JP3818626B2 - Method for producing sintered oil-impregnated bearing - Google Patents

Method for producing sintered oil-impregnated bearing Download PDF

Info

Publication number
JP3818626B2
JP3818626B2 JP2000114697A JP2000114697A JP3818626B2 JP 3818626 B2 JP3818626 B2 JP 3818626B2 JP 2000114697 A JP2000114697 A JP 2000114697A JP 2000114697 A JP2000114697 A JP 2000114697A JP 3818626 B2 JP3818626 B2 JP 3818626B2
Authority
JP
Japan
Prior art keywords
inner hole
bearing
oil
shaft support
sintered
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000114697A
Other languages
Japanese (ja)
Other versions
JP2001295845A (en
Inventor
近藤  誠
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Powdered Metals Co Ltd
Original Assignee
Hitachi Powdered Metals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Powdered Metals Co Ltd filed Critical Hitachi Powdered Metals Co Ltd
Priority to JP2000114697A priority Critical patent/JP3818626B2/en
Publication of JP2001295845A publication Critical patent/JP2001295845A/en
Application granted granted Critical
Publication of JP3818626B2 publication Critical patent/JP3818626B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Sliding-Contact Bearings (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、各種モータ等の軸受に使用される焼結含油軸受の製造方法に関する。
【0002】
【従来の技術】
焼結含油軸受は、金属粉を圧粉成形及び焼結したのちサイジングして、形状寸法を整えると共に摺動面等の表面気孔を調整し、内部の気孔に潤滑油を含浸して各種の回転装置に用いられている。作動特徴は、焼結含油軸受に回転軸を装着して回転すると、軸受気孔に貯えられている潤滑油が回転軸との間に浸み出して摺動面に油膜を形成することにより滑り摩擦と摩耗を減らし、摺動面の油圧が高い部分では、潤滑油が軸受気孔内に戻り、再び回転軸との間に浸み出す、この繰り返しによって、軸支部の摺動面の潤滑性能を保つ。この場合、浸み出した余分の潤滑油は、軸受の端面付近に流出し、回転する軸で飛散することがある。潤滑油の飛散は、軸受要素の周辺を汚染したり、潤滑油のロスによって軸受寿命を短くする原因になる。
【0003】
このような潤滑油の漏洩、飛散を防止する技術は、例えば、実公昭47−36736号公報、特公平8−19941号公報に記載されているように、軸受の内孔が、軸支部から開口端部に向かって径を次第に拡大したテーパ部を設け、そのテーパ部の内壁面を軸支部より粗に形成する方法がある。このように形成したものは、軸受内孔のテーパ部と回転軸との間で形成されるクサビ状の空間に表面張力で油溜めし、絶えず油膜を形成して駆動を円滑にし、油を軸受に吸収し易くなっていて、外部漏洩を阻止する。
【0004】
また、実公平8−9450号公報記載のように、ハウジングに圧入された含油軸受の両端に、より多孔質な焼結体などの部材を当接した構造のものがある。この多孔質部材は、運転中に含油軸受から、滲み出る油を吸収できる気孔をもっており、回転軸との間に隙間が形成されているため、含油軸受から滲み出た油はその多孔質部材に吸い込まれて貯えられ、隙間にも油を保持して漏洩が阻止される。含油軸受に油が不足すれば、多孔質部材内の油を吸引できるから、寿命が永くなる。
【0005】
【発明が解決しようとする課題】
以上のような焼結含油軸受において、前者では、内孔の面取りを拡張した形状で、この面取り部が多孔質面に形成されたものであるから、製作が容易で、油の漏洩を防止する効果があり、後者では、部材を別々に製作しなければならないが、軸受要素内で油が移動して外部漏洩がないものとなっており、それぞれ優れたものである。ところで、最近では、回転軸をより高速回転することが多く、その場合でも油の漏洩防止効果を確実に維持でき、軸受寿命に優れた焼結含油軸受が期待されている。そこで、本発明の目的は、通常の製造工程で製作することができて、油の漏洩がより少ない焼結含油軸受を実現することにある。
【0006】
【課題を解決するための手段】
以上の目的を達成するため本発明の製造方法は、図1などに例示される如く軸受素材として、軸孔方向の中間を含む部分に軸支部(10a)をもち、この軸支部の一端側又は両端側に軸支部よりも内径寸法が大きい内孔大部(10b)をもつ形状の焼結体(10A)を製作した後、前記焼結体をサイジングによって、前記軸支部(10a)を金型コアで矯正すると共に、少なくとも前記内孔大部(10b)を形成している側の端面を上下パンチで圧縮して、内孔大部のうち、端面近傍の孔部分を縮径させて前記矯正後の軸支部(1a)の内径寸法より大径の内孔小部(1c)に形成することを要部としている。
【0007】
具体的には、金属粉末を圧粉成形して、軸孔方向の中間を含む部分に軸支部(10a)及び、前記軸支部の一端側又は両端側に、内径寸法を軸支部より大きい内孔大部(10b)をもつ圧粉体(10)を得る工程と、前記圧粉体を焼結する工程と、前記焼結された焼結体(10A)について、前記軸支部(10a)を金型コアで矯正すると共に、少なくとも前記内孔大部(10b)を形成している側の端面を上下パンチで圧縮して、内孔大部のうち、端面近傍の内孔部分を縮径させて前記矯正後の軸支部(1a)の内径寸法より大径の内孔小部(1c)に形成するサイジング工程と、前記サイジング工程で得られたサイジング体(1)に潤滑油を含浸する工程とを経るものである。
【0008】
【発明の実施の形態】
以下、図面を参照して本発明の実施形態を説明する。図1は本発明を適用した焼結含油軸受の4例をそれぞれ縦断面形状で示した模式断面図である。図1(a)は円筒形状で、軸受内孔において内孔大部及び内孔小部を軸支部の両端側に形成しているもの、同(b)は内孔大部及び内孔小部を軸支部の一方端側だけに形成しているもの、同(c)は(a)に対しフランジ付き形状にしたもの、同(d)は外形が球面で内孔大部及び内孔小部を軸支部の両端側に形成したものである。これらの構造説明では、作用的に同じか類似する部材や部位に同じ符号を付し、重複した説明を省く。
【0009】
図1(a)において、焼結含油軸受1は、軸受内孔の中間部が軸支部1aであり、その表面がサイジングによって比較的緻密に形成されている。 軸支部1aの両端側には、軸支部1aに隣接して内径寸法を軸支部1aより大きくした内径大部1bと、内径大部1bに隣接して内孔寸法を軸支部1aより大きく、内孔大部1bより小さくした内孔小部1cとがそれぞれ設けられている。各内孔大部1bは、軸支部1aの対応部から内径を次第に拡大した斜面(テーパ状斜面)を介して連なっている。この斜面は凸状または凹状の斜面でもよい。この内径大部1b及び斜面の表面は軸支部1aに比べて気孔が多い粗面になっている。これに対し、内孔小部1cは、端面寄りに位置し、内径大部1bの対応部から端面側の開口部に向かって内径を次第に縮径した斜面(テーパ状斜面)を介し連なっている。この内孔小部1cは、その表面及び近傍周囲が内径大部1bの表面に比べて密になっている。
【0010】
図1(b)の焼結含油軸受1は、同(a)の内径大部1b及び内孔小部1cを軸支部1aの一端側のみに形成した構造であり、使用態様として、内孔大部1b及び内孔小部1cが形成されている側を、軸受の開放側になるように用いる軸受要素に好適なものである。また、 図1(c)の焼結含油軸受1は、同(a)の軸受外周の一端側にフランジ1dを形成した構造であり、使用態様として、フランジ1dを取付要素として利用可能にした例である。図1(d)の焼結含油軸受1は、軸受外周形状を球面1eに形成した調芯軸受であり、外形は異なるが内孔構造は前述したと同様なものである。
【0011】
なお、図1(a)〜(d)の各焼結含油軸受1には、この種軸受の慣用技術である、端面に沿って面取りを設けること、軸支部1aに油溝或いは動圧溝を設けること、摺動面である軸支部1aの中間部を回転軸と非接触の大径部である中逃げ形状にすること、実公平8−9450号公報記載のように焼結含油軸受の両端に多孔質部材を当接すること、などの構成を付加することができる。
【0012】
次に、以上の焼結含油軸受の製造方法について、図1(a)の焼結含油軸受1の製作例にて説明する。図1(b)〜(d)の焼結含油軸受1は、軸受外形が従来と同様な手法で造形されることから図1(a)の説明から類推される。図2は粉末成形手順を説明する模式断面図である。
【0013】
(圧粉成形)用いられる成形金型装置は、ダイ孔4aを形成しているダイ4を主体とし、ダイ孔4aの下方には円筒状の下パンチ8及び下コア5があり、ダイ孔4aの上方には上パンチ7及び上コア6が配置されたものである。軸受素材形状を得るための一般的な粉末成形金型と異なる点は、コアが上下に分割されていることである。図2(イ)及び(ロ)から分かるように、下コア5は、軸受内孔の内孔大部10b又は1bを形成するための太さであり、上端部がテーパ部5aとなっている。また、上コア6は、上側部分が下コア5の太さと同じであり、下側部分がテーパ部6aを介し軸受の軸支部10a又は1aを形成するための上コア小径部6bとなっている。
【0014】
図2(イ)は、ダイ4のダイ孔4a内にあって、下コア5及び下パンチ8で形成されるキャビティに通常の方法で粉末2を充填した状態を示している。粉末2は、銅系、鉄系の合金粉、又は合金を形成するための通常の混合粉である。図2(ロ)は、上コア6を下降させて、上コア小径部6bを下コア5の上端面に当接させた状態である。この状態から、装置駆動としては、図2(ハ)のように、上コア小径部6bが粉末2の上下中間部にくるように、上コア6と下コア5とが下降されると共に、上パンチ7も下降される。図2(ハ)は、そのようにして上パンチ7と下パンチ8により粉末2を所定密度と寸法になるように圧縮し、圧粉体(成形体)10に製作した状態である。その後、上パンチ7及び上コア6を上昇させ、図2(ニ)に示すように、下パンチ5で圧粉体(成形体)10を押し上げ離型する。この場合、下コア5も同様に上昇される。製作された圧粉体(成形体)10の内孔は、上コア小径部6bで形成された軸支部10aと、上コア6と下コア5により形成された内径大部10b及び上コア6のテーパ部6aと下コア5のテーパ部5aに対応して形成されたテーパ状内孔面10cをもつ形状をしている。
【0015】
(サイジング)圧粉体(成形体)10は次工程で通常の方法で焼結される。この焼結体10Aは図3に示すように、金型を用いてサイジングされる。サイジング金型は、ダイ14と、下パンチ18と、上パンチ17及びコア19などからなる通常の構造である。図3(イ)は、金型内に軸受素材である焼結体10Aを挿入した状態である。この場合、ネガティブサイジングを採用するか、ポジティブサイジングを採用するかは、得られる焼結軸受1の密度や希望する表面状態により、適宜決定されることになる。図3(ロ)は、焼結体10Aを上下の各パンチ17,18で圧縮した状態を示している。焼結体10Aはこのサイジングにより設計形状に造形されて焼結軸受(サイジング体)1となり、それが下パンチ18により押し上げられて離型される。この焼結軸受(サイジング体)1は、焼結体10Aの内孔大部10bの端面側が大きく縮径されて、内孔小部1cとして形成され、該内孔小部1cはコア19に当接させていない。又、内孔小部1cの近辺は、内孔大部1bとして残っている部分より密になっている。
【0016】
図示のサイジング例において、焼結軸受(サイジング体)1の内孔開口部に通常の面取りを設けるものでは、軸受素材である焼結体10Aの端面と共に面取り部が圧縮されることになる。また、コアロッド19は単純な円柱形状になっているが、図2に示した粉末成形金型のコア構造と同様に、下コア5と、小径部6bがある上コア6とを用いて、上コア小径部6bで軸支部10aをサイジングして軸支部1aにし、下コア5と上コア6の部分をサイジングで縮径した内孔小径1cに当接させるようにしてもよい。この方法によれば、内孔小部1cの内径寸法精度が安定し、内孔小部1cの表面気孔量をより少ない状態にすることができる。
【0017】
製作された焼結軸受(サイジング体)1は次工程で潤滑油が含浸(常圧含油、真空或いは減圧含油などで含浸)されると、本発明の焼結含油軸受となる。図4は含浸後の焼結含油軸受1に回転軸3を装着した使用状態を示している。回転軸3は焼結含油軸受1の内孔に挿通され軸支部1aで軸支されている。軸支部1aの両側には、内孔大部1bが軸支部1a側に位置し、内孔小部1cがその内孔大部1bより端面寄りに位置している。回転軸3と軸支部1aの間には油膜形成用の微小隙間S1が確保され、回転軸3と内孔大部1bの間には油溜用の大きな隙間S2が確保され、回転軸3と内孔小部1cの間には油漏洩防止に適した隙間S3が確保されている。すなわち、この焼結含油軸受1において、内孔寸法は、内孔大部1b>内孔小部1c>軸支部1a、の関係になっている。軸受内孔面の密度は、内孔大部1b<内孔小部1c<軸支部1a、の関係になっている。
【0018】
(作用)以上の軸受構造では、例えば、焼結含油軸受1を固定し、回転軸3を回転すると、軸支部1aの気孔に含浸された潤滑油が隙間S1に浸み出して摺動面に油膜を形成する。この潤滑油は摩擦熱や外気で昇温され熱膨張などにより余分となる量が発生し、その余分となった潤滑油は内孔大部1bの環状隙間S2に流出し、内孔大部1bに溜まり、更に孔端開口から外部へ飛散しょうとする。しかし、この軸受構造では、まず、内孔大部1b、及び軸支部1aから内孔大部1bに連なる前記テーパ状斜面は気孔密度が粗になっている部分であるため、潤滑油が内孔大部1bの気孔に吸い込まれやすく、或いは浸み出しやすくなっていて、軸支部1aに隣接した油溜として機能し、軸支部1aの潤滑油不足を防ぐ効果があり、また、軸支部1aとの間での潤滑油循環も良好にする。しかも、内径小部1cは、軸孔端面側に位置しかつ内孔大部1bの内径寸法よりも小さいことから、前記した内孔大部1bの油溜機能を確実にするダムの役目をなして、潤滑油の外部漏洩を構造的に阻止するよう機能する。更に、内孔大部1b内の潤滑油は、内径小部1cの気孔が内孔大部1bより緻密であると共に、内孔小部1cと内孔大部1bとの間が内孔大部1bに向かって次第に拡径したテーパ状斜面にしたことから、回転軸3の回転により、内孔大部1bの内壁方向(軸支部1a方向)へ押しやられ、その作用によっても潤滑油の外部漏洩が防止される。
【0019】
ここで、内孔大部1b及び内孔小部1cの直径や軸方向の長さは、焼結含油軸受1の大きさによって適宜に設計される。その際、内孔小部1cは、回転軸3が通常駆動で傾いた場合でも接触せずに、前記した油溜めのダム作用が得られる大きさに設定される。内孔大部1bは、例えば、軸支部1aの直径が1mm程度で、肉厚が薄い形態のように、軸支部1aの直径との差が数μm程度の場合から、軸支部1aの直径が10mm程度では0.1〜1mm位というように任意であるが、その際にはサイジングによる内孔小部1cの造形性も考慮されて設計される。また、内孔大部1bを大きく設定することができる軸受形状の場合では、前記した隙間S2つまり回転軸3と内孔大部1bとの間の環状空間部に、運転時に漏れ出ない適当量の潤滑油を注入しておく使用方法の採用も可能である。
【0020】
図5及び図6は上記焼結含油軸受1の他の2つの形態をサイジング前の焼結体と共に示す縦断面図である。この説明では、上記した形態と同じか類似する部材又は部位に同一符号を付し、変更点について詳述する。図5(b)及び(b−1)と図6(b)は圧粉体10を焼結した後の焼結体10Aを示し、図5(a)と図6(a)及び(a−1)はサイジング後のサイジング体ないしは焼結軸受1をそれぞれ示している。
【0021】
図5の構造では、上記した内孔小部1cについて、圧粉成形の段階で形状を工夫し、該圧粉体10を焼結した焼結体10Aをサイジングにより積極的に造形可能にした一例である。図5(b)の焼結体10Aでは圧粉成形により、軸支部10aと、内径大部10b及びテーパ状内孔面10cと共に、軸受端面の内径側に凸部10dを設けた形態である。図5(b−1)の焼結体10Aでは、同(b)の凸部10dに代え、軸受端面形状を内径側から外径側に向けて低くなるテーパ部10eにした形態である。凸部10dやテーパ部10eは、圧粉成形金型装置のうち、図2の上下パンチ7,8の端面形状を変更するだけで形成される。サイジングでは、再圧パンチ(図3の上下パンチ17、18と同じ)で凸部10dやテーパ部10eが圧縮され、上記内径小部1cを形成容易にする上で有効となる。
【0022】
これに対し、図6の構造では、上記内孔小部1cを、焼結体10Aをサイジングするときに対応パンチ形状により積極的に造形可能にした一例である。すなわち、図6(b)の焼結体10Aは、図2と同様に圧粉成形され後、焼結したものである。そして、サイジング工程において、図6(a)の焼結軸受(サイジング体)1では内径小部1cより端面側に凹部1fが追加造形され、図6(a−1)の焼結軸受(サイジング体)1では内径小部1cより端面側にテーパ凹部1gを追加造形される。これらは、サイジング工程で再圧パンチ(図3の上下パンチ17、18)の端面に対応凸部やテーパ凸部を設けておくだけで造形され、上記内径小部1cを形成容易にする上で有効となる。このように、本発明は、請求項で特定される技術要素を備えておればよく、製造的には必要に応じこれをベースにして変形工夫されることになる。
【0023】
【発明の効果】
以上説明したように、本発明製造方法としては、通常の焼結軸受の製造工程によって、圧粉体成形とサイジングで造形可能なことから、設備費を抑え、本発明の焼結含油軸受を能率よく量産することができる。
【図面の簡単な説明】
【図1】 本発明軸受の形状例を模式的に示した縦断面図である。
【図2】 上記軸受を製造する際の圧粉成形方法を説明する縦断面図である。
【図3】 上記軸受を製造する際のサイジング方法を説明する縦断面図である。
【図4】 上記軸受の使用状態を説明する縦断面図である。
【図5】 本発明軸受の他の形態をサイジング前の焼結体と共に示す図である。
【図6】 本発明軸受の更に他の形態を焼結体と共に示す図である。
【符号の説明】
1…焼結含油軸受(焼結軸受)
1a…軸支部
1b…内孔大部
1c…内孔小部
2…粉末
3…回転軸
10…圧粉体
10A…焼結体(サイジング体又は軸受素材)
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a manufacturing method of the oil-impregnated sintered bearings used in the bearing of various motors.
[0002]
[Prior art]
Sintered oil-impregnated bearings are compacted and sintered after compacting metal powder, adjusting the shape and dimensions, adjusting the surface pores such as sliding surfaces, and impregnating the internal pores with lubricating oil for various rotations. Used in equipment. The operating feature is that when a rotating shaft is attached to a sintered oil-impregnated bearing and rotated, the lubricating oil stored in the bearing pores oozes out between the rotating shaft and forms an oil film on the sliding surface, thereby causing sliding friction. In the part where the hydraulic pressure on the sliding surface is high, the lubricating oil returns to the inside of the bearing hole and oozes out again with the rotating shaft. By this repetition, the lubricating performance of the sliding surface of the shaft support part is maintained. . In this case, the excess lubricating oil that has oozed out may flow near the end face of the bearing and scatter on the rotating shaft. The splashing of the lubricating oil may contaminate the periphery of the bearing element or shorten the bearing life due to the loss of the lubricating oil.
[0003]
A technique for preventing such leakage and scattering of the lubricating oil is disclosed in, for example, Japanese Utility Model Publication No. 47-36736 and Japanese Patent Publication No. 8-19941. There is a method in which a tapered portion whose diameter is gradually enlarged toward the end portion is provided, and the inner wall surface of the tapered portion is formed more coarsely than the shaft support portion. What is formed in this way is that oil is accumulated in the wedge-shaped space formed between the tapered portion of the bearing bore and the rotating shaft by surface tension, and an oil film is continuously formed to facilitate the driving, and the oil is It absorbs easily and prevents external leakage.
[0004]
Further, as disclosed in Japanese Utility Model Publication No. 8-9450, there is a structure in which a member such as a porous sintered body is in contact with both ends of an oil-impregnated bearing press-fitted into a housing. This porous member has pores that can absorb oil that oozes out from the oil-impregnated bearing during operation, and a gap is formed between the porous shaft and the oil that oozes out from the oil-impregnated bearing. It is sucked and stored, and oil is retained in the gap to prevent leakage. If the oil-impregnated bearing has insufficient oil, the oil in the porous member can be sucked, so that the service life is prolonged.
[0005]
[Problems to be solved by the invention]
In the sintered oil-impregnated bearing as described above, the former has a shape in which the chamfer of the inner hole is expanded, and the chamfered portion is formed on the porous surface, so that it is easy to manufacture and prevents oil leakage. In the latter case, the members have to be manufactured separately, but the oil moves within the bearing element and there is no external leakage, and each is excellent. By the way, recently, the rotating shaft is often rotated at a higher speed, and even in that case, a sintered oil-impregnated bearing that can reliably maintain the oil leakage preventing effect and has an excellent bearing life is expected. Therefore, an object of the present invention is to realize a sintered oil-impregnated bearing that can be manufactured by a normal manufacturing process and that has less oil leakage.
[0006]
[Means for Solving the Problems]
In order to achieve the above object, the manufacturing method of the present invention has a shaft support portion (10a) at a portion including the middle in the shaft hole direction as a bearing material as illustrated in FIG. After manufacturing a sintered body (10A) having a large inner hole portion (10b) having an inner diameter larger than the shaft support portion at both ends, the shaft support portion (10a) is formed into a mold by sizing the sintered body. While correcting with the core, at least the end surface on the side where the large inner hole portion (10b) is formed is compressed with the upper and lower punches, and the hole portion near the end surface is reduced in diameter in the large inner hole portion. The main part is to form the inner hole small portion (1c) having a larger diameter than the inner diameter of the rear shaft support portion (1a).
[0007]
Specifically, the metal powder is compacted, and the shaft support portion (10a) is formed in a portion including the middle in the shaft hole direction, and the inner diameter is larger than the shaft support portion on one end side or both end sides of the shaft support portion. For the green compact (10) having a large portion (10b), the step of sintering the green compact, and the sintered body (10A), the shaft support (10a) is made of gold. While correcting with the mold core, at least the end surface on the side forming the large inner hole portion (10b) is compressed with the upper and lower punches, and the inner hole portion in the vicinity of the end surface of the large inner hole portion is reduced in diameter. A sizing step for forming the inner hole small portion (1c) having a diameter larger than the inner diameter of the shaft support portion (1a) after the correction, and a step for impregnating the sizing body (1) obtained in the sizing step with a lubricating oil; It goes through.
[0008]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the drawings. FIG. 1 is a schematic cross-sectional view showing four examples of sintered oil-impregnated bearings to which the present invention is applied, each in a vertical cross-sectional shape. FIG. 1A shows a cylindrical shape in which a large inner hole and a small inner hole are formed on both ends of the shaft support in the bearing inner hole, and FIG. 1B shows a large inner hole and a small inner hole. Is formed only on one end side of the shaft support, (c) is a flanged shape with respect to (a), (d) is a spherical outer shape with a large inner hole and a small inner hole Are formed on both ends of the shaft support. In these structural descriptions, the same or similar members or parts that are operatively the same are denoted by the same reference numerals, and redundant descriptions are omitted.
[0009]
In FIG. 1 (a), the sintered oil-impregnated bearing 1 has a shaft support portion 1a at the middle portion of the bearing inner hole, and the surface thereof is relatively densely formed by sizing. At both ends of the shaft support 1a, an inner diameter large portion 1b having an inner diameter larger than that of the shaft support 1a adjacent to the shaft support 1a, and an inner hole size larger than the shaft support 1a adjacent to the inner diameter large portion 1b, A small inner hole portion 1c smaller than the large hole portion 1b is provided. Each large inner hole portion 1b is connected via a slope (tapered slope) whose inner diameter is gradually enlarged from the corresponding portion of the shaft support portion 1a. This slope may be a convex or concave slope. The inner diameter large portion 1b and the surface of the inclined surface are rough surfaces having more pores than the shaft support portion 1a. On the other hand, the small inner hole portion 1c is located near the end surface and is connected via a slope (tapered slope) whose inner diameter is gradually reduced from the corresponding portion of the large inner diameter portion 1b toward the opening on the end surface side. . The inner hole small portion 1c is denser on the surface and in the vicinity around the surface of the large inner diameter portion 1b.
[0010]
The sintered oil-impregnated bearing 1 in FIG. 1B has a structure in which the large inner diameter portion 1b and the small inner hole portion 1c of FIG. 1A are formed only on one end side of the shaft support portion 1a. This is suitable for a bearing element that is used so that the side on which the portion 1b and the small inner hole portion 1c are formed becomes the open side of the bearing. Further, the sintered oil-impregnated bearing 1 in FIG. 1C has a structure in which a flange 1d is formed on one end side of the outer periphery of the bearing in FIG. 1A. As an example of use, the flange 1d can be used as an attachment element. It is. The sintered oil-impregnated bearing 1 in FIG. 1 (d) is a self-aligning bearing in which the outer peripheral shape of the bearing is formed as a spherical surface 1e, and the inner hole structure is the same as described above although the outer shape is different.
[0011]
In addition, each sintered oil-impregnated bearing 1 in FIGS. 1A to 1D is provided with a chamfer along the end surface, which is a conventional technique of this type of bearing, and an oil groove or a dynamic pressure groove is provided on the shaft support portion 1a. Providing the intermediate portion of the shaft support portion 1a which is a sliding surface as a middle relief shape which is a large diameter portion which is not in contact with the rotating shaft, both ends of the sintered oil-impregnated bearing as described in Japanese Utility Model Publication No. 8-9450 It is possible to add a configuration such as contacting a porous member to the surface.
[0012]
Next, the manufacturing method of the above-described sintered oil-impregnated bearing will be described with reference to a manufacturing example of the sintered oil-impregnated bearing 1 shown in FIG. The sintered oil-impregnated bearing 1 shown in FIGS. 1B to 1D is inferred from the explanation of FIG. 1A because the outer shape of the bearing is shaped by the same method as the conventional one. FIG. 2 is a schematic cross-sectional view illustrating a powder molding procedure.
[0013]
The molding die apparatus used is mainly a die 4 forming a die hole 4a. A cylindrical lower punch 8 and a lower core 5 are provided below the die hole 4a, and the die hole 4a. The upper punch 7 and the upper core 6 are disposed above the upper part. A difference from a general powder molding die for obtaining a bearing material shape is that the core is divided into upper and lower parts. As can be seen from FIGS. 2 (a) and 2 (b), the lower core 5 has a thickness for forming the large inner hole portion 10b or 1b of the bearing inner hole, and the upper end portion is a tapered portion 5a. . The upper core 6 has the same upper portion as the thickness of the lower core 5, and the lower portion is an upper core small diameter portion 6b for forming the shaft support portion 10a or 1a of the bearing via the taper portion 6a. .
[0014]
FIG. 2A shows a state in which the powder 2 is filled in the cavity formed by the lower core 5 and the lower punch 8 in the die hole 4a of the die 4 by a normal method. The powder 2 is a copper-based or iron-based alloy powder, or a normal mixed powder for forming an alloy. FIG. 2B shows a state in which the upper core 6 is lowered and the upper core small diameter portion 6 b is brought into contact with the upper end surface of the lower core 5. From this state, as the device drive, the upper core 6 and the lower core 5 are lowered and the upper core 6 and the lower core 5 are lowered so that the upper core small diameter portion 6b comes to the upper and lower intermediate portions of the powder 2 as shown in FIG. The punch 7 is also lowered. FIG. 2 (c) shows a state in which the powder 2 is compressed to a predetermined density and size by the upper punch 7 and the lower punch 8 and manufactured into a green compact (molded body) 10. Thereafter, the upper punch 7 and the upper core 6 are raised, and the green compact (molded body) 10 is pushed up and released by the lower punch 5 as shown in FIG. In this case, the lower core 5 is similarly raised. The inner hole of the produced green compact (molded body) 10 includes a shaft support portion 10 a formed by the upper core small diameter portion 6 b, an inner diameter large portion 10 b formed by the upper core 6 and the lower core 5, and the upper core 6. It has a shape having a tapered inner hole surface 10 c formed corresponding to the tapered portion 6 a and the tapered portion 5 a of the lower core 5.
[0015]
(Sizing) The green compact (molded body) 10 is sintered by a normal method in the next step. The sintered body 10A is sized using a mold as shown in FIG. The sizing mold has a normal structure including a die 14, a lower punch 18, an upper punch 17 and a core 19. FIG. 3A shows a state in which a sintered body 10A, which is a bearing material, is inserted into a mold. In this case, whether to adopt negative sizing or positive sizing is appropriately determined depending on the density of the obtained sintered bearing 1 and the desired surface condition. FIG. 3 (b) shows a state in which the sintered body 10 </ b> A is compressed by the upper and lower punches 17 and 18. The sintered body 10A is shaped into a design shape by this sizing and becomes a sintered bearing (sizing body) 1, which is pushed up by the lower punch 18 and released. The sintered bearing (sizing body) 1 is formed as a small inner hole portion 1c having a large diameter reduced at the end face side of the large inner hole portion 10b of the sintered body 10A. Not touching. Further, the vicinity of the small inner hole portion 1c is denser than the portion remaining as the large inner hole portion 1b.
[0016]
In the illustrated sizing example, in the case where a normal chamfer is provided at the inner hole opening of the sintered bearing (sizing body) 1, the chamfered portion is compressed together with the end surface of the sintered body 10A which is a bearing material. Further, the core rod 19 has a simple columnar shape, but, similarly to the core structure of the powder molding die shown in FIG. 2, using the lower core 5 and the upper core 6 having the small diameter portion 6b, The shaft support portion 10a may be sized by the core small-diameter portion 6b to be the shaft support portion 1a, and the lower core 5 and the upper core 6 may be brought into contact with the small inner hole diameter 1c reduced in size by sizing. According to this method, the accuracy of the inner diameter of the inner hole small portion 1c is stabilized, and the amount of surface pores of the inner hole small portion 1c can be reduced.
[0017]
The manufactured sintered bearing (sizing body) 1 becomes a sintered oil-impregnated bearing of the present invention when impregnated with lubricating oil (impregnated with normal pressure oil, vacuum or reduced pressure oil) in the next step. FIG. 4 shows a use state in which the rotary shaft 3 is mounted on the sintered oil-impregnated bearing 1 after impregnation. The rotary shaft 3 is inserted through the inner hole of the sintered oil-impregnated bearing 1 and is pivotally supported by the pivotal support portion 1a. On both sides of the shaft support portion 1a, the large inner hole portion 1b is positioned on the shaft support portion 1a side, and the small inner hole portion 1c is positioned closer to the end face than the large inner hole portion 1b. A minute gap S1 for oil film formation is secured between the rotating shaft 3 and the shaft support 1a, and a large oil gap S2 is secured between the rotating shaft 3 and the large inner hole 1b. A gap S3 suitable for preventing oil leakage is secured between the small inner hole portions 1c. In other words, in the sintered oil-impregnated bearing 1, the inner hole dimensions are such that the inner hole large portion 1b> the inner hole small portion 1c> the shaft support portion 1a. The density of the bearing inner hole surface is such that the inner hole large portion 1b <the inner hole small portion 1c <the shaft support portion 1a.
[0018]
(Operation) In the above bearing structure, for example, when the sintered oil-impregnated bearing 1 is fixed and the rotary shaft 3 is rotated, the lubricating oil impregnated in the pores of the shaft support portion 1a oozes into the clearance S1 and becomes a sliding surface. An oil film is formed. This lubricating oil is heated by frictional heat or outside air, and an excessive amount is generated due to thermal expansion. The excess lubricating oil flows into the annular gap S2 of the large inner hole portion 1b, and the large inner hole portion 1b. And then try to scatter from the hole end opening to the outside. However, in this bearing structure, since the tapered inclined surface that continues from the inner hole large portion 1b and the shaft support portion 1a to the inner hole large portion 1b is a portion where the pore density is coarse, the lubricating oil is used as the inner hole. It is easy to be sucked into or ooze out into the pores of the large portion 1b, functions as an oil reservoir adjacent to the shaft support portion 1a, and has an effect of preventing lack of lubricating oil in the shaft support portion 1a. The lubricating oil circulation between them is also improved. Moreover, since the small inner diameter portion 1c is located on the end surface side of the shaft hole and is smaller than the inner diameter size of the large inner hole portion 1b, it functions as a dam that ensures the oil reservoir function of the large inner hole portion 1b. And function to structurally prevent external leakage of the lubricating oil. Further, the lubricating oil in the large inner hole portion 1b is such that the pores in the small inner diameter portion 1c are denser than the large inner hole portion 1b, and the large inner hole portion between the small inner hole portion 1c and the large inner hole portion 1b. Since the tapered slope gradually increases in diameter toward 1b, the rotation of the rotary shaft 3 pushes it toward the inner wall of the large inner bore 1b (in the direction of the shaft support 1a), and the external leakage of the lubricating oil also occurs due to its action. Is prevented.
[0019]
Here, the diameter and axial length of the large inner hole portion 1 b and the small inner hole portion 1 c are appropriately designed according to the size of the sintered oil-impregnated bearing 1. At this time, the small inner hole portion 1c is set to such a size that the dam action of the oil sump can be obtained without contacting even when the rotary shaft 3 is inclined by normal driving. The inner hole large portion 1b has a diameter of the shaft support portion 1a from the case where the difference from the diameter of the shaft support portion 1a is about several μm, for example, the diameter of the shaft support portion 1a is about 1 mm and the wall thickness is thin. In the case of about 10 mm, it is arbitrary such as about 0.1 to 1 mm, but in that case, it is designed in consideration of the formability of the small inner hole portion 1c by sizing. Further, in the case of a bearing shape in which the large inner hole portion 1b can be set large, an appropriate amount that does not leak during operation into the clearance S2, that is, the annular space between the rotary shaft 3 and the large inner hole portion 1b. It is also possible to employ a method of injecting the lubricating oil.
[0020]
5 and 6 are longitudinal sectional views showing the other two forms of the sintered oil-impregnated bearing 1 together with the sintered body before sizing. In this description, the same code | symbol is attached | subjected to the same or similar member or site | part as the above-mentioned form, and a change point is explained in full detail. 5 (b), (b-1) and FIG. 6 (b) show a sintered body 10A after the green compact 10 is sintered, and FIG. 5 (a), FIG. 6 (a) and FIG. 1) shows a sized body or sintered bearing 1 after sizing.
[0021]
In the structure of FIG. 5, an example in which the shape of the small inner hole portion 1c is devised at the stage of compacting, and the sintered body 10A obtained by sintering the compact 10 can be actively shaped by sizing. It is. In the sintered body 10A of FIG. 5B, a convex portion 10d is provided on the inner diameter side of the bearing end surface together with the shaft support portion 10a, the large inner diameter portion 10b, and the tapered inner hole surface 10c by compacting. In the sintered body 10A of FIG. 5B-1, the shape of the bearing end surface is changed to a tapered portion 10e that decreases from the inner diameter side toward the outer diameter side instead of the convex portion 10d of FIG. The convex part 10d and the taper part 10e are formed only by changing the end face shape of the upper and lower punches 7 and 8 in FIG. In the sizing, the convex portion 10d and the tapered portion 10e are compressed by a re-pressure punch (same as the upper and lower punches 17 and 18 in FIG. 3), which is effective in facilitating the formation of the small inner diameter portion 1c.
[0022]
On the other hand, the structure of FIG. 6 is an example in which the inner hole small portion 1c can be positively shaped by a corresponding punch shape when sizing the sintered body 10A. That is, the sintered body 10A in FIG. 6B is obtained by compacting and then sintering the same as in FIG. Then, in the sizing process, in the sintered bearing (sizing body) 1 in FIG. 6 (a), a recess 1f is additionally formed on the end face side from the small inner diameter portion 1c, and the sintered bearing (sizing body) in FIG. 6 (a-1). ) 1 is additionally formed with a tapered recess 1g on the end face side from the small inner diameter portion 1c. In order to facilitate the formation of the small inner diameter portion 1c, these are formed by simply providing corresponding convex portions or tapered convex portions on the end face of the re-pressure punch (upper and lower punches 17 and 18 in FIG. 3) in the sizing process. It becomes effective. As described above, the present invention only needs to include the technical elements specified in the claims, and the invention can be modified based on this as necessary in production.
[0023]
【The invention's effect】
As described above, the manufacturing method of the present invention can be formed by compacting and sizing by a normal sintered bearing manufacturing process. It can be mass-produced efficiently.
[Brief description of the drawings]
FIG. 1 is a longitudinal sectional view schematically showing a shape example of a bearing of the present invention.
FIG. 2 is a longitudinal sectional view for explaining a powder compacting method when manufacturing the bearing.
FIG. 3 is a longitudinal sectional view for explaining a sizing method in manufacturing the bearing.
FIG. 4 is a vertical cross-sectional view for explaining a usage state of the bearing.
FIG. 5 is a view showing another embodiment of the bearing of the present invention together with a sintered body before sizing.
FIG. 6 is a view showing still another embodiment of the bearing of the present invention together with a sintered body.
[Explanation of symbols]
1 ... Sintered oil-impregnated bearing (sintered bearing)
DESCRIPTION OF SYMBOLS 1a ... Shaft support part 1b ... Large inner hole 1c ... Small inner hole 2 ... Powder 3 ... Rotating shaft 10 ... Green compact 10A ... Sintered body (sizing body or bearing material)

Claims (3)

軸受素材として、軸孔方向の中間を含む部分に軸支部をもち、この軸支部の一端側又は両端側に軸支部よりも内径寸法が大きい内孔大部をもつ形状の焼結体を製作した後、
前記焼結体をサイジングによって、前記軸支部を金型コアで矯正すると共に、少なくとも前記内孔大部を形成している側の端面を上下パンチで圧縮して、内孔大部のうち、端面近傍の孔部分を縮径させて前記矯正後の軸支部の内径寸法より大径の内孔小部に形成することを特徴とする焼結含油軸受の製造方法。
As a bearing material, a sintered body having a shaft support portion in a portion including the middle in the shaft hole direction and having a large inner hole portion having an inner diameter larger than the shaft support portion at one end side or both end sides of the shaft support portion was manufactured. rear,
By sizing the sintered body, the shaft support portion is corrected with a mold core, and at least the end surface on the side forming the large inner hole portion is compressed with an upper and lower punch, and the end surface of the large inner hole portion A method for manufacturing a sintered oil-impregnated bearing, comprising reducing a diameter of a nearby hole portion to form a small inner hole portion having a diameter larger than the inner diameter dimension of the shaft support portion after the correction.
前記焼結体の軸受端面形状が、内径側に凸部を有する形状または内径側から外径側に向けて低くなるテーパ部を有する形状であるとともに、前記凸部またはテーパ部を上下パンチで圧縮することを特徴とする請求項1に記載の焼結含油軸受の製造方法。The shape of the bearing end surface of the sintered body is a shape having a convex portion on the inner diameter side or a shape having a tapered portion that decreases from the inner diameter side toward the outer diameter side, and the convex portion or the tapered portion is compressed by an upper and lower punch. The method for producing a sintered oil-impregnated bearing according to claim 1. 端面に凸部またはテーパ凸部を設けたパンチを用いることを特徴とする請求項1又は2に記載の焼結含油軸受の製造方法。The method for manufacturing a sintered oil-impregnated bearing according to claim 1 or 2, wherein a punch having a convex portion or a tapered convex portion on an end face is used.
JP2000114697A 2000-04-17 2000-04-17 Method for producing sintered oil-impregnated bearing Expired - Fee Related JP3818626B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000114697A JP3818626B2 (en) 2000-04-17 2000-04-17 Method for producing sintered oil-impregnated bearing

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000114697A JP3818626B2 (en) 2000-04-17 2000-04-17 Method for producing sintered oil-impregnated bearing

Publications (2)

Publication Number Publication Date
JP2001295845A JP2001295845A (en) 2001-10-26
JP3818626B2 true JP3818626B2 (en) 2006-09-06

Family

ID=18626460

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000114697A Expired - Fee Related JP3818626B2 (en) 2000-04-17 2000-04-17 Method for producing sintered oil-impregnated bearing

Country Status (1)

Country Link
JP (1) JP3818626B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004036842A (en) * 2002-07-05 2004-02-05 Mitsuba Corp Bearing structure for rotating shaft
JP4606870B2 (en) * 2004-12-27 2011-01-05 株式会社ダイヤメット Method for producing sintered oil-impregnated bearing and sintered oil-impregnated bearing
JP6449059B2 (en) * 2015-03-17 2019-01-09 Ntn株式会社 Sintered oil-impregnated bearing and manufacturing method thereof
DE102020202738A1 (en) * 2020-03-04 2021-09-09 Mahle International Gmbh Plain bearing, method for producing a plain bearing, internal combustion engine with plain bearing and electrical machine with plain bearing

Also Published As

Publication number Publication date
JP2001295845A (en) 2001-10-26

Similar Documents

Publication Publication Date Title
US5282688A (en) Sintered oil impregnated bearing and its manufacturing method
JP4522619B2 (en) Sintered oil-impregnated bearing, manufacturing method thereof and motor
JP3818626B2 (en) Method for producing sintered oil-impregnated bearing
JP3607478B2 (en) Dynamic pressure type porous oil-impregnated bearing
JP2006038185A (en) Composite sintered bearing
JP3585693B2 (en) Sintered oil-impregnated bearing
JP2006226398A (en) Bearing device and manufacturing method of bearing device
JPH05180229A (en) Manufacture of oil-impregnated sintered bearing
JP3856363B2 (en) Manufacturing method of bearing
JP3698352B2 (en) Manufacturing method of bearing
JP2740743B2 (en) Manufacturing method of sintered oil-impregnated bearing
JP3755737B2 (en) Method for producing sintered oil-impregnated bearing
JP6449059B2 (en) Sintered oil-impregnated bearing and manufacturing method thereof
JP2001041244A (en) Manufacture of bearing
JP2001059106A (en) Manufacture of bearing
JP4188288B2 (en) Manufacturing method of dynamic pressure type porous oil-impregnated bearing
JP3797465B2 (en) Manufacturing method of bearing
JP2001032838A (en) Manufacture of bearing
JP2001056028A (en) Manufacture of bearing
JP3647008B2 (en) Method for producing sintered oil-impregnated bearing
JP6981900B2 (en) Fluid dynamic bearing device and motor equipped with it
JP2001020956A (en) Manufacture method of bearing
JP3620817B2 (en) Sintered oil-impregnated bearing
CN118786287A (en) Sintered oil-impregnated bearing and fluid dynamic bearing device provided with same
JP2001059104A (en) Manufacture of bearing

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20051212

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051219

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060214

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060612

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060612

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100623

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110623

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110623

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120623

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120623

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130623

Year of fee payment: 7

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees