JP2001041244A - Manufacture of bearing - Google Patents

Manufacture of bearing

Info

Publication number
JP2001041244A
JP2001041244A JP11212511A JP21251199A JP2001041244A JP 2001041244 A JP2001041244 A JP 2001041244A JP 11212511 A JP11212511 A JP 11212511A JP 21251199 A JP21251199 A JP 21251199A JP 2001041244 A JP2001041244 A JP 2001041244A
Authority
JP
Japan
Prior art keywords
inner diameter
outer diameter
bearing
axial direction
diameter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11212511A
Other languages
Japanese (ja)
Inventor
Motohiro Miyasaka
元博 宮坂
Toshiichi Takehana
敏一 竹花
Takeshi Kurihara
健 栗原
Hidekazu Tokushima
秀和 徳島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Corp
Original Assignee
Hitachi Powdered Metals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Powdered Metals Co Ltd filed Critical Hitachi Powdered Metals Co Ltd
Priority to JP11212511A priority Critical patent/JP2001041244A/en
Publication of JP2001041244A publication Critical patent/JP2001041244A/en
Pending legal-status Critical Current

Links

Landscapes

  • Sliding-Contact Bearings (AREA)
  • Powder Metallurgy (AREA)

Abstract

PROBLEM TO BE SOLVED: To high-efficiently manufacture a two-point support structure bearing having a middle run-off through a comparatively simple method as bearing performance is improved. SOLUTION: A core rod 22 is inserted in a uniform outside diameter material (a sintered substance) 1A provided at one end part in an axial direction with the small part 3 of an inside diameter, and the material 1A is pressed in the cavity of a molding hole 20 by an upper punch 23 and axially compressed. The outside diameter surface of one end part in an axial direction of the material 1A is compressed toward the inside diameter side to decrease an outside diameter and meanwhile, the outside diameter surface of the other end part in an axial direction is expanded to increase an outside diameter. Along with this deformation, the inside diameter surfaces of two end parts in an axial direction are brought into pressure contact with the core rod 22 to form a pivotal support surface 12 to support a rotary shaft. A middle run-off 13 which has an inside diameter layer than that of the pivotal support surface 12 and with which the rotary shaft makes no contact is formed between the pivotal support surfaces 12.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、精密機器に内蔵さ
れるスピンドルモータの駆動軸等、比較的高速で回転す
る軸を高精度で支持する場合に用いて好適な軸受の製造
方法に関する。本発明は、素材を圧縮することにより塑
性変形を生じさせて所望形状の軸受を得る技術であっ
て、素材としては、主に、圧粉体を焼結させた焼結体あ
るいは焼結体にサイジング(再圧縮)を施してなる円筒
状の多孔質体が用いられる。また、本発明によって製造
された軸受は、潤滑油が含浸され、焼結含油軸受として
好適に用いられる。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a bearing suitable for supporting a shaft rotating at a relatively high speed, such as a drive shaft of a spindle motor built in precision equipment, with high precision. The present invention is a technique for obtaining a bearing having a desired shape by causing plastic deformation by compressing a material, and as a material, mainly, a sintered body obtained by sintering a green compact or a sintered body A cylindrical porous body subjected to sizing (recompression) is used. Further, the bearing manufactured according to the present invention is impregnated with lubricating oil and is suitably used as a sintered oil-impregnated bearing.

【0002】[0002]

【従来の技術】上記焼結含油軸受は、焼結体に含浸され
た潤滑油が内径面にしみ出し、内径面と回転軸との間に
油膜が形成されることにより、摩擦抵抗が低減して騒音
や振動が抑えられるといった特性を有する。また、振動
や騒音の抑制効果をさらに高めた焼結含油軸受として、
軸方向中央部の内径面に、内径が回転軸の外径より僅か
に大きく回転軸と接触しない隙間(以下、中逃げ部と称
する)を形成し、回転軸の軸支面を両端部の内径面に限
定した2点支持構造として摩擦抵抗の低減効果と回転軸
の支持力をより安定化させたものがある。
2. Description of the Related Art In a sintered oil-impregnated bearing, the lubricating oil impregnated in a sintered body seeps into an inner diameter surface, and an oil film is formed between the inner diameter surface and a rotating shaft, thereby reducing frictional resistance. It has the characteristic that noise and vibration are suppressed. In addition, as a sintered oil-impregnated bearing with further enhanced vibration and noise suppression effects,
A gap (hereinafter, referred to as a middle relief portion) having an inner diameter slightly larger than the outer diameter of the rotating shaft and not in contact with the rotating shaft is formed on the inner diameter surface at the central portion in the axial direction. As a two-point support structure limited to a surface, there is a structure in which the effect of reducing frictional resistance and the support force of the rotating shaft are further stabilized.

【0003】焼結含油軸受は、通常、原料の金属粉末を
圧縮成形して得た円筒状の圧粉体を焼結し、焼結体をサ
イジングして最終形状に仕上げるといった工程を主体と
して製造されている。ところで、上記中逃げ部を有する
軸受を製造する場合、その中逃げ部を焼結体への機械加
工で形成すると、内径面に表出している気孔が潰れて潤
滑油の循環作用に支障を来すことになる。このため、焼
結体のサイジング工程で中逃げ部を同時に形成するか、
もしくはサイジング後にもう1度焼結体を圧縮して中逃
げ部を独自に形成する方法が好ましい。いずれの場合
も、軸方向両端部の内径面が径方向内側に突出したり、
軸方向中央部が径方向外側に膨出したりする塑性変形
を、素材である焼結体に生じさせることにより、離間す
る2つの軸支面とこれらの間の中逃げ部が内径面に同時
に形成される。
[0003] Sintered oil-impregnated bearings are usually manufactured mainly by the steps of sintering a cylindrical green compact obtained by compression-molding a raw metal powder, sizing the sintered body and finishing it into a final shape. Have been. By the way, when manufacturing a bearing having the above-mentioned middle relief, if the middle relief is formed by machining a sintered body, pores exposed on the inner diameter surface are crushed, which hinders the circulation operation of the lubricating oil. Will be. For this reason, in the sizing process of the sintered body,
Alternatively, a method in which the sintered body is compressed once again after sizing to independently form the middle relief portion is preferable. In either case, the inner diameter surfaces at both axial ends protrude radially inward,
By generating plastic deformation in the sintered body as a material, in which the central portion in the axial direction swells outward in the radial direction, two spaced apart bearing surfaces and a relief portion between them are formed simultaneously on the inner diameter surface. Is done.

【0004】[0004]

【発明が解決しようとする課題】上記2点支持構造の軸
受においては、前述した摩擦抵抗の低減や回転軸の支持
力向上といった軸受性能を高める上で、離間する2つの
軸支面の内径および同軸度が高い精度で一致しているこ
とが要求される。また、軸支面への潤滑油の供給量が十
分になされることも重要である。ところが、従来より焼
結体の塑性変形のさせ方は様々提案されているものの、
比較的簡素で、軸受性能向上のための要求が十分満たさ
れる一定の製造方法は見い出されていないのが現状であ
った。
In the bearing having the above-mentioned two-point support structure, in order to enhance the bearing performance such as the reduction of the frictional resistance and the improvement of the support force of the rotary shaft, the inner diameter of the two separated shaft supporting surfaces and It is required that the coaxiality match with high accuracy. It is also important that a sufficient amount of lubricating oil be supplied to the bearing surface. However, although various methods have been proposed for plastic deformation of a sintered body,
At present, there has not been found a certain manufacturing method which is relatively simple and sufficiently satisfies the requirements for improving bearing performance.

【0005】したがって本発明は、軸方向中央部の内径
面に回転軸が接触しない中逃げ部を有し、なおかつその
中逃げ部の中逃げ量が比較的大きく、軸方向両端部の内
径面が回転軸を支持する軸支面として機能する2点支持
構造の軸受を、比較的簡素な方法で効率よく製造するこ
とができるとともに、その軸受性能(2つの軸支面の内
径の同一性や同軸度に伴う回転軸の支持力、潤滑性、耐
摩耗性等)の向上も達成し得る軸受の製造方法を提供す
ることを目的としている。
Accordingly, the present invention has a middle clearance portion in which the rotating shaft does not contact the inner diameter surface at the axial center portion, and furthermore, the inner clearance amount of the middle clearance portion is relatively large, and the inner diameter surfaces at both axial end portions are small. A bearing having a two-point support structure that functions as a bearing surface for supporting a rotating shaft can be efficiently manufactured by a relatively simple method, and its bearing performance (identical inner diameter of the two bearing surfaces, coaxial It is an object of the present invention to provide a method of manufacturing a bearing that can also achieve improvements in the bearing strength, lubricity, wear resistance, and the like of the rotating shaft with increasing degrees.

【0006】[0006]

【課題を解決するための手段】本発明は、円筒状で、少
なくとも軸方向一端部に内径小径部を有するとともに外
径均一または外径面の一部に外径大径部を備えた多孔質
体からなる素材を、コアロッドを挿入させた状態で、成
形型の成形孔に圧入するとともに軸方向に圧縮すること
により、素材の軸方向一端部の外径面を内径側に圧縮し
てその外径を縮小させる一方、軸方向他端部の外径面を
膨出させてその外径を拡大させ、この変形に伴い、軸方
向両端部の内径面をコアロッドに圧接させて回転軸を支
持する軸支面に形成し、これら軸支面間に、軸支面より
も内径が大きく回転軸が接触しない中逃げ部を形成する
ことを特徴としている。本発明に係る素材は、前述の如
く焼結体あるいは焼結体にサイジングを施してなる多孔
質体が用いられ、製造後は、潤滑油が含浸され、焼結含
油軸受として好適に用いられる。
SUMMARY OF THE INVENTION The present invention relates to a porous material having a cylindrical shape, having at least one small-diameter inner diameter portion at one end in the axial direction and having a uniform outer diameter or a large-diameter outer portion at a part of the outer diameter surface. With the core rod inserted, the material consisting of the body is pressed into the forming hole of the mold and compressed in the axial direction, so that the outer diameter surface at one axial end of the material is compressed to the inner diameter side and While reducing the diameter, the outer diameter surface at the other end in the axial direction is expanded to increase the outer diameter. With this deformation, the inner diameter surfaces at both ends in the axial direction are pressed against the core rod to support the rotating shaft. It is formed on a shaft support surface, and is characterized in that a middle clearance portion is formed between the shaft support surfaces and has a larger inner diameter than the shaft support surface and does not contact the rotating shaft. As the material according to the present invention, a sintered body or a porous body obtained by sizing the sintered body as described above is used, and after production, the sintered body is impregnated with a lubricating oil and is suitably used as a sintered oil-impregnated bearing.

【0007】本発明では、例えば、外径均一の円筒状素
材を、ダイに形成された円筒状成形孔に、コアロッドを
挿入した状態を保持しながら、パンチにより圧入すると
ともに軸方向に圧縮するといった成形方法が採られる。
その場合、素材の内径は、内径面とコアロッドとの間に
隙間が形成される大きさに設定する。また、成形孔を、
入口側の部分が素材の外径よりも大きく、そこから奥が
段部を経て素材の外径よりも小さく縮径された孔とす
る。
In the present invention, for example, a cylindrical material having a uniform outer diameter is press-fitted by a punch and axially compressed while a core rod is inserted into a cylindrical forming hole formed in a die. A molding method is adopted.
In this case, the inner diameter of the material is set to a size that forms a gap between the inner diameter surface and the core rod. Also, the forming hole,
The portion on the inlet side is larger than the outer diameter of the material, and the inner part is a hole whose diameter is smaller than the outer diameter of the material through a step.

【0008】このような成形孔に素材が圧入されると、
圧入方向先端側の一端部と、これに続く中央部とが、成
形孔の縮径部に圧入されて外径面が内径側に圧縮され、
外径が縮小する。一方、圧入方向後端側の他端部は、軸
方向に圧縮されることにより、その外径面が成形孔の入
口側の大径部の内径面に圧接するまで膨出し、外径が拡
大する。また、素材が軸方向に圧縮されることにより、
軸方向両端部の内径面が内径側に膨出してコアロッドに
圧接し、軸支面に形成されるとともに、これら軸支面間
の内径面は、コアロッドとの間の隙間が残存して中逃げ
部とされる。本発明は、このような変形態様が適宜にな
される素材と成形型の組み合わせを採ることにより、中
逃げ量が比較的大きな中逃げ部を有する2点支持構造の
軸受を、比較的簡素な方法で効率よく製造することがで
きる。
When a material is pressed into such a molding hole,
One end on the front end side in the press-fitting direction and the central portion following this are press-fitted into the reduced diameter portion of the molding hole, and the outer diameter surface is compressed to the inner diameter side,
Outer diameter shrinks. On the other hand, the other end on the rear end side in the press-fitting direction is compressed in the axial direction, so that the outer diameter surface expands until it comes into pressure contact with the inner diameter surface of the large-diameter portion on the inlet side of the forming hole, and the outer diameter increases. I do. Also, by compressing the material in the axial direction,
The inner diameter surfaces at both ends in the axial direction swell toward the inner diameter side and are pressed against the core rod to form on the bearing surface, and the inner diameter surface between these bearing surfaces has a clearance between the core rod and the inner escape surface. Department. The present invention adopts a combination of a material and a mold in which such a deformation mode is appropriately performed, and thereby a bearing of a two-point support structure having a middle relief portion having a relatively large middle clearance amount can be provided by a relatively simple method. And can be manufactured efficiently.

【0009】本発明によれば、回転軸を支持する軸支面
は、素材の内径面がコアロッドに強く圧接させられるこ
とにより形成されるので、その内径および同軸度が高い
精度で一致する。また、軸支面の密度を高くすることが
できるので、耐摩耗性の向上が図られる。一方、中逃げ
部が形成される内径面の密度を軸支面よりも低くするこ
とができ、また、中逃げ部の直径を比較的大きく形成す
ることができるので、潤滑油の含有量を多くすることが
でき、潤滑性の向上が図られる。これらの結果、高レベ
ルの軸受性能を有する軸受を製造することができる。
According to the present invention, since the shaft supporting surface for supporting the rotating shaft is formed by strongly pressing the inner diameter surface of the material against the core rod, the inner diameter and the coaxiality match with high accuracy. Further, since the density of the bearing surface can be increased, the wear resistance is improved. On the other hand, the density of the inner diameter surface where the middle relief portion is formed can be made lower than that of the bearing surface, and the diameter of the middle relief portion can be formed relatively large, so that the lubricating oil content is increased. And lubricity is improved. As a result, a bearing having a high level of bearing performance can be manufactured.

【0010】本発明の素材としては、特に次に挙げる形
状のものが用いられる。 外径均一、かつ、軸方向一端部に内径小径部を有す
る。 軸方向一端部に内径小径部を有し、かつ、他端部に外
径大径部を有する。 軸方向両端部に内径小径部を有し、かつ、軸方向一端
部に外径大径部を有する。 軸方向一端部に内径小径部および外径大径部を有す
る。
As the material of the present invention, those having the following shapes are particularly used. It has a uniform outer diameter and a small inner diameter portion at one axial end. It has a small inner diameter portion at one end in the axial direction and a large outer diameter portion at the other end. It has an inner small diameter portion at both axial ends and an outer large diameter portion at one axial end. It has a small inner diameter part and a large outer diameter part at one axial end.

【0011】また、本発明では、素材の軸方向両端部の
内径面が圧接させられるコアロッドの外径面に、動圧溝
形成用の凸部または凹部が形成されていることを特徴と
している。これによると、前者の凸部の場合では、軸支
面には凸部形状に応じた動圧溝が形成される。また、後
者の凹部の場合では、凹部形状に応じて刻設された軸支
面と軸支面間の動圧溝とが同時に形成される。軸支面に
動圧溝を形成すると、両端部の各軸支面により回転軸を
支持する2点支持構造に加え、動圧溝に発生する動圧効
果(動圧溝に流入する潤滑油の高圧化に伴う剛性向上)
によって回転軸の支持力が相乗的に高まり、回転軸の支
持力がより安定する。
Further, the present invention is characterized in that a convex portion or a concave portion for forming a dynamic pressure groove is formed on an outer diameter surface of a core rod to which inner diameter surfaces of both ends in the axial direction of the material are pressed. According to this, in the case of the former convex portion, a dynamic pressure groove corresponding to the shape of the convex portion is formed on the bearing surface. In the case of the latter concave portion, a bearing surface engraved according to the shape of the concave portion and a dynamic pressure groove between the bearing surfaces are simultaneously formed. When the dynamic pressure grooves are formed on the bearing surface, the dynamic pressure effect generated in the dynamic pressure grooves (the lubricating oil flowing into the dynamic pressure grooves) Increased rigidity with higher pressure)
Accordingly, the supporting force of the rotating shaft is synergistically increased, and the supporting force of the rotating shaft is more stabilized.

【0012】[0012]

【発明の実施の形態】以下、図面を参照して本発明の実
施形態を説明する。(1)第1実施形態−図1 図1(a)の符合1Aは、焼結体もしくは焼結体にサイ
ジングを施してなる素材である。なお、後に説明する全
ての実施形態の素材の材質も、同様の焼結体であること
を予め述べておく。素材1Aは、外径均一で、軸方向一
端部に内径小径部3が形成された円筒状のものである。
Embodiments of the present invention will be described below with reference to the drawings. (1) First Embodiment-FIG . 1 Reference numeral 1A in FIG. 1A is a sintered body or a material obtained by sizing a sintered body. It should be noted that the materials of all the embodiments described later are also the same sintered bodies. The material 1A is a cylindrical material having a uniform outer diameter and a small inner diameter portion 3 formed at one axial end.

【0013】図1に示す成形装置は、成形孔20を有す
るダイ21と、コアロッド22と、上下のパンチ23,
24とを備えている。成形孔20は、入口側(上側)か
ら奥部に向かって内径が2段階縮小する段状に形成され
ている。すなわち、成形孔20は、軸方向中央部の円筒
状の主部20aと、主部20aよりも小径の奥部の絞り
形成部20bと、主部20aよりも大径の入口側の開口
部20cとから構成されている。開口部20cから主部
20a、主部20aから絞り形成部20bへの各移行部
は、なだらかなテーパ状に形成されている。上パンチ2
3は開口部20cに挿入され、下パンチ24は絞り形成
部20bに挿入されるようになされている。
A forming apparatus shown in FIG. 1 includes a die 21 having a forming hole 20, a core rod 22, upper and lower punches 23,
24. The forming hole 20 is formed in a stepped shape whose inner diameter is reduced by two steps from the inlet side (upper side) toward the inner part. That is, the forming hole 20 has a cylindrical main portion 20a at a central portion in the axial direction, a squeezed portion 20b at a deeper portion having a smaller diameter than the main portion 20a, and an opening 20c on the inlet side having a larger diameter than the main portion 20a. It is composed of Each transition from the opening 20c to the main part 20a and from the main part 20a to the aperture forming part 20b is formed in a gentle taper shape. Upper punch 2
3 is inserted into the opening 20c, and the lower punch 24 is inserted into the aperture forming portion 20b.

【0014】素材1Aの外径は、成形孔20の主部20
aの内径よりも大きく、かつ、その外径面と開口部20
cの内径面との間に隙間が形成される大きさに設定され
ている。また、内径小径部3の内径は、コアロッド22
の直径よりも小さく設定され、内径小径部3以外の内径
は、その内径面とコアロッド22との間に隙間が形成さ
れる大きさに設定されている。
The outer diameter of the raw material 1A is the same as that of the main part 20 of the molding hole 20.
a is larger than the inner diameter of the opening a
The size is set such that a gap is formed between the inner diameter surface of c and the inner diameter surface. The inner diameter of the inner diameter small diameter portion 3 is the same as that of the core rod 22.
Is set smaller than the diameter of the inner diameter, and the inner diameter other than the inner diameter small diameter portion 3 is set to a size where a gap is formed between the inner diameter surface and the core rod 22.

【0015】上記成形装置により素材1Aを圧縮成形す
るには、図1(a)に示すように、まず、下パンチ24
を成形孔20の絞り形成部20bの途中まで挿入して保
持し、コアロッド22をダイ21の上面から所定長さ突
出する位置に保持して、成形孔20にキャビティを形成
する。次いで、内径小径部3を上にして素材1Aをコア
ロッド22に嵌め込み、その下端部を成形孔20の開口
部20cに挿入する。この状態から、図1(b)に示す
ように、コアロッド22と上パンチ23を降下させ、上
パンチ23によって、成形孔20のキャビティ内に素材
1Aを圧入するとともに、軸方向に圧縮する。コアロッ
ド22と上パンチ23は、コアロッド22の上端がダイ
21の上面と同レベルに降下するまで同期させながら降
下させ、その後は、コアロッド22をその位置に保持
し、上パンチ23のみをその下端部が開口部20cに僅
かに入るまで降下させる。なお、素材1Aを成形孔20
に圧入する際のコアロッド22および下パンチ24の位
置は、図1(a)で示した位置に限られず、例えば、コ
アロッド22の上端をダイ21の上面と面一とした状態
でもよい。また、下パンチ24は、その上面をダイ21
の上面と面一の状態としたり、成形孔20の開口部20
cの領域まで上昇させた状態であってもよい。
In order to compression-mold the material 1A by the above-mentioned molding apparatus, first, as shown in FIG.
The cavity is formed in the molding hole 20 while the core rod 22 is held at a position protruding from the upper surface of the die 21 by a predetermined length. Next, the material 1 </ b> A is fitted into the core rod 22 with the small inner diameter portion 3 facing upward, and the lower end thereof is inserted into the opening 20 c of the forming hole 20. From this state, as shown in FIG. 1B, the core rod 22 and the upper punch 23 are lowered, and the raw material 1A is pressed into the cavity of the forming hole 20 by the upper punch 23 and is compressed in the axial direction. The core rod 22 and the upper punch 23 are lowered while synchronizing until the upper end of the core rod 22 is lowered to the same level as the upper surface of the die 21. Thereafter, the core rod 22 is held at that position, and only the upper punch 23 is moved to the lower end. Is slightly lowered into the opening 20c. In addition, the material 1A was inserted into the molding hole 20.
The positions of the core rod 22 and the lower punch 24 at the time of press-fitting are not limited to the positions shown in FIG. 1A, and for example, the upper end of the core rod 22 may be flush with the upper surface of the die 21. The upper surface of the lower punch 24 is
Or the opening 20 of the forming hole 20.
The state may be raised to the region c.

【0016】この操作により、素材1Aの下端部が成形
孔20の主部20aから絞り形成部20bに圧入し、中
央部が主部20aに圧入し、これら部分の外径面が内径
側に圧縮され外径が縮小する。特に下端部は、絞り形成
部20bに圧入されることにより、中央部よりも小径の
絞り部11に造形される。また、素材1Aは下端面が下
パンチ24に拘束されて上パンチ23により軸方向に圧
縮される。素材1Aの上端部は、軸方向への圧縮に加
え、内径小径部3に圧入するコアロッド22の圧迫を受
けて外径側に塑性流動し、その外径面が開口部20cの
内径面に圧接するまで外径側に膨出して外径が拡大し、
新たに外径大径部17が造形される。また、素材1Aの
軸方向両端部の内径面は、上端部側ではコアロッド22
で押し拡げられ、下端部側では圧縮作用により内径側に
膨出し、コアロッド22に圧接して軸支面12に形成さ
れる。さらに、これら軸支面12間の内径面において
は、コアロッド22との間の隙間が残存し、中逃げ部1
3とされる。このようにして素材1Aが塑性変形させら
れ、軸受10Aが成形される。軸受10Aは、上パンチ
23を上昇させ、下パンチ24を上昇させてダイ21か
ら脱型することにより得られる。
By this operation, the lower end of the material 1A is press-fitted from the main portion 20a of the forming hole 20 into the squeezing portion 20b, the center portion is press-fitted into the main portion 20a, and the outer diameter surface of these portions is compressed toward the inner diameter side. And the outer diameter is reduced. In particular, the lower end portion is formed into a narrowed portion 11 having a smaller diameter than the central portion by being press-fitted into the drawn portion 20b. The lower end face of the material 1 </ b> A is restrained by the lower punch 24 and is compressed in the axial direction by the upper punch 23. The upper end portion of the material 1A plastically flows toward the outer diameter side in response to the compression of the core rod 22 pressed into the small inner diameter portion 3 in addition to the compression in the axial direction, and the outer diameter surface is pressed against the inner diameter surface of the opening 20c. Swells to the outside diameter until the outside diameter increases,
The outer large diameter portion 17 is newly formed. Further, the inner diameter surfaces of both ends in the axial direction of the material 1A are the core rods 22 on the upper end side.
At the lower end side, swells toward the inner diameter side by the compression action, and presses against the core rod 22 to form on the shaft support surface 12. Further, on the inner diameter surface between the bearing surfaces 12, a gap with the core rod 22 remains, and the middle escape portion 1
It is set to 3. In this way, the material 1A is plastically deformed, and the bearing 10A is formed. The bearing 10 </ b> A is obtained by lifting the upper punch 23 and raising the lower punch 24 and removing the die from the die 21.

【0017】上記第1実施形態によれば、素材1Aをダ
イ21の成形孔20に圧入するとともに軸方向に圧縮す
るといった簡素な方法により、中逃げ量が比較的大きな
中逃げ部13を有する2点支持構造の軸受10Aを効率
よく製造することができる。
According to the first embodiment, the material 1A having the relatively large middle clearance 13 is formed by a simple method of press-fitting the material 1A into the forming hole 20 of the die 21 and compressing the material 1A in the axial direction. The bearing 10A having the point support structure can be manufactured efficiently.

【0018】軸受10Aの軸支面12は、素材1Aの内
径面をコアロッド22に強く圧接させることにより形成
されるので、その内径および同軸度が高い精度で一致
し、加えて高密度化する故、耐摩耗性に優れる。一方、
中逃げ部13はコアロッド22に圧接しないことから軸
支面12よりも密度は低く、このため潤滑油の含有量を
多くすることができ、潤滑性が向上する。これらの結
果、軸受10Aは優れた軸受性能を発揮する。また、両
端部の内径側への圧縮度がほぼ等しいことから、両端部
の軸支面12の気孔率が均等化され、このため、両端部
の軸支面12に生じる油圧も均等となって回転軸をバラ
ンスよく支持することができる。
The bearing surface 12 of the bearing 10A is formed by strongly pressing the inner diameter surface of the material 1A against the core rod 22, so that the inner diameter and the coaxiality match with high precision, and the density is further increased. Excellent in abrasion resistance. on the other hand,
Since the middle relief portion 13 does not press against the core rod 22, the density is lower than that of the shaft supporting surface 12, so that the lubricating oil content can be increased and lubricity is improved. As a result, the bearing 10A exhibits excellent bearing performance. In addition, since the degree of compression toward the inner diameter side of both ends is substantially equal, the porosity of the bearing surfaces 12 at both ends is equalized, and the hydraulic pressure generated on the bearing surfaces 12 at both ends is also equalized. The rotating shaft can be supported in a well-balanced manner.

【0019】(2)第2実施形態−図2 第2実施形態に係る成形装置は、第1実施形態のダイ2
1に代えてダイ21Aを用いる。ダイ21Aの成形孔2
0は、上記絞り形成部20bを有しておらず、下端まで
貫通する主部20aと、開口部20cとから構成されて
いる。開口部20cの入口側の周縁は、テーパ状に面取
りされている。
(2) Second Embodiment—FIG. 2 The molding apparatus according to the second embodiment is a die 2 of the first embodiment.
A die 21A is used instead of 1. Forming hole 2 of die 21A
Reference numeral 0 does not have the aperture forming portion 20b, and includes a main portion 20a penetrating to the lower end and an opening 20c. The periphery of the opening 20c on the entrance side is chamfered in a tapered shape.

【0020】図2(a)の符合1Bで示す第2実施形態
の素材は、軸方向一端部に外径大径部2が、また、他端
部に内径小径部3が形成された円筒状のものである。外
径大径部2の外径は、成形孔20の開口部20cの内径
よりも大きく設定され、外径大径部2以外の外径は、主
部20aの内径よりも大きく、かつ、その外径面と開口
部20cの内径面との間に隙間が形成される大きさに設
定されている。また、内径小径部3の内径は、コアロッ
ド22の直径よりも小さく設定され、内径小径部3以外
の内径は、その内径面とコアロッド22との間に隙間が
形成される大きさに設定されている。
The material of the second embodiment shown by reference numeral 1B in FIG. 2A has a cylindrical shape having an outer diameter large diameter portion 2 formed at one axial end and an inner diameter small diameter portion 3 formed at the other end. belongs to. The outer diameter of the outer diameter large diameter portion 2 is set to be larger than the inner diameter of the opening 20c of the forming hole 20, and the outer diameter other than the outer diameter large diameter portion 2 is larger than the inner diameter of the main portion 20a. The size is set such that a gap is formed between the outer diameter surface and the inner diameter surface of the opening 20c. Also, the inner diameter of the small-diameter portion 3 is set smaller than the diameter of the core rod 22, and the inner diameter of the portions other than the small-diameter portion 3 is set to a size where a gap is formed between the inner surface and the core rod 22. I have.

【0021】素材1Bを圧縮成形するには、図2(a)
に示すように、内径小径部3を上にして素材1Bをコア
ロッド22に嵌め込み、下側の外径大径部2の端縁を開
口部20cの面取り部に当接させた状態から、第1実施
形態と同様にコアロッド22および上パンチ23を降下
させ、上パンチ23により素材1Bを成形孔20のキャ
ビティに圧入するとともに、軸方向に圧縮する。素材1
Bは、下端部および中央部の外径面が成形孔20の主部
20aの内径面に倣って内径側に圧縮され、下端部の外
径大径部2は消滅する。また、上端部の外径面は、開口
部20cの内径面に圧接するまで外径側に膨出して外径
が拡大し、新たに外径大径部17が造形される。一方、
内径面は、両端部に軸支面12が、また軸支面12間に
中逃げ部13が形成される。このようにして素材1Bが
塑性変形させられ、図2(b)に示す軸受10Bが成形
される。
FIG. 2A shows the compression molding of the material 1B.
As shown in FIG. 3, the material 1B is fitted into the core rod 22 with the small-diameter inner portion 3 facing upward, and the edge of the lower large-diameter portion 2 on the lower side is brought into contact with the chamfered portion of the opening 20c. As in the embodiment, the core rod 22 and the upper punch 23 are lowered, and the material 1B is pressed into the cavity of the forming hole 20 by the upper punch 23 and is compressed in the axial direction. Material 1
In B, the outer diameter surface at the lower end and the central portion is compressed to the inner diameter side following the inner diameter surface of the main portion 20a of the molding hole 20, and the outer diameter large diameter portion 2 at the lower end disappears. Further, the outer diameter surface at the upper end portion bulges to the outer diameter side until the outer diameter surface is pressed against the inner diameter surface of the opening 20c, and the outer diameter is enlarged, so that the outer diameter large diameter portion 17 is newly formed. on the other hand,
The inner diameter surface has a bearing surface 12 at both ends, and a middle relief 13 between the bearing surfaces 12. In this way, the material 1B is plastically deformed, and the bearing 10B shown in FIG. 2B is formed.

【0022】(3)第3実施形態−図3 第3実施形態は、図3に示すように、第2実施形態と同
様の成形装置を用いて素材1Cを成形する。素材1C
は、図3(a)に示すように、軸方向一端部に外径大径
部2が形成され、両端部に内径小径部3が形成された円
筒状のものである。外径大径部2の外径は、その外径面
が成形孔20の開口部20cとの間に隙間が形成される
大きさに設定され、外径大径部2以外の外径は、主部2
0aの内径よりも大きく設定されている。また、内径小
径部3の内径は、その内径面とコアロッド22との間に
隙間が形成される大きさに設定されている。外径面およ
び内径面の径差は、数μm〜十数μm程度である。
(3) Third Embodiment—FIG. 3 In the third embodiment, as shown in FIG. 3, a raw material 1C is formed using the same forming apparatus as the second embodiment. Material 1C
As shown in FIG. 3 (a), is a cylindrical shape having an outer diameter large diameter portion 2 formed at one axial end and an inner diameter small diameter portion 3 formed at both ends. The outer diameter of the outer diameter large-diameter portion 2 is set to such a size that its outer diameter surface is formed with the opening 20 c of the molding hole 20. Main part 2
It is set larger than the inner diameter of 0a. In addition, the inner diameter of the small-diameter portion 3 is set to such a size that a gap is formed between the inner diameter surface and the core rod 22. The diameter difference between the outer diameter surface and the inner diameter surface is about several μm to several tens μm.

【0023】素材1Cを圧縮成形するには、図3(a)
に示すように、外径大径部2を上にして素材1Cをコア
ロッド22に嵌め込み、下端部を成形孔20の開口部2
0cに挿入した状態から、第1実施形態と同様にコアロ
ッド22および上パンチ23を降下させ、上パンチ23
により素材1Cを成形孔20のキャビティに圧入すると
ともに、軸方向に圧縮する。素材1Cは、第2実施形態
と同様に塑性変形させられ、図3(b)に示すように、
上端部の外径大径部2が拡径して造形された外径大径部
2Aを有する軸受10Cに成形される。
FIG. 3A shows the compression molding of the material 1C.
As shown in the figure, the material 1C is fitted into the core rod 22 with the outer diameter large diameter portion 2 facing upward, and the lower end is formed in the opening 2 of the forming hole 20.
0c, the core rod 22 and the upper punch 23 are lowered in the same manner as in the first embodiment.
As a result, the material 1C is pressed into the cavity of the molding hole 20 and is compressed in the axial direction. The material 1C is plastically deformed similarly to the second embodiment, and as shown in FIG.
The outer diameter large diameter portion 2 at the upper end is formed into a bearing 10C having an outer diameter large diameter portion 2A formed by expanding the diameter.

【0024】(4)第4実施形態−図4 第4実施形態は、図4に示すように、第1実施形態と同
様の成形装置を用いて素材1Dを成形する。素材1D
は、図4(a)に示すように、軸方向一端部に外径大径
部2および内径小径部3が形成された円筒状のものであ
る。素材1Dにおける外径大径部2および外径大径部2
以外の外径は、いずれも成形孔20の開口部20cより
も小さく、かつ、主部20aよりも大きく設定されてい
る。また、内径小径部3の内径は、コアロッド22の直
径よりも小さく設定され、内径小径部3以外の内径は、
その内径面とコアロッド22との間に隙間が形成される
大きさに設定されている。外径面および内径面の径差
は、数μm〜十数μm程度である。
(4) Fourth Embodiment—FIG. 4 In a fourth embodiment, as shown in FIG. 4, a raw material 1D is formed using the same forming apparatus as in the first embodiment. Material 1D
As shown in FIG. 4 (a), is a cylindrical shape having an outer diameter large diameter portion 2 and an inner diameter small diameter portion 3 formed at one end in the axial direction. Outer diameter large diameter part 2 and outer diameter large diameter part 2 in material 1D
Outside diameters are set smaller than the opening 20c of the forming hole 20 and larger than the main part 20a. The inner diameter of the small-diameter portion 3 is set to be smaller than the diameter of the core rod 22.
The size is set such that a gap is formed between the inner diameter surface and the core rod 22. The diameter difference between the outer diameter surface and the inner diameter surface is about several μm to several tens μm.

【0025】素材1Dを圧縮成形するには、図4(a)
に示すように、外径大径部2を上にして素材1Dをコア
ロッド22に嵌め込み、下端部を成形孔20の開口部2
0cに挿入した状態から、第1実施形態と同様にコアロ
ッド22および上パンチ23を降下させ、上パンチ23
により素材1Dを成形孔20のキャビティに圧入する。
素材1Dは、第1実施形態と同様に塑性変形させられ、
図4(b)に示すように、上端部の外径大径部2が拡径
して造形された外径大径部2Aを有する軸受10Dに成
形される。
FIG. 4 (a) shows the compression molding of the material 1D.
As shown in the figure, the material 1D is fitted into the core rod 22 with the large-diameter outer portion 2 facing upward, and the lower end is formed in the opening 2 of the forming hole 20.
0c, the core rod 22 and the upper punch 23 are lowered in the same manner as in the first embodiment.
The material 1D is pressed into the cavity of the molding hole 20 by pressing.
The material 1D is plastically deformed as in the first embodiment,
As shown in FIG. 4B, the outer diameter large diameter portion 2 at the upper end is formed into a bearing 10D having an outer diameter large diameter portion 2A formed by expanding the diameter.

【0026】次に、フランジを備えるとともに、軸支面
に動圧溝が形成された軸受を製造する第5、第6実施形
態を説明する。(5)第5実施形態−図5,図6 図5(a)の符合1Eは、第5実施形態で用いる素材で
ある。この素材1Eは、軸方向一端部に、第2実施形態
の素材1B等が有する外径大径部2よりも大径のフラン
ジ5(外径大径部)および内径小径部3が形成された円
筒状のものである。フランジ5は圧縮成形後も残存する
ものであり、固定手段や位置決め手段として利用され
る。
Next, fifth and sixth embodiments for manufacturing a bearing having a flange and a dynamic pressure groove formed on a shaft support surface will be described. (5) Fifth Embodiment-FIGS. 5 and 6 Reference numeral 1E in FIG . 5A is a material used in the fifth embodiment. This material 1E has a flange 5 (outside large diameter portion) and an inside small diameter portion 3 having a larger diameter than the large outside diameter portion 2 of the material 1B or the like of the second embodiment at one end in the axial direction. It is cylindrical. The flange 5 remains after the compression molding and is used as a fixing means or a positioning means.

【0027】素材1Eを圧縮成形する成形装置は、図5
に示すように、成形孔30を有するダイ31と、素材1
Eに挿入されるコアロッド22Aと、上下のパンチ3
3,34とを備えている。ダイ31の成形孔30は、入
口側(上側)から奥部に向かって内径が2段階縮小する
段状に形成されている。すなわち、成形孔30は、軸方
向中央部の円筒状の主部30aと、主部30aよりも小
径の奥部の絞り形成部30bと、主部30aよりも大径
でフランジを成形する部分である入口側の開口部30c
とから構成されている。開口部30cから主部30aへ
の移行部は水平な段部30dに形成され、主部30cか
ら絞り形成部30bへの移行部はなだらかなテーパ状に
形成されている。上パンチ33は成形孔30の開口部3
0cに挿入され、下パンチ34は絞り形成部30bに挿
入される。
A molding apparatus for compression molding the material 1E is shown in FIG.
As shown in the figure, a die 31 having a forming hole 30 and a material 1
E, the core rod 22A and the upper and lower punches 3
3, 34. The forming hole 30 of the die 31 is formed in a stepped shape whose inner diameter is reduced by two steps from the entrance side (upper side) toward the inner part. That is, the forming hole 30 is a cylindrical main portion 30a at the center in the axial direction, a narrowing forming portion 30b at a deeper portion having a smaller diameter than the main portion 30a, and a portion forming a flange with a larger diameter than the main portion 30a. An opening 30c on the entrance side
It is composed of The transition from the opening 30c to the main portion 30a is formed in a horizontal step portion 30d, and the transition from the main portion 30c to the aperture forming portion 30b is formed in a gentle taper shape. The upper punch 33 is the opening 3 of the forming hole 30.
0c, and the lower punch 34 is inserted into the squeeze forming section 30b.

【0028】素材1Eのフランジ5の外径は、その外径
面と成形孔30の開口部30cとの間に隙間が形成され
る大きさに設定され、フランジ5以外の素材1Eの外径
は、主部30aの内径よりも僅かに大きく設定されてい
る。また、内径小径部3の内径は、その内径面とコアロ
ッド22Aとの間に隙間が形成される大きさに設定され
ている。
The outer diameter of the flange 5 of the material 1E is set to such a size that a gap is formed between the outer diameter surface and the opening 30c of the forming hole 30, and the outer diameter of the material 1E other than the flange 5 is , Are set slightly larger than the inner diameter of the main portion 30a. Further, the inner diameter of the inner diameter small diameter portion 3 is set to a size such that a gap is formed between the inner diameter surface and the core rod 22A.

【0029】素材1Eは、軸方向に圧縮されることによ
り、上記各実施形態と同様に、軸方向両端部の内径面が
コアロッド22Aに圧接されるが、そのコアロッド22
Aは、図6(a)に示すように、素材1Eの両端部内径
面の圧接を受ける外径面に、複数のV字状の凸部22a
が、周方向に等間隔をおいてヘリングボーン状に形成さ
れている。凸部22aは、コアロッド22Aの切削やメ
ッキ等の手段によって形成することができ、その高さは
数μm程度とされる。
The material 1E is compressed in the axial direction, so that the inner diameter surfaces at both ends in the axial direction are pressed against the core rod 22A as in the above embodiments.
6A, as shown in FIG. 6A, a plurality of V-shaped convex portions 22a are formed on the outer diameter surface of the material 1E which is pressed against the inner diameter surfaces at both ends.
Are formed in a herringbone shape at equal intervals in the circumferential direction. The protrusion 22a can be formed by means such as cutting or plating of the core rod 22A, and the height thereof is set to about several μm.

【0030】上記成形装置により素材1Eを圧縮成形す
るには、図5(a)に示すように、まず、下パンチ34
を成形孔30の絞り形成部30bの途中まで挿入して保
持し、コアロッド22Aをダイ31の上面から所定長さ
突出する位置に保持して、成形孔30にキャビティを形
成する。次いで、フランジ5を上にして素材1Eをコア
ロッド22Aに嵌め込み、その下端部を成形孔30の開
口部30cに挿入するとともに、凸部22aが形成され
た部分を素材1Eの両端部の内径面に対応させる。この
状態から、図5(b)に示すように、コアロッド22A
とともに上パンチ33を降下させ、上パンチ33により
素材1Eを成形孔30のキャビティに圧入するととも
に、軸方向に圧縮する。
In order to compression-mold the material 1E by the above-mentioned molding apparatus, first, as shown in FIG.
The core rod 22A is held at a position protruding a predetermined length from the upper surface of the die 31 to form a cavity in the forming hole 30. Next, the material 1E is fitted into the core rod 22A with the flange 5 facing upward, and the lower end thereof is inserted into the opening 30c of the forming hole 30 and the portion where the convex portion 22a is formed is fitted to the inner diameter surfaces of both ends of the material 1E. Make it correspond. From this state, as shown in FIG.
At the same time, the upper punch 33 is lowered, and the material 1E is pressed into the cavity of the molding hole 30 by the upper punch 33 and is compressed in the axial direction.

【0031】この操作により、素材1Eの下端部が成形
孔30の主部30aから絞り形成部30bに圧入し、中
央部が主部30aに圧入し、これら部分の外径面が内径
側に圧縮され外径が縮小する。特に下端部は、絞り形成
部30bに圧入されることにより、中央部よりも小径の
絞り部11に造形される。素材1Eの上端部であるフラ
ンジ5は、成形孔30の段部30dに拘束されて上パン
チ33により軸方向に圧縮され外径側に塑性流動し、そ
の外径面が開口部30cの内径面に圧接するまで外径側
に膨出し、外径が拡大したフランジ5Aに形成される。
By this operation, the lower end of the material 1E is press-fitted from the main portion 30a of the forming hole 30 into the squeezing portion 30b, the center portion is press-fitted into the main portion 30a, and the outer diameter surface of these portions is compressed toward the inner diameter side. And the outer diameter is reduced. In particular, the lower end portion is formed into the narrowed portion 11 having a smaller diameter than the central portion by being press-fitted into the narrowed portion 30b. The flange 5, which is the upper end of the material 1E, is constrained by the step 30d of the forming hole 30, is compressed in the axial direction by the upper punch 33, and flows plastically to the outer diameter side, and its outer diameter surface is the inner diameter surface of the opening 30c. Until it comes into contact with the flange 5A, and is formed on the flange 5A having an enlarged outer diameter.

【0032】また、軸方向に圧縮されることにより、素
材1Aの軸方向両端部の内径面は内径側に膨出し、コア
ロッド22Aに圧接して軸支面12が形成されると同時
に、その軸支面12には、図6(b)に示すように、凸
部22aによってヘリングボーン状の動圧溝14が刻設
される。さらに、これら軸支面12間の内径面において
は、コアロッド22Aとの間の隙間が残存し、中逃げ部
13とされる。このようにして素材1Eが塑性変形させ
られ、軸受10Eが成形される。
Further, by being compressed in the axial direction, the inner diameter surfaces of both ends in the axial direction of the material 1A bulge toward the inner diameter side, and are pressed against the core rod 22A to form the bearing surface 12, and at the same time, the shaft 1 As shown in FIG. 6B, a herringbone-shaped dynamic pressure groove 14 is formed on the support surface 12 by a convex portion 22a. Further, in the inner diameter surface between the bearing surfaces 12, a gap with the core rod 22 </ b> A remains, and the clearance portion 13 is formed. In this way, the material 1E is plastically deformed, and the bearing 10E is formed.

【0033】軸受10Eは、上パンチ33を上昇させ、
コアロッド22Aとともに下パンチ34を上昇させてダ
イ31から脱型することにより得られる。脱型された軸
受10Eには、ダイ31による外径面の拘束が開放され
て全体が僅かに拡径するスプリングバックが生じるの
で、動圧溝14間の凸部を摩滅することなくコアロッド
22Aから軸受10Eを抜くことができる。
The bearing 10E raises the upper punch 33,
It is obtained by lifting the lower punch 34 together with the core rod 22A and removing it from the die 31. In the demolded bearing 10E, the restraint of the outer diameter surface by the die 31 is released, and spring back occurs in which the entire diameter is slightly increased. Therefore, the protrusion between the dynamic pressure grooves 14 is not worn away from the core rod 22A. The bearing 10E can be removed.

【0034】第5実施形態によって製造された軸受10
Eによれば、軸支面12で回転軸を支持する2点支持構
造に加え、動圧溝14に発生する動圧効果(動圧溝に流
入する潤滑油の高圧化に伴う剛性向上)によって回転軸
の支持力が相乗的に高まり、回転軸の支持力がより安定
する。なお、潤滑油が動圧溝14の一部に集中して動圧
が上昇する効果が十分に期待される観点から、軸受10
Eは、回転軸の回転方向が動圧溝14のV字の先端方向
(図6(b)で矢印R方向)に向くようにセットされる
ことが好ましい。
Bearing 10 manufactured according to the fifth embodiment
According to E, in addition to the two-point support structure for supporting the rotating shaft on the shaft supporting surface 12, the dynamic pressure effect generated in the dynamic pressure groove 14 (improvement in rigidity due to increasing the pressure of the lubricating oil flowing into the dynamic pressure groove). The supporting force of the rotating shaft increases synergistically, and the supporting force of the rotating shaft becomes more stable. In addition, from the viewpoint that the effect that the lubricating oil concentrates on a part of the dynamic pressure groove 14 and the dynamic pressure increases is expected, the bearing 10
E is preferably set such that the rotation direction of the rotating shaft is oriented in the direction of the V-shaped tip of the dynamic pressure groove 14 (the direction of arrow R in FIG. 6B).

【0035】(6)第6実施形態−図7 上記第5実施形態は、軸方向一端部にフランジを備えた
軸受の製造方法であったが、次の第6実施形態は、軸方
向中央部にフランジを備えた軸受を成形する例である。
(6) Sixth Embodiment—FIG. 7 The fifth embodiment is a method of manufacturing a bearing provided with a flange at one end in the axial direction. This is an example of forming a bearing provided with a flange.

【0036】図7に示す成形装置は、第5実施形態の成
形装置と同様のダイ31、コアロッド22Aおよび下パ
ンチ34と、上パンチ33に代わる上パンチ33Aとを
備えている。この場合のダイ31は、素材1Fの形状に
対応して、成形孔30の主部30aが第5実施形態の主
部30aよりも短く設定されている。上パンチ33A
は、パンチ面に円筒状の凹部33aが形成されている。
この凹部33aの内径は、ダイ31の成形孔30の主部
30aの内径と同一に設定されている。
The molding apparatus shown in FIG. 7 includes a die 31, a core rod 22A and a lower punch 34 similar to the molding apparatus of the fifth embodiment, and an upper punch 33A replacing the upper punch 33. In this case, the main portion 30a of the forming hole 30 of the die 31 is set shorter than the main portion 30a of the fifth embodiment in accordance with the shape of the material 1F. Upper punch 33A
Has a cylindrical concave portion 33a formed on the punch surface.
The inner diameter of the concave portion 33a is set to be the same as the inner diameter of the main portion 30a of the forming hole 30 of the die 31.

【0037】図7(a)に示す第6実施形態の素材1F
は、軸方向中央部にフランジ5が形成されたもので、こ
のフランジ5の一端側(図で上側)の外径は他端側の外
径よりも小さく、それぞれ外径小径部9、外径大径部2
とされている。また、外径小径部9側には内径小径部3
が形成されている。フランジ5の外径は、ダイ31の成
形孔30の開口部30cの内径よりも大きく設定されて
いる。また、外径小径部9の外径は、その外径面と上パ
ンチ33Aの凹部33aの内径面との間に隙間が形成さ
れ、外径大径部2の外径は、その外径面と主部30aの
内径面との間に隙間が形成される大きさで、かつ、絞り
形成部30bの内径よりも大きく設定されている。
Material 1F of the sixth embodiment shown in FIG.
Is formed with a flange 5 at a central portion in the axial direction. The outer diameter of one end (upper side in the figure) of the flange 5 is smaller than the outer diameter of the other end, and the outer diameter small-diameter portion 9 and the outer diameter, respectively. Large diameter part 2
It has been. Also, on the outer diameter small diameter portion 9 side, there is an inner diameter small diameter portion 3.
Are formed. The outer diameter of the flange 5 is set to be larger than the inner diameter of the opening 30 c of the forming hole 30 of the die 31. In addition, a gap is formed between the outer diameter surface of the outer diameter small-diameter portion 9 and the inner diameter surface of the concave portion 33a of the upper punch 33A, and the outer diameter of the outer diameter large-diameter portion 2 corresponds to the outer diameter surface. The size is such that a gap is formed between the diaphragm forming portion 30a and the inner diameter surface of the main portion 30a, and is larger than the inner diameter of the throttle forming portion 30b.

【0038】素材1Fを圧縮成形するには、図7(a)
に示すように、外径小径部9を上にして素材1Fをコア
ロッド22Aに嵌め込み、外径大径部2の下端部を成形
孔30の主部30aに挿入するとともに、凸部22aが
形成された部分を両端部の内径面に対応させる。この状
態から、図7(b)に示すように、コアロッド22Aと
ともに上パンチ33Aを降下させ、上パンチ33Aによ
り素材1Fを成形孔30のキャビティ内に圧入するとと
もに、軸方向に圧縮する。
FIG. 7A shows the compression molding of the material 1F.
As shown in FIG. 5, the material 1F is fitted into the core rod 22A with the outer diameter small diameter portion 9 facing upward, the lower end of the outer diameter large diameter portion 2 is inserted into the main portion 30a of the forming hole 30, and the convex portion 22a is formed. The corresponding portions correspond to the inner diameter surfaces of both ends. From this state, as shown in FIG. 7B, the upper punch 33A is lowered together with the core rod 22A, and the material 1F is pressed into the cavity of the molding hole 30 by the upper punch 33A and is compressed in the axial direction.

【0039】この操作により、素材1Fの外径大径部2
の下部が成形孔30の主部30aから絞り形成部30b
に圧入して外径が縮小し、絞り部11に造形され、外径
大径部2の上部は外径側に膨出して主部30aの内径面
に圧接させられる。また、軸方向中央部のフランジ5は
開口部30cに圧入して外径が縮小し、フランジ5Aに
形成される。また、軸方向に圧縮されることにより、素
材1Fの軸方向両端部の内径面は内径側に膨出し、コア
ロッド22Aに圧接して軸支面12が形成されると同時
に、その軸支面12には、凸部22aによって図6
(b)に示したものと同様のヘリングボーン状の動圧溝
が刻設される。さらに、これら軸支面12間の内径面に
おいては、コアロッド22Aとの間の隙間が残存し、中
逃げ部13とされる。このようにして素材1Fが塑性変
形させられ、軸受10Fが成形される。軸受10Fは、
上パンチ33Aを上昇させ、コアロッド22Aとともに
下パンチ34を上昇させてダイ31から脱型することに
より得られる。
By this operation, the outer diameter large diameter portion 2 of the material 1F
Is formed from the main portion 30a of the forming hole 30 to the drawing forming portion 30b.
The outer diameter is reduced by press-fitting, and the outer diameter large diameter part 2 is formed in the narrowed part 11, and the upper part of the outer diameter large diameter part 2 swells to the outer diameter side and is pressed against the inner diameter surface of the main part 30 a. Further, the flange 5 at the central portion in the axial direction is press-fitted into the opening 30c to reduce the outer diameter, and is formed on the flange 5A. Also, by being compressed in the axial direction, the inner diameter surfaces of both ends in the axial direction of the material 1F swell toward the inner diameter side, and are pressed against the core rod 22A to form the bearing surface 12, and at the same time, the bearing surface 12 FIG.
A herringbone-shaped dynamic pressure groove similar to that shown in FIG. Further, in the inner diameter surface between the bearing surfaces 12, a gap with the core rod 22 </ b> A remains, and the clearance portion 13 is formed. In this way, the material 1F is plastically deformed, and the bearing 10F is formed. The bearing 10F is
It is obtained by raising the upper punch 33A, raising the lower punch 34 together with the core rod 22A, and removing the die from the die 31.

【0040】上記第5、第6実施形態のように、動圧溝
形成用のコアロッド22Aを用いて軸支面に動圧溝を形
成する形態は、第1〜第4実施形態にも勿論適用するこ
とができる。
The form in which the dynamic pressure grooves are formed on the shaft supporting surface by using the core rods 22A for forming the dynamic pressure grooves as in the fifth and sixth embodiments is of course applicable to the first to fourth embodiments. can do.

【0041】(7)他の形態 本発明は、上記第1〜第6実施形態に限定されるもので
はなく、例えば、素材や製造後の軸受の形状、あるいは
動圧溝の形状等は、様々な形態に変更可能である。以下
に、他の形態例を示す。なお、各図面において上記実施
形態と同一の構成要素には同一の符合を付してある。
(7) Other Embodiments The present invention is not limited to the above-described first to sixth embodiments. For example, the shape of a material, the shape of a manufactured bearing, or the shape of a dynamic pressure groove may vary. It can be changed to a different form. Hereinafter, other embodiments will be described. In each drawing, the same components as those in the above-described embodiment are denoted by the same reference numerals.

【0042】A.素材の形状 図8(a)は、軸方向一端部にフランジ5を有し、他端
部に内径小径部3が形成された素材を示している。フラ
ンジ5の位置は任意であり、例えば第6実施形態の素材
1F(図7(a)参照)のように、軸方向中央部に形成
されていてもよい。さらに、第6実施形態のように、フ
ランジ以外の部分の外径が異なるような円筒状の素材を
用いることもできる。
A. FIG. 8A shows a material having a flange 5 at one end in the axial direction and a small inner diameter portion 3 at the other end. The position of the flange 5 is arbitrary, and may be formed at the center in the axial direction, for example, like the material 1F of the sixth embodiment (see FIG. 7A). Further, as in the sixth embodiment, it is also possible to use a cylindrical material in which the outside diameter of the portion other than the flange is different.

【0043】図8(b)〜(e)は、軸孔の開口周縁
に、座ぐり状のテーパ面6が形成された素材を示してい
る。各素材には、外径大径部2や内径小径部3が適宜形
成されている。これらにおいて(c)〜(e)の素材の
一端面には、外周面がなだらかな環状凸部7が形成され
ている。図8(f)に示す素材は、軸方向一端部に内径
小径部3が形成され、同端部の外径面が、端部に向かっ
てしだいに縮径するテーパ状小径部8に形成されてい
る。
FIGS. 8B to 8E show a material in which a counterbore-shaped tapered surface 6 is formed on the periphery of the opening of the shaft hole. An outer diameter large diameter portion 2 and an inner diameter small diameter portion 3 are appropriately formed on each material. In these, an annular convex portion 7 whose outer peripheral surface is gentle is formed on one end surface of the materials (c) to (e). In the material shown in FIG. 8 (f), a small-diameter inner diameter portion 3 is formed at one end in the axial direction, and an outer diameter surface of the same end is formed as a tapered small-diameter portion 8 that gradually decreases in diameter toward the end. ing.

【0044】なお、上記各実施形態を含めて、いずれの
場合も内径面における内径小径部3と他の部分との境界
部分は画然としている(直角で移行している)が、両者
の境界部分を斜面に形成してもよい。図8(g)は、図
8(b)の素材をそのようにアレンジした素材であり、
さらに、図8(h)に示すように、外径面の周縁を面取
りした形状であってもよい。
In any case including the above embodiments, the boundary between the small inner diameter portion 3 and the other portion on the inner diameter surface is clear (transitions at a right angle), but the boundary between the two. The portion may be formed on a slope. FIG. 8 (g) is a material obtained by arranging the material of FIG. 8 (b) in such a manner.
Further, as shown in FIG. 8 (h), the outer peripheral surface may have a chamfered peripheral edge.

【0045】B.軸受の形状 次に、軸受の変更例を説明する。図9(a)は外径均一
の軸受、図9(b)は軸方向一端部に絞り部11が形成
された軸受をそれぞれ示しており、図9(c),(d)
は、これら軸受の軸孔の開口周縁にテーパ面16が形成
されたものである。図9(e)に示す軸受は、(c)の
軸受の外径面の周縁が面取りされたものである。図9
(f)に示す軸受は、一端部にフランジ5Aが形成され
たものである。なお、軸孔の開口周縁にテーパ面を形成
する態様は、フランジを備えた軸受にも勿論適用するこ
とができる。図9(g)に示す軸受は、全体的に球状
で、軸方向端面が平坦に、かつ、側面が円筒状に形成さ
れている。図9(h)の軸受は、図9(g)の軸受の一
端部に絞り部11が形成されたものである。
B. The shape of the bearing will be described a modification of the bearing. 9 (a) shows a bearing having a uniform outer diameter, and FIG. 9 (b) shows a bearing in which a throttle portion 11 is formed at one end in the axial direction. FIGS. 9 (c) and 9 (d).
The tapered surface 16 is formed on the periphery of the opening of the shaft hole of these bearings. The bearing shown in FIG. 9E is obtained by chamfering the outer peripheral surface of the bearing shown in FIG. 9C. FIG.
The bearing shown in (f) has a flange 5A formed at one end. The mode in which the tapered surface is formed on the periphery of the opening of the shaft hole can be applied to a bearing having a flange. The bearing shown in FIG. 9G has a spherical shape as a whole, a flat end face in the axial direction, and a cylindrical side face. The bearing shown in FIG. 9H is obtained by forming a throttle 11 at one end of the bearing shown in FIG. 9G.

【0046】C.動圧溝の形状 第5、第6実施形態で示した動圧溝の形状は任意であ
り、その数も適宜に選択されるが、回転軸をより安定し
て支持する観点から、複数が軸支面の周方向に沿って等
間隔をおいて配置されると好ましい。上記各実施形態で
は、ヘリングボーン状として、つまり形状によって、動
圧上昇が生じる効果を得るようにしているが、深さの断
面形状によってもその効果を得ることができる。
C. Shape of Dynamic Pressure Groove The shape of the dynamic pressure groove described in the fifth and sixth embodiments is arbitrary, and the number thereof is appropriately selected. However, from the viewpoint of more stably supporting the rotating shaft, a plurality of It is preferable that they are arranged at equal intervals along the circumferential direction of the support surface. In each of the above embodiments, the effect of increasing the dynamic pressure is obtained according to the herringbone shape, that is, the shape, but the effect can also be obtained by the cross-sectional shape of the depth.

【0047】それには、概略形状を軸方向に沿って延び
る溝とし、回転軸が一方向のみに回転する場合には、回
転軸の回転方向の逆方向側の端部を最深部とし、この最
深部から回転軸の回転方向に向かってしだいに浅くなる
よう傾斜させる。また、回転軸が正逆双方向に回転する
場合には、周方向の中間部を最深部とし、この最深部か
ら周方向両端部に向かってしだいに浅くなるよう傾斜さ
せる。このように形成された動圧溝は、横断面(輪切り
にした場合の断面)形状が回転軸の回転方向に向かって
浅くなるくさび状の隙間となり、溝の浅い先端部に潤滑
油が集中するくさび効果を得ることができる。
In order to achieve this, the general shape is a groove extending along the axial direction. When the rotating shaft rotates in only one direction, the end of the rotating shaft in the direction opposite to the rotating direction is the deepest portion. From the section to the direction of rotation of the rotating shaft. When the rotating shaft rotates in both the forward and reverse directions, the middle part in the circumferential direction is set as the deepest part, and the inclination is made so as to gradually become shallower from the deepest part toward both ends in the circumferential direction. The thus formed dynamic pressure groove has a wedge-shaped gap in which the cross-section (cross-section when cut into a circle) becomes shallower in the direction of rotation of the rotary shaft, and the lubricating oil concentrates on the shallow tip of the groove. A wedge effect can be obtained.

【0048】D.動圧溝形成用のコアロッド 第5、第6実施形態で示した動圧溝14は、コアロッド
22Aに形成した凸部22aにより形成されているが、
このような凸部に代え、凹部によって動圧溝を形成する
ことができる。すなわち、第5、第6実施形態と刻設の
パターンが逆であって、素材の内径小径部の内径面がコ
アロッドに圧接させられるとコアロッドに形成した凹部
に導入されて凸部が突設され、この凸部の内径面が軸支
面に、また、凸部間の溝が動圧溝として機能する。この
場合、凸部がさらに突設されることにより、その高さだ
け中逃げ量が大きい軸受が得られる。なお、コアロッド
に形成する凹部は、放電加工や電解腐食といった手段に
より形成することができる。
D. The core rod for forming the dynamic pressure groove The dynamic pressure groove 14 shown in the fifth and sixth embodiments is formed by the convex portion 22a formed on the core rod 22A.
Instead of such a convex part, a dynamic pressure groove can be formed by a concave part. That is, the engraving pattern is opposite to that of the fifth and sixth embodiments, and when the inner diameter surface of the inner diameter small diameter portion of the material is pressed against the core rod, it is introduced into the recess formed in the core rod and the projection is projected. The inner diameter surface of the projection functions as a bearing surface, and the groove between the projections functions as a dynamic pressure groove. In this case, by further projecting the convex portion, a bearing having a large amount of middle clearance by its height can be obtained. The concave portion formed in the core rod can be formed by means such as electric discharge machining or electrolytic corrosion.

【0049】[0049]

【発明の効果】以上説明したように、本発明によれば、
比較的大きな中逃げ部を有する2点支持構造の軸受を、
比較的簡素な方法で効率よく製造することができる。ま
た、本発明によって製造された軸受は、軸方向両端部の
軸支面においては、内径および同軸度が高い精度で一致
するとともに高密度化されて耐摩耗性の向上が図られ、
一方、中逃げ部が形成された軸方向中央部においては、
密度が低いことから潤滑油の含有量が十分に確保され
る。これらの結果、優れた軸受性能を発揮する。
As described above, according to the present invention,
A two-point support structure bearing with a relatively large middle relief
It can be efficiently manufactured by a relatively simple method. In the bearing manufactured by the present invention, the inner diameter and the coaxiality of the bearing surfaces at both ends in the axial direction are matched with high accuracy, and the density is increased to improve wear resistance.
On the other hand, in the central portion in the axial direction where the middle relief portion is formed,
Since the density is low, the content of the lubricating oil is sufficiently ensured. As a result, excellent bearing performance is exhibited.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明の第1実施形態に係る軸受の製造方法
の工程を(a),(b)の順に示す縦断面図である。
FIG. 1 is a longitudinal sectional view showing steps of a method for manufacturing a bearing according to a first embodiment of the present invention in the order of (a) and (b).

【図2】 本発明の第2実施形態に係る軸受の製造方法
の工程を(a),(b)の順に示す縦断面図である。
FIG. 2 is a longitudinal sectional view showing steps of a method for manufacturing a bearing according to a second embodiment of the present invention in the order of (a) and (b).

【図3】 本発明の第3実施形態に係る軸受の製造方法
の工程を(a),(b)の順に示す縦断面図である。
FIG. 3 is a longitudinal sectional view showing steps of a method for manufacturing a bearing according to a third embodiment of the present invention in the order of (a) and (b).

【図4】 本発明の第4実施形態に係る軸受の製造方法
の工程を(a),(b)の順に示す縦断面図である。
FIG. 4 is a longitudinal sectional view showing steps of a method for manufacturing a bearing according to a fourth embodiment of the present invention in the order of (a) and (b).

【図5】 本発明の第5実施形態に係る軸受の製造方法
の工程を(a),(b)の順に示す縦断面図である。
FIG. 5 is a longitudinal sectional view showing steps of a method for manufacturing a bearing according to a fifth embodiment of the present invention in the order of (a) and (b).

【図6】 (a)は本発明の第5実施形態で用いるコア
ロッドの一部斜視図、(b)は本発明の第5実施形態で
製造された軸受の一部を示す縦割り斜視図である。
FIG. 6A is a partial perspective view of a core rod used in a fifth embodiment of the present invention, and FIG. 6B is a vertical perspective view showing a part of a bearing manufactured in the fifth embodiment of the present invention. is there.

【図7】 本発明の第6実施形態に係る軸受の製造方法
の工程を(a),(b)の順に示す縦断面図である。
FIGS. 7A and 7B are longitudinal sectional views showing steps of a method for manufacturing a bearing according to a sixth embodiment of the present invention in the order of FIGS.

【図8】 本発明で用いる軸受素材の他の形態例を示す
縦断面図である。
FIG. 8 is a longitudinal sectional view showing another embodiment of the bearing material used in the present invention.

【図9】 本発明で製造される軸受の他の形態例を示す
縦断面図である。
FIG. 9 is a longitudinal sectional view showing another embodiment of the bearing manufactured by the present invention.

【符号の説明】[Explanation of symbols]

1A〜1F…素材 2…外径大径部 3…内径小径部 5…素材のフランジ(外径大径部) 10A〜10F…軸受 12…軸支面 13…中逃げ部 14…動圧溝 20,30…成形孔 22,22A…コアロッド 22a…動圧溝形成用の凸部 1A to 1F: Material 2: Large outer diameter part 3: Small inner diameter part 5: Flange of material (large outer diameter part) 10A to 10F: Bearing 12: Bearing surface 13: Middle relief part 14: Dynamic pressure groove 20 , 30: forming hole 22, 22A: core rod 22a: convex portion for forming dynamic pressure groove

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 3J011 AA04 BA02 CA01 CA02 DA02 JA02 LA01 SB19 4K018 CA13 CA15 FA02 FA46 HA03 KA03 KA22  ──────────────────────────────────────────────────続 き Continued on the front page F term (reference) 3J011 AA04 BA02 CA01 CA02 DA02 JA02 LA01 SB19 4K018 CA13 CA13 FA15 FA46 HA03 KA03 KA22

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 円筒状で、少なくとも軸方向一端部に内
径小径部を有するとともに外径均一または外径面の一部
に外径大径部を備えた多孔質体からなる素材を、コアロ
ッドを挿入させた状態で、成形型の成形孔に圧入すると
ともに軸方向に圧縮することにより、 素材の軸方向一端部の外径面を内径側に圧縮してその外
径を縮小させる一方、軸方向他端部の外径面を膨出させ
てその外径を拡大させ、 この変形に伴い、軸方向両端部の内径面をコアロッドに
圧接させて回転軸を支持する軸支面に形成し、これら軸
支面間に、軸支面よりも内径が大きく回転軸が接触しな
い中逃げ部を形成することを特徴とする軸受の製造方
法。
A core rod is made of a cylindrical material having a small inner diameter portion at least at one end in the axial direction and having a uniform outer diameter or a large outer diameter portion at a part of the outer diameter surface. In the inserted state, the material is pressed into the forming hole of the mold and compressed in the axial direction, so that the outer diameter surface of one end in the axial direction of the material is compressed to the inner diameter side to reduce the outer diameter while the axial direction is reduced. By expanding the outer diameter surface of the other end to increase the outer diameter, along with this deformation, the inner diameter surfaces of both ends in the axial direction are pressed against the core rod to form a bearing surface for supporting the rotating shaft, A method for manufacturing a bearing, comprising: forming between a shaft support surface a middle relief portion having an inner diameter larger than that of the shaft support surface and not contacting a rotating shaft.
【請求項2】 前記素材は、外径均一、かつ、軸方向一
端部に内径小径部を有する形状であることを特徴とする
請求項1に記載の軸受の製造方法。
2. The method according to claim 1, wherein the material has a uniform outer diameter and a shape having a small inner diameter portion at one axial end.
【請求項3】 前記素材は、軸方向一端部に内径小径部
を有し、かつ、軸方向他端部に外径大径部を有する形状
であることを特徴とする請求項1に記載の軸受の製造方
法。
3. The material according to claim 1, wherein the material has a small-diameter inner diameter portion at one axial end and a large-diameter outer diameter portion at the other axial end. Manufacturing method of bearing.
【請求項4】 前記素材は、軸方向両端部に内径小径部
を有し、かつ、軸方向一端部に外径大径部を有する形状
であることを特徴とする請求項1に記載の軸受の製造方
法。
4. The bearing according to claim 1, wherein the material has a shape having a small inner diameter portion at both ends in the axial direction and a large outer diameter portion at one end in the axial direction. Manufacturing method.
【請求項5】 前記素材は、軸方向一端部に内径小径部
および外径大径部を有する形状であることを特徴とする
請求項1に記載の軸受の製造方法。
5. The method for manufacturing a bearing according to claim 1, wherein the material has a shape having a small inner diameter portion and a larger outer diameter portion at one end in the axial direction.
【請求項6】 前記素材の軸方向両端部の内径面が圧接
させられる前記コアロッドの外径面に、動圧溝形成用の
凸部または凹部が形成されていることを特徴とする請求
項1〜5のいずれかに記載の軸受の製造方法。
6. A convex or concave portion for forming a dynamic pressure groove is formed on an outer diameter surface of the core rod to which inner diameter surfaces of both ends in the axial direction of the material are pressed. The method for producing a bearing according to any one of claims 1 to 5.
JP11212511A 1999-07-27 1999-07-27 Manufacture of bearing Pending JP2001041244A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11212511A JP2001041244A (en) 1999-07-27 1999-07-27 Manufacture of bearing

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11212511A JP2001041244A (en) 1999-07-27 1999-07-27 Manufacture of bearing

Publications (1)

Publication Number Publication Date
JP2001041244A true JP2001041244A (en) 2001-02-13

Family

ID=16623894

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11212511A Pending JP2001041244A (en) 1999-07-27 1999-07-27 Manufacture of bearing

Country Status (1)

Country Link
JP (1) JP2001041244A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006292164A (en) * 2005-03-18 2006-10-26 Nippon Densan Corp Production method for sleeve unit, sleeve unit and motor
WO2016152474A1 (en) * 2015-03-23 2016-09-29 Ntn株式会社 Bearing member, fluid dynamic pressure bearing device equipped with same, and method of manufacturing bearing member
WO2017159345A1 (en) * 2016-03-16 2017-09-21 Ntn株式会社 Dynamic pressure bearing and method for manufacturing same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006292164A (en) * 2005-03-18 2006-10-26 Nippon Densan Corp Production method for sleeve unit, sleeve unit and motor
WO2016152474A1 (en) * 2015-03-23 2016-09-29 Ntn株式会社 Bearing member, fluid dynamic pressure bearing device equipped with same, and method of manufacturing bearing member
WO2017159345A1 (en) * 2016-03-16 2017-09-21 Ntn株式会社 Dynamic pressure bearing and method for manufacturing same

Similar Documents

Publication Publication Date Title
JP3954695B2 (en) Manufacturing method of dynamic pressure type porous oil-impregnated bearing
JPH10306827A (en) Dynamic pressure type oil-impregnated sintered bearing and manufacture thereof
JP2006520877A (en) Sintered plain bearing with continuously changing hole compression
WO2017145648A1 (en) Oil-impregnated sintered bearing and method for manufacturing same
JP2001041244A (en) Manufacture of bearing
JP3856363B2 (en) Manufacturing method of bearing
JP3607661B2 (en) Hydrodynamic porous oil-impregnated bearing and method for producing the same
JP2001020956A (en) Manufacture method of bearing
JP2001032838A (en) Manufacture of bearing
JP3818626B2 (en) Method for producing sintered oil-impregnated bearing
JP2001056028A (en) Manufacture of bearing
JP3698352B2 (en) Manufacturing method of bearing
JP3797465B2 (en) Manufacturing method of bearing
JP2001012470A (en) Manufacture of bearing
JP2001059106A (en) Manufacture of bearing
JP2001032839A (en) Manufacture of bearing
JP2001050274A (en) Manufacture of bearing
JP2001059105A (en) Manufacture of bearing
JP2001059104A (en) Manufacture of bearing
JP2001012471A (en) Manufacture of bearing
JP2001279301A (en) Method of manufacturing sintered oil retaining bearing
JP4414574B2 (en) Manufacturing method of sintered bearing with dynamic pressure groove
JP2001050277A (en) Manufacture of bearing
JP3307182B2 (en) Sintered bearing and manufacturing method thereof
JP3784690B2 (en) Dynamic pressure type porous oil-impregnated bearing and manufacturing method thereof

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050421

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050427

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050627

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20051101