 제조 방법
US11114698B2 (en) 2018-03-26 2021-09-07 Lg Chem, Ltd. Method of preparing pouch type secondary battery

Similar Documents

Publication Publication Date Title
US9853279B2 (en) Battery and ultrasonic bonding method for battery
JP6363893B2 (ja) 二次電池
JP5149924B2 (ja) 円筒形二次電池及びその製造方法
JP5656745B2 (ja) 角形蓄電池
JP2011049065A (ja) 非水電解質電池およびその製造方法
JP2010257945A (ja) 2次電池
JP2016189246A (ja) 角形二次電池
JP2012178235A (ja) 二次電池
WO2017057200A1 (ja) 蓄電素子及び蓄電素子の製造方法
JP2014167881A (ja) 電池及び電池の製造方法
JP2010092598A (ja) 組電池
JP2012054024A (ja) 角形二次電池およびその製造方法
JP2001135358A (ja) 密閉二次電池
KR20150021030A (ko) 리튬 이온 배터리
JP2023089038A (ja) 二次電池用端子および二次電池用端子の製造方法
JP2015056297A (ja) 二次電池の製造方法および二次電池用組付け装置
JP2015060827A (ja) 二次電池
US11469443B2 (en) Electricity storage element including stacked metal foils joined to lead by second joint within first joint, method of manufacturing electricity storage element, joining method, and joint assembly
JP2013222517A (ja) 角形二次電池
JP6235419B2 (ja) 二次電池
JP5568512B2 (ja) 角形電池
JP2018081860A (ja) 二次電池
JP6217066B2 (ja) 蓄電素子、電源モジュール、蓄電素子の製造方法
US20220037746A1 (en) Secondary battery
JP2005259414A (ja) 電池