JP2012177467A - Fluid dynamic bearing device - Google Patents

Fluid dynamic bearing device Download PDF

Info

Publication number
JP2012177467A
JP2012177467A JP2011228720A JP2011228720A JP2012177467A JP 2012177467 A JP2012177467 A JP 2012177467A JP 2011228720 A JP2011228720 A JP 2011228720A JP 2011228720 A JP2011228720 A JP 2011228720A JP 2012177467 A JP2012177467 A JP 2012177467A
Authority
JP
Japan
Prior art keywords
bearing
dynamic pressure
radial
thrust
outer member
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011228720A
Other languages
Japanese (ja)
Other versions
JP5832849B2 (en
Inventor
Tetsuya Kurimura
栗村  哲弥
Isao Komori
功 古森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NTN Corp
Original Assignee
NTN Corp
NTN Toyo Bearing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NTN Corp, NTN Toyo Bearing Co Ltd filed Critical NTN Corp
Priority to JP2011228720A priority Critical patent/JP5832849B2/en
Publication of JP2012177467A publication Critical patent/JP2012177467A/en
Application granted granted Critical
Publication of JP5832849B2 publication Critical patent/JP5832849B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Sliding-Contact Bearings (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a fluid dynamic bearing device which is excellent in quietness, high in accuracy, does not cause the deterioration of bearing performance, and can be manufactured at a low cost.SOLUTION: The fluid dynamic bearing device 10 is composed of: an outer member 20 formed with respective radial dynamic grooves 12a and having a radial bearing face 29R formed with a trust bearing between and among thrust bearing faces 13T, 23T and 24T of the outer member 20 and an inner member 11 and the thrust bearing faces 23T, 24T formed at both ends of the radial bearing face; and the inner member 11. In the fluid dynamic bearing device, a lubrication fluid is interposed at the a dynamic bearing, a portion forming at least a radial bearing face 12R and the thrust bearing face 13T of the inner member 11 is formed of a sintered metal, and spaces 30a, 30b between the radial bearing face 12R and the thrust bearing face 13T are kept at positive pressure.

Description

この発明は、内方部材と外方部材との間の軸受隙間に生じる潤滑油の動圧作用で、回転体を回転自在に支持する流体動圧軸受装置に関する。   The present invention relates to a fluid dynamic bearing device that rotatably supports a rotating body by a dynamic pressure action of lubricating oil generated in a bearing gap between an inner member and an outer member.

パソコンやOA機器などに搭載されるファンモータには軸受が組み込まれており、この軸受によって、ファンが取り付けられた回転軸が回転自在に支持されている。この種の用途には、外輪と内輪との間に複数の転動体が介在され、この転動体を保持する保持器とからなる、いわゆる転がり軸受が一般的に使用されている(例えば、特許文献1)。   A bearing is incorporated in a fan motor mounted on a personal computer or OA device, and a rotating shaft to which the fan is attached is rotatably supported by the bearing. In this type of application, a so-called rolling bearing is generally used that includes a plurality of rolling elements between an outer ring and an inner ring and includes a cage that holds the rolling elements (for example, Patent Documents). 1).

一方、流体動圧軸受装置として、円筒状の軸受リングとこの両端に嵌合された軸受プレートから構成された外方部材とその内側に配置された内方軸受プレート部材とからなる構造の流体動圧軸受装置がある(特許文献2)。   On the other hand, as a fluid dynamic pressure bearing device, fluid dynamics having a structure comprising a cylindrical bearing ring, an outer member composed of a bearing plate fitted to both ends thereof, and an inner bearing plate member disposed inside the outer member. There is a pressure bearing device (Patent Document 2).

特開2000−249142号公報JP 2000-249142 A 特開2008−275159号公報JP 2008-275159 A

ところで、パソコンやOA機器などに搭載されるファンモータなどは、長時間にわたり連続運転されることから、近年、静粛化や高信頼性が求められる。しかしながら、転がり軸受では、運転時に保持器のポケットと転動体とが衝突することによって生じるいわゆる保持器音や、内外輪の軌道面上を転動体が転動することによって生じる摩擦音等の発生が避けられないことから、更なる静粛性向上の要請に対応するのが困難である。   Incidentally, fan motors and the like mounted on personal computers and OA devices are continuously operated for a long time, and in recent years, quietness and high reliability are required. However, rolling bearings avoid the generation of so-called cage noise caused by collision between the cage pocket and rolling elements during operation, and friction noise caused by rolling of the rolling elements on the raceway surface of the inner and outer rings. Since it is not possible, it is difficult to meet the demand for further improvement in quietness.

この問題に関して、本発明者らは、流体動圧軸受装置に着目した。その例として、特許文献2に示されている流体動圧軸受装置は、第1の軸受リング(12)と、第1の軸受リング(12)から内径側に突出した一対の第1の軸受プレート(16、20)とで外方部材(第1の軸受部材)を構成すると共に、回転軸に取り付けられる円筒状の第2の軸受リング(14)と、第2の軸受リング(14)の外周面に固定された第2の軸受プレート(18)とで内方部材(第2の軸受部材)を構成している。内方部材が回転すると、第1の軸受リング(12)の内周面と第2の軸受プレート(18)との間にラジアル軸受隙間が形成されると共に、一対の第1の軸受プレート(16、20)と第2の軸受プレート(18)との間にスラスト軸受隙間が形成される。一対の第1の軸受プレート(16、20)と第2の軸受プレート(18)とが軸方向に係合することにより、外方部材の内周から内方部材の抜けが規制され、流体動圧軸受装置を一体化できるため、ファンモータ等への組みつけがしやすくなる。   With regard to this problem, the present inventors paid attention to a fluid dynamic pressure bearing device. As an example, a fluid dynamic pressure bearing device disclosed in Patent Document 2 includes a first bearing ring (12) and a pair of first bearing plates that protrude from the first bearing ring (12) to the inner diameter side. (16, 20) constitute an outer member (first bearing member), and a cylindrical second bearing ring (14) attached to the rotary shaft and an outer periphery of the second bearing ring (14) An inner member (second bearing member) is constituted by the second bearing plate (18) fixed to the surface. When the inner member rotates, a radial bearing gap is formed between the inner peripheral surface of the first bearing ring (12) and the second bearing plate (18), and the pair of first bearing plates (16 20) and a second bearing plate (18), a thrust bearing gap is formed. When the pair of first bearing plates (16, 20) and the second bearing plate (18) are engaged in the axial direction, the withdrawal of the inner member from the inner periphery of the outer member is restricted, and the fluid movement Since the pressure bearing device can be integrated, it can be easily assembled to a fan motor or the like.

しかし、上記の流体動圧軸受装置では、外方部材を多くの部品で構成しているので、各部品の加工コストおよびこれらの部品の組立コストが嵩み、コスト低減を図ることが難しい。また、高精度な動圧溝の加工が難しい。   However, in the fluid dynamic bearing device described above, the outer member is composed of many parts, so that the processing cost of each part and the assembly cost of these parts increase, making it difficult to reduce the cost. In addition, it is difficult to process a dynamic pressure groove with high accuracy.

また、ラジアル軸受隙間とスラスト軸受隙間との間の空間に潤滑油の供給が不足しこの部分が負圧になった場合は、軸受部の性能劣化が生じ、内方部材と外方部材の接触などの問題が生じるおそれがある。   In addition, if the supply of lubricating oil is insufficient in the space between the radial bearing gap and the thrust bearing gap and this part becomes negative pressure, the performance of the bearing part deteriorates and the contact between the inner member and the outer member May cause problems.

本発明の課題は、静粛性に優れ、高精度で軸受性能の劣化がなく、かつ低コストに製造可能な流体動圧軸受装置を提供することにある。   An object of the present invention is to provide a fluid dynamic bearing device that is excellent in quietness, highly accurate, has no deterioration in bearing performance, and can be manufactured at low cost.

本発明者らは、上記の課題を解決するために種々検討した結果、流体動圧軸受装置の軸受性能の劣化を防止するために、ラジアル軸受隙間とスラスト軸受隙間との間の空間に介在する潤滑油の圧力を正圧に保つという新しい着想に至った。   As a result of various studies to solve the above problems, the present inventors intervene in the space between the radial bearing gap and the thrust bearing gap in order to prevent deterioration of the bearing performance of the fluid dynamic bearing device. The new idea of keeping the lubricating oil pressure positive has been reached.

本発明は、ラジアル軸受面とその両端に形成したスラスト軸受面を備えた外方部材と、この外方部材の内側に配置され、前記ラジアル軸受面とスラスト軸受面のそれぞれに対向するラジアル軸受面とスラスト軸受面を備え、内周に軸との固定面を形成した内方部材とからなり、前記外方部材と内方部材のラジアル軸受面間にラジアル軸受隙間を形成すると共に前記ラジアル軸受面のどちらか一方にラジアル動圧溝を形成し、かつ前記外方部材と内方部材のスラスト軸受面間にスラスト軸受隙間を形成すると共に前記スラスト軸受面のどちらか一方にスラスト動圧溝を形成し、前記軸受隙間に潤滑油を介在させた流体動圧軸受装置において、前記内方部材の少なくともラジアル軸受面とスラスト軸受面を形成する部分が焼結金属からなり、前記ラジアル軸受隙間とスラスト軸受隙間との間の空間が正圧に保たれていることを特徴とするものである。   The present invention includes a radial bearing surface, an outer member having a thrust bearing surface formed at both ends thereof, and a radial bearing surface disposed inside the outer member and opposed to each of the radial bearing surface and the thrust bearing surface. And a thrust bearing surface, and an inner member having a fixed surface with the shaft on the inner periphery, and a radial bearing gap is formed between the outer member and the radial bearing surface of the inner member, and the radial bearing surface A radial dynamic pressure groove is formed in either one of the outer member and the inner member, and a thrust bearing gap is formed between the thrust bearing surfaces of the outer member and the inner member, and a thrust dynamic pressure groove is formed in either one of the thrust bearing surfaces. In the fluid dynamic pressure bearing device in which lubricating oil is interposed in the bearing gap, at least the radial bearing surface and the thrust bearing surface of the inner member are made of sintered metal, It is characterized in that the space between the dialkyl bearing gap and the thrust bearing gap is maintained at a positive pressure.

上記のように、内方部材の少なくともラジアル軸受面とスラスト軸受面を形成する部分が焼結金属からなるので、高精度で静粛性に優れ、かつ低コストに製造が可能である共に、ラジアル軸受隙間とスラスト軸受隙間との間の空間が正圧に保たれているので、軸受性能の劣化を防止することができる。ここで、正圧とは大気圧より高い圧力を意味する。   As described above, at least the radial bearing surface and the thrust bearing surface forming part of the inner member are made of sintered metal, so that the radial bearing can be manufactured with high accuracy, excellent quietness and low cost. Since the space between the gap and the thrust bearing gap is maintained at a positive pressure, deterioration of the bearing performance can be prevented. Here, the positive pressure means a pressure higher than the atmospheric pressure.

外方部材が外側の外方部材と内側の外方部材の2つの部材からなり、当該2つの外方部材は、いずれも円筒部と半径方向部とが一体材料で形成されており、円筒部を嵌合して固定される。これにより、外側および内側の外方部材の嵌合部が十分な長さを有するので、安定した嵌合、固定が得られると共に、外方部材の剛性が高く、かつ軸受隙間を高精度に設定することができる。さらに、外方部材を板材のプレス加工により形成したものでは、このプレス加工によりラジアル軸受面やスラスト軸受面が高精度に形成され、かつ、低コストに製造することができる。   The outer member is composed of two members, an outer member on the outside and an outer member on the inner side. Both of the two outer members are formed of an integral material of a cylindrical portion and a radial portion, and the cylindrical portion Is fixed by fitting. As a result, the fitting portions of the outer and inner outer members have sufficient lengths, so that stable fitting and fixing can be obtained, the rigidity of the outer members is high, and the bearing clearance is set with high accuracy. can do. Furthermore, in the case where the outer member is formed by pressing a plate material, the radial bearing surface and the thrust bearing surface can be formed with high accuracy by this pressing, and can be manufactured at low cost.

内方部材が焼結金属からなるので、内方部材のラジアル軸受面に動圧溝を形成する場合、動圧溝を転造加工する際の塑性流動を焼結金属の内部気孔で吸収でき、このため、塑性流動による表面の盛り上がりが抑えられ、動圧溝を精度良く形成することができる。また、内方部材のスラスト軸受面に動圧溝を形成する場合、プレス加工や内方部材のサイジングと同時に型成形することができるので、精度良く、かつ低コストに製造することができる。   Since the inner member is made of sintered metal, when forming the dynamic pressure groove on the radial bearing surface of the inner member, the plastic flow when rolling the dynamic pressure groove can be absorbed by the internal pores of the sintered metal, For this reason, the rise of the surface due to plastic flow is suppressed, and the dynamic pressure grooves can be formed with high accuracy. Further, when the dynamic pressure groove is formed on the thrust bearing surface of the inner member, it can be molded at the same time as pressing or sizing of the inner member, so that it can be manufactured with high accuracy and at low cost.

具体的には、軸受面を形成する部分の焼結金属の材質を銅鉄系とし、銅の配合比率を10〜80%としている。銅の配合比率が10%未満になると動圧溝の成形性や潤滑性で問題となり、一方、銅の配合比率が80%を超えると耐摩耗性を確保することが難しい。したがって、銅の配合比率は10〜80%が望ましい。   Specifically, the material of the sintered metal in the part forming the bearing surface is made of copper-iron, and the blending ratio of copper is 10 to 80%. If the blending ratio of copper is less than 10%, there will be a problem with the formability and lubricity of the dynamic pressure grooves, while if the blending ratio of copper exceeds 80%, it is difficult to ensure wear resistance. Therefore, the blending ratio of copper is desirably 10 to 80%.

焼結金属のラジアル軸受面の表面開孔率を2〜20%としている。表面開孔率が2%未満では潤滑油の循環が十分でなく、表面開孔率が20%を超えると潤滑油に発生した圧力低下が生じる。したがって、表面開孔率は2〜20%が望ましい。   The surface opening ratio of the radial bearing surface of the sintered metal is set to 2 to 20%. When the surface opening ratio is less than 2%, the circulation of the lubricating oil is not sufficient, and when the surface opening ratio exceeds 20%, a pressure drop generated in the lubricating oil occurs. Therefore, the surface porosity is preferably 2 to 20%.

ラジアル動圧溝およびスラスト動圧溝が、内方部材のラジアル軸受面及びスラスト軸受面にそれぞれ形成されている。これにより、焼結金属からなる内方部材の動圧溝が転造加工やプレス加工、あるいはサイジング時の型成形により精度良く、かつ低コストに製造できる。   A radial dynamic pressure groove and a thrust dynamic pressure groove are formed on the radial bearing surface and the thrust bearing surface of the inner member, respectively. Thereby, the dynamic pressure groove of the inner member made of sintered metal can be manufactured with high accuracy and low cost by rolling, pressing, or molding at the time of sizing.

スラスト動圧溝がポンプアウト型であることにより、潤滑油が外径側に送られて、ラジアル軸受隙間とスラスト軸受隙間との間の空間に存在する潤滑油の圧力が正圧に保たれるので、軸受性能の劣化を防止することができる。ポンプアウト型のスラスト動圧溝としてヘリングボーン形状が好ましい。   Since the thrust dynamic pressure groove is a pump-out type, the lubricating oil is sent to the outer diameter side, and the pressure of the lubricating oil existing in the space between the radial bearing gap and the thrust bearing gap is maintained at a positive pressure. Therefore, deterioration of bearing performance can be prevented. Herringbone shape is preferable as the pump-out type thrust dynamic pressure groove.

ラジアル軸受隙間とスラスト軸受隙間との間の空間に位置する内方部材の外表面部分に各軸受面よりも表面開孔率が大きな領域が設けられていることにより、内方部材の表面開孔率の大きい外表面部分に内部の潤滑油が導かれ、この部分の潤滑油の圧力が正圧に保たれる。これにより、軸受性能の劣化を防止することができる。   The surface opening of the inner member is provided by providing a region having a surface opening ratio larger than that of each bearing surface in the outer surface portion of the inner member located in the space between the radial bearing gap and the thrust bearing gap. The internal lubricating oil is guided to the outer surface portion having a large rate, and the pressure of the lubricating oil in this portion is maintained at a positive pressure. Thereby, deterioration of bearing performance can be prevented.

内方部材のラジアル動圧溝およびスラスト動圧溝の少なくとも一方がプレス加工によって形成されたものであるが、内方部材の外表面部分の表面開孔率が大きな領域は、上記プレス加工の加工面としないことにより、追加加工なしで簡単に形成することができる。   At least one of the radial dynamic pressure groove and the thrust dynamic pressure groove of the inner member is formed by pressing, but the region where the surface opening ratio of the outer surface portion of the inner member is large is the above-mentioned pressing process. By not using a surface, it can be easily formed without additional processing.

内方部材のラジアル動圧溝およびスラスト動圧溝の少なくとも一方が転造加工によって形成されたものであるが、内方部材の外表面部分の表面開孔率が大きな領域は、上記転造加工の加工面としないことにより、追加加工なしで簡単に形成することができる。   At least one of the radial dynamic pressure groove and the thrust dynamic pressure groove of the inner member is formed by rolling, but the region where the surface area ratio of the outer surface portion of the inner member is large is the above rolling processing. By not using the processed surface, it can be easily formed without additional processing.

内方部材のラジアル軸受面およびスラスト軸受面の少なくとも一方に封孔処理が施されている。これにより、潤滑油の圧力低下を抑制することができる。   At least one of the radial bearing surface and the thrust bearing surface of the inner member is sealed. Thereby, the pressure drop of lubricating oil can be suppressed.

本発明によれば、内方部材の少なくともラジアル軸受面とスラスト軸受面を形成する部分が焼結金属からなるので、高精度で静粛性に優れ、かつ低コストに製造が可能である共に、ラジアル軸受隙間とスラスト軸受隙間との間の空間が正圧に保たれているので、軸受性能の劣化を防止することができる。   According to the present invention, since at least the radial bearing surface and the thrust bearing surface of the inner member are made of sintered metal, high accuracy and excellent quietness can be produced at low cost. Since the space between the bearing gap and the thrust bearing gap is maintained at a positive pressure, deterioration of the bearing performance can be prevented.

本発明の第1の実施形態の流体動圧軸受装置の縦断面図である。It is a longitudinal cross-sectional view of the fluid dynamic pressure bearing apparatus of the 1st Embodiment of this invention. 内方部材に形成された動圧溝を示す正面図および側面図である。It is the front view and side view which show the dynamic pressure groove formed in the inward member. 流体動圧軸受装置の部分的に拡大した縦断面図である。It is the longitudinal cross-sectional view which expanded the fluid dynamic pressure bearing apparatus partially. 流体動圧軸受装置を組み込んだファンモータの縦断面図である。It is a longitudinal cross-sectional view of the fan motor incorporating the fluid dynamic pressure bearing device. 第1の実施形態の変形例の流体動圧軸受装置の縦断面図である。It is a longitudinal cross-sectional view of the fluid dynamic pressure bearing apparatus of the modification of 1st Embodiment. 本発明の第2の実施形態の流体動圧軸受装置の縦断面図である。It is a longitudinal cross-sectional view of the fluid dynamic pressure bearing apparatus of the 2nd Embodiment of this invention. 第2の実施形態の流体動圧軸受装置の右側面図である。It is a right view of the fluid dynamic pressure bearing apparatus of 2nd Embodiment. 図6のB−B線の横断面図である。It is a cross-sectional view of the BB line of FIG. 組立方法を示す縦断面図である。It is a longitudinal cross-sectional view which shows an assembly method. 組立方法を示す縦断面図である。It is a longitudinal cross-sectional view which shows an assembly method. 外方部材の嵌合部に接着剤を注入する状態を示す横断面図である。It is a cross-sectional view which shows the state which inject | pours an adhesive agent into the fitting part of an outward member.

以下に本発明の実施の形態を図面に基づいて説明する。   Embodiments of the present invention will be described below with reference to the drawings.

本発明の第1の実施形態に係る流体動圧軸受装置を図1〜図3に基づいて説明する。図1に示すように、流体動圧軸受装置10は、内方部材11と、この内方部材11を回転自在に支持する外方部材20とを備える。内方部材11は回転軸(図示省略)に取り付けられ、外方部材20はハウジング(図示省略)に取り付けられる。軸方向および半径方向で互いに対向する内方部材11と外方部材20の各面間(ラジアル軸受隙間Rおよびスラスト軸受隙間T)には潤滑油が介在している。   A fluid dynamic pressure bearing device according to a first embodiment of the present invention will be described with reference to FIGS. As shown in FIG. 1, the fluid dynamic bearing device 10 includes an inner member 11 and an outer member 20 that rotatably supports the inner member 11. The inner member 11 is attached to a rotating shaft (not shown), and the outer member 20 is attached to a housing (not shown). Lubricating oil is interposed between the surfaces of the inner member 11 and the outer member 20 facing each other in the axial direction and the radial direction (radial bearing gap R and thrust bearing gap T).

内方部材11は焼結金属で形成されている。内方部材11は、外周面12と両側面13、13を有し、外周面12がラジアル軸受面12Rを形成し、両側面13、13がスラスト軸受面13T、13Tを形成する。外周面12は円筒面状をなし、両側面13、13は軸線Aに直角な半径方向の平坦面となっている。内方部材11のラジアル軸受面12Rと外方部材20のラジアル軸受面29Rとの間にラジアル軸受隙間Rが形成され、内方部材11のスラスト軸受面13T、13Tと外方部材20のスラスト軸受面23T、24Tとの間にスラスト軸受隙間T、Tが形成されている。内方部材11の外周面12の両端に面取り部11b、11cが形成されており、外方部材20との間に空間30a、30bが形成されている。ラジアル軸受隙間R、スラスト軸受隙間T、Tおよび空間30a、30bに潤滑油が満たされている。この潤滑油の充填状態の詳細を示すために、図1の流体動圧軸受装置10の軸線Aより上半分を拡大した部分縦断面を図3に示す。潤滑油は、ラジアル軸受隙間R、スラスト軸受隙間T、Tおよびラジアル軸受隙間Rとスラスト軸受隙間T、Tとの間に位置する空間30a、30bに充填されている。内方部材11の外周面12には動圧溝12aが形成されている。詳細には、図2(b)に示すように、外周面12の全面に形成され、V字状に屈曲した動圧溝12aと、これを区画する丘部12b(図中クロスハッチングで示す)とを、円周方向に交互に配置したヘリングボーン形状を呈する。外周面12の両端には面取り部11b、11cが形成されている。動圧溝12aは、例えば転造加工により形成される。内方部材11が焼結金属で形成されるため、転造加工の圧迫による内方部材11の外周面12の塑性流動を焼結金属の内部気孔で吸収できる。このため、塑性流動による内方部材11の表面の盛り上がりが抑えられ、動圧溝12aと丘部12bを精度良く形成することができる。動圧溝12aの転造加工を行う時に、外周面12の両端の面取り部11b、11cは転造加工されない。すなわち、面取り部11b、11cは、内方部材11を構成する焼結金属の粉末成形工程で成形されるのみであり、該工程による成形面としてそのまま残る。したがって、面取り部11b、11cの表面開孔率はラジアル軸受面よりも大きくなっている。   The inner member 11 is made of sintered metal. The inner member 11 has an outer peripheral surface 12 and both side surfaces 13 and 13, the outer peripheral surface 12 forms a radial bearing surface 12R, and both side surfaces 13 and 13 form thrust bearing surfaces 13T and 13T. The outer peripheral surface 12 has a cylindrical shape, and both side surfaces 13 and 13 are flat surfaces in the radial direction perpendicular to the axis A. A radial bearing gap R is formed between the radial bearing surface 12R of the inner member 11 and the radial bearing surface 29R of the outer member 20, and the thrust bearing surfaces 13T, 13T of the inner member 11 and the thrust bearing of the outer member 20 are formed. Thrust bearing gaps T and T are formed between the surfaces 23T and 24T. Chamfered portions 11 b and 11 c are formed at both ends of the outer peripheral surface 12 of the inner member 11, and spaces 30 a and 30 b are formed between the outer member 20 and the outer member 20. The radial bearing gap R, the thrust bearing gaps T and T, and the spaces 30a and 30b are filled with lubricating oil. In order to show the details of the state of filling with this lubricating oil, FIG. 3 shows a partial vertical cross-section in which the upper half of the fluid dynamic bearing device 10 of FIG. Lubricating oil is filled in the radial bearing gap R, the thrust bearing gaps T and T, and the spaces 30a and 30b located between the radial bearing gap R and the thrust bearing gaps T and T. A dynamic pressure groove 12 a is formed on the outer peripheral surface 12 of the inner member 11. Specifically, as shown in FIG. 2 (b), a dynamic pressure groove 12a formed on the entire outer peripheral surface 12 and bent in a V shape, and a hill portion 12b partitioning the dynamic pressure groove 12a (shown by cross-hatching in the figure) And a herringbone shape alternately arranged in the circumferential direction. Chamfered portions 11 b and 11 c are formed at both ends of the outer peripheral surface 12. The dynamic pressure groove 12a is formed by rolling, for example. Since the inner member 11 is formed of sintered metal, the plastic flow of the outer peripheral surface 12 of the inner member 11 due to the compression of the rolling process can be absorbed by the internal pores of the sintered metal. For this reason, the rise of the surface of the inner member 11 due to plastic flow is suppressed, and the dynamic pressure groove 12a and the hill portion 12b can be formed with high accuracy. When the dynamic pressure groove 12a is rolled, the chamfered portions 11b and 11c at both ends of the outer peripheral surface 12 are not rolled. That is, the chamfered portions 11b and 11c are formed only in the powder forming process of the sintered metal constituting the inner member 11, and remain as the forming surfaces by the process. Therefore, the surface open area ratio of the chamfered portions 11b and 11c is larger than that of the radial bearing surface.

図1に示すように、内方部材11の両側面13、13は、軸線Aに直角な半径方向の平坦面をなし、両側面13、13には動圧溝13a、13aが形成されている。詳細は、図2(a)、(c)に示す。図2(a)は内方部材11の左側の側面13を示し、図2(c)は内方部材11の右側の側面13を示す。図示のように、両側面13、13の全面に形成され、V字状に屈曲した動圧溝13a、13aと、これを区画する丘部13b、13b(図中クロスハッチングで示す)とを、円周方向に交互に配置したヘリングボーン形状を呈する。   As shown in FIG. 1, both side surfaces 13 and 13 of the inner member 11 form a flat surface in the radial direction perpendicular to the axis A, and dynamic pressure grooves 13 a and 13 a are formed on both side surfaces 13 and 13. . Details are shown in FIGS. 2 (a) and 2 (c). FIG. 2A shows the left side surface 13 of the inner member 11, and FIG. 2C shows the right side surface 13 of the inner member 11. As shown in the figure, dynamic pressure grooves 13a, 13a formed on the entire surfaces of both side surfaces 13, 13 and bent in a V shape, and hill portions 13b, 13b (indicated by cross-hatching in the figure) partitioning the grooves, It exhibits a herringbone shape that is alternately arranged in the circumferential direction.

図2(a)(c)に示すように、内方部材の両側面13、13に形成したスラスト軸受面13T、13Tの動圧溝13a、13aを、回転によって外径側に潤滑油を送るポンプアウト仕様にする。スラスト用の動圧溝13a、13aのヘリングボーン形状は、回転によって外径側に潤滑油を送るポンプアウト仕様になっている。一般に、ヘリングボーン形状の動圧溝13a、13aでは、折り返し部Pが設けられるが、この折り返し部Pの半径rhと、動圧溝13a、13aの外半径r1と、内半径r2との間に、rh 2=(r1 2+r2 2)/2が成り立つときに、折り返し部Pよりも外径側で生じるポンプイン方向の流体圧力と折り返し部Pよりも内径側で生じるポンプアウト方向の流体圧力とが等しくなる。例えば直径寸法で、内径がφ2、外径がφ4の場合、折り返し部Pの径(2rh)がφ3.16であれば、内径側と外径側で流体圧力が等しくなる。なお、この時の折り返し部Pの半径rhは外半径r1と、内半径r2の間の中間点よりも大きい。これに対し、本実施形態では、折り返し部の半径rを、上記式で得られるrh[=(r1 2+r2 21/2/21/2]よりも大きくしている(r>rh)。この場合、折り返し部Pよりも内径側で生じるポンプアウト方向の流体圧力がポンプイン方向の流体圧力よりも優勢となるため、スラスト軸受面13T、13T全体では、ポンプアウト方向(外径方向)に潤滑油が流れて、ラジアル軸受隙間とスラスト軸受隙間との間の空間30a、30b(図3参照)の潤滑油の圧力は正圧に保たれる。これにより、軸受性能の劣化を防止することができる。スラスト動圧溝13a、13aの形態は、ポンプアウト仕様である限り任意であり、ヘリングボーン形状の他、スパイラル形状を採用することもできる。 As shown in FIGS. 2 (a) and 2 (c), lubricating oil is sent to the outer diameter side by rotation of the dynamic pressure grooves 13a and 13a of the thrust bearing surfaces 13T and 13T formed on both side surfaces 13 and 13 of the inner member. Use pump-out specifications. The herringbone shape of the thrust dynamic pressure grooves 13a, 13a is a pump-out specification in which lubricating oil is sent to the outer diameter side by rotation. Generally, the herringbone-shaped dynamic pressure grooves 13a and 13a are provided with a folded portion P. The radius r h of the folded portion P, the outer radius r 1 and the inner radius r 2 of the dynamic pressure grooves 13a and 13a, When r h 2 = (r 1 2 + r 2 2 ) / 2 holds, the fluid pressure in the pump-in direction generated on the outer diameter side of the folded portion P and the pump generated on the inner diameter side of the folded portion P The fluid pressure in the out direction becomes equal. For example, when the diameter is φ2, the outer diameter is φ4, and the diameter (2r h ) of the folded portion P is φ3.16, the fluid pressure is equal on the inner diameter side and the outer diameter side. At this time, the radius r h of the folded portion P is larger than the intermediate point between the outer radius r 1 and the inner radius r 2 . On the other hand, in the present embodiment, the radius r of the folded portion is made larger than r h [= (r 1 2 + r 2 2 ) 1/2 / 2 1/2 ] obtained by the above formula (r > R h ). In this case, since the fluid pressure in the pump-out direction generated on the inner diameter side with respect to the turn-back portion P is dominant over the fluid pressure in the pump-in direction, the thrust bearing surfaces 13T and 13T as a whole are in the pump-out direction (outer diameter direction). The lubricating oil flows, and the pressure of the lubricating oil in the spaces 30a and 30b (see FIG. 3) between the radial bearing gap and the thrust bearing gap is maintained at a positive pressure. Thereby, deterioration of bearing performance can be prevented. The form of the thrust dynamic pressure grooves 13a and 13a is arbitrary as long as it is a pump-out specification, and a spiral shape can be adopted in addition to a herringbone shape.

内方部材11が焼結金属で形成されるため、両側面13、13の動圧溝13a、13aは、例えば転造加工により形成される。両側面13、13の動圧溝13a、13aの転造加工においても、外周面12の動圧溝12aの転造加工と同様、転造加工の圧迫による両側面13、13の塑性流動を焼結金属の内部気孔で吸収できる。このため、塑性流動による内方部材11の表面の盛り上がりが抑えられ、動圧溝13aと丘部13bを精度良く形成することができる。また、動圧溝13aの転造加工を行う時にも、面取り部11b、11cは転造加工されない。したがって、面取り部11b、11cの表面開孔率は、前述したラジアル軸受面12Rとの関係と同様、スラスト軸受面13Tの表面開効率よりも大きくなっている。この面取り部11b、11cが、内方部材11の外表面部分に設けた、各軸受面よりも表面開孔率が大きな領域に該当する。これにより、面取り部11b、11cが面する、ラジアル軸受隙間とスラスト軸受隙間との間の空間30a,30bが何らかの原因で負圧になろうとしても、内方部材11の内部から面取り部11b、11cを介して該空間30a,30bに潤滑油を供給し、該空間30a,30bを正圧状態に保持することができる。   Since the inner member 11 is formed of sintered metal, the dynamic pressure grooves 13a and 13a on the side surfaces 13 and 13 are formed by, for example, rolling. Also in the rolling process of the dynamic pressure grooves 13a and 13a on the both side surfaces 13 and 13, the plastic flow of the both side surfaces 13 and 13 due to the compression of the rolling process is baked in the same manner as the rolling process of the dynamic pressure grooves 12a on the outer peripheral surface 12. Can be absorbed by the internal pores of the metal. For this reason, the rise of the surface of the inner member 11 due to plastic flow is suppressed, and the dynamic pressure groove 13a and the hill portion 13b can be formed with high accuracy. Further, the chamfered portions 11b and 11c are not rolled when the dynamic pressure groove 13a is rolled. Therefore, the surface opening ratio of the chamfered portions 11b and 11c is larger than the surface opening efficiency of the thrust bearing surface 13T, similarly to the relationship with the radial bearing surface 12R described above. The chamfered portions 11b and 11c correspond to regions where the surface area ratio is larger than that of each bearing surface provided on the outer surface portion of the inner member 11. Thereby, even if the space 30a, 30b between the radial bearing gap and the thrust bearing gap facing the chamfered portions 11b, 11c becomes negative pressure for some reason, the chamfered portion 11b, Lubricating oil can be supplied to the spaces 30a and 30b via 11c, and the spaces 30a and 30b can be maintained in a positive pressure state.

図3に示すように、外方部材20と内方部材11を組み立てた流体動圧軸受装置10の内部空間には、焼結金属製の内方部材11の内部気孔を含めて潤滑油が充填されるので、前述したスラスト用の動圧溝13a、13aのポンプアウト仕様により潤滑油が外径側に送られることに加えて、表面開孔率の大きい面取り部11b、11cには、内方部材11の内部の潤滑油が導かれることが相俟って、より一層確実に、空間30a、30bの潤滑油の圧力は正圧に保たれる。これにより、軸受性能の劣化を防止することができる。ポンプアウト仕様のスラスト用動圧溝13a、13a、および表面開孔率を増大させた面取り部11b、11cは、必ずしも同時に採用する必要はなく、軸受サイズや使用条件によっては、どちらか一方の構成だけを採用してもよい。   As shown in FIG. 3, the internal space of the fluid dynamic pressure bearing device 10 in which the outer member 20 and the inner member 11 are assembled is filled with lubricating oil including the internal pores of the inner member 11 made of sintered metal. Therefore, in addition to the lubricating oil being sent to the outer diameter side by the pump-out specification of the thrust dynamic pressure grooves 13a and 13a described above, the chamfered portions 11b and 11c having a large surface opening ratio are In combination with the fact that the lubricating oil inside the member 11 is guided, the pressure of the lubricating oil in the spaces 30a, 30b is maintained at a positive pressure more reliably. Thereby, deterioration of bearing performance can be prevented. The thrust dynamic pressure grooves 13a, 13a for the pump-out specification and the chamfered portions 11b, 11c having an increased surface opening ratio do not necessarily have to be employed at the same time, and either one of the configurations is used depending on the bearing size and use conditions. You may adopt only.

内方部材11のラジアル用動圧溝12aおよびスラスト用動圧溝13a、13aは、別の加工方法として、プレス加工により型成形することもできる。この場合、金型によるプレス加工であるので、精度良く形成することができる。また、内方部材11のサイジングと同時にラジアル用動圧溝12aおよびスラスト用動圧溝13a、13aを型成形することができる。内方部材11の外周面12に形成されるラジアル用動圧溝12aは、成形後、スプリングバックを利用して金型から取り出すことができる。ラジアル用動圧溝12aおよびスラスト用動圧溝13a、13aのプレス加工の時にも、面取り部11b、11cはプレス加工されない。したがって、前述した転造加工の場合と同様、面取り部11b、11cの表面開孔率は、ラジアル軸受面12R、スラスト軸受面13Tの両軸受面よりも大きくなっている。この面取り部11b、11cが、内方部材11の外表面部分に設けた、各軸受面よりも表面開孔率が大きな領域に該当する。   The radial dynamic pressure groove 12a and the thrust dynamic pressure grooves 13a and 13a of the inner member 11 can be molded by pressing as another processing method. In this case, since it is press working with a mold, it can be formed with high accuracy. Further, the radial dynamic pressure groove 12a and the thrust dynamic pressure grooves 13a, 13a can be molded simultaneously with the sizing of the inner member 11. The radial dynamic pressure groove 12a formed on the outer peripheral surface 12 of the inner member 11 can be taken out from the mold using a spring back after molding. Even when the radial dynamic pressure groove 12a and the thrust dynamic pressure grooves 13a and 13a are pressed, the chamfered portions 11b and 11c are not pressed. Therefore, as in the case of the rolling process described above, the surface open area ratio of the chamfered portions 11b and 11c is larger than both the bearing surfaces of the radial bearing surface 12R and the thrust bearing surface 13T. The chamfered portions 11b and 11c correspond to regions where the surface area ratio is larger than that of each bearing surface provided on the outer surface portion of the inner member 11.

図1および図3に示すように、内方部材11の円筒面状の内周面11aの軸方向両端に面取り部11d、11dが設けられている。内方部材11は、例えば内周面11aを図示しない回転軸の外周面に圧入(軽圧入)することにより、あるいは、内周面11aと回転軸の外周面との間に接着剤を介在させることにより、回転軸に固定される。内周面11aが軸との固定面に該当する。   As shown in FIGS. 1 and 3, chamfered portions 11 d and 11 d are provided at both axial ends of the cylindrical inner peripheral surface 11 a of the inner member 11. The inner member 11 is formed by, for example, press-fitting (light press-fitting) the inner peripheral surface 11a into the outer peripheral surface of the rotating shaft (not shown) or interposing an adhesive between the inner peripheral surface 11a and the outer peripheral surface of the rotating shaft. By this, it is fixed to the rotating shaft. The inner peripheral surface 11a corresponds to a fixed surface with the shaft.

内方部材11を形成する焼結金属の材質は、銅鉄系とし、銅の配合比率を10〜80%としている。銅の配合比率が10%未満となると動圧溝の成形性や潤滑性で問題となり、一方、銅の配合比率が80%を超えると耐摩耗性を確保することが難しい。潤滑性を考慮すると銅鉄系が望ましいが、鉄系、銅系、ステンレス系など他の材料系でも使用可能である。いずれの場合にも、表面開孔率は潤滑油の循環性と動圧効果が得ることができる範囲であれば任意の値を取ることができるが、2〜20%の範囲が望ましい。表面開孔率が2%未満では潤滑油の循環が十分でなく、表面開孔率が20%を超えると潤滑油に発生した圧力が低下する。また、油の循環を妨げない限り、内方部材11のラジアル軸受面12Rおよびスラスト軸受面13Tの少なくとも一方に封孔処理を施すことができる。これにより、潤滑油の圧力低下を抑制することができる。銅鉄系焼結部材の密度は、潤滑油の連通性や塑性加工性を維持するために、6〜8g/cm3とする。 The material of the sintered metal that forms the inner member 11 is copper iron-based, and the blending ratio of copper is 10 to 80%. If the copper blending ratio is less than 10%, there will be a problem with the formability and lubricity of the dynamic pressure grooves, while if the copper blending ratio exceeds 80%, it is difficult to ensure wear resistance. In consideration of lubricity, copper iron is preferable, but other materials such as iron, copper, and stainless steel can be used. In any case, the surface open area ratio can take any value as long as the circulation of the lubricating oil and the dynamic pressure effect can be obtained, but a range of 2 to 20% is desirable. When the surface opening ratio is less than 2%, the circulation of the lubricating oil is not sufficient, and when the surface opening ratio exceeds 20%, the pressure generated in the lubricating oil decreases. Further, as long as the oil circulation is not hindered, at least one of the radial bearing surface 12R and the thrust bearing surface 13T of the inner member 11 can be sealed. Thereby, the pressure drop of lubricating oil can be suppressed. The density of the copper-iron-based sintered member is set to 6 to 8 g / cm 3 in order to maintain the lubricity and plastic workability.

次に、外方部材20を説明する。図1に示すように、外方部材20は内側の外方部材20aと外側の外方部材20bの2つの部材からなり、内側の外方部材20aは円筒部20a1と半径方向部20a2とが一体材料で形成されており、また、外側の外方部材20bも、円筒部20b1と半径方向部20b2とが一体材料で形成されている。そして、内側の外方部材20aと外側の外方部材20bが共に、縦断面が略L字形状に形成されている。内側の外方部材20aの円筒部20a1の外周面21が外側の外方部材20bの円筒部20b1の内周面22に軽圧入され、接着剤45を介在させて固定されている。   Next, the outer member 20 will be described. As shown in FIG. 1, the outer member 20 is composed of two members, an inner outer member 20a and an outer outer member 20b. The inner outer member 20a has a cylindrical portion 20a1 and a radial direction portion 20a2. The outer outer member 20b is also formed of an integral material with the cylindrical portion 20b1 and the radial direction portion 20b2. The inner outer member 20a and the outer outer member 20b are both formed in a substantially L-shaped longitudinal section. The outer peripheral surface 21 of the cylindrical portion 20a1 of the inner outer member 20a is lightly press-fitted into the inner peripheral surface 22 of the cylindrical portion 20b1 of the outer outer member 20b and fixed with an adhesive 45 interposed therebetween.

外側の外方部材20bの円筒部20b1の端面の内周に面取り部28(図3参照)を設けているので、接着剤45の注入がしやすい。内側の外方部材20aと外側の外方部材20bは、共に板材をプレス加工して略L字形状に形成されている。具体的には、板材は、ステンレス鋼板や冷間圧延鋼板等を用い、その板厚は、0.1〜1mm程度である。この実施形態では、内側の外方部材20aの円筒部20a1の内周面29がラジアル軸受面29Rを形成する。内側の外方部材20aの半径方向部20a2の内側面23および外側の外方部材20bの半径方向部20b2の内側面24が、それぞれスラスト軸受面23T、24Tを形成する。内周面29および内側面23、24はいずれも凹凸のない滑らかな面で形成され、動圧溝12a、13aは、内方部材11の外周面12および両側面13、13に形成されている。外側の外方部材20bの半径方向部20b2の内径側端部に小径内周面26が形成され、内側の外方部材20aの半径方向部20a2の内径側端部に小径内周面25が形成されている。この構造では、外側の外方部材20bの円筒部20b1の内周面22と内側の外方部材20aの円筒部20a1の外周面21との間の嵌合部が十分な長さを有するので、安定した組立と接着固定を実現することができる。   Since the chamfered portion 28 (see FIG. 3) is provided on the inner periphery of the end surface of the cylindrical portion 20b1 of the outer member 20b on the outer side, the adhesive 45 can be easily injected. Both the inner outer member 20a and the outer outer member 20b are formed in a substantially L shape by pressing a plate material. Specifically, the plate material is a stainless steel plate, a cold rolled steel plate or the like, and the plate thickness is about 0.1 to 1 mm. In this embodiment, the inner peripheral surface 29 of the cylindrical portion 20a1 of the inner outer member 20a forms a radial bearing surface 29R. The inner side surface 23 of the radial direction portion 20a2 of the inner outer member 20a and the inner side surface 24 of the radial direction portion 20b2 of the outer outer member 20b form thrust bearing surfaces 23T and 24T, respectively. Both the inner peripheral surface 29 and the inner side surfaces 23 and 24 are formed as smooth surfaces without irregularities, and the dynamic pressure grooves 12 a and 13 a are formed in the outer peripheral surface 12 and the both side surfaces 13 and 13 of the inner member 11. . A small-diameter inner peripheral surface 26 is formed at the inner diameter side end of the radial direction portion 20b2 of the outer outer member 20b, and a small-diameter inner peripheral surface 25 is formed at the inner diameter side end of the radial direction portion 20a2 of the inner outer member 20a. Has been. In this structure, since the fitting portion between the inner peripheral surface 22 of the cylindrical portion 20b1 of the outer member 20b on the outer side and the outer peripheral surface 21 of the cylindrical portion 20a1 of the inner outer member 20a has a sufficient length, Stable assembly and adhesive fixing can be realized.

以上の構成からなる流体動圧軸受装置10の内部空間には焼結金属製の内方部材11の内部気孔を含めて、潤滑油が充填される。潤滑油は、図3に示すように、ラジアル軸受隙間R、スラスト軸受隙間T、Tおよび空間30a、30bに満たされる。表面開孔率の大きい面取り部11b、11cには、内方部材11の内部の潤滑油が導かれて、空間30a、30bの潤滑油の圧力は正圧に保たれる。これに加えて、スラスト用動圧溝13a、13aのヘリングボーン形状が回転によって外径側に潤滑油を送るポンプアウト仕様になっていることにより、潤滑油が外径側に送られて、空間30a、30bの潤滑油の圧力はより一層確実に正圧に保たれる。これにより、軸受性能の劣化を防止することができる。   Lubricating oil is filled in the internal space of the fluid dynamic bearing device 10 having the above structure including the internal pores of the inner member 11 made of sintered metal. As shown in FIG. 3, the lubricating oil is filled in the radial bearing gap R, the thrust bearing gaps T and T, and the spaces 30a and 30b. Lubricating oil inside the inner member 11 is guided to the chamfered portions 11b and 11c having a large surface opening ratio, and the pressure of the lubricating oil in the spaces 30a and 30b is maintained at a positive pressure. In addition to this, the herringbone shape of the thrust dynamic pressure grooves 13a, 13a has a pump-out specification in which the lubricating oil is sent to the outer diameter side by rotation, so that the lubricating oil is sent to the outer diameter side, and the space The pressures of the lubricating oils 30a and 30b are more reliably maintained at a positive pressure. Thereby, deterioration of bearing performance can be prevented.

シール面では、潤滑油は、軸受隙間の毛細管力により外径側(ラジアル軸受隙間R側)に引き込まれる。また、回転軸の回転に伴ってスラスト軸受隙間T内の潤滑油に遠心力や動圧溝による押し込み力が作用することにより、潤滑油が外径側(ラジアル軸受隙間R側)に押し込まれる。この遠心力、押し込み力と、軸受隙間による毛細管力とにより、潤滑油の漏れ出しを防止できることができる。   On the sealing surface, the lubricating oil is drawn to the outer diameter side (radial bearing gap R side) by the capillary force of the bearing gap. Further, as the rotating shaft rotates, the lubricating oil in the thrust bearing gap T is subjected to a centrifugal force or a pushing force by the dynamic pressure groove, whereby the lubricating oil is pushed into the outer diameter side (radial bearing gap R side). Leakage of the lubricating oil can be prevented by the centrifugal force, the pushing force, and the capillary force due to the bearing gap.

図4に本実施形態の流体動圧軸受装置10を組み込んだファンモータ1を示す。このファンモータ1は、パソコンやOA機器などの内部で発生する熱を外部へ排出し、内部を冷却するために使用されるもので、回転軸2を回転自在に非接触支持する流体動圧軸受装置10と、回転軸2に取り付けられたファン3と、半径方向のギャップを介して対向させたステータコイル50およびロータマグネット51と、ケース52とを備えている。ステータコイル50はケース52のハウジング部53の外周に取り付けられ、ロータマグネット51はファン3の内周に取り付けられる。ケース52のハウジング部53に流体動圧軸受装置10が組み込まれている。このように構成されたファンモータ1において、ステータコイル50に通電すると、ステータコイル50とロータマグネット51との間の磁力によりロータマグネット51が回転し、これに伴って、ファン3が回転軸2と一体に回転する。   FIG. 4 shows a fan motor 1 incorporating the fluid dynamic bearing device 10 of the present embodiment. This fan motor 1 is used for discharging heat generated inside a personal computer, OA equipment, etc. to the outside and cooling the inside, and is a fluid dynamic bearing that rotatably supports the rotary shaft 2 in a non-contact manner. The apparatus 10 includes a fan 3 attached to the rotary shaft 2, a stator coil 50 and a rotor magnet 51 that are opposed to each other via a radial gap, and a case 52. The stator coil 50 is attached to the outer periphery of the housing portion 53 of the case 52, and the rotor magnet 51 is attached to the inner periphery of the fan 3. The fluid dynamic bearing device 10 is incorporated in the housing portion 53 of the case 52. In the fan motor 1 configured as described above, when the stator coil 50 is energized, the rotor magnet 51 is rotated by the magnetic force between the stator coil 50 and the rotor magnet 51, and accordingly, the fan 3 is connected to the rotating shaft 2. Rotates together.

図1に示すように、流体動圧軸受装置10は、外方部材20の両内側面23、24の軸方向間に内方部材11が設けられるため、外方部材20の両内側面23、24と内方部材11の両側面13、13とが軸方向に係合することにより、外方部材20の内周から内方部材11の抜けが規制される。これにより、内方部材11および外方部材20の分離を防止して流体動圧軸受装置10を一体的に扱うことができるため、回転軸2やハウジング部53への取り付けがしやすくなる。   As shown in FIG. 1, in the fluid dynamic bearing device 10, since the inner member 11 is provided between the axial directions of both inner side surfaces 23, 24 of the outer member 20, both inner side surfaces 23 of the outer member 20, 24 and the both side surfaces 13 and 13 of the inner member 11 are engaged in the axial direction, so that the inner member 11 is prevented from coming off from the inner periphery of the outer member 20. Thereby, since separation of the inner member 11 and the outer member 20 can be prevented and the fluid dynamic bearing device 10 can be handled integrally, the attachment to the rotating shaft 2 and the housing part 53 becomes easy.

次に、第1の実施形態の変形例を図5に示す。前述した第1の実施形態と同様の機能を有する箇所には同一の符号を付して重複説明は省略する。以下の実施形態においても同様とする。   Next, a modification of the first embodiment is shown in FIG. Parts having the same functions as those of the first embodiment described above are denoted by the same reference numerals, and redundant description is omitted. The same applies to the following embodiments.

この変形例では、スラスト用動圧溝23a、24aが、内側の外方部材20aの半径方向部20a2の内側面23と外側の外方部材20bの半径方向部20b2の内側面24に、それぞれ形成されている。そして、内方部材11の両側面13、13は、凹凸のない平滑な面で形成されている。スラスト用動圧溝23a、24aは、例えば、内側の外方部材20aと外側の外方部材20bを板材からプレス加工により成形する際に、プレス加工により形成される。したがって、この動圧溝23a、24aは高精度に形成できる。スラスト用動圧溝23a、24aの形状は、図2の(a)および(c)に示すものと同様である。その他の部分は、第1の実施形態と同様である。この変形例では、ラジアル用動圧溝12aを内方部材11に形成したが、このラジアル用動圧溝12aも内側の外方部材20aに形成することもできる。   In this modification, thrust dynamic pressure grooves 23a, 24a are formed on the inner side surface 23 of the radial direction portion 20a2 of the inner outer member 20a and the inner side surface 24 of the radial direction portion 20b2 of the outer outer member 20b, respectively. Has been. And both the side surfaces 13 and 13 of the inward member 11 are formed by the smooth surface without an unevenness | corrugation. The dynamic pressure grooves 23a and 24a for thrust are formed by press work when the inner outer member 20a and the outer outer member 20b are formed from a plate material by press work, for example. Therefore, the dynamic pressure grooves 23a and 24a can be formed with high accuracy. The shapes of the thrust dynamic pressure grooves 23a and 24a are the same as those shown in FIGS. 2 (a) and 2 (c). Other parts are the same as those in the first embodiment. In this modification, the radial dynamic pressure groove 12a is formed in the inner member 11. However, the radial dynamic pressure groove 12a can also be formed in the inner outer member 20a.

第2の実施形態を図6に基づいて説明する。この実施形態では、内方部材11の軸方向両端にスリーブ部11e、11fが突出して形成されている。スリーブ部11e、11fの外径面は内側の外方部材20aの半径方向部20a2の内径側端部に小径内周面25および外側の外方部材20bの半径方向部20b2の内径側端部に小径内周面26にシール隙間をもって対向している。小径内周面25および小径内周面26は、軸受の外側に向かって拡径するテーパ状に形成され、スリーブ部11e、11fの外径面41、42との間にシール空間S1、S2が形成されている。潤滑油の油面はシール空間S1、S2に保持される。   A second embodiment will be described with reference to FIG. In this embodiment, sleeve portions 11e and 11f are formed to protrude from both ends of the inner member 11 in the axial direction. The outer diameter surfaces of the sleeve portions 11e and 11f are formed at the inner diameter side end portion of the radial direction portion 20a2 of the inner outer member 20a at the inner diameter side end portion of the small diameter inner peripheral surface 25 and the radial direction portion 20b2 of the outer outer member 20b. It faces the small-diameter inner peripheral surface 26 with a seal gap. The small-diameter inner peripheral surface 25 and the small-diameter inner peripheral surface 26 are formed in a tapered shape that expands toward the outside of the bearing, and seal spaces S1, S2 are formed between the outer-diameter surfaces 41, 42 of the sleeve portions 11e, 11f. Is formed. The oil surface of the lubricating oil is held in the seal spaces S1 and S2.

前述した第1の実施形態および本実施形態でも、動圧溝12a、13aはヘリングボーン形状で一方向回転用である。本実施形態では回転方向を識別するために、次の表示を設けている。図6に示すように、内方部材11の右側のスリーブ部11fの端面43には識別溝44が形成されている。この識別溝44のあるスリーブ部11fの端部を、図のように右側に配置した場合、内方部材11の回転方向が右方向(時計方向)であることが分かる。上記では識別表示を右側に配置した場合に、回転方向を右方向に設定したが、これとは反対に回転方向を左方向(反時計方向)に設定してもよい。   Also in the first embodiment and the present embodiment described above, the dynamic pressure grooves 12a and 13a have a herringbone shape and are for one-way rotation. In the present embodiment, the following display is provided to identify the rotation direction. As shown in FIG. 6, an identification groove 44 is formed in the end surface 43 of the right sleeve portion 11 f of the inner member 11. When the end portion of the sleeve portion 11f having the identification groove 44 is arranged on the right side as shown in the figure, it can be seen that the rotation direction of the inner member 11 is the right direction (clockwise). In the above description, when the identification display is arranged on the right side, the rotation direction is set to the right direction. On the contrary, the rotation direction may be set to the left direction (counterclockwise direction).

図7に識別溝44の詳細を示す。流体動圧軸受装置10の右側側面図である。内方部材11のスリーブ部11fの端面43に識別溝44が形成されている。識別溝44は直径上の2箇所に形成され、この識別溝44は、焼結金属からなる内方部材11の粉末成形工程あるいはサイジング工程で形成される。したがって、内方部材11の製造工程内で識別溝を形成するため、コスト増にならない。識別溝44は上記のような形状の溝に限られず、例えば、直接回転方向を示す矢印形状の識別溝としてもよい。回転方向を識別する表示は、上記の他に、例えば、外方部材20の外表面に回転方向を示す表示を設けることや、内側の外方部材20aと外側の外方部材20bとが異なる色相の表面に形成してもよい。このためには、異なる色相の材質を用いたり、表面処理を施す。   FIG. 7 shows details of the identification groove 44. 3 is a right side view of the fluid dynamic bearing device 10. FIG. An identification groove 44 is formed on the end face 43 of the sleeve portion 11 f of the inner member 11. The identification grooves 44 are formed at two locations on the diameter, and the identification grooves 44 are formed by a powder forming process or a sizing process of the inner member 11 made of sintered metal. Therefore, since the identification groove is formed in the manufacturing process of the inner member 11, the cost does not increase. The identification groove 44 is not limited to the groove having the above shape, and may be, for example, an arrow-shaped identification groove that directly indicates the rotation direction. In addition to the above, the indication for identifying the rotation direction is, for example, a display indicating the rotation direction on the outer surface of the outer member 20, or the hues of the inner outer member 20a and the outer outer member 20b being different. It may be formed on the surface. For this purpose, materials of different hues are used or surface treatment is performed.

第2の実施形態では、図6に示すように内側の外方部材20aの円筒部20a1の外周面21の開口端部に凸部21aが設けられている。この凸部21aを含むB−B線の横断面を図8に示す。凸部21aは、内側の外方部材20aの円筒部20a1の外周面21に、円周方向の8箇所に形成されている。この凸部21aが、外側の外方部材20bの円筒部20b1の内周面22に圧入される。そして、スラスト軸受隙間を設定した状態で凸部21aにより仮固定され、接着剤45を介在させて固定されている。凸部21aが外側の外方部材20bの円筒部20b1の内周面22に部分的に圧入される状態になるので、内側の外方部材20aと外側の外方部材20bの精度が損なわれない。なお、凸部21aは、内側の外方部材20aの円筒部20a1の外周面21に8箇所形成したが、凸部21aの数は3個以上であれば、適宜の数とすることができ、凸部21aの形状は丸い突起に限ることなく、軸方向に延びる形状なども可能である。また、凸部は、外側の外方部材20bの円筒部20b1の内周面22に形成することもできる。要するに、凸部は、内側の外方部材20aと外側の外方部材20bの精度が損なわない範囲で圧入できるものであって、スラスト軸受隙間を設定した状態で凸部により仮固定されるものであれば、どのような形態であっても良い。その他の部分は、第1の実施形態と同様である。また、動圧溝の形成形態は、本実施形態のものに限らず、前述した第1の実施形態の変形例の形成形態であってもよい。   In 2nd Embodiment, as shown in FIG. 6, the convex part 21a is provided in the opening edge part of the outer peripheral surface 21 of the cylindrical part 20a1 of the inner side outer member 20a. FIG. 8 shows a cross section taken along line BB including the convex portion 21a. The convex portions 21a are formed on the outer peripheral surface 21 of the cylindrical portion 20a1 of the inner outer member 20a at eight locations in the circumferential direction. This convex portion 21a is press-fitted into the inner peripheral surface 22 of the cylindrical portion 20b1 of the outer member 20b on the outside. And it is temporarily fixed by the convex part 21a in the state which set the thrust bearing clearance gap, and it fixes with the adhesive agent 45 intervening. Since the convex portion 21a is partially pressed into the inner peripheral surface 22 of the cylindrical portion 20b1 of the outer member 20b, the accuracy of the inner member 20a and the outer member 20b is not impaired. . In addition, although the convex part 21a was formed in eight places on the outer peripheral surface 21 of the cylindrical part 20a1 of the inner outer member 20a, if the number of the convex parts 21a is three or more, it can be an appropriate number. The shape of the convex portion 21a is not limited to a round protrusion, and may be a shape extending in the axial direction. Further, the convex portion can be formed on the inner peripheral surface 22 of the cylindrical portion 20b1 of the outer member 20b on the outside. In short, the convex portion can be press-fitted within a range in which the accuracy of the inner outer member 20a and the outer outer member 20b is not impaired, and is temporarily fixed by the convex portion with a thrust bearing gap set. Any form is acceptable. Other parts are the same as those in the first embodiment. Further, the form of formation of the dynamic pressure grooves is not limited to that of the present embodiment, and may be a form of modification of the above-described first embodiment.

図6において、内方部材11のスリーブ部11e、11fの端部から、潤滑油の滲み出しを防止するために、端面43a、44b、端部外周面41、42および面取り部11dを封孔処理することが望ましい。また、潤滑油の滲み出しを防止する別の方法として、スリーブ部11e、11fの端部に撥油剤を塗布しても良い。さらに、これらを組み合わせることにより、効果をより高めることができる。   In FIG. 6, the end surfaces 43a and 44b, the end outer peripheral surfaces 41 and 42, and the chamfered portion 11d are sealed in order to prevent the lubricating oil from seeping out from the end portions of the sleeve portions 11e and 11f of the inner member 11. It is desirable to do. Further, as another method for preventing the lubricating oil from seeping out, an oil repellent may be applied to the end portions of the sleeve portions 11e and 11f. Furthermore, the effect can be further enhanced by combining these.

第1の実施形態および本実施形態では、内側の外方部材20aの半径方向部20a2と外側の外方部材20bの半径方向部20b2およびこれに対向する内方部材11の側面13、13を軸線Hに対して直角に形成したものを示したが、これに限らず、半径方向部20a2、半径方向部20b2およびこれに対向する側面13、13を円錐状に傾斜して形成することもできる。   In the first embodiment and the present embodiment, the radial direction portion 20a2 of the inner outer member 20a, the radial direction portion 20b2 of the outer outer member 20b, and the side surfaces 13 and 13 of the inner member 11 opposite to the radial direction portion 20b2 are axial lines. Although shown what was formed at right angle with respect to H, it is not restricted to this, The radial direction part 20a2, the radial direction part 20b2, and the side surfaces 13 and 13 which oppose this can also be inclined and formed in cone shape.

次に、本発明の流体動圧軸受装置の組立方法を図9〜11に基づいて説明する。この組立方法では、第2の実施形態の流体動圧軸受装置を示すが、第1の実施形態およびその変形例でも同様となる。   Next, a method for assembling the fluid dynamic pressure bearing device of the present invention will be described with reference to FIGS. This assembly method shows the fluid dynamic bearing device of the second embodiment, but the same applies to the first embodiment and its modifications.

図9に示す隙間設定装置は、固定治具Fとこの固定治具Fの内側に配置され上下方向に移動可能な移動治具Gとから構成される。固定治具Fは、載置面30、ガイド面34および移動治具Gと摺動自在に嵌合する内周面35を有する。移動治具Gは、肩面36、ガイド面37および固定治具Fと摺動自在に嵌合する外周面38を有する。この隙間設定装置の外で、内方部材11を内側の外方部材20aと外側の外方部材20bの中に収容し、スラスト軸受隙間Tのない状態まで内側の外方部材20aを外側の外方部材20bに対して相対的に押し込む。この状態の外側の外方部材20b、内側の外方部材20a、内方部材11のセットを、図9に示すように、固定治具Fおよび移動治具Gに載置する。すなわち、内方部材11の内周面11aを移動治具Gのガイド面37に嵌合させた後、外側の外方部材20b、内側の外方部材20a、内方部材11のセットを下方に挿入し、固定治具Fのガイド面34に嵌合させて、さらに下方に挿入し、外側の外方部材20bの半径方向部20b2の外側面を載置面30に当接させて設置する。このとき、移動治具Gは下方に後退している。   The gap setting device shown in FIG. 9 includes a fixing jig F and a moving jig G that is arranged inside the fixing jig F and is movable in the vertical direction. The fixing jig F has an inner peripheral surface 35 that is slidably fitted to the mounting surface 30, the guide surface 34, and the moving jig G. The moving jig G has an outer peripheral surface 38 slidably fitted to the shoulder surface 36, the guide surface 37 and the fixing jig F. Outside this gap setting device, the inner member 11 is accommodated in the inner outer member 20a and the outer member 20b, and the inner outer member 20a is moved outside to the state where there is no thrust bearing gap T. It pushes in relative to the direction member 20b. A set of the outer member 20b on the outer side, the outer member 20a on the inner side, and the inner member 11 in this state is placed on the fixing jig F and the moving jig G as shown in FIG. That is, after the inner peripheral surface 11a of the inner member 11 is fitted to the guide surface 37 of the moving jig G, the outer outer member 20b, the inner outer member 20a, and the inner member 11 are set downward. It is inserted, fitted to the guide surface 34 of the fixing jig F, and further inserted downward, and the outer surface of the radial direction portion 20b2 of the outer member 20b on the outer side is placed in contact with the mounting surface 30. At this time, the moving jig G is retracted downward.

その後、移動治具Gを上昇させ、外側の外方部材20bと内側の外方部材20aとの間にスラスト軸受隙間Tがゼロの状態の内方部材11のスリーブ部11fの下端面に移動治具Gの肩面36を当接させる。この位置を基準位置として、図10に示すように、移動治具Gをさらに上昇させて内方部材11を上方へ移動させ、凸部21aを介して圧入されていた外側の外方部材20bから内側の外方部材20aを離隔させる。外側の外方部材20bの内側面24と内方部材11の側面13との間の隙間が両側のスラスト軸受隙間Tの合計量Δとなる位置で止め、隙間設定が終了する。   Thereafter, the moving jig G is raised and moved to the lower end surface of the sleeve portion 11f of the inner member 11 where the thrust bearing gap T is zero between the outer member 20b on the outer side and the outer member 20a on the inner side. The shoulder surface 36 of the tool G is brought into contact. With this position as the reference position, as shown in FIG. 10, the moving jig G is further raised to move the inner member 11 upward, and from the outer member 20b that has been press-fitted through the convex portion 21a. The inner outer member 20a is separated. The clearance between the inner side surface 24 of the outer member 20b on the outer side and the side surface 13 of the inner member 11 is stopped at a position where the total amount Δ of the thrust bearing clearances T on both sides is reached, and the clearance setting is completed.

この組立方法では、固定治具F、移動治具Gからなる隙間設定装置外で、外側の外方部材20b、内側の外方部材20a、内方部材11をセットし、仮固定することができる。そして、固定治具F、移動治具Gからなる隙間設定装置では隙間設定のみを行うので、作業性がよい。   In this assembling method, the outer member 20b on the outer side, the outer member 20a on the inner side, and the inner member 11 can be set and temporarily fixed outside the gap setting device including the fixing jig F and the moving jig G. . Since the gap setting device including the fixing jig F and the moving jig G performs only the gap setting, the workability is good.

以上のようにして、スラスト軸受隙間Tが設定され、外側の外方部材20bと内側の外方部材20aとが仮固定された状態で、図11に示すように、ノズル40により接着剤を外側の外方部材20bと内側の外方部材20aの嵌合部に注入する。外側の外方部材20bの円筒部20b1の端面の内周面22に面取り部28を設けているので、接着剤の注入がしやすい。その後、焼成して接着剤を固化する。嫌気性の接着剤など焼成を省略できる接着剤を用いてもよい。あるいは、先に接着剤を塗布してからスラスト軸受隙間Tを設定してもよい。いずれの場合でも、外側の外方部材20bと内側の外方部材20aとが仮固定されているので、設定されたスラスト軸受隙間Tを維持するための特殊な治具は不要であり、作業性が向上する。   As described above, with the thrust bearing gap T set and the outer member 20b on the outer side and the outer member 20a on the inner side being temporarily fixed, as shown in FIG. The outer member 20b and the inner outer member 20a are injected into the fitting portion. Since the chamfered portion 28 is provided on the inner peripheral surface 22 of the end surface of the cylindrical portion 20b1 of the outer member 20b on the outer side, it is easy to inject adhesive. Thereafter, the adhesive is solidified by baking. An adhesive that can omit firing, such as an anaerobic adhesive, may be used. Alternatively, the thrust bearing gap T may be set after first applying an adhesive. In any case, since the outer member 20b on the outer side and the outer member 20a on the inner side are temporarily fixed, a special jig for maintaining the set thrust bearing gap T is unnecessary, and workability is improved. Will improve.

組み立てられた内方部材11と外方部材20との間に、焼結金属製の内方部材11の内部気孔を含めて、潤滑油が注入される。その後、流体動圧軸受装置10の使用環境で想定される最高温度(上限)を超える設定温度まで加熱し、このときの熱膨張によりスラスト軸受隙間Tの内径側端部から溢れ出した潤滑油を拭き取る。その後、常温まで冷却することにより潤滑油が収縮し、油面が軸受内部側(外径側)に後退して、シール空間S1、S2に保持される。これにより、想定される温度範囲内であれば、熱膨張により潤滑油が漏れ出すことはない。以上により、流体動圧軸受装置10が完成する。   Lubricating oil is injected between the assembled inner member 11 and outer member 20 including the internal pores of the sintered metal inner member 11. After that, the fluid dynamic pressure bearing device 10 is heated to a set temperature exceeding the maximum temperature (upper limit) assumed in the usage environment, and the lubricating oil overflowing from the inner diameter side end portion of the thrust bearing gap T due to thermal expansion at this time Wipe off. Thereafter, by cooling to room temperature, the lubricating oil contracts, the oil surface moves backward to the bearing inner side (outer diameter side), and is held in the seal spaces S1 and S2. Thereby, if it is in the assumed temperature range, lubricating oil will not leak by thermal expansion. Thus, the fluid dynamic bearing device 10 is completed.

以上の実施形態では、動圧溝12a、13a、23a、24aをヘリングボーン形状で構成したが、スパイラル形状、ステップ形状、円弧形状など適宜の動圧溝で構成することができる。また、動圧溝12aを有するラジアル軸受面12Rを軸方向の複数個所に形成しても良い。   In the above embodiment, the dynamic pressure grooves 12a, 13a, 23a, and 24a are formed in a herringbone shape, but can be formed in appropriate dynamic pressure grooves such as a spiral shape, a step shape, and an arc shape. Moreover, you may form the radial bearing surface 12R which has the dynamic-pressure groove | channel 12a in several places of an axial direction.

1 ファンモータ
2 回転軸
3 ファン
10 流体動圧軸受装置
11 内方部材
11a 内周面
12a ラジアル用動圧溝
12R ラジアル軸受面
13a スラスト用動圧溝
13T スラスト軸受面
20 外方部材
20a 内側の外方部材
20b 外側の外方部材
23a スラスト用動圧溝
23T スラスト軸受面
24a スラスト用動圧溝
24T スラスト軸受面
29R ラジアル軸受面
R ラジアル軸受隙間
T スラスト軸受隙間
DESCRIPTION OF SYMBOLS 1 Fan motor 2 Rotating shaft 3 Fan 10 Fluid dynamic pressure bearing apparatus 11 Inner member 11a Inner peripheral surface 12a Radial dynamic pressure groove 12R Radial bearing surface 13a Thrust dynamic pressure groove 13T Thrust bearing surface 20 Outer member 20a Inside outside Outer member 23a Outer outer member 23a Thrust dynamic pressure groove 23T Thrust bearing surface 24a Thrust dynamic pressure groove 24T Thrust bearing surface 29R Radial bearing surface R Radial bearing gap T Thrust bearing gap

Claims (12)

ラジアル軸受面とその両端に形成したスラスト軸受面を備えた外方部材と、この外方部材の内側に配置され、前記ラジアル軸受面とスラスト軸受面のそれぞれに対向するラジアル軸受面とスラスト軸受面を備え、内周に軸との固定面を形成した内方部材とからなり、前記外方部材と内方部材のラジアル軸受面間にラジアル軸受隙間を形成すると共に対向する前記ラジアル軸受面のどちらか一方にラジアル動圧溝を形成し、かつ前記外方部材と内方部材のスラスト軸受面間にスラスト軸受隙間を形成すると共に対向する前記スラスト軸受面のどちらか一方にスラスト動圧溝を形成し、前記軸受隙間に潤滑油を介在させた流体動圧軸受装置において、
前記内方部材の少なくともラジアル軸受面とスラスト軸受面を形成する部分が焼結金属からなり、前記ラジアル軸受隙間とスラスト軸受隙間との間の空間が正圧に保たれていることを特徴とする流体動圧軸受装置。
An outer member having a radial bearing surface and thrust bearing surfaces formed at both ends thereof, and a radial bearing surface and a thrust bearing surface disposed inside the outer member and facing the radial bearing surface and the thrust bearing surface, respectively. A radial bearing gap is formed between the outer member and the radial bearing surface of the inner member, and the radial bearing surface is opposed to the radial bearing surface. A radial dynamic pressure groove is formed on one side, a thrust bearing gap is formed between the thrust bearing surfaces of the outer member and the inner member, and a thrust dynamic pressure groove is formed on one of the opposing thrust bearing surfaces. In the fluid dynamic pressure bearing device in which lubricating oil is interposed in the bearing gap,
A portion of the inner member that forms at least a radial bearing surface and a thrust bearing surface is made of sintered metal, and a space between the radial bearing gap and the thrust bearing gap is maintained at a positive pressure. Fluid dynamic bearing device.
前記外方部材が外側の外方部材と内側の外方部材の2つの部材からなり、当該2つの外方部材は、いずれも円筒部と半径方向部とが一体材料で形成されており、前記円筒部を嵌合して固定したことを特徴とする請求項1に記載の流体動圧軸受装置。   The outer member is composed of two members, an outer member on the outside and an outer member on the inner side. Both of the two outer members are formed of an integral material of a cylindrical portion and a radial portion, The fluid dynamic bearing device according to claim 1, wherein the cylindrical portion is fitted and fixed. 前記外方部材が板材のプレス加工により形成されていることを特徴とする請求項2に記載の流体動圧軸受装置。   The fluid dynamic bearing device according to claim 2, wherein the outer member is formed by pressing a plate material. 前記焼結金属を銅鉄系とし、銅の配合比率が10〜80%であることを特徴とする請求項1に記載の流体動圧軸受装置。   2. The fluid dynamic bearing device according to claim 1, wherein the sintered metal is copper-iron based, and a mixing ratio of copper is 10 to 80%. 前記焼結金属は、少なくともラジアル軸受面の表面開孔率が2〜20%であることを特徴とする請求項1又は請求項2に記載の流体動圧軸受装置。   The fluid dynamic pressure bearing device according to claim 1 or 2, wherein the sintered metal has a surface opening ratio of at least a radial bearing surface of 2 to 20%. 前記ラジアル動圧溝およびスラスト動圧溝が、内方部材のラジアル軸受面及びスラスト軸受面にそれぞれ形成されていること特徴とする請求項1〜5のいずれか1項に記載の流体動圧軸受装置。   The fluid dynamic pressure bearing according to any one of claims 1 to 5, wherein the radial dynamic pressure groove and the thrust dynamic pressure groove are respectively formed on a radial bearing surface and a thrust bearing surface of an inner member. apparatus. 前記スラスト動圧溝がポンプアウト型であることを特徴とする請求項1に記載の流体動圧軸受装置。   The fluid dynamic pressure bearing device according to claim 1, wherein the thrust dynamic pressure groove is a pump-out type. 前記ポンプアウト型のスラスト動圧溝がヘリングボーン形状であることを特徴とする請求項7に記載の流体動圧軸受装置。   The fluid dynamic pressure bearing device according to claim 7, wherein the pump-out type thrust dynamic pressure groove has a herringbone shape. 前記ラジアル軸受隙間とスラスト軸受隙間との間の空間に位置する前記内方部材の外表面部分に前記各軸受面よりも表面開孔率が大きな領域が設けられていることを特徴とする請求項1に記載の流体動圧軸受装置。   The region having a larger surface opening ratio than each bearing surface is provided in an outer surface portion of the inner member located in a space between the radial bearing gap and a thrust bearing gap. The fluid dynamic pressure bearing device according to 1. 前記内方部材のラジアル動圧溝およびスラスト動圧溝の少なくとも一方がプレス加工によって形成されたものであり、前記領域が前記プレス加工の加工面でないことを特徴とする請求項9に記載の流体動圧軸受装置。   10. The fluid according to claim 9, wherein at least one of a radial dynamic pressure groove and a thrust dynamic pressure groove of the inner member is formed by pressing, and the region is not a processing surface of the pressing. Hydrodynamic bearing device. 前記内方部材のラジアル動圧溝およびスラスト動圧溝の少なくとも一方が転造加工によって形成されたものであり、前記領域が前記転造加工の加工面でないことを特徴とする請求項9に記載の流体動圧軸受装置。   10. The radial dynamic pressure groove and the thrust dynamic pressure groove of the inner member are formed by rolling processing, and the region is not a processing surface of the rolling processing. Fluid dynamic bearing device. 前記内方部材のラジアル軸受面およびスラスト軸受面の少なくとも一方に封孔処理が施されていることを特徴とする請求項1〜11のいずれか1項に記載の流体動圧軸受装置。   The fluid dynamic bearing device according to any one of claims 1 to 11, wherein a sealing treatment is applied to at least one of a radial bearing surface and a thrust bearing surface of the inner member.
JP2011228720A 2011-02-01 2011-10-18 Fluid dynamic bearing device and manufacturing method thereof Expired - Fee Related JP5832849B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011228720A JP5832849B2 (en) 2011-02-01 2011-10-18 Fluid dynamic bearing device and manufacturing method thereof

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2011019589 2011-02-01
JP2011019589 2011-02-01
JP2011228720A JP5832849B2 (en) 2011-02-01 2011-10-18 Fluid dynamic bearing device and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2012177467A true JP2012177467A (en) 2012-09-13
JP5832849B2 JP5832849B2 (en) 2015-12-16

Family

ID=46979430

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011228720A Expired - Fee Related JP5832849B2 (en) 2011-02-01 2011-10-18 Fluid dynamic bearing device and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP5832849B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015055312A (en) * 2013-09-12 2015-03-23 Ntn株式会社 Fluid dynamic pressure bearing device, and inner member manufacturing method

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003083323A (en) * 2001-06-27 2003-03-19 Nippon Densan Corp Dynamic pressure bearing device and motor having this device
JP2003239950A (en) * 2002-02-15 2003-08-27 Seiko Instruments Inc Dynamic pressure bearing and motor
JP2006189081A (en) * 2005-01-05 2006-07-20 Ntn Corp Fluid bearing device
JP2008008368A (en) * 2006-06-28 2008-01-17 Ntn Corp Hydrodynamic bearing device
JP2011007336A (en) * 2010-09-07 2011-01-13 Ntn Corp Dynamic pressure bearing device and motor

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003083323A (en) * 2001-06-27 2003-03-19 Nippon Densan Corp Dynamic pressure bearing device and motor having this device
JP2003239950A (en) * 2002-02-15 2003-08-27 Seiko Instruments Inc Dynamic pressure bearing and motor
JP2006189081A (en) * 2005-01-05 2006-07-20 Ntn Corp Fluid bearing device
JP2008008368A (en) * 2006-06-28 2008-01-17 Ntn Corp Hydrodynamic bearing device
JP2011007336A (en) * 2010-09-07 2011-01-13 Ntn Corp Dynamic pressure bearing device and motor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015055312A (en) * 2013-09-12 2015-03-23 Ntn株式会社 Fluid dynamic pressure bearing device, and inner member manufacturing method

Also Published As

Publication number Publication date
JP5832849B2 (en) 2015-12-16

Similar Documents

Publication Publication Date Title
US7153030B2 (en) Rolling bearing system
JP5674495B2 (en) Fluid dynamic bearing device
WO2013190942A1 (en) Fluid dynamic bearing device and motor with same
JP2007247849A (en) Cylindrical roller bearing with aligning ring for agitator
EP3168489A1 (en) Ball bearing assembly
JP5528897B2 (en) Fluid dynamic bearing device and assembly method thereof
JP5832849B2 (en) Fluid dynamic bearing device and manufacturing method thereof
JP2014506984A (en) Rolling bearing with internal lubrication
EP3165783A1 (en) Bush assembly
WO2012043575A1 (en) Fluid dynamic bearing device and assembly method thereof
JP2009174603A (en) Roller bearing
JP2012042035A (en) Fluid dynamic bearing unit and assembly method for same
JP2006177542A (en) Spring foil bearing
JP6151488B2 (en) Fluid dynamic bearing device
JP7535865B2 (en) Fluid dynamic bearing device
JP6261922B2 (en) Fluid dynamic bearing device and method for manufacturing inner member
JP2012072816A (en) Fluid dynamic bearing device and assembly method thereof
CN208442161U (en) Angular contact retainer
JP2017187119A (en) Rolling bearing
JP2006292161A (en) Bearing unit and production method therefor
JP6087066B2 (en) Fluid dynamic bearing device and manufacturing method of fluid dynamic bearing device
JP6485014B2 (en) Rolling bearing
JP6502036B2 (en) Fluid dynamic bearing device and motor including the same
JP6981900B2 (en) Fluid dynamic bearing device and motor equipped with it
JP4745085B2 (en) Cylindrical roller bearing for transmission

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140926

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150724

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150728

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150916

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20151013

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20151028

R150 Certificate of patent or registration of utility model

Ref document number: 5832849

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees