JP6449059B2 - Sintered oil-impregnated bearing and manufacturing method thereof - Google Patents

Sintered oil-impregnated bearing and manufacturing method thereof Download PDF

Info

Publication number
JP6449059B2
JP6449059B2 JP2015053300A JP2015053300A JP6449059B2 JP 6449059 B2 JP6449059 B2 JP 6449059B2 JP 2015053300 A JP2015053300 A JP 2015053300A JP 2015053300 A JP2015053300 A JP 2015053300A JP 6449059 B2 JP6449059 B2 JP 6449059B2
Authority
JP
Japan
Prior art keywords
peripheral surface
sintered body
outer peripheral
sintered
oil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015053300A
Other languages
Japanese (ja)
Other versions
JP2016173135A (en
Inventor
山下 智典
智典 山下
容敬 伊藤
容敬 伊藤
貴嗣 山口
貴嗣 山口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NTN Corp
Original Assignee
NTN Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NTN Corp filed Critical NTN Corp
Priority to JP2015053300A priority Critical patent/JP6449059B2/en
Priority to PCT/JP2016/056931 priority patent/WO2016147925A1/en
Priority to DE112016001226.8T priority patent/DE112016001226T5/en
Priority to CN201680016166.XA priority patent/CN107407332B/en
Priority to US15/558,681 priority patent/US10697496B2/en
Publication of JP2016173135A publication Critical patent/JP2016173135A/en
Application granted granted Critical
Publication of JP6449059B2 publication Critical patent/JP6449059B2/en
Priority to US16/878,170 priority patent/US11454282B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、焼結含油軸受およびその製造方法に関する。   The present invention relates to a sintered oil-impregnated bearing and a method for manufacturing the same.

焼結含油軸受は、内周に挿入された軸との相対回転に伴い、内部に含浸された潤滑油が軸との摺動部に滲み出して油膜を形成し、この油膜によって軸を支持するものである。このような焼結含油軸受は、例えば、車両のウインドガラスを開閉するためのパワーウインド用動力伝達機構に組み込まれて使用される。   In the sintered oil-impregnated bearing, along with the relative rotation with the shaft inserted in the inner periphery, the lubricating oil impregnated inside exudes to the sliding portion with the shaft to form an oil film, and the oil film supports the shaft. Is. Such a sintered oil-impregnated bearing is used by being incorporated into a power transmission mechanism for a power window for opening and closing a window glass of a vehicle, for example.

パワーウインド用動力伝達機構は、例えば図12に示すように、モータ61と、モータ61で回転される軸62と、軸62に設けられたウォームギア63と、ウォームギア63と噛み合うホイールギア64とを主に備える。モータ61から軸62に入力された回転動力を、ウォームギア63を介してホイールギア64に減速した状態で伝達し、さらに図示しないウインドガラスの開閉機構へと伝達することで、ウインドガラスの開閉動作が行われる。軸62は、複数の軸受65を介して、ハウジング66に対して回転自在に支持されている。このような軸62を支持する軸受65として、焼結含油軸受が好適に使用される。   For example, as shown in FIG. 12, the power transmission mechanism for the power window mainly includes a motor 61, a shaft 62 rotated by the motor 61, a worm gear 63 provided on the shaft 62, and a wheel gear 64 that meshes with the worm gear 63. Prepare for. The rotational power input from the motor 61 to the shaft 62 is transmitted to the wheel gear 64 through the worm gear 63 in a decelerated state, and further transmitted to a window glass opening / closing mechanism (not shown), so that the window glass opening / closing operation is performed. Done. The shaft 62 is rotatably supported with respect to the housing 66 via a plurality of bearings 65. A sintered oil-impregnated bearing is preferably used as the bearing 65 that supports the shaft 62.

ところで、図12に示すような動力伝達機構においては、ウォームギア63とホイールギア64との噛み合いにより軸62の中間部に軸直交方向の荷重Fが加わるため、軸62にたわみが生じる。この場合、軸62が軸受65の中心軸に対して傾斜するため、軸62の外周面が軸受65の内周面(軸受面)の軸方向端部に局所的に摺動し、軸受面の摩耗や異常音の発生などの不具合が生じる恐れがある。   By the way, in the power transmission mechanism as shown in FIG. 12, since the load F in the direction perpendicular to the axis is applied to the intermediate portion of the shaft 62 due to the engagement between the worm gear 63 and the wheel gear 64, the shaft 62 is deflected. In this case, since the shaft 62 is inclined with respect to the central axis of the bearing 65, the outer peripheral surface of the shaft 62 locally slides on the axial end of the inner peripheral surface (bearing surface) of the bearing 65, and the bearing surface Problems such as wear and abnormal noise may occur.

例えば下記の特許文献1には、内周面に、円筒部(軸支部)と、円筒部の軸方向一方側に隣接して設けられ、軸方向一方側に向けて拡径したテーパ部(拡径部)とを有する焼結含油軸受が示されている。この焼結含油軸受によれば、軸にたわみが生じた場合、軸の外周面が焼結含油軸受の内周面のテーパ部で支持されるため、焼結含油軸受の内周面における応力集中が緩和される。   For example, in Patent Document 1 below, a cylindrical portion (axial support portion) is provided on the inner peripheral surface adjacent to one side in the axial direction of the cylindrical portion, and a tapered portion (expanded) toward one side in the axial direction. A sintered oil-impregnated bearing having a diameter) is shown. According to this sintered oil-impregnated bearing, when the shaft is deflected, the outer peripheral surface of the shaft is supported by the tapered portion of the inner peripheral surface of the sintered oil-impregnated bearing. Is alleviated.

また、上記の特許文献1では、テーパ部の密度を高めて表面開口率を小さくすることで、テーパ部から軸受の内部空孔への潤滑油の侵入を抑制し、これにより軸を支持する機能を高めている。焼結含油軸受の内周面(円筒部およびテーパ部)の密度の調整は、焼結工程後の矯正工程(サイジング工程)において圧縮を加減することにより行っている。   Moreover, in said patent document 1, by increasing the density of a taper part and making a surface opening ratio small, the penetration | invasion of the lubricating oil from a taper part to the internal hole of a bearing is suppressed, and the function which supports a shaft by this Is increasing. The density of the inner peripheral surface (cylindrical portion and tapered portion) of the sintered oil-impregnated bearing is adjusted by adjusting the compression in the correction step (sizing step) after the sintering step.

特公平8−19941号公報Japanese Patent Publication No. 8-19941

しかし、上記のように内周面のテーパ部の密度を高めるだけでは、軸の回転精度が十分に高められない場合がある。   However, the rotational accuracy of the shaft may not be sufficiently increased only by increasing the density of the tapered portion on the inner peripheral surface as described above.

以上のような問題は、焼結含油軸受を固定して軸が回転する場合だけでなく、軸を固定して焼結含油軸受が回転する場合にも同様に生じる。   The above problems occur not only when the sintered oil-impregnated bearing is fixed and the shaft rotates, but also when the shaft is fixed and the sintered oil-impregnated bearing rotates.

以上の事情に鑑み、本発明は、焼結含油軸受の内周に挿入される軸の相対回転精度を十分に高めることを目的とする。   In view of the above circumstances, an object of the present invention is to sufficiently increase the relative rotational accuracy of a shaft inserted into the inner periphery of a sintered oil-impregnated bearing.

上記の目的を達成するために、本発明は、筒状の焼結体からなり、内部空孔に潤滑油が含浸された焼結含油軸受であって、内周面に、円筒部と、該円筒部の軸方向一方側に隣接して設けられ、軸方向一方側へ向けて徐々に拡径し、前記円筒部よりも密度の高い拡径部とを有し、外周面のうち、前記拡径部の軸方向領域に、他の領域よりも密度の高い高密度部を設けた焼結含油軸受を提供する。   In order to achieve the above object, the present invention is a sintered oil-impregnated bearing comprising a cylindrical sintered body, in which internal pores are impregnated with lubricating oil, the inner peripheral surface having a cylindrical portion, The cylindrical portion is provided adjacent to one side in the axial direction, gradually increases in diameter toward one side in the axial direction, and has a larger diameter portion having a higher density than the cylindrical portion. A sintered oil-impregnated bearing is provided in which a high-density portion having a higher density than other regions is provided in an axial region of a diameter portion.

このように、本発明に係る焼結含油軸受では、内周面の拡径部を高密度化して表面開口率を小さくするだけでなく、焼結体のうち、拡径部の軸方向領域を外周側から高密度化した。これにより、拡径部の軸方向領域における焼結体の密度がさらに高められ、拡径部の表面開口から焼結体の内部に潤滑油がさらに侵入しにくくなるため、拡径部と軸との間に介在した油膜の圧力がより一層高められる。   Thus, in the sintered oil-impregnated bearing according to the present invention, not only the diameter-expanded portion of the inner peripheral surface is densified to reduce the surface opening ratio, but also the axial region of the diameter-expanded portion of the sintered body is reduced. The density was increased from the outer peripheral side. As a result, the density of the sintered body in the axial region of the enlarged diameter portion is further increased, and the lubricating oil is less likely to enter the inside of the sintered body from the surface opening of the enlarged diameter portion. The pressure of the oil film interposed between the two is further increased.

上記の焼結含油軸受は、例えば、原料粉末を圧縮成形して圧粉体を得るフォーミング工程と、前記圧粉体を焼結して焼結体を得る焼結工程と、前記焼結体を圧縮成形するサイジング工程と、前記焼結体の内部空孔に潤滑油を含浸させる含油工程とを有する焼結含油軸受の製造方法であって、前記サイジング工程で、前記焼結体の内周面に、円筒部と、該円筒部の軸方向一方側に隣接して設けられ、軸方向一方側へ向けて徐々に拡径し、前記円筒部よりも密度の高い拡径部とを成形すると共に、前記焼結体の外周面のうち、前記拡径部の軸方向領域に、他の領域よりも密度の高い高密度部を成形する焼結含油軸受の製造方法により製造することができる。   The sintered oil-impregnated bearing includes, for example, a forming step of compressing raw powder to obtain a green compact, a sintering step of sintering the green compact to obtain a sintered body, and the sintered body A method for producing a sintered oil-impregnated bearing comprising a sizing step for compression molding and an oil impregnation step for impregnating the internal pores of the sintered body with lubricating oil, wherein the inner peripheral surface of the sintered body in the sizing step And forming a cylindrical portion and a diameter-expanded portion which is provided adjacent to one side in the axial direction of the cylindrical portion and gradually increases in diameter toward one side in the axial direction and has a higher density than the cylindrical portion. The sintered oil-impregnated bearing can be manufactured by forming a high-density portion having a higher density than other regions in the axial region of the enlarged diameter portion of the outer peripheral surface of the sintered body.

以上のように、本発明によれば、焼結含油軸受の軸心に対して軸が傾斜した場合でも、焼結含油軸受の内周面の拡径部と軸との間の油膜が高い圧力で維持されるため、焼結含油軸受の拡径部による軸の支持機能が高められ、軸の相対回転精度を高めることができる。   As described above, according to the present invention, even when the shaft is inclined with respect to the axis of the sintered oil-impregnated bearing, the oil film between the enlarged diameter portion of the inner peripheral surface of the sintered oil-impregnated bearing and the shaft has a high pressure. Therefore, the function of supporting the shaft by the enlarged diameter portion of the sintered oil-impregnated bearing is enhanced, and the relative rotational accuracy of the shaft can be enhanced.

本発明の一実施形態に係る焼結含油軸受の断面図である。It is sectional drawing of the sintered oil-impregnated bearing which concerns on one Embodiment of this invention. 上段は扁平銅粉の側面図、下段は同平面図である。The upper part is a side view of the flat copper powder, and the lower part is a plan view. 上記焼結含油軸受の前駆体である圧粉体の断面図である。It is sectional drawing of the green compact which is a precursor of the said sintered oil-impregnated bearing. (a)〜(c)は、一次サイジング工程を示す断面図である。(A)-(c) is sectional drawing which shows a primary sizing process. (a)〜(c)は、二次サイジング工程を示す断面図である。(A)-(c) is sectional drawing which shows a secondary sizing process. 他の実施形態に係る焼結含油軸受の断面図である。It is sectional drawing of the sintered oil-impregnated bearing which concerns on other embodiment. 焼結含油軸受のハウジングへの固定方法の一例を示す断面図である。It is sectional drawing which shows an example of the fixing method to the housing of a sintered oil-impregnated bearing. 他の実施形態に係る圧粉体の断面図である。It is sectional drawing of the green compact which concerns on other embodiment. (a)及び(b)は、他の実施形態に係る一次サイジング工程を示す断面図である。(A) And (b) is sectional drawing which shows the primary sizing process which concerns on other embodiment. (a)及び(b)は、他の実施形態に係る二次サイジング工程を示す断面図である。(A) And (b) is sectional drawing which shows the secondary sizing process which concerns on other embodiment. 図9及び図10のサイジング工程を経て製造された焼結含油軸受の断面図である。It is sectional drawing of the sintered oil-impregnated bearing manufactured through the sizing process of FIG.9 and FIG.10. パワーウインド用動力伝達機構の断面図である。It is sectional drawing of the power transmission mechanism for power windows.

図1に、本発明の一実施形態に係る焼結含油軸受1を示す。この焼結含油軸受1は、例えば図12に示すパワーウインド用動力伝達機構の軸受65として組み込まれる。本実施形態では、軸62のうち、ウォームギア63の軸方向両側近傍を支持する一対の軸受65として、焼結含油軸受1を設ける場合について説明する。尚、以下の焼結含油軸受1の説明において、軸方向でウォームギア63側を「軸方向一方側」と言い、その反対側を「軸方向他方側」と言う。   FIG. 1 shows a sintered oil-impregnated bearing 1 according to an embodiment of the present invention. The sintered oil-impregnated bearing 1 is incorporated, for example, as a bearing 65 of a power transmission mechanism for a power window shown in FIG. In the present embodiment, a case where the sintered oil-impregnated bearing 1 is provided as a pair of bearings 65 that support the vicinity of both axial sides of the worm gear 63 in the shaft 62 will be described. In the description of the sintered oil-impregnated bearing 1 below, the worm gear 63 side in the axial direction is referred to as “one axial side”, and the opposite side is referred to as “the other axial direction”.

焼結含油軸受1は、筒状の焼結体からなり、内部空孔には潤滑油が含浸されている。焼結含油軸受1は、例えば、銅系、鉄系、あるいは銅鉄系の焼結体で構成され、本実施形態では銅および鉄を主成分とした銅鉄系の焼結体で構成される。   The sintered oil-impregnated bearing 1 is made of a cylindrical sintered body, and the internal holes are impregnated with lubricating oil. The sintered oil-impregnated bearing 1 is composed of, for example, a copper-based, iron-based, or copper-iron-based sintered body, and in this embodiment is composed of a copper-iron-based sintered body mainly composed of copper and iron. .

焼結含油軸受1は、略円筒状を成し、内周面に、円筒部2と、円筒部2の軸方向一方側(図中右側)に隣接して設けられ、軸方向一方側へ向けて徐々に拡径した拡径部とを有する。図示例では、円筒部2の軸方向一方側に、拡径部としての第1テーパ部3が設けられる。円筒部2の軸方向他方側(図中左側)には、軸方向他方側に向けて徐々に拡径した他の拡径部としての第2テーパ部4が設けられる。第1テーパ部3および第2テーパ部4は、軸方向に対して同じ角度で傾斜し、その傾斜角度は例えば1〜3°(好ましくは1〜2°)とされる。尚、図1では、両テーパ部3,4の傾斜角度を誇張して示している。図示例では、両テーパ部3,4の軸方向寸法が等しい。   The sintered oil-impregnated bearing 1 has a substantially cylindrical shape, and is provided on the inner peripheral surface adjacent to the cylindrical portion 2 and one axial side (right side in the drawing) of the cylindrical portion 2, toward the one axial side. And a diameter-expanded portion that gradually increases in diameter. In the illustrated example, a first tapered portion 3 as a diameter-expanded portion is provided on one side in the axial direction of the cylindrical portion 2. On the other axial side of the cylindrical portion 2 (left side in the figure), a second tapered portion 4 is provided as another diameter-expanded portion that gradually increases in diameter toward the other axial direction. The 1st taper part 3 and the 2nd taper part 4 incline at the same angle with respect to an axial direction, The inclination angle shall be 1-3 degrees (preferably 1-2 degrees), for example. In FIG. 1, the inclination angles of the two taper portions 3 and 4 are exaggerated. In the illustrated example, both taper portions 3 and 4 have the same axial dimension.

円筒部2は、軸62を支持する軸受面として機能する。第1テーパ部3は、ウォームギア63がウォームホイール64から受ける力F(図12参照)により軸62が撓んだときに、軸62を支持する軸受面として機能する。第2テーパ部3は、軸62の状態に関わらず軸受面として機能しない(すなわち、第2テーパ部3と軸62とが摺動することはない)。焼結含油軸受1の内周面は、第1テーパ部3、円筒部2、第2テーパ部4の順に密度が高くなっており、すなわち、この順に表面開口率が小さくなっている。   The cylindrical portion 2 functions as a bearing surface that supports the shaft 62. The first taper portion 3 functions as a bearing surface that supports the shaft 62 when the shaft 62 is bent by the force F (see FIG. 12) that the worm gear 63 receives from the worm wheel 64. The second taper portion 3 does not function as a bearing surface regardless of the state of the shaft 62 (that is, the second taper portion 3 and the shaft 62 do not slide). The inner peripheral surface of the sintered oil-impregnated bearing 1 has a higher density in the order of the first taper portion 3, the cylindrical portion 2, and the second taper portion 4, that is, the surface aperture ratio decreases in this order.

焼結含油軸受1の外周面には、低密度部と、低密度部よりも密度の高い高密度部とが設けられる。本実施形態では、焼結含油軸受1の外周面に、低密度部として外周円筒部5が設けられると共に、外周円筒部5の軸方向一方側に、高密度部として、外周円筒部5よりも小径な小径部が設けられる。図示例では、焼結含油軸受1の外周面の軸方向一方側の端部に、小径部として、軸方向一方側に向けて徐々に縮径した外周テーパ部6が設けられる。   The outer peripheral surface of the sintered oil-impregnated bearing 1 is provided with a low density portion and a high density portion having a higher density than the low density portion. In the present embodiment, the outer peripheral cylindrical portion 5 is provided as a low density portion on the outer peripheral surface of the sintered oil-impregnated bearing 1, and on the one side in the axial direction of the outer peripheral cylindrical portion 5 as a high density portion than the outer peripheral cylindrical portion 5. A small diameter portion is provided. In the illustrated example, an outer peripheral taper portion 6 that is gradually reduced in diameter toward one side in the axial direction is provided as a small diameter portion at the end on one side in the axial direction of the outer peripheral surface of the sintered oil-impregnated bearing 1.

外周テーパ部6は、内周面の第1テーパ部4の軸方向領域に設けられる。図示例では、第1テーパ部4の軸方向領域全域にわたって、外周テーパ部6が設けられる。具体的には、第1テーパ部4と同じ軸方向領域に外周テーパ部6が設けられる。第1テーパ部4及び外周テーパ部6の軸方向一端は何れも面取り部7まで達しており、第1テーパ部4及び外周テーパ部6の軸方向他端は同じ軸方向位置に配されている。外周テーパ部6の軸方向に対する傾斜角度は、内周面のテーパ部3,4の傾斜角度よりも大きく、例えば5〜20°(好ましくは10〜15°)とされる。尚、外周テーパ部6の構成は上記に限らず、例えば、外周テーパ部6の軸方向他端を、第1テーパ部4の軸方向他端よりも軸方向他端側まで延ばしてもよい。   The outer periphery taper part 6 is provided in the axial direction area | region of the 1st taper part 4 of an internal peripheral surface. In the illustrated example, the outer peripheral taper portion 6 is provided over the entire region in the axial direction of the first taper portion 4. Specifically, the outer peripheral taper portion 6 is provided in the same axial region as the first taper portion 4. One end in the axial direction of the first taper portion 4 and the outer peripheral taper portion 6 both reaches the chamfered portion 7, and the other end in the axial direction of the first taper portion 4 and the outer peripheral taper portion 6 is arranged at the same axial position. . The inclination angle of the outer peripheral taper portion 6 with respect to the axial direction is larger than the inclination angle of the taper portions 3 and 4 on the inner peripheral surface, for example, 5 to 20 ° (preferably 10 to 15 °). The configuration of the outer peripheral taper portion 6 is not limited to the above, and for example, the other end in the axial direction of the outer peripheral taper portion 6 may be extended from the other end in the axial direction of the first taper portion 4 to the other end in the axial direction.

焼結含油軸受1の内周面および外周面の軸方向両端には、面取り部7が設けられる。具体的には、軸方向一方の端面8と、第1テーパ部3および外周テーパ部6との間に、それぞれ面取り部7が設けられる。また、軸方向他方の端面8と、第2テーパ部4および外周面の外周円筒部5との間に、それぞれ面取り部7が設けられる。各面取り部7は、第1テーパ部3、第2テーパ部4、および外周テーパ部6よりも軸方向に対する傾斜角度が大きいテーパ面とされ、図示例では軸方向に対しておよそ45°傾斜したテーパ面とされる。尚、図示例では、第1テーパ部3、第2テーパ部4、および外周テーパ部6の傾斜角度を誇張しているため、各面取り部7の半径方向寸法が、各テーパ部3,4,6の半径方向寸法と同等かそれよりも小さく示されているが、実際には、各面取り部7の半径方向寸法が各テーパ部3,4,6の半径方向寸法よりも大きくなっている。   Chamfered portions 7 are provided at both axial ends of the inner and outer peripheral surfaces of the sintered oil-impregnated bearing 1. Specifically, a chamfered portion 7 is provided between one end surface 8 in the axial direction and the first tapered portion 3 and the outer peripheral tapered portion 6. Further, chamfered portions 7 are provided between the other end surface 8 in the axial direction and the second tapered portion 4 and the outer peripheral cylindrical portion 5 of the outer peripheral surface. Each of the chamfered portions 7 is a tapered surface having a larger inclination angle with respect to the axial direction than the first tapered portion 3, the second tapered portion 4, and the outer peripheral tapered portion 6, and is inclined approximately 45 ° with respect to the axial direction in the illustrated example. It is a tapered surface. In the illustrated example, since the inclination angles of the first taper portion 3, the second taper portion 4, and the outer peripheral taper portion 6 are exaggerated, the radial direction dimensions of the chamfered portions 7 are the taper portions 3, 4, 4. 6, the radial dimension of each chamfered portion 7 is actually larger than the radial dimension of each tapered portion 3, 4, 6.

上記構成の焼結含油軸受1は、混合工程、フォーミング工程、焼結工程、サイジング工程、含油工程を経て製造される。以下、各工程を詳しく説明する。   The sintered oil-impregnated bearing 1 having the above-described configuration is manufactured through a mixing process, a forming process, a sintering process, a sizing process, and an oil-impregnating process. Hereinafter, each process will be described in detail.

[混合工程]
混合工程では、主原料粉、低融点金属粉、および固体潤滑剤粉を混合機で混合して、原料粉末を作成する。原料粉末には、必要に応じて各種成形助剤、例えば離型性向上のための潤滑剤(金属セッケン等)が添加される。
[Mixing process]
In the mixing step, the raw material powder is prepared by mixing the main raw material powder, the low melting point metal powder, and the solid lubricant powder with a mixer. If necessary, various molding aids such as a lubricant (metal soap or the like) for improving mold release properties are added to the raw material powder.

主原料粉は、銅および鉄を含む金属粉末であり、本実施形態では、主原料粉として、銅および鉄を含む部分拡散合金粉、および扁平銅粉が使用される。部分拡散合金粉としては、例えば、鉄粉(あるいは鉄合金粉)の表面に銅を拡散付着させたFe−Cu部分拡散合金粉が使用される。扁平銅粉は、水アトマイズ粉等からなる原料銅粉を搗砕(Stamping)することで扁平化させたものである。扁平銅粉としては、各粒子の長さLが20〜80μm、厚さtが0.5〜1.5μm(アスペクト比L/t=13.3〜160)のものが主に用いられる。ここで言う「長さ」および「厚さ」は、図2に示すように扁平銅粉の各粒子15の幾何学的な最大寸法を言う。扁平銅粉の見かけ密度は1.0g/cm以下とする。扁平銅粉には、原料粉末に混合する前に、予め流体潤滑剤を付着させておくことが好ましい。流体潤滑剤としては、脂肪酸、特に直鎖飽和脂肪酸、具体的にはステアリン酸を使用することができる。尚、主原料粉は上記に限らず、例えば銅粉(純銅粉あるいは銅合金粉)および鉄粉(純鉄粉あるいは鉄合金粉)を使用することもできる。 The main raw material powder is a metal powder containing copper and iron. In this embodiment, a partial diffusion alloy powder containing copper and iron and a flat copper powder are used as the main raw material powder. As the partial diffusion alloy powder, for example, Fe—Cu partial diffusion alloy powder in which copper is diffused and adhered to the surface of iron powder (or iron alloy powder) is used. The flat copper powder is flattened by stamping raw material copper powder made of water atomized powder or the like. As the flat copper powder, those having a length L of 20 to 80 μm and a thickness t of 0.5 to 1.5 μm (aspect ratio L / t = 13.3 to 160) are mainly used. Here, “length” and “thickness” refer to the geometric maximum dimension of each particle 15 of the flat copper powder as shown in FIG. The apparent density of the flat copper powder is 1.0 g / cm 3 or less. It is preferable to apply a fluid lubricant to the flat copper powder in advance before mixing with the raw material powder. As the fluid lubricant, fatty acids, particularly linear saturated fatty acids, specifically stearic acid can be used. The main raw material powder is not limited to the above, and for example, copper powder (pure copper powder or copper alloy powder) and iron powder (pure iron powder or iron alloy powder) can also be used.

低融点金属粉は、焼結温度よりも融点の低い金属粉であり、例えば錫、亜鉛、リン等の粉末が使用される。これら低融点金属粉は、銅に対して高い濡れ性を持つ。焼結時には、まず低融点金属(例えば錫)が溶融して銅の表面を濡らして銅−錫合金層を形成する。そして、隣接する部分拡散合金粉の銅−錫合金層同士が拡散接合することで、部分拡散合金粉同士の結合強度が強化される。   The low melting point metal powder is a metal powder having a melting point lower than the sintering temperature, and for example, a powder of tin, zinc, phosphorus or the like is used. These low melting point metal powders have high wettability with respect to copper. At the time of sintering, a low melting point metal (for example, tin) is first melted to wet the surface of copper to form a copper-tin alloy layer. And the bonding strength of the partial diffusion alloy powders is strengthened by the diffusion bonding of the copper-tin alloy layers of the adjacent partial diffusion alloy powders.

固体潤滑剤粉は、軸62との摩擦低減のために添加され、例えば黒鉛粉が使用される。黒鉛粉としては、人造黒鉛粉や天然黒鉛粉を使用することができる。   The solid lubricant powder is added to reduce friction with the shaft 62. For example, graphite powder is used. As graphite powder, artificial graphite powder or natural graphite powder can be used.

上記原料粉末における各粉末の配合比は、例えば、Fe−Cu部分拡散合金粉を75〜90wt%、扁平銅粉を8〜20wt%、錫粉を0.8〜6.0wt%、黒鉛粉を0.5〜2.0wt%とされる。   The blending ratio of each powder in the raw material powder is, for example, 75 to 90 wt% for Fe-Cu partial diffusion alloy powder, 8 to 20 wt% for flat copper powder, 0.8 to 6.0 wt% for tin powder, and graphite powder. 0.5 to 2.0 wt%.

[フォーミング工程]
フォーミング工程では、原料粉末をフォーミング金型(図示省略)に充填して圧縮することで、図3に示す圧粉体20が成形される。圧粉体20の内周面21および外周面22は、軸方向全域にわたってストレートな円筒面状に形成される。圧粉体20の内周面21と両端面23,24との間、および外周面22と両端面23,24との間には、それぞれ面取り部25が形成される。
[Forming process]
In the forming step, the green compact shown in FIG. 3 is formed by filling the raw material powder into a forming mold (not shown) and compressing it. The inner peripheral surface 21 and the outer peripheral surface 22 of the green compact 20 are formed in a straight cylindrical surface over the entire axial direction. A chamfer 25 is formed between the inner peripheral surface 21 and both end surfaces 23 and 24 of the green compact 20 and between the outer peripheral surface 22 and both end surfaces 23 and 24.

本実施形態では、原料粉末に扁平銅粉が含まれているため、フォーミング金型に原料粉末を充填する際や、原料粉末をフォーミング金型で圧縮する際に、フォーミング金型の成形面に扁平銅粉が付着する。このため、圧粉体20の表面には、扁平銅粉が多く露出している。扁平銅粉は、各粒子の厚さ直交方向が圧粉体20の表面に沿うように配される。このように、圧粉体20の表面に銅を偏在させることで、焼結含油軸受1の軸62と摺動し得る部分(軸受面)において、銅の面積比を最大にすることができるため、軸62との摺動性を高めることができる。   In this embodiment, since the raw material powder contains flat copper powder, when the raw material powder is filled into the forming mold or when the raw material powder is compressed by the forming mold, the forming surface of the forming mold is flattened. Copper powder adheres. For this reason, a lot of flat copper powder is exposed on the surface of the green compact 20. The flat copper powder is arranged so that the thickness orthogonal direction of each particle is along the surface of the green compact 20. As described above, since the copper is unevenly distributed on the surface of the green compact 20, the area ratio of copper can be maximized in the portion (bearing surface) that can slide with the shaft 62 of the sintered oil-impregnated bearing 1. The slidability with the shaft 62 can be improved.

[焼結工程]
焼結工程では、圧粉体20を焼結炉で焼結することにより、焼結体30が得られる。焼結温度は、主原料粉の融点(本実施形態では銅の融点)よりも低く、低融点金属粉の融点(本実施形態では錫の融点)よりも高い温度とされ、例えば820〜900°とされる。
[Sintering process]
In the sintering step, the sintered compact 30 is obtained by sintering the green compact 20 in a sintering furnace. The sintering temperature is lower than the melting point of the main raw material powder (the melting point of copper in this embodiment) and higher than the melting point of the low melting point metal powder (the melting point of tin in this embodiment), for example, 820 to 900 °. It is said.

[サイジング工程]
サイジング工程では、焼結体30を圧縮することで所定の形状に成形する。本実施形態では、サイジング工程として、一次サイジング工程と二次サイジング工程が施される。尚、サイジング工程を説明する図では、焼結体及びサイジング金型の左半分のみを示している。また、焼結体に設けられた面取り部の図示を省略している。
[Sizing process]
In the sizing process, the sintered body 30 is compressed into a predetermined shape. In this embodiment, a primary sizing process and a secondary sizing process are performed as the sizing process. In addition, in the figure explaining a sizing process, only the left half of a sintered compact and a sizing metal mold | die is shown. Further, illustration of a chamfered portion provided in the sintered body is omitted.

一次サイジング工程では、焼結体30の内周面を圧縮して第2テーパ部4を成形すると共に、焼結体30の外周面を圧縮して外周テーパ部6を成形する。この工程で使用される一次サイジング金型40は、図4に示すように、ダイ41、コア42、上パンチ43、および下パンチ44を有する。ダイ41は、内周面に円筒面41a1を有する上ダイ41aと、内周面に下方へ向けて縮径したテーパ面41b1を有する下ダイ41bとを有する。コア42は、下方へ向けて縮径したテーパ部42aと、テーパ部42aの下方に設けられた円筒部42bとを有する。   In the primary sizing step, the inner peripheral surface of the sintered body 30 is compressed to form the second tapered portion 4, and the outer peripheral surface of the sintered body 30 is compressed to form the outer peripheral tapered portion 6. As shown in FIG. 4, the primary sizing mold 40 used in this step has a die 41, a core 42, an upper punch 43, and a lower punch 44. The die 41 has an upper die 41a having a cylindrical surface 41a1 on the inner peripheral surface, and a lower die 41b having a tapered surface 41b1 having a diameter reduced downward on the inner peripheral surface. The core 42 includes a tapered portion 42a that has a diameter reduced downward, and a cylindrical portion 42b that is provided below the tapered portion 42a.

具体的には、まず、焼結体30の内周にコア42の円筒部42bを挿入する{図4(a)参照}。円筒部42bの外径は、焼結体30の内径よりも僅かに小さくなっており、両者は半径方向の隙間を介して嵌合する。この状態で焼結体30を降下させて、上ダイ41aの内周に挿入する。このとき、焼結体30の外周面と上ダイ41aの円筒面41a1とは、半径方向隙間を介して嵌合している。焼結体30の外周面と上ダイ41aの円筒面41a1との間の半径方向隙間は、焼結体30の内周面とコア42の円筒部42bとの間の半径方向隙間よりも小さい。   Specifically, first, the cylindrical portion 42b of the core 42 is inserted into the inner periphery of the sintered body 30 {see FIG. 4 (a)}. The outer diameter of the cylindrical portion 42b is slightly smaller than the inner diameter of the sintered body 30, and both are fitted through a radial gap. In this state, the sintered body 30 is lowered and inserted into the inner periphery of the upper die 41a. At this time, the outer peripheral surface of the sintered body 30 and the cylindrical surface 41a1 of the upper die 41a are fitted via a radial clearance. The radial gap between the outer peripheral surface of the sintered body 30 and the cylindrical surface 41a1 of the upper die 41a is smaller than the radial gap between the inner peripheral surface of the sintered body 30 and the cylindrical portion 42b of the core 42.

その後、さらに焼結体30を降下させて、焼結体30の下端を下ダイ41bの内周に押し込む{図4(b)参照}。これにより、下ダイ41bの形状が焼結体30の外周面に転写されて、焼結体30の外周面の下端に外周テーパ部6が成形される。こうして焼結体30の外周面に外周テーパ部6が成形されたら、焼結体30の降下を停止する。その後、上パンチ43を僅かに降下させて焼結体30を軸方向に圧縮することで、焼結体30の外周面を拡径させ、焼結体30の外周面を上ダイ41aの内周面41a1に密着させる。このとき、焼結体30の内周面が縮径するが、焼結体30の内周面はコア42の円筒部42aに接触させないことが好ましい。   Thereafter, the sintered body 30 is further lowered, and the lower end of the sintered body 30 is pushed into the inner periphery of the lower die 41b {see FIG. 4B}. As a result, the shape of the lower die 41 b is transferred to the outer peripheral surface of the sintered body 30, and the outer peripheral taper portion 6 is formed at the lower end of the outer peripheral surface of the sintered body 30. When the outer peripheral tapered portion 6 is formed on the outer peripheral surface of the sintered body 30 in this way, the lowering of the sintered body 30 is stopped. Thereafter, the upper punch 43 is slightly lowered to compress the sintered body 30 in the axial direction, thereby expanding the outer peripheral surface of the sintered body 30, and the outer peripheral surface of the sintered body 30 is made the inner periphery of the upper die 41 a. The surface 41a1 is closely attached. At this time, the inner peripheral surface of the sintered body 30 is reduced in diameter, but the inner peripheral surface of the sintered body 30 is preferably not in contact with the cylindrical portion 42 a of the core 42.

その後、コア42を降下させて、コア42のテーパ部42aを焼結体30の内周に押し込む{図4(c)参照}。これにより、コア42のテーパ部42aの形状が焼結体30の内周面に転写されて、焼結体30の内周面の上端に第2テーパ部4が成形される。こうして一次サイジング金型40で焼結体30を成形している間、焼結体30の内周面とコア42の円筒部42bの外周面との間には、半径方向隙間が維持される。すなわち、一次サイジング工程では、焼結体30の内周面のうち、第2テーパ部4を除く領域は、コア42で成形されない。   Thereafter, the core 42 is lowered and the taper portion 42a of the core 42 is pushed into the inner periphery of the sintered body 30 (see FIG. 4C). As a result, the shape of the tapered portion 42 a of the core 42 is transferred to the inner peripheral surface of the sintered body 30, and the second tapered portion 4 is formed on the upper end of the inner peripheral surface of the sintered body 30. In this way, while the sintered body 30 is being molded with the primary sizing mold 40, a radial gap is maintained between the inner peripheral surface of the sintered body 30 and the outer peripheral surface of the cylindrical portion 42 b of the core 42. That is, in the primary sizing process, the region excluding the second taper portion 4 in the inner peripheral surface of the sintered body 30 is not formed by the core 42.

このように、一次サイジング工程では、焼結体30がダイ41、コア42、上下パンチ43,44で圧縮されることにより、焼結体30の密度が高められる。特に、焼結体30の外周面のうち、外周テーパ部6は、外周面の他の領域(円筒領域)よりも半径方向の圧縮量が大きくなるため、外周面の他の領域よりも密度が高くなる。また、焼結体30の内周面のうち、第2テーパ部4は、他の領域よりも半径方向の圧縮量が大きくなるため、内周面の他の領域(円筒領域)よりも密度が高くなる。尚、外周テーパ部6の軸方向に対する傾斜角度は、第2テーパ部4の軸方向に対する傾斜角度よりも大きいため、外周テーパ部6は、第2テーパ部4よりも一次サイジングによる圧縮量が大きく、従って第2テーパ部4よりも密度が高い。   Thus, in the primary sizing process, the sintered body 30 is compressed by the die 41, the core 42, and the upper and lower punches 43 and 44, whereby the density of the sintered body 30 is increased. In particular, in the outer peripheral surface of the sintered body 30, the outer peripheral tapered portion 6 has a larger amount of compression in the radial direction than the other region (cylindrical region) of the outer peripheral surface, and therefore has a density higher than that of the other region of the outer peripheral surface. Get higher. Moreover, since the amount of compression in the radial direction of the second taper portion 4 in the inner peripheral surface of the sintered body 30 is larger than that in other regions, the density is higher than that in other regions (cylindrical regions) of the inner peripheral surface. Get higher. In addition, since the inclination angle with respect to the axial direction of the outer periphery taper part 6 is larger than the inclination angle with respect to the axial direction of the 2nd taper part 4, the outer periphery taper part 6 has a larger compression amount by primary sizing than the 2nd taper part 4. Therefore, the density is higher than that of the second taper portion 4.

以上より、一次サイジングを経た焼結体30の表面の密度は、外周テーパ部6、第2テーパ部4、外周面及び内周面の円筒領域の順に小さくなる。また、焼結体30の表面開口率は、外周テーパ部6、第2テーパ部4、外周面及び内周面の円筒領域の順に大きくなる。   As described above, the density of the surface of the sintered body 30 that has undergone the primary sizing decreases in the order of the outer peripheral tapered portion 6, the second tapered portion 4, the outer peripheral surface, and the cylindrical region of the inner peripheral surface. Moreover, the surface aperture ratio of the sintered compact 30 becomes large in order of the outer peripheral taper part 6, the 2nd taper part 4, the outer peripheral surface, and the cylindrical area | region of an internal peripheral surface.

二次サイジング工程では、一次サイジング工程を経た焼結体30の内周面に円筒部2および第1テーパ部3を成形すると共に、焼結体30の外周面に外周円筒部5を成形する。この工程で使用される二次サイジング金型50は、図5に示すように、ダイ51、コア52、上パンチ53、および下パンチ54を有する。ダイ51の内周面は、ストレートな円筒面状とされる。コア52は、下方に向けて縮径したテーパ部52aと、テーパ部の下方に設けられた円筒部52bとを有する。   In the secondary sizing step, the cylindrical portion 2 and the first tapered portion 3 are formed on the inner peripheral surface of the sintered body 30 that has undergone the primary sizing step, and the outer peripheral cylindrical portion 5 is formed on the outer peripheral surface of the sintered body 30. The secondary sizing die 50 used in this step has a die 51, a core 52, an upper punch 53, and a lower punch 54 as shown in FIG. The inner peripheral surface of the die 51 is a straight cylindrical surface. The core 52 has a tapered portion 52a having a diameter reduced downward and a cylindrical portion 52b provided below the tapered portion.

具体的には、まず、焼結体30を二次サイジング金型50の下パンチ54の上に載置する{図5(a)参照}。このとき、焼結体30は、一次サイジング工程で内周面に成形された第2テーパ部4が下方となるように配される。すなわち、焼結体30は、一次サイジング金型に配した状態とは上下反転させた状態で、二次サイジング金型に配される。そして、焼結体30の内周にコア52の円筒部52bを圧入する。これにより、焼結体30の円筒領域(後に第1テーパ部3となる領域を含む)が圧縮成形されて、密度が高くなる。また、このとき、焼結体30の円筒領域が、コア52の円筒部52bの外周面と圧接しながら摺動するため、この円筒領域の表面が目潰しされた状態となる。こうしてコア52の円筒部52bで成形された焼結体30の内周面の円筒領域の一部が、円筒部2となる。   Specifically, first, the sintered body 30 is placed on the lower punch 54 of the secondary sizing mold 50 {see FIG. 5A}. At this time, the sintered body 30 is disposed such that the second tapered portion 4 formed on the inner peripheral surface in the primary sizing step is downward. That is, the sintered body 30 is disposed in the secondary sizing mold in a state where the sintered body 30 is turned upside down from the state disposed in the primary sizing mold. Then, the cylindrical portion 52 b of the core 52 is press-fitted into the inner periphery of the sintered body 30. Thereby, the cylindrical area | region (including the area | region used as the 1st taper part 3 later) of the sintered compact 30 is compression-molded, and a density becomes high. At this time, the cylindrical region of the sintered body 30 slides while being in pressure contact with the outer peripheral surface of the cylindrical portion 52b of the core 52, so that the surface of the cylindrical region is crushed. A part of the cylindrical region on the inner peripheral surface of the sintered body 30 formed by the cylindrical portion 52 b of the core 52 in this manner becomes the cylindrical portion 2.

その後、焼結体30を降下させて、ダイ51の内周に圧入する{図5(b)参照}。これにより、焼結体30の外周面のうち、外周テーパ部6を除く円筒領域が、ダイ51の内周面で圧縮成形されて密度が高くなると共に、ダイ51の内周面と圧接しながら摺動することで表面が目潰しされた状態となる。このとき、焼結体30の外周面とダイ51の内周面との圧入代(一次サイジングを施した焼結体30の外径とダイ51の内径との径差)は、焼結体30の内周面とコア52の円筒部52bとの圧入代(一次サイジングを施した焼結体30の内径とコア52の円筒部52bの外径との径差)よりも大きい。尚、焼結体30をダイ51の内周に圧入した後、上下パンチ53,54で焼結体30をさらに軸方向に圧縮して、焼結体30のさらなる高密度化を図ることもできる。   Thereafter, the sintered body 30 is lowered and press-fitted into the inner periphery of the die 51 {see FIG. 5B}. Thereby, the cylindrical region excluding the outer peripheral taper portion 6 in the outer peripheral surface of the sintered body 30 is compression-molded on the inner peripheral surface of the die 51 to increase the density and press-contact with the inner peripheral surface of the die 51. The surface is crushed by sliding. At this time, the press-fitting allowance between the outer peripheral surface of the sintered body 30 and the inner peripheral surface of the die 51 (the difference in diameter between the outer diameter of the sintered body 30 subjected to primary sizing and the inner diameter of the die 51) is the sintered body 30. Is larger than the press-fitting allowance (the difference in diameter between the inner diameter of the sintered body 30 subjected to the primary sizing and the outer diameter of the cylindrical portion 52b of the core 52). In addition, after press-fitting the sintered body 30 into the inner periphery of the die 51, the sintered body 30 can be further compressed in the axial direction by the upper and lower punches 53 and 54, so that the sintered body 30 can be further densified. .

その後、焼結体30の内周にコア52のテーパ部52aを押し込む{図5(c)参照}。これにより、コア52のテーパ部52aの形状が焼結体30の内周面に転写され、第1テーパ部3が成形される。こうして、第1テーパ部3がコア52のテーパ部52aで圧縮成形されることで、第1テーパ部3の密度がさらに高められる。以上により、焼結体30が所定形状(図1の焼結含油軸受1と同形状)に成形される。   Then, the taper part 52a of the core 52 is pushed into the inner periphery of the sintered body 30 {see FIG. 5C}. Thereby, the shape of the taper part 52a of the core 52 is transcribe | transferred to the internal peripheral surface of the sintered compact 30, and the 1st taper part 3 is shape | molded. Thus, the density of the first taper portion 3 is further increased by the compression molding of the first taper portion 3 by the taper portion 52 a of the core 52. Thus, the sintered body 30 is formed into a predetermined shape (the same shape as the sintered oil-impregnated bearing 1 in FIG. 1).

このように、サイジング工程では、焼結体30がサイジング金型で圧縮成形される。具体的に、焼結体30の内周面のうち、第2テーパ部4は、一次サイジング工程のコア42のテーパ部42aによる圧縮成形のみが施される。焼結体30の内周面の円筒部2は、二次サイジング工程のコア52の円筒部52bの圧入による圧縮成形及び目潰しが施される。焼結体30の内周面の第1テーパ部3は、二次サイジング工程のコア52の円筒部52bの圧入による圧縮成形及び目潰しと、コア52のテーパ部52aによる圧縮成形が施される。従って、焼結体30の内周面の表面開口率は、第2テーパ部4、円筒部2、第1テーパ部3の順に小さくなる。また、第1テーパ部3の密度は、円筒部2の密度よりも高くなっている。本実施形態では、第2テーパ部4、円筒部2、第1テーパ部3の順に密度が高くなる。   Thus, in the sizing process, the sintered body 30 is compression-molded with the sizing mold. Specifically, of the inner peripheral surface of the sintered body 30, the second taper portion 4 is subjected only to compression molding by the taper portion 42 a of the core 42 in the primary sizing process. The cylindrical portion 2 on the inner peripheral surface of the sintered body 30 is subjected to compression molding and crushing by press-fitting the cylindrical portion 52b of the core 52 in the secondary sizing process. The first taper portion 3 on the inner peripheral surface of the sintered body 30 is subjected to compression molding and crushing by press-fitting the cylindrical portion 52b of the core 52 in the secondary sizing process, and compression molding by the taper portion 52a of the core 52. Accordingly, the surface opening ratio of the inner peripheral surface of the sintered body 30 decreases in the order of the second taper portion 4, the cylindrical portion 2, and the first taper portion 3. Further, the density of the first taper portion 3 is higher than the density of the cylindrical portion 2. In the present embodiment, the density increases in the order of the second tapered portion 4, the cylindrical portion 2, and the first tapered portion 3.

また、焼結体30の外周テーパ部6は、一次サイジング工程の下ダイ41bのテーパ面41b1による圧縮成形のみが施される。焼結体30の外周円筒部5は、二次サイジング工程のダイ51への圧入による圧縮成形及び目潰しが施される。このとき、焼結体30の円筒面状外周面に外周テーパ部6を成形する際の圧縮量は、焼結体30をダイ52に圧入する際の圧縮量よりも大きいため、外周テーパ部6の密度は外周円筒部5の密度よりも高い。また、外周テーパ部6及び外周円筒部5の表面開口率は、焼結体30の外周面の各領域の圧縮成形量や圧入代等で変わるが、本実施形態では、外周テーパ部6の表面開口率が外周円筒部5の表面開口率よりも小さくなっている。   Further, the outer peripheral tapered portion 6 of the sintered body 30 is subjected only to compression molding by the tapered surface 41b1 of the lower die 41b in the primary sizing process. The outer peripheral cylindrical portion 5 of the sintered body 30 is subjected to compression molding and crushing by press-fitting into the die 51 in the secondary sizing process. At this time, since the compression amount when the outer peripheral taper portion 6 is formed on the cylindrical outer peripheral surface of the sintered body 30 is larger than the compression amount when the sintered body 30 is press-fitted into the die 52, the outer peripheral taper portion 6. Is higher than the density of the outer cylindrical portion 5. Moreover, although the surface aperture ratio of the outer periphery taper part 6 and the outer periphery cylindrical part 5 changes with the compression molding amount of each area | region of the outer peripheral surface of the sintered compact 30, a press-fitting allowance, etc., in this embodiment, the surface of the outer periphery taper part 6 The aperture ratio is smaller than the surface aperture ratio of the outer cylindrical portion 5.

尚、焼結体30の内周面および外周面の軸方向両端に設けられた面取り部7は、何れもサイジングによる圧縮は施されておらず、フォーミングにより成形された面となっている。従って、面取り部7は、焼結体30の表面のうち、最も密度が低く、且つ、最も表面開口率が大きくなっている。   Note that the chamfered portions 7 provided at both ends in the axial direction of the inner peripheral surface and the outer peripheral surface of the sintered body 30 are not compressed by sizing, and are formed by forming. Therefore, the chamfered portion 7 has the lowest density and the highest surface aperture ratio among the surfaces of the sintered body 30.

また、二次サイジング工程において、焼結体30の外周テーパ部6とダイ51の内周面との間に半径方向隙間があるため、焼結体30の内周面に第1テーパ部3を圧縮成形することにより、一次サイジング工程で成形した外周テーパ部6が拡径する恐れがある。しかし、第1テーパ部3は外周テーパ部6よりも軸方向に対する傾斜角度が小さく、二次サイジングによる圧縮量は小さいため、第1テーパ部3の成形による外周テーパ部6への影響は小さい。また、外周テーパ部6の傾斜角度は、それほど高い精度を要求されないため、若干の変動は問題とならない。   Further, in the secondary sizing step, since there is a radial gap between the outer peripheral tapered portion 6 of the sintered body 30 and the inner peripheral surface of the die 51, the first tapered portion 3 is provided on the inner peripheral surface of the sintered body 30. By compression molding, the outer peripheral tapered portion 6 molded in the primary sizing process may be expanded in diameter. However, since the first taper portion 3 has a smaller inclination angle with respect to the axial direction than the outer peripheral taper portion 6 and the amount of compression by secondary sizing is small, the influence on the outer peripheral taper portion 6 due to the molding of the first taper portion 3 is small. Moreover, since the inclination angle of the outer periphery taper part 6 does not require so high accuracy, a slight fluctuation does not cause a problem.

[含油工程]
含油工程では、サイジングを施した焼結体30に、真空含浸等の手法で潤滑油を含浸させる。焼結体に含浸させる潤滑油としては、例えばエステル系潤滑油が使用され、特に、動粘度が30mm/sec以上、200mm/sec以下のものが好ましい。以上により、焼結含油軸受1が完成する。
[Oil impregnation process]
In the oil impregnation step, the sizing sintered body 30 is impregnated with a lubricating oil by a technique such as vacuum impregnation. As the lubricating oil to be impregnated into the sintered body, for example, an ester-based lubricating oil is used, and those having a kinematic viscosity of 30 mm 2 / sec or more and 200 mm 2 / sec or less are particularly preferable. Thus, the sintered oil-impregnated bearing 1 is completed.

上記の焼結含油軸受1は、図8に示すパワーウインド用動力伝達機構に組み込まれる。具体的には、焼結含油軸受1の内周に軸62を挿入すると共に、焼結含油軸受1をハウジング66の所定箇所に圧入固定する。本実施形態の焼結含油軸受1は、ウォームギア63の軸方向両側近傍に設けられ、第1テーパ部3がウォームギア63側となるようにハウジング66に固定される。尚、それ以外の軸受(図12の右端の軸受65)として本実施形態の焼結含油軸受1を用いる場合は、第1テーパ部3がモータ61側となるように配される。尚、軸受65の一部を、上記の焼結含油軸受1以外の軸受としてもよい。例えば、図1の右端の軸受として、内周面の全域をストレートな円筒面とした焼結含油軸受を使用してもよい。   The sintered oil-impregnated bearing 1 is incorporated in a power transmission mechanism for a power window shown in FIG. Specifically, the shaft 62 is inserted into the inner periphery of the sintered oil-impregnated bearing 1 and the sintered oil-impregnated bearing 1 is press-fitted and fixed to a predetermined portion of the housing 66. The sintered oil-impregnated bearing 1 of the present embodiment is provided in the vicinity of both sides in the axial direction of the worm gear 63 and is fixed to the housing 66 so that the first tapered portion 3 is on the worm gear 63 side. When the sintered oil-impregnated bearing 1 of this embodiment is used as the other bearing (the rightmost bearing 65 in FIG. 12), the first tapered portion 3 is arranged on the motor 61 side. A part of the bearing 65 may be a bearing other than the sintered oil-impregnated bearing 1 described above. For example, a sintered oil-impregnated bearing in which the entire inner peripheral surface is a straight cylindrical surface may be used as the rightmost bearing in FIG.

上記のパワーウインド用動力伝達機構において、モータ61を駆動して軸62が回転すると、焼結含油軸受1の内部から滲み出した潤滑油、あるいは、外部から供給された潤滑油が、焼結含油軸受1の内周面と軸62の外周面との間に介在する。軸62のたわみが小さい状態では、焼結含油軸受1の内周面の円筒部2と軸62の外周面との間の油膜が形成され、この油膜を介して軸62が円筒部2により回転自在に支持される。軸62のたわみが大きくなると、上記の円筒部2による支持に加えて、焼結含油軸受1の内周面の第1テーパ部3と軸62の外周面との間の油膜を介して、軸62が第1テーパ部3により回転自在に支持される。   In the above power window power transmission mechanism, when the motor 61 is driven and the shaft 62 rotates, the lubricating oil that has oozed out from the inside of the sintered oil-impregnated bearing 1 or the lubricating oil supplied from the outside is sintered oil-impregnated. It is interposed between the inner peripheral surface of the bearing 1 and the outer peripheral surface of the shaft 62. When the deflection of the shaft 62 is small, an oil film is formed between the cylindrical portion 2 on the inner peripheral surface of the sintered oil-impregnated bearing 1 and the outer peripheral surface of the shaft 62, and the shaft 62 is rotated by the cylindrical portion 2 through this oil film. It is supported freely. When the deflection of the shaft 62 is increased, in addition to the support by the cylindrical portion 2 described above, the shaft 62 is interposed via an oil film between the first taper portion 3 on the inner peripheral surface of the sintered oil-impregnated bearing 1 and the outer peripheral surface of the shaft 62. 62 is rotatably supported by the first taper portion 3.

上記の焼結含油軸受1は、内周面のうち、第1テーパ部3の密度が最も高く、表面開口率が最も小さいため、第1テーパ部3から焼結含油軸受1の内部空孔に潤滑油が侵入しにくい。従って、第1テーパ部3と軸62との間に介在した潤滑油の圧力が維持され、軸62の回転精度が高められる。   Since the sintered oil-impregnated bearing 1 has the highest density of the first tapered portion 3 and the smallest surface opening ratio among the inner peripheral surfaces, the sintered tapered oil-impregnated bearing 1 has an inner hole from the first tapered portion 3. Lubrication oil is difficult to penetrate. Accordingly, the pressure of the lubricating oil interposed between the first tapered portion 3 and the shaft 62 is maintained, and the rotational accuracy of the shaft 62 is improved.

さらに、上記の焼結含油軸受1は、一次サイジング工程により外周面の一部(第1テーパ部3の外径側)に外周テーパ部6が圧縮成形されているため、外周面のうち、外周テーパ部6の密度が他の領域よりも高くなっている。このように、焼結含油軸受1のうち、第1テーパ部3の軸方向領域を外周側から高密度化することで、第1テーパ部3から焼結含油軸受1の内部空孔に潤滑油がさらに侵入しにくくなるため、軸62の回転精度がより一層高められる。   Furthermore, the sintered oil-impregnated bearing 1 has the outer peripheral tapered portion 6 compression-molded on a part of the outer peripheral surface (the outer diameter side of the first tapered portion 3) by the primary sizing process. The density of the taper portion 6 is higher than that of other regions. As described above, in the sintered oil-impregnated bearing 1, the axial region of the first tapered portion 3 is densified from the outer peripheral side, so that the lubricating oil is supplied from the first tapered portion 3 to the internal holes of the sintered oil-impregnated bearing 1. Is further less likely to enter, so that the rotational accuracy of the shaft 62 is further enhanced.

本発明は上記の実施形態に限られない。以下、本発明の他の実施形態を説明するが、上記の実施形態と同様の機能を有する部位には同一の符号を付して重複説明を省略する。   The present invention is not limited to the above embodiment. Hereinafter, although other embodiment of this invention is described, the same code | symbol is attached | subjected to the site | part which has the same function as said embodiment, and duplication description is abbreviate | omitted.

図6に示す焼結含油軸受1は、内周面に第2テーパ部4を設けていない点で上記の実施形態と異なる。すなわち、この焼結含油軸受1では、内周面の円筒部2の軸方向他端(第1テーパ部3と反対側の端部)が、面取り部7まで達している。この場合、一次サイジングで焼結体30の外周面に外周テーパ部6を成形した後、二次サイジングで焼結体の内周面に円筒部2および第1テーパ部3が成形される。   The sintered oil-impregnated bearing 1 shown in FIG. 6 differs from the above-described embodiment in that the second tapered portion 4 is not provided on the inner peripheral surface. That is, in this sintered oil-impregnated bearing 1, the other axial end of the cylindrical portion 2 on the inner peripheral surface (the end opposite to the first taper portion 3) reaches the chamfered portion 7. In this case, after the outer peripheral tapered portion 6 is formed on the outer peripheral surface of the sintered body 30 by primary sizing, the cylindrical portion 2 and the first tapered portion 3 are formed on the inner peripheral surface of the sintered body by secondary sizing.

また、上記の実施形態では、外周テーパ部6を一次サイジングで成形する場合を示したが、これに限らず、例えば外周テーパ部6を二次サイジングで成形してもよい。具体的には、例えば、一次サイジングで焼結体30の内周面に第2テーパ部4を成形した後、二次サイジングで焼結体30の内周面に円筒部2および第1テーパ部3を成形すると共に、焼結体30の外周面に外周テーパ部6を成形してもよい(図示省略)。   Moreover, although the case where the outer periphery taper part 6 was shape | molded by primary sizing was shown in said embodiment, you may shape | mold not only this but the outer periphery taper part 6 by secondary sizing, for example. Specifically, for example, after the second tapered portion 4 is formed on the inner peripheral surface of the sintered body 30 by primary sizing, the cylindrical portion 2 and the first tapered portion are formed on the inner peripheral surface of the sintered body 30 by secondary sizing. 3 and the outer peripheral tapered portion 6 may be formed on the outer peripheral surface of the sintered body 30 (not shown).

また、焼結含油軸受1をハウジング66に組み付ける際、図7に示すように、焼結含油軸受1を外周テーパ部6側からハウジング66の内周に挿入(例えば圧入)すれば、外周テーパ部6とハウジング66の開口部を当接させることで焼結含油軸受1がハウジング66に対してガイドされるため、焼結含油軸受1のハウジング66への組付作業をスムーズに行うことができる。   When the sintered oil-impregnated bearing 1 is assembled to the housing 66, as shown in FIG. 7, if the sintered oil-impregnated bearing 1 is inserted (for example, press-fitted) into the inner periphery of the housing 66 from the outer peripheral tapered portion 6 side, the outer peripheral tapered portion. Since the sintered oil-impregnated bearing 1 is guided with respect to the housing 66 by bringing the opening 6 and the housing 66 into contact with each other, the assembling work of the sintered oil-impregnated bearing 1 to the housing 66 can be performed smoothly.

また、上記の実施形態では、圧粉体20の外周面をストレートな円筒面とした場合を示したが、これに限られない。例えば、図8に示すように、圧粉体20の外周面22に、小径部22aおよび大径部22bを設けてもよい。この圧粉体20を焼結してなる焼結体30に、図9に示す一次サイジング金型40により一次サイジングを施す。この一次サイジング金型40は、ダイ41が一体に形成され、成形面の軸方向全域がストレートな円筒面状に形成されている点で、図4に示す実施形態と異なる。   Moreover, although the case where the outer peripheral surface of the green compact 20 was a straight cylindrical surface was shown in the above embodiment, the present invention is not limited to this. For example, as shown in FIG. 8, a small diameter portion 22 a and a large diameter portion 22 b may be provided on the outer peripheral surface 22 of the green compact 20. The sintered body 30 obtained by sintering the green compact 20 is subjected to primary sizing using a primary sizing die 40 shown in FIG. This primary sizing mold 40 is different from the embodiment shown in FIG. 4 in that a die 41 is integrally formed and the entire axial direction of the molding surface is formed in a straight cylindrical surface.

具体的には、大径部32bが下側となるように焼結体30を一次サイジング金型40に配置する{図9(a)参照}。その後、焼結体30をダイ41の内周に圧入することにより、焼結体30の外周面32が、ダイ41の内周面でストレートな円筒面状に成形される{図9(b)参照}。焼結体30をダイ41に圧入した後、焼結体30の内周にコア42のテーパ部42aを押し込むことにより、焼結体30の内周面の上端に第2テーパ部4が成形される。このとき、焼結体30の外周面32のうち、小径部32aを圧縮してなる領域が低密度部5’となり、大径部32bを圧縮してなる領域が高密度部6’(黒塗りで示す領域)となる。   Specifically, the sintered body 30 is disposed in the primary sizing mold 40 so that the large diameter portion 32b is on the lower side {see FIG. 9A}. Thereafter, the sintered body 30 is press-fitted into the inner periphery of the die 41, so that the outer peripheral surface 32 of the sintered body 30 is formed into a straight cylindrical surface shape on the inner peripheral surface of the die 41 {FIG. reference}. After the sintered body 30 is press-fitted into the die 41, the second tapered portion 4 is formed at the upper end of the inner peripheral surface of the sintered body 30 by pressing the tapered portion 42 a of the core 42 into the inner periphery of the sintered body 30. The At this time, in the outer peripheral surface 32 of the sintered body 30, the region formed by compressing the small diameter portion 32a becomes the low density portion 5 ′, and the region formed by compressing the large diameter portion 32b is the high density portion 6 ′ (black coating). Area).

その後、図10に示す二次サイジング金型50により、焼結体30に二次サイジングを施す。具体的には、まず、高密度部6’が上側となるように焼結体30を二次サイジング金型50に配置し、焼結体30の内周にコア52の円筒部52bを圧入する{図10(a)参照}。その後、焼結体30をダイ51の内周に圧入すると共に、焼結体30の内周にコア52のテーパ部52aを押し込む、{図10(b)参照}。以上により、焼結体30の内周面に円筒部2および第1テーパ部3が成形される。   Thereafter, secondary sizing is applied to the sintered body 30 by the secondary sizing mold 50 shown in FIG. Specifically, first, the sintered body 30 is disposed in the secondary sizing mold 50 so that the high-density portion 6 ′ is on the upper side, and the cylindrical portion 52 b of the core 52 is press-fitted into the inner periphery of the sintered body 30. {See FIG. 10 (a)}. Thereafter, the sintered body 30 is press-fitted into the inner periphery of the die 51, and the taper portion 52a of the core 52 is pushed into the inner periphery of the sintered body 30, {see FIG. 10B}. As described above, the cylindrical portion 2 and the first tapered portion 3 are formed on the inner peripheral surface of the sintered body 30.

以上の工程を経て作成された焼結体30に、潤滑油を含浸させることで、図11に示す焼結含油軸受1が得られる。この焼結含油軸受1の内周面には、上記の実施形態と同様に、円筒部2、第1テーパ部3、および第2テーパ部4が設けられる。一方、焼結含油軸受1の外周面は、ストレートな円筒面で構成される。焼結含油軸受1の外周面のうち、第1テーパ部3の軸方向領域には高密度部6’が設けられる。図示例では、焼結含油軸受1の外周面の軸方向一端に高密度部6’が設けられ、高密度部6’の軸方向他方側に隣接して低密度部5’が設けられる。低密度部5’および高密度部6’は、同一径の連続した円筒面である。   The sintered oil-impregnated bearing 1 shown in FIG. 11 is obtained by impregnating the sintered body 30 produced through the above steps with a lubricating oil. A cylindrical portion 2, a first taper portion 3, and a second taper portion 4 are provided on the inner peripheral surface of the sintered oil-impregnated bearing 1 as in the above embodiment. On the other hand, the outer peripheral surface of the sintered oil-impregnated bearing 1 is constituted by a straight cylindrical surface. A high density portion 6 ′ is provided in the axial direction region of the first taper portion 3 on the outer peripheral surface of the sintered oil-impregnated bearing 1. In the illustrated example, a high density portion 6 'is provided at one axial end of the outer peripheral surface of the sintered oil-impregnated bearing 1, and a low density portion 5' is provided adjacent to the other axial side of the high density portion 6 '. The low density portion 5 ′ and the high density portion 6 ′ are continuous cylindrical surfaces having the same diameter.

また、上記の実施形態では、一次サイジング工程において、コア42の円筒部42bと焼結体30の内周面との間に隙間が形成される場合を示したが、これに限られない。例えば、一次サイジング工程において、コア42の円筒部42bを焼結体30の内径と同一径とし、円筒部42bと焼結体30の内周面との間の隙間を実質0(例えば軽圧入状態)としてもよい。この場合、円筒部42bで焼結体30の内周面を内径側から支持した状態で、焼結体30の外周面が下ダイ41のテーパ面41b1で圧縮されるため、焼結体30に外周テーパ部6を確実に成形することができる。   In the above embodiment, the case where a gap is formed between the cylindrical portion 42b of the core 42 and the inner peripheral surface of the sintered body 30 in the primary sizing process has been described, but the present invention is not limited thereto. For example, in the primary sizing step, the cylindrical portion 42b of the core 42 has the same diameter as the inner diameter of the sintered body 30, and the gap between the cylindrical portion 42b and the inner peripheral surface of the sintered body 30 is substantially zero (for example, a light press-fit state). ). In this case, since the outer peripheral surface of the sintered body 30 is compressed by the tapered surface 41b1 of the lower die 41 with the cylindrical portion 42b supporting the inner peripheral surface of the sintered body 30 from the inner diameter side, The outer periphery taper part 6 can be shape | molded reliably.

また、上記の実施形態では、一次サイジング工程において、焼結体30の外周面と上ダイ41aの円筒面41a1とを半径方向隙間を介して嵌合させているが、これに限らず、上ダイ41aの内径と焼結体30の外径と同一径とし、上ダイ41aの円筒面41a1と焼結体30の外周面との間の隙間を実質0(例えば軽圧入状態)としてもよい。   In the above embodiment, in the primary sizing process, the outer peripheral surface of the sintered body 30 and the cylindrical surface 41a1 of the upper die 41a are fitted via a radial gap. The inner diameter of 41a may be the same as the outer diameter of the sintered body 30, and the gap between the cylindrical surface 41a1 of the upper die 41a and the outer peripheral surface of the sintered body 30 may be substantially zero (for example, a light press-fit state).

また、上記の実施形態では、焼結含油軸受1をパワーウインド用動力伝達機構に適用する場合を示したが、これに限らず、他の用途に用いてもよい。例えば、携帯電話等のバイブレータとして機能する振動モータに、本発明の焼結含油軸受を適用することもできる。   Moreover, in said embodiment, although the case where the sintered oil-impregnated bearing 1 was applied to the power transmission mechanism for power windows was shown, you may use not only this but for another use. For example, the sintered oil-impregnated bearing of the present invention can be applied to a vibration motor that functions as a vibrator for a mobile phone or the like.

また、上記の実施形態では、焼結含油軸受1での内周に挿入された軸62を回転させる場合を示したが、これに限らず、軸を固定して焼結含油軸受を回転させる場合や、軸および焼結含油軸受の双方を回転させる場合に、本発明を適用してもよい。   Moreover, in said embodiment, although the case where the axis | shaft 62 inserted in the inner periphery in the sintered oil-impregnated bearing 1 was rotated was shown, it is not restricted to this, When fixing a shaft and rotating a sintered oil-impregnated bearing Alternatively, the present invention may be applied when rotating both the shaft and the sintered oil-impregnated bearing.

本発明は、以上の実施形態に限定されることはなく、本発明の趣旨を逸脱しない範囲内で適用可能であることは言うまでもない。   It goes without saying that the present invention is not limited to the above-described embodiments, and can be applied without departing from the spirit of the present invention.

1 焼結含油軸受
2 円筒部
3 第1テーパ部(拡径部)
4 第2テーパ部
5 外周円筒部(低密度部)
6 外周テーパ部(高密度部)
7 面取り部
20 圧粉体
30 焼結体
40 一次サイジング金型
50 二次サイジング金型
DESCRIPTION OF SYMBOLS 1 Sintered oil-impregnated bearing 2 Cylindrical part 3 1st taper part (expanded diameter part)
4 Second taper part 5 Outer cylindrical part (low density part)
6 Peripheral taper part (high density part)
7 Chamfered portion 20 Green compact 30 Sintered body 40 Primary sizing die 50 Secondary sizing die

Claims (8)

筒状の焼結体からなり、内部空孔に潤滑油が含浸された焼結含油軸受であって、
内周面に、円筒部と、該円筒部の軸方向一方側に隣接して設けられ、軸方向一方側へ向けて徐々に拡径し、前記円筒部よりも密度の高い拡径部とを有し、
外周面のうち、前記拡径部の軸方向領域に、他の領域よりも密度の高い高密度部を設けた焼結含油軸受。
A sintered oil-impregnated bearing made of a cylindrical sintered body, in which internal pores are impregnated with lubricating oil,
A cylindrical portion is provided on the inner peripheral surface adjacent to one side in the axial direction of the cylindrical portion, and gradually increases in diameter toward one side in the axial direction, and a diameter-expanded portion having a higher density than the cylindrical portion. Have
A sintered oil-impregnated bearing in which a high-density portion having a higher density than other regions is provided in an axial region of the enlarged-diameter portion in the outer peripheral surface.
前記高密度部が、軸方向一方側へ向けて徐々に縮径したテーパ面である請求項1記載の焼結含油軸受。   The sintered oil-impregnated bearing according to claim 1, wherein the high-density portion is a tapered surface having a diameter gradually reduced toward one side in the axial direction. 前記外周面がストレートな円筒面からなる請求項1記載の焼結含油軸受。   The sintered oil-impregnated bearing according to claim 1, wherein the outer peripheral surface is a straight cylindrical surface. 前記拡径部が、サイジングにより圧縮された成形面からなる請求項1〜3の何れかに記載の焼結含油軸受。   The sintered oil-impregnated bearing according to any one of claims 1 to 3, wherein the enlarged-diameter portion comprises a molding surface compressed by sizing. 原料粉末を圧縮成形して圧粉体を得るフォーミング工程と、前記圧粉体を焼結して焼結体を得る焼結工程と、前記焼結体を圧縮成形するサイジング工程と、前記焼結体の内部空孔に潤滑油を含浸させる含油工程とを有する焼結含油軸受の製造方法であって、
前記サイジング工程で、前記焼結体の内周面に、円筒部と、該円筒部の軸方向一方側に隣接して設けられ、軸方向一方側へ向けて徐々に拡径し、前記円筒部よりも密度の高い拡径部とを成形すると共に、前記焼結体の外周面のうち、前記拡径部の軸方向領域に、他の領域よりも密度の高い高密度部を成形する焼結含油軸受の製造方法。
A forming step of compressing raw material powder to obtain a green compact, a sintering step of sintering the green compact to obtain a sintered body, a sizing step of compressing and molding the sintered body, and the sintering A method for producing a sintered oil-impregnated bearing comprising an oil impregnation step of impregnating a lubricating oil into an internal cavity of a body,
In the sizing step, a cylindrical portion is provided on the inner peripheral surface of the sintered body and adjacent to one side in the axial direction of the cylindrical portion, and the diameter gradually increases toward the one side in the axial direction. Sintering to form a higher-density portion having a higher density than the other regions in the axial region of the larger-diameter portion in the outer peripheral surface of the sintered body. Manufacturing method of oil-impregnated bearing.
前記フォーミング工程で、前記圧粉体の外周面をストレートな円筒面とし、
前記サイジング工程で、前記焼結体の外周面を圧縮することにより、他の領域よりも小径な前記高密度部を成形する請求項5記載の焼結含油軸受の製造方法。
In the forming step, the outer peripheral surface of the green compact is a straight cylindrical surface,
The method for producing a sintered oil-impregnated bearing according to claim 5, wherein, in the sizing step, the high-density portion having a smaller diameter than other regions is formed by compressing an outer peripheral surface of the sintered body.
前記サイジング工程が、前記焼結体の外周面に前記高密度部を成形する一次サイジング工程と、前記焼結体の内周面に前記円筒部および前記拡径部を成形する二次サイジング工程とを有する請求項6記載の焼結含油軸受の製造方法。   The sizing step includes a primary sizing step in which the high density portion is formed on the outer peripheral surface of the sintered body, and a secondary sizing step in which the cylindrical portion and the enlarged diameter portion are formed on the inner peripheral surface of the sintered body. A method for producing a sintered oil-impregnated bearing according to claim 6. 前記フォーミング工程で前記圧粉体の外周面に大径部および小径部を設け、
前記焼結工程で前記圧粉体を焼結することにより、外周面に大径部および小径部を有する前記焼結体を得て、
前記サイジング工程で、前記焼結体の外周面をストレートな円筒面状に成形する請求項5記載の焼結含油軸受の製造方法。
In the forming step, a large diameter portion and a small diameter portion are provided on the outer peripheral surface of the green compact,
By sintering the green compact in the sintering step, the sintered body having a large diameter portion and a small diameter portion on the outer peripheral surface is obtained,
The method for producing a sintered oil-impregnated bearing according to claim 5, wherein the outer peripheral surface of the sintered body is formed into a straight cylindrical surface in the sizing step.
JP2015053300A 2015-03-17 2015-03-17 Sintered oil-impregnated bearing and manufacturing method thereof Active JP6449059B2 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2015053300A JP6449059B2 (en) 2015-03-17 2015-03-17 Sintered oil-impregnated bearing and manufacturing method thereof
PCT/JP2016/056931 WO2016147925A1 (en) 2015-03-17 2016-03-07 Method for manufacturing sintered bearing, and sintered bearing
DE112016001226.8T DE112016001226T5 (en) 2015-03-17 2016-03-07 METHOD FOR PRODUCING A SINKED BEARING AND SINTERED BEARING
CN201680016166.XA CN107407332B (en) 2015-03-17 2016-03-07 The manufacturing method and sintered bearing of sintered bearing
US15/558,681 US10697496B2 (en) 2015-03-17 2016-03-07 Sintered bearing
US16/878,170 US11454282B2 (en) 2015-03-17 2020-05-19 Sintered bearing

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015053300A JP6449059B2 (en) 2015-03-17 2015-03-17 Sintered oil-impregnated bearing and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2016173135A JP2016173135A (en) 2016-09-29
JP6449059B2 true JP6449059B2 (en) 2019-01-09

Family

ID=57008008

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015053300A Active JP6449059B2 (en) 2015-03-17 2015-03-17 Sintered oil-impregnated bearing and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP6449059B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6864459B2 (en) 2016-10-18 2021-04-28 株式会社ダイヤメット Sintered oil-impregnated bearing and its manufacturing method

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3818626B2 (en) * 2000-04-17 2006-09-06 日立粉末冶金株式会社 Method for producing sintered oil-impregnated bearing
JP2004308683A (en) * 2003-04-02 2004-11-04 Mitsubishi Materials Corp Manufacturing method for sintered oil retaining bearing and sintered oil retaining bearing
JP2004308682A (en) * 2003-04-02 2004-11-04 Mitsubishi Materials Corp Sintered oil retaining bearing

Also Published As

Publication number Publication date
JP2016173135A (en) 2016-09-29

Similar Documents

Publication Publication Date Title
US9316253B2 (en) Sintered bearing
JP6741730B2 (en) Sintered bearing and manufacturing method thereof
US11454282B2 (en) Sintered bearing
CN110043564B (en) Method for manufacturing sintered bearing, and vibration motor
JP6921046B2 (en) Manufacturing method of sintered bearing
JP6816079B2 (en) Vibration motor
WO2015012055A1 (en) Sintered bearing and process for producing same
JP2006125516A (en) Oil-retaining sintered bearing
JP6449059B2 (en) Sintered oil-impregnated bearing and manufacturing method thereof
WO2015151698A1 (en) Sintered bearing, fluid dynamic bearing device provided with same, and sintered bearing manufacturing method
US20180003226A1 (en) Double-layer sliding bearing
WO2015050200A1 (en) Sintered bearing and manufacturing process therefor
JP2007315537A (en) Bearing compound gear
WO2017159345A1 (en) Dynamic pressure bearing and method for manufacturing same
JP2016065638A (en) Sliding member and method of manufacturing the same
JP2006038185A (en) Composite sintered bearing
JP7076266B2 (en) Manufacturing method of sintered oil-impregnated bearing
JP2018040458A (en) Dynamic pressure bearing and manufacturing method thereof
JP3818626B2 (en) Method for producing sintered oil-impregnated bearing
JP2010031909A (en) Sintered bearing and its manufacturing method
JP6261922B2 (en) Fluid dynamic bearing device and method for manufacturing inner member
JP6625333B2 (en) Manufacturing method of sintered bearing and sintered bearing
WO2018047765A1 (en) Slide bearing
JP3698352B2 (en) Manufacturing method of bearing
JP2016180496A (en) Bearing member and manufacturing method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180226

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20181122

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20181205

R150 Certificate of patent or registration of utility model

Ref document number: 6449059

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250