JP2015055312A - Fluid dynamic pressure bearing device, and inner member manufacturing method - Google Patents

Fluid dynamic pressure bearing device, and inner member manufacturing method Download PDF

Info

Publication number
JP2015055312A
JP2015055312A JP2013189457A JP2013189457A JP2015055312A JP 2015055312 A JP2015055312 A JP 2015055312A JP 2013189457 A JP2013189457 A JP 2013189457A JP 2013189457 A JP2013189457 A JP 2013189457A JP 2015055312 A JP2015055312 A JP 2015055312A
Authority
JP
Japan
Prior art keywords
inner member
axial direction
radial
dynamic pressure
outer peripheral
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013189457A
Other languages
Japanese (ja)
Other versions
JP6261922B2 (en
Inventor
政治 堀
Seiji Hori
政治 堀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NTN Corp
Original Assignee
NTN Corp
NTN Toyo Bearing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NTN Corp, NTN Toyo Bearing Co Ltd filed Critical NTN Corp
Priority to JP2013189457A priority Critical patent/JP6261922B2/en
Publication of JP2015055312A publication Critical patent/JP2015055312A/en
Application granted granted Critical
Publication of JP6261922B2 publication Critical patent/JP6261922B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Sliding-Contact Bearings (AREA)

Abstract

PROBLEM TO BE SOLVED: To restrain deterioration of bearing rigidity in a sintered metallic inner member on the outer periphery of which a radial dynamic pressure generation part is formed by roll-processing.SOLUTION: A fluid dynamic pressure bearing device comprises: an outer member 20; an inner member 10 made of sintered metal; a radial bearing gap R formed between an outer periphery 11 of the inner member 10 and an inner periphery 20a of the outer member; a thrust bearing gap T formed between both axial ends 12 of the inner member 10 and an inner face 20b of the outer member 20; lubrication oil filling the radial bearing gap R and the thrust bearing gap T; and a radial dynamic pressure generation part (a dynamic pressure groove 11a) formed on the outer periphery 11 of the inner member 10 by roll-processing. Porosity of the inner member 10 ia made to 20% or more.

Description

本発明は、内方部材と外方部材との間の軸受隙間に生じる潤滑油の動圧作用で、内方部材を相対回転自在に支持する流体動圧軸受装置及びこれに組み込まれる内方部材の製造方法に関する。   The present invention relates to a fluid dynamic pressure bearing device that supports an inner member so as to be relatively rotatable by a dynamic pressure action of lubricating oil generated in a bearing gap between the inner member and the outer member, and an inner member incorporated therein. It relates to the manufacturing method.

換気扇等の電気機器に搭載されるモータには軸受が組み込まれており、この軸受によって回転軸が相対回転自在に支持されている。この種の軸受として、外輪と、内輪と、これらの間に介在された複数の転動体と、複数の転動体を保持する保持器とからなる、いわゆる転がり軸受が一般的に使用されている(例えば、特許文献1)。   A motor mounted on an electric device such as a ventilation fan incorporates a bearing, and the rotating shaft is supported by the bearing so as to be relatively rotatable. As this type of bearing, a so-called rolling bearing comprising an outer ring, an inner ring, a plurality of rolling elements interposed therebetween, and a cage for holding the plurality of rolling elements is generally used ( For example, Patent Document 1).

例えば、住宅に設けられる小型の換気扇、特に、24時間換気システムに設けられる小型の換気扇は、低コスト化が要求されているが、転がり軸受は、上述のとおり数多くの部品で構成されていることから低コスト化には限度がある。また、上記システムの換気扇は基本的に連続運転されることから、特に低騒音であることが求められる。しかしながら、転がり軸受では、運転時に保持器のポケットと転動体とが衝突することによって生じるいわゆる保持器音や、内外輪の軌道面上を転動体が転動することによって生じる摩擦音等の発生が避けられないことから、更なる静粛性向上の要請に対応するのが困難である。   For example, a small ventilation fan installed in a house, especially a small ventilation fan provided in a 24-hour ventilation system, is required to be low in cost, but the rolling bearing is composed of many parts as described above. Therefore, there is a limit to cost reduction. Moreover, since the ventilation fan of the said system is fundamentally operated continuously, it is calculated | required that it is especially low noise. However, rolling bearings avoid the generation of so-called cage noise caused by collision between the cage pocket and rolling elements during operation, and friction noise caused by rolling of the rolling elements on the raceway surface of the inner and outer rings. Since it is not possible, it is difficult to meet the demand for further improvement in quietness.

上記のような事情に鑑み、換気扇等のモータに組み込む軸受として、流体動圧軸受を使用する場合がある。例えば特許文献2に示されている流体動圧軸受装置は、内方部材と、内方部材の外周面及び両端面を囲む外方部材とを有し、内方部材が回転すると、内方部材の外周面と外方部材の内周面との間にラジアル軸受隙間が形成されると共に、内方部材の軸方向両端面と外方部材の内側面との間にそれぞれスラスト軸受隙間が形成され、これらのラジアル軸受隙間及びスラスト軸受隙間の潤滑油に生じる動圧作用で、内方部材が回転自在に支持される。このように、転がり軸受を流体動圧軸受で代替することにより、部品数の削減による低コスト化や、静粛性の向上を図っている。   In view of the above circumstances, a fluid dynamic pressure bearing may be used as a bearing incorporated in a motor such as a ventilation fan. For example, a fluid dynamic pressure bearing device disclosed in Patent Document 2 includes an inner member and outer members that surround the outer peripheral surface and both end surfaces of the inner member. When the inner member rotates, the inner member A radial bearing gap is formed between the outer peripheral surface of the outer member and the inner peripheral surface of the outer member, and a thrust bearing gap is formed between each axial end surface of the inner member and the inner side surface of the outer member. The inner member is rotatably supported by the dynamic pressure generated in the lubricating oil in the radial bearing gap and the thrust bearing gap. Thus, by replacing the rolling bearing with a fluid dynamic pressure bearing, the cost is reduced by reducing the number of parts and the quietness is improved.

上記の流体動圧軸受装置では、内方部材が焼結金属で形成され、その外周面に動圧溝が転造加工により形成されている。これにより、転造加工の圧迫による内方部材の塑性流動を焼結金属の内部気孔で吸収できるため、塑性流動による内方部材の表面の盛り上がりが抑えられ、内方部材の外周面に動圧溝を精度良く形成することができる。   In the above fluid dynamic pressure bearing device, the inner member is formed of sintered metal, and the dynamic pressure groove is formed on the outer peripheral surface thereof by rolling. As a result, the plastic flow of the inner member due to the compression of the rolling process can be absorbed by the internal pores of the sintered metal, so that the rise of the surface of the inner member due to the plastic flow is suppressed, and the dynamic pressure is applied to the outer peripheral surface of the inner member. The groove can be formed with high accuracy.

また、上記の流体動圧軸受装置では、外方部材が、一方のスラスト軸受隙間を形成する第1外方部材と、他方のスラスト軸受隙間を形成する第2スラスト軸受隙間とで構成される。この流体動圧軸受装置では、以下のようにしてスラスト軸受隙間の設定が行われる。まず、内方部材の軸方向両端面に第1及び第2外方部材の内側面をそれぞれ当接させてスラスト軸受隙間を0の状態にする。その後、第1外方部材と第2外方部材とを相対的に軸方向移動させて、外方部材の内側面を内方部材の端面からスラスト軸受隙間の設定値の分だけ離隔させ、この状態で第1外方部材と第2外方部材とを固定することにより、スラスト軸受隙間が設定される。このように、外方部材の内方部材に対する移動量でスラスト軸受隙間を設定することにより、スラスト軸受隙間を高精度且つ容易に設定することができる。   In the above fluid dynamic pressure bearing device, the outer member is constituted by a first outer member that forms one thrust bearing gap and a second thrust bearing gap that forms the other thrust bearing gap. In this fluid dynamic bearing device, the thrust bearing gap is set as follows. First, the inner side surfaces of the first and second outer members are brought into contact with both axial end surfaces of the inner member so that the thrust bearing gap is zero. Thereafter, the first outer member and the second outer member are relatively moved in the axial direction, and the inner side surface of the outer member is separated from the end surface of the inner member by the set value of the thrust bearing gap, The thrust bearing gap is set by fixing the first outer member and the second outer member in the state. Thus, the thrust bearing gap can be set with high accuracy and easily by setting the thrust bearing gap by the amount of movement of the outer member relative to the inner member.

特開2000−249142号公報JP 2000-249142 A 特開2011−231874号公報JP 2011-231874 A

しかし、焼結金属製の内方部材の外周面に転造加工により動圧溝を形成する場合、通常、内方部材の軸方向両端面は拘束されないため、転造加工の圧迫による影響が、内方部材の外周面(ラジアル軸受面)だけでなく、内方部材の軸方向両端面(スラスト軸受面)に及ぶことがある。具体的には、図11に誇張して示すように、内方部材101の外周面101aへの転造加工の圧迫により内方部材101の材料が軸方向両側に塑性流動し、この塑性流動により、内方部材101の端面101bの外周部が盛り上がることがある。この盛り上がり部101cにより、スラスト軸受隙間Tが不均一となってスラスト方向の軸受剛性が低下する恐れがある。特に、上記特許文献2のように外方部材102の内方部材101に対する移動量でスラスト軸受隙間Tを設定する場合、内方部材101の端面101bの盛り上がり部101cと外方部材102の内側面102aとが当接するため(図11の点線参照)、内方部材101の端面101bと外方部材102の内側面102aとの間には既に盛り上がり部101cの高さ(軸方向寸法)αの分の軸方向隙間が形成される。その後、外方部材102の内側面102aを内方部材101の端面101bから、スラスト軸受隙間Tの設定値Δの分だけ離反させると、内方部材101の端面101bと外方部材102の内側面102aとの間のスラスト軸受隙間T’の大きさは、盛り上がり部101cの高さαとスラスト軸受隙間の設定値Δとの合計量となる(T’=Δ+α)。このように、設定値Δより大きいスラスト軸受隙間T’が形成されることで、スラスト軸受隙間T’の潤滑油の圧力が十分に高まらず、スラスト方向の軸受剛性が不足する恐れがある。   However, when the dynamic pressure grooves are formed on the outer peripheral surface of the inner member made of sintered metal by rolling, usually both end surfaces in the axial direction of the inner member are not restrained. In some cases, not only the outer peripheral surface (radial bearing surface) of the inner member but also both axial end surfaces (thrust bearing surfaces) of the inner member. Specifically, as shown in an exaggerated manner in FIG. 11, the material of the inner member 101 plastically flows on both sides in the axial direction due to the compression of the rolling process on the outer peripheral surface 101a of the inner member 101. The outer peripheral portion of the end surface 101b of the inner member 101 may rise. Due to the swelled portion 101c, the thrust bearing gap T may become non-uniform and the bearing rigidity in the thrust direction may be reduced. In particular, when the thrust bearing gap T is set by the amount of movement of the outer member 102 relative to the inner member 101 as in Patent Document 2, the raised portion 101 c of the end surface 101 b of the inner member 101 and the inner surface of the outer member 102 are set. 102a abuts (see the dotted line in FIG. 11), the height (axial dimension) α of the raised portion 101c is already between the end surface 101b of the inner member 101 and the inner side surface 102a of the outer member 102. An axial gap is formed. Thereafter, when the inner surface 102a of the outer member 102 is separated from the end surface 101b of the inner member 101 by the set value Δ of the thrust bearing gap T, the end surface 101b of the inner member 101 and the inner surface of the outer member 102 are separated. The size of the thrust bearing gap T ′ with respect to 102a is the total amount of the height α of the raised portion 101c and the set value Δ of the thrust bearing gap (T ′ = Δ + α). As described above, when the thrust bearing gap T ′ larger than the set value Δ is formed, the lubricating oil pressure in the thrust bearing gap T ′ may not be sufficiently increased, and the bearing rigidity in the thrust direction may be insufficient.

例えば、内方部材の外周面に転造加工により動圧溝を形成した後、内方部材にサイジングを施すことで、内方部材の端面の盛り上がりを解消する方法も考えられる。しかし、内方部材にサイジングを施すと外周面が圧迫されるため、外周面に形成した動圧溝が潰されて溝深さが浅くなり、ラジアル方向の軸受剛性が低下する恐れがある。   For example, after forming a dynamic pressure groove on the outer peripheral surface of the inner member by rolling, sizing the inner member to eliminate the rise of the end surface of the inner member can be considered. However, when sizing the inner member, the outer peripheral surface is compressed, so that the dynamic pressure groove formed on the outer peripheral surface is crushed and the groove depth becomes shallow, and the bearing rigidity in the radial direction may be reduced.

以上の事情に鑑み、本発明は、転造加工により外周面にラジアル動圧発生部が形成される焼結金属製の内方部材において、軸受剛性の低下を抑えることを解決すべき技術的課題とする。   In view of the above circumstances, the present invention is a technical problem to be solved for suppressing a decrease in bearing rigidity in an inner member made of sintered metal in which a radial dynamic pressure generating portion is formed on the outer peripheral surface by rolling. And

前記課題を解決するためになされた本発明は、外方部材と、外方部材の内周に配された焼結金属からなる内方部材と、内方部材の外周面と外方部材の内周面との間に形成されるラジアル軸受隙間と、内方部材の軸方向一方の端面とこれに軸方向で対向する外方部材の内側面との間、及び、内方部材の軸方向他方の端面とこれに軸方向で対向する外方部材の内側面との間にそれぞれ形成されるスラスト軸受隙間と、ラジアル軸受隙間及びスラスト軸受隙間に満たされた潤滑油と、内方部材の外周面に転造加工で形成されたラジアル動圧発生部とを備えた流体動圧軸受装置であって、内方部材の気孔率を20%以上としたものである。   The present invention made in order to solve the above problems includes an outer member, an inner member made of sintered metal disposed on the inner periphery of the outer member, an outer peripheral surface of the inner member, and an inner member of the outer member. The radial bearing gap formed between the circumferential surface, the axial end of the inner member and the inner surface of the outer member facing the axial end, and the other axial end of the inner member A thrust bearing gap formed between the end face of the outer member and the inner side surface of the outer member facing in the axial direction, the lubricating oil filled in the radial bearing gap and the thrust bearing gap, and the outer peripheral surface of the inner member In addition, the fluid dynamic pressure bearing device includes a radial dynamic pressure generating portion formed by rolling, and the porosity of the inner member is 20% or more.

また、前記課題を解決するためになされた本発明は、外周面に設けられたラジアル軸受面と、軸方向両端面に設けられたスラスト軸受面と、ラジアル軸受面に形成されたラジアル動圧発生部とを有し、焼結金属で形成された流体動圧軸受装置の内方部材の製造方法であって、混合金属粉末を圧縮成形して圧粉体を形成する圧縮成形工程と、圧粉体を所定の焼結温度で焼成して焼結体を形成する焼結工程と、焼結体を所定寸法に整形するサイジング工程と、サイジング工程の後、焼結体を軸方向両側から拘束しない状態で、焼結体の外周面にラジアル動圧発生部を転造加工により形成する転造工程とを有し、気孔率が20%以上となるように各工程の条件を設定するものである。   Further, the present invention made to solve the above-mentioned problems includes a radial bearing surface provided on the outer peripheral surface, a thrust bearing surface provided on both end surfaces in the axial direction, and generation of radial dynamic pressure formed on the radial bearing surface. A compression molding step of forming a green compact by compressing a mixed metal powder, and a green compact. Sintering the body at a predetermined sintering temperature to form a sintered body, a sizing process for shaping the sintered body into a predetermined size, and after the sizing process, the sintered body is not restrained from both sides in the axial direction. And forming a radial dynamic pressure generating portion on the outer peripheral surface of the sintered body by rolling, and setting the conditions of each step so that the porosity is 20% or more. .

上記のように、焼結金属製の内方部材の気孔率を20%以上とすることにより、内方部材の両端面を拘束することなく外周面にラジアル動圧発生部を型成形した場合であっても、内方部材の軸方向両端面の盛り上がりをスラスト軸受隙間に影響しない高さ(例えば5μm以下)に抑えることができる。これにより、内方部材の軸方向両端面の面精度を、高精度に維持することができるため、スラスト軸受隙間を高精度に設定し、優れたスラスト方向の軸受剛性を得ることができる。この場合、ラジアル動圧発生部形成後にサイジングを施す必要がないため、ラジアル動圧発生部の精度低下によるラジアル方向の軸受剛性の低下を回避できる。尚、気孔率とは、焼結金属の体積に対する気孔体積の比率のことであり、例えば、焼結金属の切断面における開口率でおおよそ推定することができる。   As described above, by setting the porosity of the sintered metal inner member to 20% or more, the radial dynamic pressure generating portion is molded on the outer peripheral surface without restricting both end surfaces of the inner member. Even if it exists, the rise | swell of the axial direction both end surfaces of an inner member can be suppressed to the height (for example, 5 micrometers or less) which does not affect a thrust bearing clearance gap. Thereby, since the surface accuracy of the axial direction both end surfaces of the inner member can be maintained with high accuracy, the thrust bearing gap can be set with high accuracy, and excellent bearing rigidity in the thrust direction can be obtained. In this case, since it is not necessary to perform sizing after the radial dynamic pressure generating portion is formed, it is possible to avoid a decrease in bearing rigidity in the radial direction due to a decrease in accuracy of the radial dynamic pressure generating portion. The porosity is the ratio of the pore volume to the volume of the sintered metal, and can be roughly estimated by, for example, the aperture ratio at the cut surface of the sintered metal.

また、前記課題を解決するためになされた本発明は、外方部材と、外方部材の内周に配された焼結金属からなる内方部材と、内方部材の外周面と外方部材の内周面との間に形成されるラジアル軸受隙間と、内方部材の軸方向一方の端面とこれに軸方向で対向する外方部材の内側面との間、及び、内方部材の軸方向他方の端面とこれに軸方向で対向する外方部材の内側面との間にそれぞれ形成されるスラスト軸受隙間と、ラジアル軸受隙間及びスラスト軸受隙間に満たされた潤滑油と、内方部材の外周面に転造加工で形成されたラジアル動圧発生部とを備えた流体動圧軸受装置であって、内方部材の軸方向両端面の外周領域を、予め内周領域よりも軸方向内側に後退させ、上記転造加工による塑性流動で外周領域を軸方向外側に移動させたものである。   Moreover, this invention made | formed in order to solve the said subject is the outer member, the inner member which consists of a sintered metal distribute | arranged to the inner periphery of an outer member, the outer peripheral surface of an inner member, and an outer member A radial bearing gap formed between the inner peripheral surface of the inner member and the inner member between one end surface in the axial direction of the inner member and the inner surface of the outer member facing in the axial direction, and the shaft of the inner member. A thrust bearing gap formed between the other end face in the direction and the inner surface of the outer member facing the axial direction, a lubricating oil filled in the radial bearing gap and the thrust bearing gap, and an inner member A hydrodynamic bearing device including a radial dynamic pressure generating portion formed by rolling on an outer peripheral surface, wherein an outer peripheral region of both end surfaces in the axial direction of an inner member is axially inward of the inner peripheral region in advance. The outer peripheral area is moved outward in the axial direction by plastic flow by the above rolling process. A.

また、前記課題を解決するためになされた本発明は、外周面に設けられたラジアル軸受面と、軸方向両端面に設けられたスラスト軸受面と、ラジアル軸受面に形成されたラジアル動圧発生部とを有し、焼結金属で形成された流体動圧軸受装置の内方部材の製造方法であって、混合金属粉末を圧縮成形して圧粉体を形成する圧縮成形工程と、圧粉体を所定の焼結温度で焼成して焼結体を形成する焼結工程と、焼結体を所定寸法に整形することにより、焼結体にラジアル軸受面及びスラスト軸受面を成形するサイジング工程と、サイジング工程の後、焼結体を軸方向両側から拘束しない状態で、焼結体の外周面にラジアル動圧発生部を転造加工により形成する転造工程とを有し、予め、焼結体の軸方向両端面の外周領域を内周領域よりも軸方向内側に後退させて形成し、上記転造加工による塑性流動で焼結体の軸方向両端面の外周領域を軸方向外側に移動させるものである。   Further, the present invention made to solve the above-mentioned problems includes a radial bearing surface provided on the outer peripheral surface, a thrust bearing surface provided on both end surfaces in the axial direction, and generation of radial dynamic pressure formed on the radial bearing surface. A compression molding step of forming a green compact by compressing a mixed metal powder, and a green compact. A sintering process for forming a sintered body by firing the body at a predetermined sintering temperature, and a sizing process for forming a radial bearing surface and a thrust bearing surface on the sintered body by shaping the sintered body to a predetermined size. And a rolling step for forming a radial dynamic pressure generating portion on the outer peripheral surface of the sintered body by a rolling process without restraining the sintered body from both sides in the axial direction after the sizing step. The outer peripheral area of both ends of the bonded body in the axial direction is more axially inner than the inner peripheral area. It is not formed retracted, and moves the outer peripheral region of the axial end surfaces of the sintered body axially outwardly by plastic flow due to the rolling.

上記のように、転造加工による盛り上がりを考慮して、内方部材の軸方向両端面の外周領域を軸方向内側に予め後退させておくことで、転造加工後の内方部材の軸方向両端面を優れた面精度で形成することができる。これにより、スラスト軸受隙間を高精度に設定することができるため、優れたスラスト方向の軸受剛性を得ることができる。この場合、ラジアル動圧発生部形成後にサイジングを施す必要がないため、ラジアル動圧発生部の精度低下によるラジアル方向の軸受剛性の低下を回避できる。   As described above, the axial direction of the inner member after the rolling process is preliminarily retracted to the inner side in the axial direction in consideration of the bulge caused by the rolling process. Both end surfaces can be formed with excellent surface accuracy. Thereby, since the thrust bearing gap can be set with high accuracy, excellent bearing rigidity in the thrust direction can be obtained. In this case, since it is not necessary to perform sizing after the radial dynamic pressure generating portion is formed, it is possible to avoid a decrease in bearing rigidity in the radial direction due to a decrease in accuracy of the radial dynamic pressure generating portion.

また、前記課題を解決するためになされた本発明は、外方部材と、外方部材の内周に配された焼結金属からなる内方部材と、内方部材の外周面と前記外方部材の内周面との間に形成されるラジアル軸受隙間と、内方部材の軸方向一方の端面とこれに軸方向で対向する外方部材の内側面との間、及び、内方部材の軸方向他方の端面とこれに軸方向で対向する外方部材の内側面との間にそれぞれ形成されるスラスト軸受隙間と、ラジアル軸受隙間及びスラスト軸受隙間に満たされた潤滑油と、内方部材の外周面に転造加工で形成されたラジアル動圧発生部とを備えた流体動圧軸受装置であって、外方部材の内側面が、平坦部と、平坦部の外径側に設けられ、平坦部よりも軸方向外側に後退した逃げ部とを有するものである。   Further, the present invention made to solve the above problems includes an outer member, an inner member made of a sintered metal disposed on an inner periphery of the outer member, an outer peripheral surface of the inner member, and the outer member. A radial bearing gap formed between the inner peripheral surface of the member, an axial end surface of the inner member and the inner surface of the outer member facing the axial direction of the inner member, and the inner member A thrust bearing gap formed between the other end face in the axial direction and the inner side surface of the outer member facing the axial direction, the lubricating oil filled in the radial bearing gap and the thrust bearing gap, and the inner member The hydrodynamic bearing device is provided with a radial dynamic pressure generating portion formed by rolling on the outer peripheral surface of the outer member, and the inner side surface of the outer member is provided on the flat portion and the outer diameter side of the flat portion. And an escape portion that recedes axially outward from the flat portion.

このように、外方部材の内側面の平坦部の外径側に、平坦部より軸方向外側に後退した逃げ部を設けることで、この逃げ部を、転造加工により内方部材の軸方向両端面の外周領域に形成される盛り上がり部と軸方向で対向させることができる。このように、盛り上がり部を逃げ部と対向させることで、盛り上がり部によりスラスト軸受隙間の精度が低下することが回避され、優れたスラスト方向の軸受剛性を維持することができる。この場合、ラジアル動圧発生部形成後にサイジングを施す必要がないため、ラジアル動圧発生部の精度低下によるラジアル方向の軸受剛性の低下を回避できる。   In this way, by providing a relief portion that is retracted axially outward from the flat portion on the outer diameter side of the flat portion of the inner side surface of the outer member, this relief portion is axially formed by rolling the inner member. It can be made to oppose in the axial direction to the rising part formed in the outer peripheral area | region of both end surfaces. Thus, by making the raised portion face the escape portion, the accuracy of the thrust bearing gap is prevented from being lowered by the raised portion, and excellent bearing rigidity in the thrust direction can be maintained. In this case, since it is not necessary to perform sizing after the radial dynamic pressure generating portion is formed, it is possible to avoid a decrease in bearing rigidity in the radial direction due to a decrease in accuracy of the radial dynamic pressure generating portion.

以上のような流体動圧軸受装置では、内方部材のうち、少なくともラジアル軸受隙間及びスラスト軸受隙間を形成する領域(ラジアル軸受面及びスラスト軸受面)の表面開孔率が20%以下であることが好ましい。ラジアル軸受面及びスラスト軸受面の表面開孔率が20%より大きいと、各軸受隙間に満たされた潤滑油が内方部材の表面開孔から内部に進入しやすくなるため、軸受隙間の潤滑油の圧力が十分に高まらず、軸受剛性不足を招く恐れがあるためである。   In the fluid dynamic pressure bearing device as described above, the surface area ratio of at least the radial bearing clearance and the thrust bearing clearance (radial bearing surface and thrust bearing surface) of the inner member is 20% or less. Is preferred. When the surface opening ratio of the radial bearing surface and the thrust bearing surface is larger than 20%, the lubricating oil filled in each bearing gap easily enters the inside from the surface opening of the inner member. This is because the pressure is not sufficiently increased, and there is a risk of insufficient bearing rigidity.

また、以上のような流体動圧軸受装置は、外方部材が、内方部材の軸方向一方の端面と対向する内側面を有する第1外方部材と、内方部材の軸方向他方の端面と対向する内側面を有する第2外方部材とを有し、第1外方部材と第2外方部材とを軸方向で相対移動させることによりスラスト軸受隙間を設定する場合に特に有効である。   Further, in the fluid dynamic pressure bearing device as described above, the outer member has a first outer member having an inner surface facing one end surface in the axial direction of the inner member, and the other end surface in the axial direction of the inner member. And a second outer member having an inner surface facing each other, and is particularly effective when the thrust bearing gap is set by relatively moving the first outer member and the second outer member in the axial direction. .

以上のように、本発明によれば、転造加工により外周面にラジアル動圧発生部が形成される焼結金属製の内方部材において、ラジアル方向及びスラスト方向の軸受剛性の低下を抑えることができる。   As described above, according to the present invention, in the inner member made of sintered metal in which the radial dynamic pressure generating portion is formed on the outer peripheral surface by rolling, the reduction in the bearing rigidity in the radial direction and the thrust direction is suppressed. Can do.

換気扇モータ用の軸受ユニットの縦断面図である。It is a longitudinal cross-sectional view of the bearing unit for ventilation fan motors. 本発明の実施形態に係る流体動圧軸受装置の縦断面図である。1 is a longitudinal sectional view of a fluid dynamic bearing device according to an embodiment of the present invention. (a)は内方部材を図2のA方向から見た側面図、(b)は同B方向からみた側面図、(c)は同C方向から見た側面図である。(A) is the side view which looked at the inward member from A direction of FIG. 2, (b) is the side view seen from the B direction, (c) is the side view seen from the C direction. 内方部材の圧縮成形工程を示す断面図である。It is sectional drawing which shows the compression molding process of an inner member. 内方部材のサイジング工程を示す断面図である。It is sectional drawing which shows the sizing process of an inner member. 内方部材の転造工程を示す断面図である。It is sectional drawing which shows the rolling process of an inner member. 流体動圧軸受装置の組立工程を示す断面図である。It is sectional drawing which shows the assembly process of a fluid dynamic pressure bearing apparatus. 他の実施形態に係る流体動圧軸受装置の内方部材の拡大断面図である。It is an expanded sectional view of the inward member of the fluid dynamic pressure bearing device concerning other embodiments. 他の実施形態に係る流体動圧軸受装置の拡大断面図である。It is an expanded sectional view of the fluid dynamic bearing device concerning other embodiments. 他の実施形態に係る流体動圧軸受装置の拡大断面図である。It is an expanded sectional view of the fluid dynamic bearing device concerning other embodiments. 従来の流体動圧軸受装置の拡大断面図である。It is an expanded sectional view of the conventional fluid dynamic bearing device.

以下に本発明の実施の形態を図面に基づいて説明する。   Embodiments of the present invention will be described below with reference to the drawings.

図1は、本発明の一実施形態に係る流体動圧軸受装置4を組み込んだ軸受ユニット1の軸方向断面図である。この軸受ユニット1は、例えば、住宅の居室に設置される24時間換気システムの小型換気扇用モータ(より厳密に言えば、換気扇用インナーロータ型モータ)に組み込まれて使用されるものである。軸受ユニット1は、回転軸2と、回転軸2の外周面に固定されたモータロータ3、回転軸2の端部に設けられたファン6とからなる回転体を回転自在に支持するために、モータロータ3の軸方向両側に設けられ、回転軸2とハウジング5の間に配置された一対の流体動圧軸受装置4、4から構成される。軸方向一方(図中右側)の流体動圧軸受装置4とハウジング5との間には、スプリング7が圧縮状態で配置されている。尚、ステータは図示を省略している。   FIG. 1 is an axial sectional view of a bearing unit 1 incorporating a fluid dynamic bearing device 4 according to an embodiment of the present invention. The bearing unit 1 is used, for example, by being incorporated in a small ventilation fan motor (more strictly speaking, an inner rotor type motor for a ventilation fan) of a 24-hour ventilation system installed in a living room of a house. The bearing unit 1 is a motor rotor for rotatably supporting a rotating body including a rotating shaft 2, a motor rotor 3 fixed to the outer peripheral surface of the rotating shaft 2, and a fan 6 provided at an end of the rotating shaft 2. 3, and a pair of fluid dynamic bearing devices 4, 4 disposed between the rotating shaft 2 and the housing 5. A spring 7 is disposed in a compressed state between the fluid dynamic bearing device 4 and the housing 5 on one axial side (the right side in the figure). The stator is not shown.

流体動圧軸受装置4は、図2に示すように、内方部材10と、内周に内方部材10が配され、内方部材10を回転自在に支持する外方部材20とを備える。内方部材10の内周面13は回転軸2の外周面に圧入や接着により固定される(図1参照)。外方部材20の外周面22a2はハウジング5の内周面に嵌合し、軸方向に摺動可能な状態で取り付けられる(図1参照)。軸方向および半径方向で互いに対向する内方部材10と外方部材20の各面間(ラジアル軸受隙間Rおよびスラスト軸受隙間T)には潤滑油が介在している(図2参照)。尚、図1中の流体動圧軸受装置4、4は、同一構造である。   As shown in FIG. 2, the fluid dynamic bearing device 4 includes an inner member 10, and an outer member 20 in which the inner member 10 is arranged on the inner periphery and rotatably supports the inner member 10. The inner peripheral surface 13 of the inner member 10 is fixed to the outer peripheral surface of the rotating shaft 2 by press-fitting or bonding (see FIG. 1). The outer peripheral surface 22a2 of the outer member 20 is fitted to the inner peripheral surface of the housing 5 and attached so as to be slidable in the axial direction (see FIG. 1). Lubricating oil is interposed between the surfaces of the inner member 10 and the outer member 20 (radial bearing gap R and thrust bearing gap T) facing each other in the axial direction and the radial direction (see FIG. 2). Note that the fluid dynamic bearing devices 4 and 4 in FIG. 1 have the same structure.

内方部材10は環状をなし、断面略矩形状をなした略円筒状の軸受部10aと、軸受部10aの内周に設けられ、回転軸2の外周面に固定される略円筒状の固定部10bとを有する。本実施形態では、軸受部10aと固定部10bとが一体に形成される。尚、図2では、軸受部10aと固定部10bとの概念的な境界を点線で示している。   The inner member 10 has an annular shape and a substantially cylindrical bearing portion 10 a having a substantially rectangular cross section, and a substantially cylindrical fixing that is provided on the inner periphery of the bearing portion 10 a and is fixed to the outer peripheral surface of the rotary shaft 2. Part 10b. In the present embodiment, the bearing portion 10a and the fixed portion 10b are integrally formed. In FIG. 2, a conceptual boundary between the bearing portion 10a and the fixed portion 10b is indicated by a dotted line.

内方部材10は、焼結金属、例えば銅系、鉄系、あるいは銅鉄系の焼結金属で形成される。本実施形態では、銅の配合比率が20〜80%の銅鉄系の焼結金属で形成される。銅の配合比率が20%未満になると動圧溝の成形性や潤滑性で問題となり、一方、銅の配合比率が80%を超えると鉄の割合が過小となって耐摩耗性が不足する恐れがあるためである。内方部材10の気孔率は、20%以上、好ましくは25%以上とする。後述する外周面11の動圧溝11aの転造加工による端面12の盛り上がりを抑えるためである。一方、内方部材10の気孔率が大きすぎると、強度不足を招く恐れがあるため、40%以下とすることが好ましい。また、内方部材10のうち、少なくともラジアル軸受面を形成する外周面11は、焼結部材の表面開孔率を2〜20%とする。表面開孔率が2%未満では潤滑油の循環が十分でなく、表面開孔率が20%を超えると潤滑油の圧力が低下するためである。   The inner member 10 is formed of a sintered metal, for example, a copper-based, iron-based, or copper-iron-based sintered metal. In this embodiment, it is formed of a copper iron-based sintered metal having a copper blending ratio of 20 to 80%. If the copper content is less than 20%, there will be a problem with the formability and lubricity of the dynamic pressure groove. On the other hand, if the copper content exceeds 80%, the iron content will be too low and wear resistance may be insufficient. Because there is. The porosity of the inner member 10 is 20% or more, preferably 25% or more. This is to prevent the end surface 12 from rising due to the rolling process of the dynamic pressure groove 11a of the outer peripheral surface 11 to be described later. On the other hand, if the porosity of the inner member 10 is too large, the strength may be insufficient. Moreover, the outer peripheral surface 11 which forms a radial bearing surface at least among the inward members 10 makes the surface opening rate of a sintered member 2-20%. This is because if the surface opening ratio is less than 2%, the circulation of the lubricating oil is not sufficient, and if the surface opening ratio exceeds 20%, the pressure of the lubricating oil decreases.

内方部材10の軸受部10aの外周面11は円筒面状を成し、この面がラジアル軸受面として機能する。軸受部10aの外周面11には、ラジアル動圧発生部として動圧溝11aが形成される。本実施形態では、例えば図3(b)に示すようなヘリングボーン形状の動圧溝11aが、外周面11の全面に形成される。内方部材10の軸受部10aの軸方向両側の端面12は、軸方向と直交する方向に延在し、この面がスラスト軸受面として機能する。軸受部10aの軸方向両側の端面12には、スラスト動圧発生部として動圧溝12aが形成される。本実施形態では、例えば図3(a)及び(c)に示すように、ヘリングボーン形状の動圧溝12aが、端面12の全面に形成される。尚、図3では、動圧溝11a間及び動圧溝12a間に形成される丘部を、それぞれクロスハッチングで示している。   The outer peripheral surface 11 of the bearing portion 10a of the inner member 10 forms a cylindrical surface, and this surface functions as a radial bearing surface. A dynamic pressure groove 11a is formed on the outer peripheral surface 11 of the bearing portion 10a as a radial dynamic pressure generating portion. In the present embodiment, for example, a herringbone-shaped dynamic pressure groove 11 a as shown in FIG. 3B is formed on the entire outer peripheral surface 11. End surfaces 12 on both axial sides of the bearing portion 10a of the inner member 10 extend in a direction orthogonal to the axial direction, and these surfaces function as thrust bearing surfaces. Dynamic pressure grooves 12a are formed as thrust dynamic pressure generating portions on the end faces 12 on both axial sides of the bearing portion 10a. In this embodiment, for example, as shown in FIGS. 3A and 3C, a herringbone-shaped dynamic pressure groove 12 a is formed on the entire end surface 12. In addition, in FIG. 3, the hill part formed between the dynamic pressure grooves 11a and between the dynamic pressure grooves 12a is each shown by cross hatching.

固定部10bは、軸受部10aの軸方向両側の端面12よりも軸方向外側に突出し、その突出した部分の外周面14が、外方部材20の内径端と半径方向に対向している。固定部10bの内周面13は、回転軸2の外周面に固定される。   The fixed portion 10b protrudes outward in the axial direction from the end surfaces 12 on both axial sides of the bearing portion 10a, and the outer peripheral surface 14 of the protruding portion faces the inner diameter end of the outer member 20 in the radial direction. The inner peripheral surface 13 of the fixed portion 10 b is fixed to the outer peripheral surface of the rotating shaft 2.

外方部材20は、図2に示すように、内方部材10の外周面11と半径方向に対向する内周面20aと、内方部材10の軸方向両端面12とそれぞれ軸方向に対向する一対の内側面20bとを有する。本実施形態の外方部材20は、断面L字形状をなした環状の第1外方部材21及び第2外方部材22からなる。第1外方部材21は、円筒部21aと、円筒部21aの軸方向一端(図2の右端)から内径側に延在する平板部21bとを一体に有する。第2外方部材22は、円筒部22aと、円筒部22aの軸方向他端(図2の左端)から内径側に延在する平板部22bとを一体に有する。本実施形態では、例えば金属板をプレス加工して、第1外方部材21及び第2外方部材22が形成される。金属板は、ステンレス鋼板や冷間圧延鋼板等を用いることができ、その板厚は0.1〜1mm程度である。第1外方部材21の円筒部21aの外周面21a2と第2外方部材22の円筒部22aの内周面22a1とが、接着、圧入等により固定され、本実施形態では、両者を圧入することなく隙間嵌合させ、接着固定されている。   As shown in FIG. 2, the outer member 20 faces the outer peripheral surface 11 of the inner member 10 in the radial direction and the inner peripheral surface 20 a that faces the outer peripheral surface 11 in the radial direction, and both axial end surfaces 12 of the inner member 10. And a pair of inner side surfaces 20b. The outer member 20 of the present embodiment includes an annular first outer member 21 and second outer member 22 having an L-shaped cross section. The first outer member 21 integrally includes a cylindrical portion 21a and a flat plate portion 21b extending from the one axial end of the cylindrical portion 21a (the right end in FIG. 2) to the inner diameter side. The second outer member 22 integrally includes a cylindrical portion 22a and a flat plate portion 22b extending from the other axial end of the cylindrical portion 22a (the left end in FIG. 2) to the inner diameter side. In the present embodiment, for example, the first outer member 21 and the second outer member 22 are formed by pressing a metal plate. A stainless steel plate, a cold-rolled steel plate, etc. can be used for a metal plate, The plate | board thickness is about 0.1-1 mm. The outer peripheral surface 21a2 of the cylindrical portion 21a of the first outer member 21 and the inner peripheral surface 22a1 of the cylindrical portion 22a of the second outer member 22 are fixed by adhesion, press fitting, or the like, and in the present embodiment, both are press-fitted. It is fitted and fixed without any gaps.

図2に示すように、外方部材20の内周面20a(すなわち、第1外方部材21の円筒部21aの内周面21a1)は平滑な円筒面で形成され、ラジアル軸受面として機能する。外方部材20の軸方向側の内側面20b(すなわち、第1外方部材21の平板部21bの内側面21b1、及び、第2外方部材22の平板部22bの内側面22b1)は、平滑な平坦面で形成され、それぞれスラスト軸受面として機能する。外方部材20の内周面20a(ラジアル軸受面)と内方部材10の軸受部10aの外周面11(ラジアル軸受面)との間にはラジアル軸受隙間Rが形成され、外方部材20の軸方向両側の内側面20b(スラスト軸受面)と内方部材10の軸受部10aの軸方向両端面12(スラスト軸受面)との間には、それぞれスラスト軸受隙間Tが形成される。   As shown in FIG. 2, the inner peripheral surface 20a of the outer member 20 (that is, the inner peripheral surface 21a1 of the cylindrical portion 21a of the first outer member 21) is formed as a smooth cylindrical surface and functions as a radial bearing surface. . The inner side surface 20b on the axial direction side of the outer member 20 (that is, the inner side surface 21b1 of the flat plate portion 21b of the first outer member 21 and the inner side surface 22b1 of the flat plate portion 22b of the second outer member 22) is smooth. Each of them functions as a thrust bearing surface. A radial bearing gap R is formed between the inner peripheral surface 20 a (radial bearing surface) of the outer member 20 and the outer peripheral surface 11 (radial bearing surface) of the bearing portion 10 a of the inner member 10. Thrust bearing gaps T are formed between the inner side surfaces 20b (thrust bearing surfaces) on both axial sides and the axial end surfaces 12 (thrust bearing surfaces) of the bearing portion 10a of the inner member 10, respectively.

第1外方部材21の平板部21bの内径端、及び、第2外方部材22の平板部22bの内径端は、内方部材10の固定部10bの外周面14と適宜の半径方向隙間をもって対向している。図示例では、平板部21b,22bの内径端に、軸方向外側に向けて拡径したテーパ面21b2,22b2が形成され、このテーパ面21b2,22b2と固定部10bの外周面14との間に断面楔状のシール空間Sが形成される。このシール空間Sにより、潤滑油の漏れ出しが防止される。さらに、内方部材10の固定部10bの端面15や、外方部材20の外側端面(平板部21b,22bの外側端面)に撥油剤を塗布すれば、シール空間Sからの油漏れをより確実に防止できる。   The inner diameter end of the flat plate portion 21 b of the first outer member 21 and the inner diameter end of the flat plate portion 22 b of the second outer member 22 have an appropriate radial clearance from the outer peripheral surface 14 of the fixed portion 10 b of the inner member 10. Opposite. In the illustrated example, tapered surfaces 21b2 and 22b2 having diameters increased outward in the axial direction are formed at the inner diameter ends of the flat plate portions 21b and 22b, and between the tapered surfaces 21b2 and 22b2 and the outer peripheral surface 14 of the fixing portion 10b. A wedge-shaped seal space S is formed. The seal space S prevents leakage of the lubricating oil. Furthermore, if an oil repellent is applied to the end surface 15 of the fixed portion 10b of the inner member 10 and the outer end surface of the outer member 20 (the outer end surfaces of the flat plate portions 21b and 22b), oil leakage from the seal space S can be ensured. Can be prevented.

以上の構成からなる流体動圧軸受装置4の内部空間には焼結金属製の内方部材10の内部気孔を含めて、潤滑油が充填される。潤滑油は、図2に示すように、内方部材10と外方部材20との間の隙間に満たされ、スラスト軸受隙間T及びシール空間Sの毛細管力により外径側(ラジアル軸受隙間R側)に引き込まれる。潤滑油の油面は、スラスト軸受隙間Tあるいはシール空間Sに保持される。   The internal space of the fluid dynamic bearing device 4 having the above configuration is filled with lubricating oil including the internal pores of the sintered metal inner member 10. As shown in FIG. 2, the lubricating oil is filled in the gap between the inner member 10 and the outer member 20, and the outer diameter side (radial bearing gap R side) is generated by the capillary force of the thrust bearing gap T and the seal space S. ). The oil surface of the lubricating oil is held in the thrust bearing gap T or the seal space S.

回転軸2が回転すると、各流体動圧軸受装置4のラジアル軸受隙間Rの油膜の圧力が動圧溝11aにより高められ、この油膜の動圧作用により回転軸2および内方部材10が外方部材20に対してラジアル方向に非接触支持される。これと同時に、各流体動圧軸受装置4のスラスト軸受隙間Tの油膜の圧力が動圧溝12aにより高められ、回転軸2および内方部材10が外方部材20に対して、両スラスト方向に非接触支持される(図2参照)。   When the rotating shaft 2 rotates, the pressure of the oil film in the radial bearing gap R of each fluid dynamic bearing device 4 is increased by the dynamic pressure groove 11a, and the rotating shaft 2 and the inner member 10 are moved outward by the dynamic pressure action of the oil film. The member 20 is supported in a non-contact manner in the radial direction. At the same time, the pressure of the oil film in the thrust bearing gap T of each fluid dynamic pressure bearing device 4 is increased by the dynamic pressure groove 12a, so that the rotary shaft 2 and the inner member 10 are in both thrust directions with respect to the outer member 20. Non-contact support (see FIG. 2).

スラスト軸受隙間Tの潤滑油に動圧作用が生じると、図中左側の流体動圧軸受装置4の外方部材20が図中左側にスライドしてスプリング7を圧縮することにより、両流体動圧軸受装置4,4のスラスト軸受隙間Tが確保される。このように、外方部材20をハウジング5に対して軸方向移動可能な状態で嵌合することで、スラスト軸受隙間Tを高精度に設定することができる。これにより、外方部材20に対して内方部材10が確実に非接触支持され、接触摺動による騒音の発生をより確実に防止できる。   When a dynamic pressure action is generated in the lubricating oil in the thrust bearing gap T, the outer member 20 of the fluid dynamic pressure bearing device 4 on the left side in the figure slides to the left side in the figure to compress the spring 7, thereby both fluid dynamic pressures. The thrust bearing gap T of the bearing devices 4 and 4 is ensured. Thus, the thrust bearing gap T can be set with high accuracy by fitting the outer member 20 to the housing 5 so as to be movable in the axial direction. Thereby, the inner member 10 is reliably non-contact supported with respect to the outer member 20, and generation | occurrence | production of the noise by contact sliding can be prevented more reliably.

次に、内方部材10の製造方法を説明する。   Next, a method for manufacturing the inner member 10 will be described.

内方部材10は、銅及び鉄を含む混合金属粉末Mを圧縮成形して圧粉体M’を形成する圧縮成形工程(図4参照)と、圧粉体M’を所定の焼結温度で焼成して焼結体M”を形成する焼結工程と、焼結体M”を所定寸法に整形するサイジング工程(図5参照)と、焼結体M”にラジアル動圧発生部(動圧溝11a)を転造加工により形成する転造工程(図6参照)とを順に経て製造される。本実施形態では、サイジング工程において、焼結体M”の整形と同時に、焼結体M”の端面にスラスト動圧発生部(動圧溝12a)が成形される。   The inner member 10 includes a compression molding step (see FIG. 4) for forming a green compact M ′ by compression molding a mixed metal powder M containing copper and iron, and the green compact M ′ at a predetermined sintering temperature. A sintering process for forming the sintered body M ″ by firing, a sizing process for shaping the sintered body M ″ into a predetermined dimension (see FIG. 5), and a radial dynamic pressure generating portion (dynamic pressure) on the sintered body M ″. The groove 11a) is manufactured through a rolling process (see FIG. 6) for forming by rolling. In this embodiment, in the sizing process, the sintered body M "is shaped simultaneously with the shaping of the sintered body M". A thrust dynamic pressure generating portion (dynamic pressure groove 12a) is formed on the end face of the.

圧縮成形工程では、ダイ41、コアピン42、及び下パンチ43で形成されるキャビティに混合金属粉末Mを充填し(図4(a)参照)、この混合金属粉末Mを上パンチ44で上方から圧縮することで、内方部材10とほぼ同じ形状の圧粉体M’が形成される(図4(b)参照)。このとき、後述する焼結体M”の気孔率が20%以上となるように、圧粉体M’の気孔率を調整する。具体的には、混合金属粉末Mの充填量を調整することにより、圧粉体M’の気孔率を調整する。こうして形成した圧粉体M’を、焼結工程において焼成し、焼結体M”を得る。   In the compression molding process, the mixed metal powder M is filled in the cavity formed by the die 41, the core pin 42, and the lower punch 43 (see FIG. 4A), and the mixed metal powder M is compressed from above by the upper punch 44. Thus, a green compact M ′ having substantially the same shape as the inner member 10 is formed (see FIG. 4B). At this time, the porosity of the green compact M ′ is adjusted so that the porosity of the sintered body M ″ described later is 20% or more. Specifically, the filling amount of the mixed metal powder M is adjusted. Thus, the porosity of the green compact M ′ is adjusted. The green compact M ′ thus formed is fired in the sintering step to obtain a sintered body M ″.

サイジング工程では、焼結体M”をサイジング金型で所定寸法に整形する。具体的には、焼結体M”の内周にコアピン51を挿入すると共に、上下パンチ52,53で焼結体M”の上下両側から拘束する(図5(a)参照)。この状態で、焼結体M”、コアピン51、上下パンチ52,53を一体に降下させ、焼結体M”をダイ54の内周に圧入する(図5(b)参照)。これにより、ダイ54の内周面、コアピン51の外周面、及び上下パンチ52,53の端面で、焼結体M”の外周面11(ラジアル軸受面)、内周面13、及び軸方向両端面12(スラスト軸受面)が成形される。このとき、上下パンチ52,53の端面に、動圧溝12aに対応した成形部(図示省略)を設け、この成形部を焼結体M”の軸方向両端面12に押し付けることにより、動圧溝12aが成形される。尚、上述のように、内方部材10の軸方向両端面12の表面開孔率は20%以下とすることが好ましいため、サイジング工程後の焼結体M”の軸方向両端面12の表面開孔率が20%を超えている場合は、バニシ仕上げ等による封孔処理を施すことが好ましい。   In the sizing process, the sintered body M ″ is shaped to a predetermined size by a sizing die. Specifically, the core pin 51 is inserted into the inner periphery of the sintered body M ″ and the sintered body is moved by the upper and lower punches 52 and 53. M ″ is restrained from both upper and lower sides (see FIG. 5A). In this state, the sintered body M ″, the core pin 51, and the upper and lower punches 52 and 53 are lowered together, and the sintered body M ″ is moved to the die 54. (Refer to FIG. 5B.) As a result, the outer peripheral surface 11 of the sintered body M ″ (the outer peripheral surface of the die 54, the outer peripheral surface of the core pin 51, and the end surfaces of the upper and lower punches 52, 53). Radial bearing surface), inner peripheral surface 13, and axial end surfaces 12 (thrust bearing surfaces). At this time, forming portions (not shown) corresponding to the dynamic pressure grooves 12a are provided on the end surfaces of the upper and lower punches 52 and 53, and the forming portions are pressed against the both end surfaces 12 in the axial direction of the sintered body M ″. The groove 12a is formed.As described above, since the surface area ratio of the axial end faces 12 of the inner member 10 is preferably 20% or less, the sintered body M ″ after the sizing step When the surface area ratio of the axial end faces 12 exceeds 20%, it is preferable to perform a sealing process such as burnishing.

転造工程では、焼結体M”の外周面11に転造加工により動圧溝11aが形成される。具体的には、図6(a)及び(b)に示すように、焼結体M”を軸方向両側から拘束しない状態で、焼結体M”の外周面11を成形型61に押し付けながら前方(図中右側)に転がすことで、成形型61の形状を焼結体M”の外周面11に転写して動圧溝11aが形成される。このとき、転造加工の圧迫による焼結体M”の塑性流動を焼結金属の内部気孔で吸収できる。これにより、塑性流動による焼結体M”の外周面11の盛り上がりが抑えられ、動圧溝11aを精度良く形成することができる。また、上記のように焼結体M”の軸方向両端面12を拘束せずに外周面11に転造加工を施した場合、塑性流動により外周面11だけでなく軸方向両端面12も盛り上がることが懸念されるが、焼結体M”の気孔率が20%以上であることで、塑性流動による軸方向両端面12の盛り上がりを抑えることができる。尚、上述のように、内方部材10の外周面11の表面開孔率は20%以下とすることが好ましい。通常、転造加工により焼結体M”の外周面11の表面開孔が潰されることで表面開孔率は20%以下となるが、転造工程後の焼結体M”の外周面11の表面開孔率が20%を超えている場合は、封孔処理を施してもよい。以上により、内方部材10が完成する。   In the rolling process, the dynamic pressure grooves 11a are formed by rolling on the outer peripheral surface 11 of the sintered body M ″. Specifically, as shown in FIGS. 6 (a) and 6 (b), the sintered body is formed. By rolling the outer peripheral surface 11 of the sintered body M ″ forward (on the right side in the figure) while pressing the outer peripheral surface 11 of the sintered body M ″ in a state where M ″ is not restrained from both sides in the axial direction, the shape of the molding body 61 is changed to the shape of the sintered body M ″. The dynamic pressure groove 11a is formed by transferring to the outer peripheral surface 11. At this time, the plastic flow of the sintered body M ″ due to the compression of the rolling process can be absorbed by the internal pores of the sintered metal. As a result, the swell of the outer peripheral surface 11 of the sintered body M ″ due to the plastic flow is suppressed, and the dynamic flow is suppressed. The pressure groove 11a can be formed with high accuracy. Further, when the outer peripheral surface 11 is rolled without restraining the axial end surfaces 12 of the sintered body M ″ as described above, not only the outer peripheral surface 11 but also the axial end surfaces 12 are raised by plastic flow. However, when the porosity of the sintered body M ″ is 20% or more, the swell of the axial end faces 12 due to plastic flow can be suppressed. As described above, the surface area ratio of the outer peripheral surface 11 of the inner member 10 is preferably 20% or less. Usually, the surface opening ratio of the outer peripheral surface 11 of the sintered body M ″ is reduced to 20% or less by crushing the outer peripheral surface 11 of the sintered body M ″ by rolling, but the outer peripheral surface 11 of the sintered body M ″ after the rolling process. In the case where the surface opening ratio of the surface exceeds 20%, sealing treatment may be performed. Thus, the inner member 10 is completed.

次に、上記の流体動圧軸受装置4の組立方法について説明する。   Next, a method for assembling the fluid dynamic bearing device 4 will be described.

まず、図7(a)に示すように、内方部材10の軸受部10aの下側端面12を第2外方部材22の平板部22bの内側面22b1に当接させる。次に、図7(b)に示すように、第1外方部材21を第2外方部材22に組み付ける。具体的には、第1外方部材21の円筒部21aの外周面21a2を、第2外方部材22の円筒部22aの内周面22a1に圧入することなく半径方向隙間を介して嵌合させ、平板部21bの下側端面21b1を内方部材10の軸受部10aの上側端面12に当接させる。   First, as shown in FIG. 7A, the lower end surface 12 of the bearing portion 10 a of the inner member 10 is brought into contact with the inner side surface 22 b 1 of the flat plate portion 22 b of the second outer member 22. Next, as shown in FIG. 7B, the first outer member 21 is assembled to the second outer member 22. Specifically, the outer peripheral surface 21a2 of the cylindrical portion 21a of the first outer member 21 is fitted through the radial gap without being press-fitted into the inner peripheral surface 22a1 of the cylindrical portion 22a of the second outer member 22. The lower end surface 21 b 1 of the flat plate portion 21 b is brought into contact with the upper end surface 12 of the bearing portion 10 a of the inner member 10.

その後、図7(c)に示すように、内方部材10及び第1外方部材21を第2外方部材22に対して上昇させて、内方部材10の軸受部10aの下側端面12と第2外方部材22の平板部22bの内側面22b1とを離隔させ、これらの間に両スラスト軸受隙間Tの合計量の分の軸方向隙間Δを形成する。この状態で、第1外方部材21の円筒部21aと第2外方部材22の円筒部22aとの間の半径方向隙間に瞬間接着剤を注入し、これを硬化させることで、第1外方部材21と第2外方部材22とが仮固定され、スラスト軸受隙間Tの設定が完了する。   Thereafter, as shown in FIG. 7C, the inner member 10 and the first outer member 21 are raised with respect to the second outer member 22, and the lower end surface 12 of the bearing portion 10 a of the inner member 10. And the inner surface 22b1 of the flat plate portion 22b of the second outer member 22 are separated from each other, and an axial gap Δ corresponding to the total amount of both thrust bearing gaps T is formed therebetween. In this state, an instantaneous adhesive is injected into the radial gap between the cylindrical portion 21a of the first outer member 21 and the cylindrical portion 22a of the second outer member 22, and this is cured so that the first outer member The direction member 21 and the second outer member 22 are temporarily fixed, and the setting of the thrust bearing gap T is completed.

そして、第1外方部材21の円筒部21aの外周面21a2と第2外方部材22の円筒部22aの内周面22a1との間の半径方向隙間に熱硬化性接着剤(例えばエポキシ系接着剤)を注入することにより、半径方向隙間を完全に封止する。このとき、第2外方部材22の円筒部22aの端部にテーパ面22a3を設けることで、熱硬化性接着剤の注入が容易化される。その後、内方部材10及び外方部材20からなるサブアッシごと焼成して熱硬化性接着剤を固化する。   Then, a thermosetting adhesive (for example, epoxy-based adhesive) is formed in a radial gap between the outer peripheral surface 21a2 of the cylindrical portion 21a of the first outer member 21 and the inner peripheral surface 22a1 of the cylindrical portion 22a of the second outer member 22. By injecting the agent, the radial gap is completely sealed. At this time, by providing the tapered surface 22a3 at the end of the cylindrical portion 22a of the second outer member 22, injection of the thermosetting adhesive is facilitated. Thereafter, the subassembly made of the inner member 10 and the outer member 20 is fired to solidify the thermosetting adhesive.

以上のように組み立てられた内方部材10と外方部材20との間に、焼結金属製の内方部材10の内部気孔を含めて、潤滑油が注入される。その後、流体動圧軸受装置4の使用環境で想定される最高温度(上限)を超える設定温度まで加熱し、このときの熱膨張によりシール空間Sから溢れ出した潤滑油を拭き取る。その後、常温まで冷却することにより潤滑油が収縮し、油面が軸受内部側(外径側)に後退してスラスト軸受隙間Tの内径側端部近傍、あるいは、シール空間Sに保持される。これにより、想定される温度範囲内であれば、熱膨張により潤滑油が漏れ出すことはない。以上により、流体動圧軸受装置4が完成する。   Lubricating oil is injected between the inner member 10 and the outer member 20 assembled as described above, including the internal pores of the inner member 10 made of sintered metal. After that, the fluid dynamic pressure bearing device 4 is heated to a set temperature exceeding the maximum temperature (upper limit) assumed in the usage environment, and the lubricating oil overflowing from the seal space S due to thermal expansion at this time is wiped off. Thereafter, the lubricating oil contracts by cooling to room temperature, and the oil surface is retracted to the bearing inner side (outer diameter side) and held in the vicinity of the inner diameter side end of the thrust bearing gap T or in the seal space S. Thereby, if it is in the assumed temperature range, lubricating oil will not leak by thermal expansion. Thus, the fluid dynamic bearing device 4 is completed.

本発明は上記の実施形態に限られない。以下、本発明の他の実施形態を説明するが、上記の実施形態と同様の機能を有する箇所には、同一の符号を付して重複説明を省略する。   The present invention is not limited to the above embodiment. Hereinafter, although other embodiment of this invention is described, the same code | symbol is attached | subjected to the location which has the function similar to said embodiment, and duplication description is abbreviate | omitted.

上記の実施形態では、内方部材10の気孔率を20%以上とすることで、内方部材10の外周面11への転造加工による軸方向両端面12の盛り上がりを防止しているが、これに限られない。例えば、図8に示す実施形態では、サイジング工程後の焼結体M”の軸方向両端面12の外周領域12bを、内周領域12cよりも軸方向内側に後退させている(図8の点線参照)。このとき、外周領域12bの内周領域12cに対する軸方向の後退量β(最も後退させた部分の後退量)は5〜10μm程度に設定される。また、軸方向両端面12の外周領域12bの全周を連続的に後退させ、後退させた外周領域12bの面積は端面12全体の1/3〜1/2程度とされる。この焼結体M”の外周面11に転造加工を施して動圧溝11aを形成すると、塑性流動により軸方向両端面12の外周領域12bが軸方向外側に移動する。これにより、内方部材10の軸方向両端面12の外周領域12bが内周領域12cとほぼ同じ軸方向位置に配される(図8の実線参照)。例えば、外周領域12bを内周領域12cに対して±5μm以下、好ましくは±3μm以下とすれば、端面12全体(外周領域12b及び内周領域12c)をスラスト軸受面として機能させることができる。   In the above embodiment, the porosity of the inner member 10 is set to 20% or more to prevent the axial end faces 12 from rising due to the rolling process to the outer peripheral surface 11 of the inner member 10, It is not limited to this. For example, in the embodiment shown in FIG. 8, the outer peripheral area 12b of the axially opposite end faces 12 of the sintered body M ″ after the sizing process is retracted axially inward from the inner peripheral area 12c (dotted line in FIG. 8). At this time, the axial retreat amount β of the outer peripheral region 12b with respect to the inner peripheral region 12c (the retreat amount of the most retracted portion) is set to about 5 to 10 μm. The entire circumference of the region 12b is continuously retracted, and the area of the outer peripheral region 12b that has been retracted is about 1/3 to 1/2 of the entire end surface 12. Rolled to the outer peripheral surface 11 of the sintered body M ″. When the dynamic pressure groove 11a is formed by processing, the outer peripheral area 12b of the axial end faces 12 moves outward in the axial direction by plastic flow. Thereby, the outer peripheral area | region 12b of the axial direction both end surface 12 of the inner member 10 is distribute | arranged to the substantially the same axial direction position as the inner peripheral area | region 12c (refer the continuous line of FIG. 8). For example, when the outer peripheral region 12b is set to ± 5 μm or less, preferably ± 3 μm or less with respect to the inner peripheral region 12c, the entire end surface 12 (the outer peripheral region 12b and the inner peripheral region 12c) can function as a thrust bearing surface.

以上の実施形態は、転造加工による内方部材10の軸方向両端面12の盛り上がりを可及的に抑えるようにしたものである。これに対し、図9及び図10に示す実施形態は、内方部材10の軸方向両端面12が盛り上がった場合でも、スラスト方向の支持力低下を抑えるものである。図9に示す実施形態では、内方部材10の軸方向両端面12と軸方向で対向する外方部材20の内側面20b(図9では、第1外方部材21の内側面20bのみを示す)の内周領域に平坦部20b1を設けると共に、外周領域に平坦部20b1よりも軸方向外側に後退した逃げ部20b2を設ける。図示例では、逃げ部20b2は軸方向と直交する平坦面であり、内側面20bの外周領域の全周に形成される。内方部材10の軸方向両端面12(図9では、軸方向一方の端面12のみを示す)の外周領域には盛り上がり部12dが形成され、内周領域12cには平坦面が形成される。端面12には、内周領域12c及び盛り上がり部12dに跨って動圧溝12aが形成される。尚、盛り上がり部12dの大きさは誇張して示している。   In the above embodiment, the bulging of the axial end faces 12 of the inner member 10 due to the rolling process is suppressed as much as possible. On the other hand, the embodiment shown in FIGS. 9 and 10 suppresses a decrease in the supporting force in the thrust direction even when the axial end surfaces 12 of the inner member 10 are raised. In the embodiment shown in FIG. 9, only the inner side surface 20 b of the outer member 20 that faces the both axial end surfaces 12 of the inner member 10 in the axial direction (in FIG. 9, only the inner side surface 20 b of the first outer member 21 is shown. ) Is provided in the inner peripheral region, and a relief portion 20b2 is provided in the outer peripheral region, which is recessed outward in the axial direction from the flat portion 20b1. In the illustrated example, the relief portion 20b2 is a flat surface perpendicular to the axial direction, and is formed on the entire circumference of the outer peripheral region of the inner side surface 20b. A raised portion 12d is formed in the outer peripheral region of both axial end surfaces 12 of the inner member 10 (only one end surface 12 in the axial direction is shown in FIG. 9), and a flat surface is formed in the inner peripheral region 12c. In the end surface 12, a dynamic pressure groove 12a is formed across the inner peripheral region 12c and the raised portion 12d. Note that the size of the raised portion 12d is exaggerated.

内方部材10の端面12の内周領域12cと外方部材20の内側面20bの平坦部20b1との間にスラスト軸受隙間Tが形成される。内方部材10の端面12の盛り上がり部12dと外方部材20の内側面20bの逃げ部20b2とが軸方向で対向する。外方部材20の逃げ部20b2の平坦部20b1に対する後退量δ1は、内方部材10の盛り上がり部12dの内周領域12cに対する盛り上がり量δ2よりも大きく設定される。これにより、図7に示す方法でスラスト軸受隙間Tを設定する場合に、内方部材10の端面12の盛り上がり部12dと外方部材20の内側面20bとが当接せず、内周領域12cと平坦部20b1とを当接させることができるため、スラスト軸受隙間Tを精度良く設定することができる。   A thrust bearing gap T is formed between the inner peripheral region 12 c of the end surface 12 of the inner member 10 and the flat portion 20 b 1 of the inner surface 20 b of the outer member 20. The raised portion 12d of the end surface 12 of the inner member 10 and the relief portion 20b2 of the inner side surface 20b of the outer member 20 face each other in the axial direction. The retreating amount δ1 of the escape portion 20b2 of the outer member 20 with respect to the flat portion 20b1 is set to be larger than the swell amount δ2 of the rising portion 12d of the inner member 10 with respect to the inner peripheral region 12c. Accordingly, when the thrust bearing gap T is set by the method shown in FIG. 7, the raised portion 12d of the end surface 12 of the inner member 10 and the inner side surface 20b of the outer member 20 do not contact each other, and the inner peripheral region 12c. And the flat portion 20b1 can be brought into contact with each other, so that the thrust bearing gap T can be set with high accuracy.

図10に示す実施形態は、外方部材20の内側面20bに形成される逃げ部20b2が外径側に向けて軸方向外側に傾斜させたテーパ面である点で、図9に示す実施形態と異なる。この場合も、スラスト軸受隙間Tの設定にあたり内周領域12cと平坦部20b1とを当接させたときに、内方部材10の盛り上がり部12dと外方部材20の逃げ部20b2とが当接しないように、逃げ部20b2の平坦部20b1からの後退量が設定される。   The embodiment shown in FIG. 10 is an embodiment shown in FIG. 9 in that the relief portion 20b2 formed on the inner side surface 20b of the outer member 20 is a tapered surface inclined outward in the axial direction toward the outer diameter side. And different. Also in this case, when the inner peripheral region 12c and the flat portion 20b1 are brought into contact with each other in setting the thrust bearing gap T, the raised portion 12d of the inner member 10 and the escape portion 20b2 of the outer member 20 are not in contact. As described above, the retraction amount of the escape portion 20b2 from the flat portion 20b1 is set.

また、上記の実施形態では、内方部材10の軸受部10aと固定部10bとが一体に形成されているが、これに限らず、軸受部10aと固定部10bとを別体に形成してもよい。軸受部10aの内周面と固定部10bの外周面とは、圧入、隙間接着、圧入接着(接着剤介在下での圧入)等の適宜の方法で固定される。このとき、軸受部10aと固定部10bとを別材料で形成してもよい。例えば、軸受部10aは外方部材20と摺動し得るため、耐摩耗性を重視して銅鉄系の焼結金属で形成する一方で、固定部10bは外方部材20と摺動しないため、強度を重視して鉄系の焼結金属や溶製材で形成することができる。尚、軸受部10aと固定部10bとは必ずしも別材料で形成する必要はなく、同一の材料で別体に形成してもよい。   In the above embodiment, the bearing portion 10a and the fixed portion 10b of the inner member 10 are integrally formed. However, the present invention is not limited to this, and the bearing portion 10a and the fixed portion 10b are formed separately. Also good. The inner peripheral surface of the bearing portion 10a and the outer peripheral surface of the fixed portion 10b are fixed by an appropriate method such as press-fitting, gap adhesion, press-fitting adhesion (press-fitting with an adhesive interposed). At this time, the bearing portion 10a and the fixed portion 10b may be formed of different materials. For example, since the bearing portion 10a can slide with the outer member 20, it is formed of copper iron-based sintered metal with an emphasis on wear resistance, while the fixed portion 10b does not slide with the outer member 20. The steel can be formed of iron-based sintered metal or melted material with emphasis on strength. Note that the bearing portion 10a and the fixed portion 10b do not necessarily have to be formed of different materials, and may be formed of the same material separately.

また、図3に示すように動圧溝11a,12aが一方向回転用である場合、回転方向を識別するために、第1外方部材21と第2外方部材22とを異なる色相の表面にすることで、誤組みを防止することができる。異なる色相の表面を形成するためには、例えば異なる色相の材質を用いたり、表面処理を施したりすればよい。   In addition, when the dynamic pressure grooves 11a and 12a are for one-way rotation as shown in FIG. 3, the first outer member 21 and the second outer member 22 have different hue surfaces in order to identify the rotation direction. By doing so, it is possible to prevent erroneous assembly. In order to form surfaces having different hues, for example, materials having different hues may be used or surface treatment may be performed.

また、上記の実施形態では、内方部材10の軸方向両端面12に動圧溝12aを形成した場合を示したが、これに限らず、外方部材20の内側面20bに動圧溝を形成してもよい。この場合、第1外方部材21及び第2外方部材22のプレス加工と同時に動圧溝を形成することができる。   In the above-described embodiment, the case where the dynamic pressure grooves 12a are formed on the both axial end surfaces 12 of the inner member 10 is shown. However, the present invention is not limited thereto, and the dynamic pressure grooves are formed on the inner side surface 20b of the outer member 20. It may be formed. In this case, the dynamic pressure grooves can be formed simultaneously with the pressing of the first outer member 21 and the second outer member 22.

また、上記の実施形態では、動圧溝11a、12aが何れもヘリングボーン形状である場合を示したが、これに限らず、スパイラル形状やステップ形状など、他の形状であってもよい。特に、スラスト軸受面に形成される動圧溝12aは、潤滑油を外径側に押し込むポンプアウト型であることが好ましい(図示省略)。これにより、ラジアル軸受隙間Rに積極的に潤滑油が供給されるため、負圧の発生を防止できる。   In the above-described embodiment, the case where both the dynamic pressure grooves 11a and 12a have a herringbone shape is shown. However, the present invention is not limited to this, and other shapes such as a spiral shape and a step shape may be used. In particular, the dynamic pressure groove 12a formed on the thrust bearing surface is preferably a pump-out type that pushes lubricating oil to the outer diameter side (not shown). Thereby, since lubricating oil is positively supplied to the radial bearing gap R, generation of negative pressure can be prevented.

また、上記の実施形態では、内方部材10が回転側であり、外方部材20が固定側である場合を示したが、これとは逆に、内方部材10を固定側、外方部材20を回転側としてもよい。   In the above embodiment, the case where the inner member 10 is the rotation side and the outer member 20 is the fixed side is shown. On the contrary, the inner member 10 is the fixed side, the outer member. 20 may be the rotation side.

また、以上に示した実施形態の構成は適宜組み合せることができ、例えば、内方部材10の気孔率を20%以下とする構成、焼結体M”の軸方向両端面12の外周領域12bを内周領域12cよりも軸方向内側に後退させておく構成(図8参照)、及び、外方部材20の内側面20bの外周領域に逃げ部20b2を設ける構成(図9参照)のうち、何れか二つあるいは全てを備えてもよい。   Further, the configuration of the embodiment described above can be appropriately combined. For example, the configuration in which the porosity of the inner member 10 is set to 20% or less, the outer peripheral region 12b of the both end surfaces 12 in the axial direction of the sintered body M ″. Are configured to be retracted inward in the axial direction from the inner peripheral region 12c (see FIG. 8), and a configuration in which the escape portion 20b2 is provided in the outer peripheral region of the inner side surface 20b of the outer member 20 (see FIG. 9). Any two or all of them may be provided.

1 軸受ユニット
2 回転軸
3 モータロータ
4 流体動圧軸受装置
5 ハウジング
6 ファン
7 スプリング
10 内方部材
11 外周面
11a 動圧溝
12 端面
12a 動圧溝
12b 外周領域
12c 内周領域
12d 盛り上がり部
20 外方部材
20a 内周面
20b 内側面
20b1 平坦部
20b2 逃げ部
R ラジアル軸受隙間
T スラスト軸受隙間
S シール空間
M 混合金属粉末
M’ 圧粉体
M” 焼結体
1 Bearing unit 2 Rotating shaft 3 Motor rotor 4 Fluid dynamic pressure bearing device 5 Housing 6 Fan 7 Spring 10 Inner member 11 Outer peripheral surface 11a Dynamic pressure groove 12 End surface 12a Dynamic pressure groove 12b Outer peripheral region 12c Inner peripheral region 12d Swelling portion 20 Member 20a Inner peripheral surface 20b Inner side surface 20b1 Flat portion 20b2 Escape portion R Radial bearing gap T Thrust bearing gap S Seal space M Mixed metal powder M 'Green compact M "Sintered body

Claims (7)

外方部材と、前記外方部材の内周に配された焼結金属からなる内方部材と、前記内方部材の外周面と前記外方部材の内周面との間に形成されるラジアル軸受隙間と、前記内方部材の軸方向一方の端面とこれに軸方向で対向する前記外方部材の内側面との間、及び、前記内方部材の軸方向他方の端面とこれに軸方向で対向する前記外方部材の内側面との間にそれぞれ形成されるスラスト軸受隙間と、前記ラジアル軸受隙間及び前記スラスト軸受隙間に満たされた潤滑油と、前記内方部材の外周面に転造加工で形成されたラジアル動圧発生部とを備えた流体動圧軸受装置であって、
前記内方部材の気孔率を20%以上とした流体動圧軸受装置。
A radial formed between an outer member, an inner member made of sintered metal disposed on the inner periphery of the outer member, and an outer peripheral surface of the inner member and an inner peripheral surface of the outer member Between the bearing gap, one end surface in the axial direction of the inner member and the inner surface of the outer member facing in the axial direction, and the other end surface in the axial direction of the inner member and the axial direction thereof Rolled on the outer peripheral surface of the inner member, the thrust bearing gap formed between the inner side surfaces of the outer member facing each other, the lubricating oil filled in the radial bearing gap and the thrust bearing gap. A fluid dynamic pressure bearing device comprising a radial dynamic pressure generating portion formed by machining,
A fluid dynamic bearing device in which the porosity of the inner member is 20% or more.
外方部材と、前記外方部材の内周に配された焼結金属からなる内方部材と、前記内方部材の外周面と前記外方部材の内周面との間に形成されるラジアル軸受隙間と、前記内方部材の軸方向一方の端面とこれに軸方向で対向する前記外方部材の内側面との間、及び、前記内方部材の軸方向他方の端面とこれに軸方向で対向する前記外方部材の内側面との間にそれぞれ形成されるスラスト軸受隙間と、前記ラジアル軸受隙間及び前記スラスト軸受隙間に満たされた潤滑油と、前記内方部材の外周面に転造加工で形成されたラジアル動圧発生部とを備えた流体動圧軸受装置であって、
前記内方部材の軸方向両端面の外周領域を、予め内周領域よりも軸方向内側に後退させ、前記転造加工による塑性流動で前記外周領域を軸方向外側に移動させた流体動圧軸受装置。
A radial formed between an outer member, an inner member made of sintered metal disposed on the inner periphery of the outer member, and an outer peripheral surface of the inner member and an inner peripheral surface of the outer member Between the bearing gap, one end surface in the axial direction of the inner member and the inner surface of the outer member facing in the axial direction, and the other end surface in the axial direction of the inner member and the axial direction thereof Rolled on the outer peripheral surface of the inner member, the thrust bearing gap formed between the inner side surfaces of the outer member facing each other, the lubricating oil filled in the radial bearing gap and the thrust bearing gap. A fluid dynamic pressure bearing device comprising a radial dynamic pressure generating portion formed by machining,
Fluid dynamic pressure bearing in which outer peripheral regions of both end surfaces in the axial direction of the inner member are previously retracted axially inward from the inner peripheral region, and the outer peripheral region is moved outward in the axial direction by plastic flow by the rolling process. apparatus.
外方部材と、前記外方部材の内周に配された焼結金属からなる内方部材と、前記内方部材の外周面と前記外方部材の内周面との間に形成されるラジアル軸受隙間と、前記内方部材の軸方向一方の端面とこれに軸方向で対向する前記外方部材の内側面との間、及び、前記内方部材の軸方向他方の端面とこれに軸方向で対向する前記外方部材の内側面との間にそれぞれ形成されるスラスト軸受隙間と、前記ラジアル軸受隙間及び前記スラスト軸受隙間に満たされた潤滑油と、前記内方部材の外周面に転造加工で形成されたラジアル動圧発生部とを備えた流体動圧軸受装置であって、
前記外方部材の内側面が、平坦部と、前記平坦部の外径側に設けられ、前記平坦部よりも軸方向外側に後退した逃げ部とを有する流体動圧軸受装置。
A radial formed between an outer member, an inner member made of sintered metal disposed on the inner periphery of the outer member, and an outer peripheral surface of the inner member and an inner peripheral surface of the outer member Between the bearing gap, one end surface in the axial direction of the inner member and the inner surface of the outer member facing in the axial direction, and the other end surface in the axial direction of the inner member and the axial direction thereof Rolled on the outer peripheral surface of the inner member, the thrust bearing gap formed between the inner side surfaces of the outer member facing each other, the lubricating oil filled in the radial bearing gap and the thrust bearing gap. A fluid dynamic pressure bearing device comprising a radial dynamic pressure generating portion formed by machining,
A fluid dynamic bearing device, wherein an inner side surface of the outer member includes a flat portion and a relief portion provided on an outer diameter side of the flat portion and retracted axially outward from the flat portion.
前記内方部材のうち、少なくとも前記ラジアル軸受隙間及び前記スラスト軸受隙間を形成する領域の表面開孔率が20%以下である請求項1〜3の何れかに記載の流体動圧軸受装置。   The fluid dynamic pressure bearing device according to any one of claims 1 to 3, wherein a surface opening ratio of at least the radial bearing gap and the thrust bearing gap in the inner member is 20% or less. 前記外方部材が、前記内方部材の軸方向一方の端面と対向する内側面を有する第1外方部材と、前記内方部材の軸方向他方の端面と対向する内側面を有する第2外方部材とを有し、前記第1外方部材と前記第2外方部材とを軸方向で相対移動させることにより前記スラスト軸受隙間が設定された請求項1〜3の何れかに記載の流体動圧軸受装置。   The outer member has a first outer member having an inner surface facing one end surface in the axial direction of the inner member, and a second outer member having an inner surface facing the other end surface in the axial direction of the inner member. 4. The fluid according to claim 1, wherein the thrust bearing gap is set by relatively moving the first outer member and the second outer member in the axial direction. Hydrodynamic bearing device. 外周面に設けられたラジアル軸受面と、軸方向両端面に設けられたスラスト軸受面と、前記ラジアル軸受面に形成されたラジアル動圧発生部とを有し、焼結金属で形成された流体動圧軸受装置の内方部材の製造方法であって、
混合金属粉末を圧縮成形して圧粉体を形成する圧縮成形工程と、圧粉体を所定の焼結温度で焼成して焼結体を形成する焼結工程と、前記焼結体を所定寸法に整形することにより、前記焼結体に前記ラジアル軸受面及び前記スラスト軸受面を成形するサイジング工程と、サイジング工程の後、前記焼結体を軸方向両側から拘束しない状態で、前記焼結体の外周面に前記ラジアル動圧発生部を転造加工により形成する転造工程とを有し、
気孔率が20%以上となるように各工程の条件を設定する流体動圧軸受装置の内方部材の製造方法。
A fluid formed of sintered metal, having a radial bearing surface provided on the outer peripheral surface, a thrust bearing surface provided on both axial end surfaces, and a radial dynamic pressure generating portion formed on the radial bearing surface A method of manufacturing an inner member of a hydrodynamic bearing device,
A compression molding process in which a mixed metal powder is compression molded to form a green compact, a sintering process in which the green compact is fired at a predetermined sintering temperature to form a sintered body, and the sintered body has a predetermined size. By shaping the radial bearing surface and the thrust bearing surface into the sintered body, and after the sizing process, the sintered body is not restrained from both sides in the axial direction. A rolling step of forming the radial dynamic pressure generating portion on the outer peripheral surface of the material by rolling,
A method for manufacturing an inner member of a fluid dynamic bearing device, wherein the conditions of each step are set so that the porosity is 20% or more.
外周面に設けられたラジアル軸受面と、軸方向両端面に設けられたスラスト軸受面と、前記ラジアル軸受面に形成されたラジアル動圧発生部とを有し、焼結金属で形成された流体動圧軸受装置の内方部材の製造方法であって、
混合金属粉末を圧縮成形して圧粉体を形成する圧縮成形工程と、圧粉体を所定の焼結温度で焼成して焼結体を形成する焼結工程と、前記焼結体を所定寸法に整形することにより、前記焼結体に前記ラジアル軸受面及び前記スラスト軸受面を成形するサイジング工程と、サイジング工程の後、前記焼結体を軸方向両側から拘束しない状態で、前記焼結体の外周面に前記ラジアル動圧発生部を転造加工により形成する転造工程とを有し、
予め、前記焼結体の軸方向両端面の外周領域を内周領域よりも軸方向内側に後退させて形成し、前記転造加工による塑性流動で前記焼結体の軸方向両端面の外周領域を軸方向外側に移動させる流体動圧軸受装置の内方部材の製造方法。
A fluid formed of sintered metal, having a radial bearing surface provided on the outer peripheral surface, a thrust bearing surface provided on both axial end surfaces, and a radial dynamic pressure generating portion formed on the radial bearing surface A method of manufacturing an inner member of a hydrodynamic bearing device,
A compression molding process in which a mixed metal powder is compression molded to form a green compact, a sintering process in which the green compact is fired at a predetermined sintering temperature to form a sintered body, and the sintered body has a predetermined size. By shaping the radial bearing surface and the thrust bearing surface into the sintered body, and after the sizing process, the sintered body is not restrained from both sides in the axial direction. A rolling step of forming the radial dynamic pressure generating portion on the outer peripheral surface of the material by rolling,
An outer peripheral region of both end surfaces in the axial direction of the sintered body is formed in advance by forming an outer peripheral region of both end surfaces in the axial direction of the sintered body by retreating inward in the axial direction from the inner peripheral region. A method for manufacturing an inner member of a fluid dynamic pressure bearing device that moves the shaft outward in the axial direction.
JP2013189457A 2013-09-12 2013-09-12 Fluid dynamic bearing device and method for manufacturing inner member Expired - Fee Related JP6261922B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013189457A JP6261922B2 (en) 2013-09-12 2013-09-12 Fluid dynamic bearing device and method for manufacturing inner member

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013189457A JP6261922B2 (en) 2013-09-12 2013-09-12 Fluid dynamic bearing device and method for manufacturing inner member

Publications (2)

Publication Number Publication Date
JP2015055312A true JP2015055312A (en) 2015-03-23
JP6261922B2 JP6261922B2 (en) 2018-01-17

Family

ID=52819864

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013189457A Expired - Fee Related JP6261922B2 (en) 2013-09-12 2013-09-12 Fluid dynamic bearing device and method for manufacturing inner member

Country Status (1)

Country Link
JP (1) JP6261922B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018117183A1 (en) * 2016-12-22 2018-06-28 三菱マテリアル株式会社 Oil-impregnated sintered bearing and method for manufacturing same

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03161140A (en) * 1989-11-17 1991-07-11 Hitachi Ltd Combining method of metallic member and metallic combined parts
JPH1162969A (en) * 1997-08-25 1999-03-05 Hitachi Powdered Metals Co Ltd Sintered oil retaining bearing and manufacture thereof
JPH11336760A (en) * 1998-05-28 1999-12-07 Ntn Corp Dynamic pressure type sintered oil-impregnated bearing
JP2011033156A (en) * 2009-08-04 2011-02-17 Ntn Corp Sintered metal bearing and method of manufacturing the same
JP2012042035A (en) * 2010-08-23 2012-03-01 Ntn Corp Fluid dynamic bearing unit and assembly method for same
JP2012177467A (en) * 2011-02-01 2012-09-13 Ntn Corp Fluid dynamic bearing device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03161140A (en) * 1989-11-17 1991-07-11 Hitachi Ltd Combining method of metallic member and metallic combined parts
JPH1162969A (en) * 1997-08-25 1999-03-05 Hitachi Powdered Metals Co Ltd Sintered oil retaining bearing and manufacture thereof
JPH11336760A (en) * 1998-05-28 1999-12-07 Ntn Corp Dynamic pressure type sintered oil-impregnated bearing
JP2011033156A (en) * 2009-08-04 2011-02-17 Ntn Corp Sintered metal bearing and method of manufacturing the same
JP2012042035A (en) * 2010-08-23 2012-03-01 Ntn Corp Fluid dynamic bearing unit and assembly method for same
JP2012177467A (en) * 2011-02-01 2012-09-13 Ntn Corp Fluid dynamic bearing device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018117183A1 (en) * 2016-12-22 2018-06-28 三菱マテリアル株式会社 Oil-impregnated sintered bearing and method for manufacturing same
US11073178B2 (en) 2016-12-22 2021-07-27 Diamet Corporation Oil-impregnated sintered bearing and method for manufacturing the same

Also Published As

Publication number Publication date
JP6261922B2 (en) 2018-01-17

Similar Documents

Publication Publication Date Title
KR102206759B1 (en) Sintered metal bearing and fluid-dynamic bearing device provided with said bearing
WO2011122556A1 (en) Fluid dynamic bearing unit and assembly method for same
JP6199106B2 (en) Sintered bearing, method for manufacturing the same, and fluid dynamic bearing device provided with the sintered bearing
CN107781293B (en) Dynamic pressure bearing, method of manufacturing the same, fluid dynamic pressure bearing device, motor, and molding die
JP6261922B2 (en) Fluid dynamic bearing device and method for manufacturing inner member
JP6347929B2 (en) Sintered metal bearing
US20180003226A1 (en) Double-layer sliding bearing
KR20180116248A (en) Sintered Bearing and Manufacturing Method Thereof
JP6189065B2 (en) Fluid dynamic bearing device and assembly method thereof
JP7076266B2 (en) Manufacturing method of sintered oil-impregnated bearing
JP2017166575A (en) Dynamic pressure bearing and process of manufacture thereof
JP6449059B2 (en) Sintered oil-impregnated bearing and manufacturing method thereof
JP7094118B2 (en) Sintered metal dynamic pressure bearing
JP5832849B2 (en) Fluid dynamic bearing device and manufacturing method thereof
JP2008267394A (en) Method of manufacturing bearing unit
WO2018047765A1 (en) Slide bearing
WO2012043575A1 (en) Fluid dynamic bearing device and assembly method thereof
JP4188288B2 (en) Manufacturing method of dynamic pressure type porous oil-impregnated bearing
JP6981900B2 (en) Fluid dynamic bearing device and motor equipped with it
JP2012042035A (en) Fluid dynamic bearing unit and assembly method for same
JP2004340385A (en) Dynamic pressure type bearing unit
WO2018186221A1 (en) Porous dynamic pressure bearing, fluid dynamic pressure bearing device, and motor
JP2016180496A (en) Bearing member and manufacturing method thereof
JP2004316924A (en) Dynamic pressure-type oil-impregnated sintered bearing unit
TW202314135A (en) Dynamic bearing and fluid dynamic bearing device provide with same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160826

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170419

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170420

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170619

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20171011

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20171114

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20171129

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20171213

R150 Certificate of patent or registration of utility model

Ref document number: 6261922

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees