JP2001050274A - Manufacture of bearing - Google Patents

Manufacture of bearing

Info

Publication number
JP2001050274A
JP2001050274A JP11219638A JP21963899A JP2001050274A JP 2001050274 A JP2001050274 A JP 2001050274A JP 11219638 A JP11219638 A JP 11219638A JP 21963899 A JP21963899 A JP 21963899A JP 2001050274 A JP2001050274 A JP 2001050274A
Authority
JP
Japan
Prior art keywords
bearing
housing
core rod
inner diameter
raw material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11219638A
Other languages
Japanese (ja)
Inventor
Motohiro Miyasaka
元博 宮坂
Toshiichi Takehana
敏一 竹花
Takeshi Kurihara
健 栗原
Hidekazu Tokushima
秀和 徳島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Corp
Original Assignee
Hitachi Powdered Metals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Powdered Metals Co Ltd filed Critical Hitachi Powdered Metals Co Ltd
Priority to JP11219638A priority Critical patent/JP2001050274A/en
Publication of JP2001050274A publication Critical patent/JP2001050274A/en
Pending legal-status Critical Current

Links

Landscapes

  • Sliding-Contact Bearings (AREA)
  • Powder Metallurgy (AREA)

Abstract

PROBLEM TO BE SOLVED: To manufacture a bearing of two-point support structure where sintered body is incorporated into a housing, efficiently in a relatively simple manner to give appreciable bearing performance. SOLUTION: A housing 21 is fitted in a die 31 wherein its diametrally external surface is restrained, and a raw material 1A is inserted in the housing 21. With a core rod 32 of a uniform outside diameter pressed in the raw material 1A, the raw material 1A is axially compacted with inner punches 33B and 34B of an upper and a lower punch 33 and 34, so that the diametrally external surface of the raw material 1A is bonded under compression to the diametrally internal surface of the housing 21 while the diametrally internal surface thereof is pressed at both axial ends against the core rod 32 to form shaft supporting surface 12 with an intermediate recess 13 in between. The raw material 1A is formed under deformation into a bearing body 10A, which is compression-bonded to the housing 21 to finish a bearing 20A.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、精密機器に内蔵さ
れるスピンドルモータの駆動軸等、比較的高速で回転す
る軸を高精度で支持する場合に用いて好適な軸受であっ
て、特に、回転軸が接触しない中逃げ部を有する軸受本
体がハウジング内に組み込まれたタイプの軸受を製造す
る方法に関する。軸受本体は、焼結体あるいは焼結体に
サイジングを施した多孔質体からなる素材を圧縮して成
形されるものであり、潤滑油が含浸され、焼結含油軸受
として好適に用いられる。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a bearing suitable for use in supporting a shaft rotating at a relatively high speed, such as a drive shaft of a spindle motor built in precision equipment, with high precision. The present invention relates to a method of manufacturing a bearing of a type in which a bearing body having a middle relief portion that does not contact a rotating shaft is incorporated in a housing. The bearing body is formed by compressing a material made of a sintered body or a porous body obtained by sizing the sintered body, is impregnated with lubricating oil, and is suitably used as a sintered oil-impregnated bearing.

【0002】[0002]

【従来の技術】上記焼結含油軸受は、焼結体に含浸され
た潤滑油が内径面にしみ出し、内径面と回転軸との間に
油膜が形成されることにより、摩擦抵抗が低減して騒音
や振動が抑えられるといった特性を有する。また、振動
や騒音の抑制効果をさらに高めた焼結含油軸受として、
軸方向中央部の内径面に、内径が回転軸の外径より僅か
に大きく回転軸と接触しない隙間(以下、中逃げ部と称
する)を形成し、回転軸の軸支面を両端部の内径面に限
定した2点支持構造として摩擦抵抗の低減効果と回転軸
の支持力をより安定化させたものがある。
2. Description of the Related Art In a sintered oil-impregnated bearing, the lubricating oil impregnated in a sintered body seeps into an inner diameter surface, and an oil film is formed between the inner diameter surface and a rotating shaft, thereby reducing frictional resistance. It has the characteristic that noise and vibration are suppressed. In addition, as a sintered oil-impregnated bearing with further enhanced vibration and noise suppression effects,
A gap (hereinafter, referred to as a middle relief portion) having an inner diameter slightly larger than the outer diameter of the rotating shaft and not in contact with the rotating shaft is formed on the inner diameter surface at the central portion in the axial direction. As a two-point support structure limited to a surface, there is a structure in which the effect of reducing frictional resistance and the support force of the rotating shaft are further stabilized.

【0003】焼結含油軸受は、通常、原料の金属粉末を
圧縮成形して得た円筒状の圧粉体を焼結し、焼結体をサ
イジングして最終形状に仕上げるといった工程を主体と
して製造されているが、軸受としては、焼結体単体の他
に、焼結体がハウジング内に組み込まれたタイプのもの
がある。ところで、上記中逃げ部を形成する場合、その
中逃げ部を焼結体への機械加工で形成すると、内径面に
表出している気孔が潰れて潤滑油の循環作用に支障を来
すことになる。このため、焼結体のサイジング工程で中
逃げ部を同時に形成するか、もしくはサイジング後にも
う1度焼結体を圧縮して中逃げ部を独自に形成する方法
が好ましい。いずれの場合も、軸方向両端部の内径面が
径方向内側に突出したり、軸方向中央部が径方向外側に
膨出したりする塑性変形を焼結体に生じさせることによ
り、離間する2つの軸支面とこれらの間の中逃げ部が内
径面に同時に形成される。
[0003] Sintered oil-impregnated bearings are usually manufactured mainly by the steps of sintering a cylindrical green compact obtained by compression-molding a raw metal powder, sizing the sintered body and finishing it into a final shape. However, as a bearing, there is a type in which a sintered body is incorporated in a housing in addition to a sintered body alone. By the way, in the case where the above-mentioned middle relief portion is formed, if the middle relief portion is formed by machining the sintered body, the pores exposed on the inner diameter surface are crushed, which hinders the circulation operation of the lubricating oil. Become. For this reason, it is preferable to form the middle relief portion at the same time in the sizing step of the sintered body, or to form the middle relief portion by compressing the sintered body again after sizing. In any case, the two inner shafts are separated from each other by causing plastic deformation in the sintered body such that the inner diameter surfaces at both ends in the axial direction project radially inward or the central portion in the axial direction swells radially outward. The supporting surface and the clearance between them are formed on the inner diameter surface at the same time.

【0004】[0004]

【発明が解決しようとする課題】上記2点支持構造の軸
受においては、前述した摩擦抵抗の低減や回転軸の支持
力向上といった軸受性能を高める上で、離間する2つの
軸支面の内径および同軸度が高い精度で一致しているこ
とや、軸支面への潤滑油の供給量が十分になされること
が要求される。ところが、従来より焼結体の塑性変形の
させ方は種々提案されているものの、比較的簡素で、軸
受性能向上のための要求が十分満たされる一定の製造方
法は見い出されていないのが現状であった。また、焼結
体をハウジング内に組み込んだタイプの軸受にあって
は、焼結体に軸支面および中逃げ部を形成してからハウ
ジングに組み込んでも、焼結体に変形が生じて軸支面の
内径に差異が生じたり同軸度が損なわれたりすることが
多く、さりとて、組み込んだ後に焼結体をサイジングし
て軸支面および中逃げ部を形成することは、きわめて困
難であった。
In the bearing having the above-mentioned two-point support structure, in order to enhance the bearing performance such as the reduction of the frictional resistance and the improvement of the support force of the rotary shaft, the inner diameter of the two separated shaft supporting surfaces and It is required that the coaxiality match with high accuracy and that the supply amount of the lubricating oil to the bearing surface be sufficient. However, although various methods of plastically deforming a sintered body have been conventionally proposed, a certain manufacturing method that is relatively simple and does not sufficiently satisfy requirements for improving bearing performance has been found at present. there were. Also, in a bearing of a type in which a sintered body is incorporated in a housing, even if the bearing is formed into a housing after forming a bearing surface and an intermediate relief portion, the sintered body is deformed due to deformation. In many cases, the inner diameter of the surface is different or the coaxiality is impaired, and it is extremely difficult to size the sintered body after the assembly to form the bearing surface and the middle relief.

【0005】したがって本発明は、焼結体がハウジング
内に組み込まれた2点支持構造の軸受を、比較的簡素な
方法で効率よく、かつ、優れた軸受性能(2つの軸支面
の内径や同軸度の同一性に伴う回転軸の支持力、潤滑
性、耐摩耗性等)を有するものに製造することができる
方法を提供することを目的としている。
Therefore, the present invention provides a bearing having a two-point support structure in which a sintered body is incorporated in a housing, by a relatively simple method, efficiently and with excellent bearing performance (the inner diameter of two bearing surfaces, It is an object of the present invention to provide a method capable of manufacturing a rotating shaft having a coaxiality having the same bearing capacity, lubricating property, and wear resistance.

【0006】[0006]

【課題を解決するための手段】本発明は、円筒状の軸受
本体を円筒状のハウジング内に組み込んでなる軸受の製
造方法であって、軸受本体に成形される円筒状の素材を
ハウジング内に挿入し、素材内に外径均一のコアロッド
を挿入した状態から、素材を軸方向に圧縮することによ
り、素材の外径面をハウジング内径面に圧着させる一
方、素材の軸方向両端部の内径面をコアロッドに圧接さ
せ、回転軸を支持する軸支面に形成するとともに、これ
ら軸支面間に回転軸と接触しない中逃げ部を形成するこ
とを特徴としている。本発明に係る素材は、前述の如く
焼結体あるいは焼結体にサイジングを施してなる多孔質
体が用いられ、製造後は、潤滑油が含浸され、焼結含油
軸受として好適に用いられる。
SUMMARY OF THE INVENTION The present invention relates to a method for manufacturing a bearing in which a cylindrical bearing main body is incorporated in a cylindrical housing, wherein a cylindrical material molded into the bearing main body is provided in the housing. By inserting the core rod with a uniform outer diameter into the material and compressing the material in the axial direction, the outer diameter surface of the material is pressed against the inner diameter surface of the housing, while the inner diameter surfaces of both ends in the axial direction of the material are compressed. Are pressed against the core rod to form on a bearing surface that supports the rotating shaft, and a middle relief portion that does not contact the rotating shaft is formed between these bearing surfaces. As the material according to the present invention, a sintered body or a porous body obtained by sizing the sintered body as described above is used, and after production, the sintered body is impregnated with a lubricating oil and is suitably used as a sintered oil-impregnated bearing.

【0007】本発明では、例えば、成形型の成形孔に嵌
め込んで外径面を拘束したハウジング内に、外径均一の
素材を挿入し、素材内径面との間に隙間が形成される直
径を有するコアロッドを素材に挿入した状態から、パン
チにより素材のみを軸方向に圧縮するといった成形方法
が採られる。素材は、外径面が膨出してハウジング内径
面に圧着する。また、素材の軸方向両端部の内径面が内
径側に膨出してコアロッドに圧接し、軸支面に形成され
るとともに、これら軸支面間に中逃げ部が形成される。
素材はこのように塑性変形して軸受本体に成形され、外
径面がハウジング内径面に圧着することによりハウジン
グと一体化する。本発明は、このような変形態様が適宜
になされる素材およびハウジングと成形型との組み合わ
せを採ることにより、軸受本体がハウジング内に組み込
まれた構成であって、かつ、中逃げ量が比較的大きな中
逃げ部を有する2点支持構造の軸受を、比較的簡素な方
法で効率よく製造することができる。
In the present invention, for example, a material having a uniform outer diameter is inserted into a housing whose outer diameter is restricted by being fitted into a molding hole of a molding die, and a diameter is formed between the material and the inner diameter of the material. A molding method is employed in which only the material is axially compressed by a punch from a state in which the core rod having the material is inserted into the material. The outer surface of the material bulges and is pressed against the inner surface of the housing. In addition, the inner diameter surfaces of both ends in the axial direction of the material bulge toward the inner diameter side and are pressed against the core rod to be formed on the bearing surface, and a middle relief portion is formed between the bearing surfaces.
The material is thus plastically deformed and formed into a bearing body, and the outer diameter surface is pressed against the housing inner diameter surface to be integrated with the housing. The present invention employs a combination of a material and a housing and a molding die in which such a deformation mode is appropriately made, so that the bearing main body is incorporated in the housing, and the clearance amount is relatively small. A bearing having a two-point support structure having a large middle clearance can be efficiently manufactured by a relatively simple method.

【0008】また、軸受本体に形成される軸支面は、素
材の内径面がコアロッドに強く圧接させられることによ
り形成されるので、その内径および同軸度が高い精度で
一致する。また、軸支面の密度を高くすることができる
ので、耐摩耗性の向上が図られる。一方、中逃げ部が形
成される内径面の密度を軸支面よりも低くすること、な
らびに中逃げ部の直径を比較的大きく形成することが可
能なので、潤滑油の含有量や保油量を増大させることが
でき、潤滑性の向上が図られる。これらの結果、高レベ
ルの軸受性能を有する軸受を製造することができる。
Further, since the bearing surface formed on the bearing body is formed by strongly pressing the inner diameter surface of the material against the core rod, the inner diameter and the coaxiality match with high precision. Further, since the density of the bearing surface can be increased, the wear resistance is improved. On the other hand, it is possible to make the density of the inner diameter surface where the middle relief portion is formed lower than that of the bearing surface, and it is possible to form the diameter of the middle relief portion relatively large, so that the lubricating oil content and the oil retention amount are reduced. It can be increased, and the lubricity is improved. As a result, a bearing having a high level of bearing performance can be manufactured.

【0009】また、本発明では、素材の軸方向両端部の
内径面が圧接させられるコアロッドの外径面に、動圧溝
形成用の凸部または凹部が形成されていることを特徴と
している。これによると、前者の凸部の場合では、軸支
面には凸部形状に応じた動圧溝が形成される。また、後
者の凹部の場合では、凹部形状に応じて刻設された軸支
面と軸支面間の動圧溝とが同時に形成される。軸支面に
動圧溝を形成すると、両端部の各軸支面により回転軸を
支持する2点支持構造に加え、動圧溝に発生する動圧効
果(動圧溝に流入する潤滑油の高圧化に伴う剛性向上)
によって回転軸の支持力が相乗的に高まり、回転軸の支
持力をより安定させることができる。
Further, the present invention is characterized in that a convex portion or a concave portion for forming a dynamic pressure groove is formed on an outer diameter surface of a core rod to which inner diameter surfaces of both ends in an axial direction of a material are pressed. According to this, in the case of the former convex portion, a dynamic pressure groove corresponding to the shape of the convex portion is formed on the bearing surface. In the case of the latter concave portion, a bearing surface engraved according to the shape of the concave portion and a dynamic pressure groove between the bearing surfaces are simultaneously formed. When the dynamic pressure grooves are formed on the bearing surface, the dynamic pressure effect generated in the dynamic pressure grooves (the lubricating oil flowing into the dynamic pressure grooves) Increased rigidity with higher pressure)
Accordingly, the supporting force of the rotating shaft is synergistically increased, and the supporting force of the rotating shaft can be further stabilized.

【0010】[0010]

【発明の実施の形態】以下、図面を参照して本発明の実
施形態を説明する。(1)第1実施形態−図1 図1は、第1実施形態に係る軸受の成形工程を(a)〜
(f)の順に示している。第1実施形態では、成形装置
にハウジング21を嵌合させ、このハウジング21内に
嵌合させた素材1Aを、軸方向に圧縮して軸受20Aを
得ている。成形装置は、ハウジング21が嵌合する嵌合
孔30を有するダイ31と、コアロッド32と、上下の
パンチ33,34とから構成されている。ダイ31の嵌
合孔30はハウジング21に対応する形状であって、図
1(a)に示すように、円筒状の主部30aの入口側
(上側)に、水平な段部30dを介して、主部30aよ
りも内径が大きい開口部30cが形成されている。
Embodiments of the present invention will be described below with reference to the drawings. (1) First Embodiment-FIG. 1 FIGS . 1A to 1C show a bearing forming process according to a first embodiment.
They are shown in the order of (f). In the first embodiment, the housing 21 is fitted to the molding apparatus, and the material 1A fitted in the housing 21 is compressed in the axial direction to obtain the bearing 20A. The molding apparatus includes a die 31 having a fitting hole 30 into which the housing 21 fits, a core rod 32, and upper and lower punches 33 and 34. The fitting hole 30 of the die 31 has a shape corresponding to the housing 21, and as shown in FIG. 1 (a), is provided on the entrance side (upper side) of the cylindrical main part 30a via a horizontal step part 30d. An opening 30c having an inner diameter larger than that of the main portion 30a is formed.

【0011】上パンチ33は、図1(b)に示すよう
に、嵌合孔30の開口部30cに摺動自在に挿入される
外側パンチ33Aと、外側パンチ33Aに摺動自在に挿
入される内側パンチ33Bとから構成されている。ま
た、下パンチ34は、図1(a)に示すように、嵌合孔
30の主部30aに摺動自在に挿入される外側パンチ3
4Aと、外側パンチ34Aに摺動自在に挿入される内側
パンチ34Bとから構成されている。上下のパンチ3
3,34の内側パンチ33B,34Bの外径は同一であ
る。コアロッド32は、上下の内側パンチ33B,34
Bに摺動自在に挿入されるようになされている。
As shown in FIG. 1 (b), the upper punch 33 is slidably inserted into the opening 30c of the fitting hole 30 and is slidably inserted into the outer punch 33A. And an inner punch 33B. As shown in FIG. 1A, the lower punch 34 includes an outer punch 3 slidably inserted into the main portion 30a of the fitting hole 30.
4A and an inner punch 34B slidably inserted into the outer punch 34A. Upper and lower punches 3
The outer diameters of the inner punches 33B and 34B of the third and the third are the same. The core rod 32 includes upper and lower inner punches 33B, 34.
B is slidably inserted into B.

【0012】ハウジング21は、図1(a)に示すよう
に、内径が均一で、主体をなす円筒部22の一端部にフ
ランジ23が形成された円筒状のものであり、ダイ31
の嵌合孔30の主部30aに円筒部22が、またフラン
ジ23が開口部30cに、それぞれ中間嵌めの状態で嵌
合される外径に設定されている。また、軸方向長さ(高
さ)に関しては、円筒部22は嵌合孔30の主部30a
よりも短く、フランジ23は開口部30cよりも短く設
定されている。さらに、ハウジング21の内径は、上下
のパンチ33,34の内側パンチ33B,34Bが摺動
自在に挿入される寸法に設定されている。ハウジング2
1の材質は任意であるが、例えば、青銅、黄銅、アルミ
ニウム合金、鋼の他、焼結材が用いられる。焼結材の場
合、素材1Aよりも気孔が大きいものを用いると、ハウ
ジング21に含浸させた油が、毛細管力によって軸受本
体側に効果的に供給されるので、軸受寿命を長くするこ
とができ好ましい。
As shown in FIG. 1 (a), the housing 21 is a cylindrical one having a uniform inner diameter and a flange 23 formed at one end of a main cylindrical portion 22.
The cylindrical portion 22 is fitted to the main portion 30a of the fitting hole 30, and the outer diameter of the flange 23 is fitted to the opening 30c in an intermediate fitting state. As for the length (height) in the axial direction, the cylindrical portion 22 has a main portion 30 a of the fitting hole 30.
And the flange 23 is set shorter than the opening 30c. Further, the inner diameter of the housing 21 is set to a size in which the inner punches 33B, 34B of the upper and lower punches 33, 34 are slidably inserted. Housing 2
Although the material of 1 is arbitrary, for example, a sintered material is used in addition to bronze, brass, an aluminum alloy, and steel. In the case of using a sintered material, if a material having pores larger than the material 1A is used, the oil impregnated in the housing 21 is effectively supplied to the bearing main body side by capillary force, so that the bearing life can be extended. preferable.

【0013】素材1Aは、焼結体もしくは焼結体にサイ
ジングを施して成形されたものであって、外径および内
径が均一の単純な円筒状である。素材1Aの軸方向長さ
はハウジング21とほぼ同一であり、外径はハウジング
21内に嵌合される寸法に、また、内径は、その内径面
とコアロッド32との間に隙間が形成される寸法に、そ
れぞれ設定されている。
The raw material 1A is formed by sizing a sintered body or a sintered body, and has a simple cylindrical shape having uniform outer and inner diameters. The length of the material 1A in the axial direction is substantially the same as that of the housing 21, the outer diameter is a dimension fitted in the housing 21, and the inner diameter is a gap between the inner diameter surface and the core rod 32. The dimensions are set respectively.

【0014】次に、成形装置により軸受を製造する手順
を説明する。 [工程1−ハウジングの嵌合]図1(a)に示すよう
に、ダイ31の嵌合孔30の主部30aに挿入した下パ
ンチ34の上端を段部30dと同一レベルに保持する一
方、コアロッド32をダイ31の上面から所定長さ突出
させる。フランジ23を上にしたハウジング21を、コ
アロッド32に同軸的に嵌め込んで下パンチ34の外側
パンチ34A上に載せ、セットする。ハウジング21の
セット状態としては、下パンチ34を段部30dからや
や下げ、主部30aに円筒部22の下端部を嵌合させて
もよい。次いで、図1(b)に示すように上パンチ33
を降下させ、上パンチ33の外側パンチ33Aによりハ
ウジング21を嵌合孔30に押し込んで嵌合させる。下
パンチ34は、ハウジング21とともに降下させる。ハ
ウジング21は、外径面がダイ31に拘束された状態と
なる。
Next, a procedure for manufacturing a bearing by a molding apparatus will be described. [Step 1-Fitting of Housing] As shown in FIG. 1A, the upper end of the lower punch 34 inserted into the main portion 30a of the fitting hole 30 of the die 31 is held at the same level as the step portion 30d. The core rod 32 is protruded from the upper surface of the die 31 by a predetermined length. The housing 21 with the flange 23 facing up is coaxially fitted into the core rod 32, and is placed and set on the outer punch 34A of the lower punch 34. As a setting state of the housing 21, the lower punch 34 may be slightly lowered from the step portion 30d, and the lower end portion of the cylindrical portion 22 may be fitted to the main portion 30a. Next, as shown in FIG.
Is lowered, and the housing 21 is pushed into the fitting hole 30 by the outer punch 33A of the upper punch 33 to be fitted. The lower punch 34 is lowered together with the housing 21. The housing 21 is in a state where the outer diameter surface is restrained by the die 31.

【0015】[工程2−素材の圧縮]上パンチ33を上
昇させて一旦退避させ、図1(c)に示すように、素材
1Aをコアロッド32に嵌合させてハウジング21上に
セットする。次いで、図1(d)に示すように再び上パ
ンチ33を降下させ、上パンチ33の内側パンチ33B
により素材1Aをハウジング21内に押し込んで嵌合さ
せる。このとき、コアロッド32を素材1Aに追随して
降下させる。次に、図1(e)に示すように、上下のパ
ンチ33,34の各内側パンチ33B,34Bを素材1
A側に移動させ、素材1Aのみを軸方向に圧縮する。
[Step 2—Compression of Material] The upper punch 33 is raised and retracted once, and the material 1A is fitted on the core rod 32 and set on the housing 21 as shown in FIG. Next, the upper punch 33 is lowered again as shown in FIG.
The material 1A is pushed into the housing 21 to be fitted. At this time, the core rod 32 is moved down following the material 1A. Next, as shown in FIG. 1E, the inner punches 33B and 34B of the upper and lower punches 33 and 34 are put into the material 1 respectively.
A is moved to the A side, and only the material 1A is compressed in the axial direction.

【0016】圧縮された素材1Aは、外径面が膨出する
作用を受け、その外径面がハウジング21の内径面に圧
着させられる。また、素材1Aの軸方向両端部の内径面
が内径側に膨出してコアロッド32に圧接させられ、軸
支面12に形成される。さらに、これら軸支面12間の
内径面においては、コアロッド32との間の隙間が残存
し、中逃げ部13が形成される。一方、ハウジング21
は素材1Aから外径側への圧迫を受け、外径面が嵌合孔
30の内径面に圧接する。素材1Aは上記のように塑性
変形して軸受本体10Aに成形され、かつ、この軸受本
体10Aがハウジング21の内径面に圧着され、両者が
一体化した軸受20Aが成形される。
The compressed material 1A is subjected to the action of expanding the outer diameter surface, and the outer diameter surface is pressed against the inner diameter surface of the housing 21. Also, the inner diameter surfaces of both ends in the axial direction of the material 1 </ b> A bulge toward the inner diameter side and are pressed against the core rod 32 to be formed on the shaft support surface 12. Further, a gap between the shaft support surface 12 and the core rod 32 remains on the inner diameter surface, and the middle escape portion 13 is formed. On the other hand, the housing 21
Is pressed from the material 1A to the outer diameter side, and the outer diameter surface is pressed against the inner diameter surface of the fitting hole 30. The material 1A is plastically deformed as described above to be formed into the bearing main body 10A, and the bearing main body 10A is press-bonded to the inner diameter surface of the housing 21 to form a bearing 20A in which both are integrated.

【0017】[工程3−軸受の脱型]上パンチ33を上
昇させて退避させ、図1(f)に示すように、コアロッ
ド32とともに下パンチ34を上昇させ、軸受20Aを
ダイ31から抜き出し、脱型する。この後、コアロッド
32を降下させ、軸受20Aを得る。
[Step 3-Demolding of bearing] The upper punch 33 is raised and retracted, and as shown in FIG. 1 (f), the lower punch 34 is raised together with the core rod 32 to take out the bearing 20 A from the die 31. Demold. Thereafter, the core rod 32 is lowered to obtain the bearing 20A.

【0018】上記第1実施形態によれば、成形装置のダ
イ31にハウジング21を嵌合し、このハウジング21
内に素材1Aを嵌合し、次いで素材1Aのみを軸方向に
圧縮するといった簡素な方法により、焼結体からなる軸
受本体10Aがハウジング21内に組み込まれた2点支
持構造の軸受20Aを、効率よく製造することができ
る。
According to the first embodiment, the housing 21 is fitted to the die 31 of the molding apparatus.
A bearing 20A having a two-point support structure in which a bearing main body 10A made of a sintered body is incorporated in a housing 21 by a simple method of fitting the raw material 1A therein and then compressing only the raw material 1A in the axial direction. It can be manufactured efficiently.

【0019】軸受20Aの軸支面12は、素材1Aの内
径面をコアロッド32に強く圧接させることにより形成
されるので、その内径および同軸度が高い精度で一致
し、加えて高密度化する故、耐摩耗性および回転軸の支
持力に優れる。一方、中逃げ部13はコアロッド32に
圧接しないことから軸支面12よりも密度は低く、か
つ、その中逃げ量を比較的大きなものとすることができ
るので、潤滑油の含有量や保油量を増大させることがで
き、潤滑性が向上する。これらの結果、軸受20Aは優
れた軸受性能を発揮する。また、双方の軸支面12の圧
縮度がほぼ等しいことから、それら軸支面12の気孔率
が均等化され、このため、軸支面12に生じる油圧も均
等となって回転軸をバランスよく支持することができ
る。
Since the bearing surface 12 of the bearing 20A is formed by strongly pressing the inner diameter surface of the material 1A against the core rod 32, the inner diameter and the coaxiality match with high precision, and the density is further increased. Excellent in abrasion resistance and rotating shaft support force. On the other hand, since the middle relief portion 13 does not press against the core rod 32, the density is lower than that of the bearing surface 12, and the middle relief amount can be made relatively large. The amount can be increased and lubricity is improved. As a result, the bearing 20A exhibits excellent bearing performance. Further, since the degree of compression of both the bearing surfaces 12 is substantially equal, the porosity of the bearing surfaces 12 is equalized. Therefore, the hydraulic pressure generated on the bearing surfaces 12 is also equalized and the rotating shaft is well balanced. Can be supported.

【0020】なお、上記実施形態では、素材1Aの外径
はハウジング21内に嵌合される寸法(摺動しながら挿
入される寸法)であったが、ハウジング21の内径面と
の間に僅かな隙間が形成される程度の寸法でもよく、あ
るいは、素材1A自身の内径が大きく縮径しない程度に
ハウジング21内に圧入される寸法であってもよい。ま
た、ハウジング21の外径は、ダイ31の嵌合孔30に
中間嵌めされる寸法であったが、嵌合孔30に圧入され
る寸法でもよい。ハウジング21の外径が、その外径面
と嵌合孔30との間に隙間が空くようであると、素材1
Aの圧縮時にハウジング21が拡径するおそれがあるの
で好ましくはないが、ハウジング21の剛性が高く弾性
変形の領域で拡径する、すなわち塑性変形しなければ、
その限りではない。
In the above-described embodiment, the outer diameter of the material 1A is a dimension fitted into the housing 21 (a dimension inserted while sliding). The dimension may be such that a small gap is formed, or the dimension may be such that the inner diameter of the raw material 1A itself is not so large that it is press-fitted into the housing 21. Further, the outer diameter of the housing 21 is a dimension that is fitted in the fitting hole 30 of the die 31 in the middle, but may be a dimension that is press-fitted into the fitting hole 30. If the outer diameter of the housing 21 is such that there is a gap between the outer diameter surface and the fitting hole 30, the material 1
It is not preferable because the diameter of the housing 21 may be increased at the time of compression of A.
That is not the case.

【0021】(2)第2実施形態−図2 次に、本発明の第2実施形態を説明する。第2実施形態
では、図2(a)に示すように、予め上記素材1Aを成
形装置以外の適宜な装置によってハウジング21に嵌合
しておく。次に、図2(b)に示すように素材1Aおよ
びハウジング21をコアロッド32に嵌め込んでセット
する。この状態から、上パンチ33によりハウジング2
1をダイ31の嵌合孔30に嵌合し(図1(d)の状
態)、以下は、第1実施形態と同様に素材1Aを圧縮す
る。
(2) Second Embodiment—FIG. 2 Next, a second embodiment of the present invention will be described. In the second embodiment, as shown in FIG. 2A, the material 1A is previously fitted to the housing 21 by an appropriate device other than the molding device. Next, as shown in FIG. 2B, the material 1A and the housing 21 are fitted and set on the core rod 32. From this state, the housing 2 is
1 is fitted into the fitting hole 30 of the die 31 (the state shown in FIG. 1D), and thereafter, the material 1A is compressed as in the first embodiment.

【0022】(3)第3実施形態−図3,図4 第3実施形態は、図3に示すように、上記コアロッド3
2に代えた動圧溝形成用のコアロッド32Aを、上記第
1実施形態もしくは第2実施形態に適用して素材1Aを
圧縮成形し、軸支面12に動圧溝が形成された軸受を成
形する例である。そのコアロッド32Aは、図4(a)
に示すように、素材1Aの両端部内径面の圧接を受ける
外径面に、複数のV字状の凸部32aが周方向に等間隔
をおいてヘリングボーン状に形成されたものである。凸
部32aは、コアロッド32Aの切削やメッキ等の手段
によって形成することができるものであり、その高さ
は、数μm程度である。
(3) Third Embodiment—FIGS. 3 and 4 In the third embodiment, as shown in FIG.
The material 1A is compression-molded by applying the core rod 32A for forming a dynamic pressure groove in place of 2 to the first embodiment or the second embodiment to form a bearing in which the dynamic pressure groove is formed on the shaft support surface 12. Here is an example. The core rod 32A is shown in FIG.
As shown in the figure, a plurality of V-shaped convex portions 32a are formed in a herringbone shape at equal intervals in the circumferential direction on an outer diameter surface of the material 1A which is pressed against the inner diameter surfaces at both ends. The protrusion 32a can be formed by means such as cutting or plating of the core rod 32A, and has a height of about several μm.

【0023】第3実施形態では、上記第1実施形態ある
いは第2実施形態の手順で、図3(a)に示すように、
ダイ31の嵌合孔30に素材1Aおよびハウジング21
をセットし、素材1Aの両端部内径面を、コアロッド3
2Aの凸部32aが形成された部分に対応させる。この
状態から、図3(b)に示すように上下のパンチ33,
34の各内側パンチ33B,34Bを素材1A側に移動
させ、素材1Aのみを軸方向に圧縮する。
In the third embodiment, as shown in FIG. 3A, the procedure of the first embodiment or the second embodiment is as follows.
The material 1A and the housing 21 are inserted into the fitting holes 30 of the die 31.
And set the inner diameter surfaces of both ends of the material 1A to the core rod 3
It is made to correspond to the portion where the convex portion 32a of 2A is formed. From this state, the upper and lower punches 33,
The inner punches 33B and 34B of 34 are moved to the material 1A side, and only the material 1A is compressed in the axial direction.

【0024】素材1Aは、第1実施形態と同様に塑性変
形し、軸受本体10Cに成形される。軸受本体10Cの
軸支面12には、図4(b)に示すように(同図はハウ
ジング21を省略している)、コアロッド32Aの凸部
32aによってヘリングボーン状の動圧溝14が刻設さ
れる。軸受本体10Cがハウジング21の内径面に圧着
して軸受20Cが成形され、この軸受20Cは、図3
(c)に示すように脱型される。脱型された軸受20C
には、ダイ31による外径面の拘束が開放されて全体が
僅かに拡径するスプリングバックが生じるので、動圧溝
14間の凸部を摩滅することなくコアロッド32Aから
軸受20Cを抜くことができる。
The material 1A is plastically deformed as in the first embodiment, and is formed into a bearing body 10C. As shown in FIG. 4 (b) (the housing 21 is omitted), a herringbone-shaped dynamic pressure groove 14 is formed on the bearing surface 12C of the bearing main body 10C by a convex portion 32a of a core rod 32A. Is established. The bearing body 10C is pressed against the inner diameter surface of the housing 21 to form a bearing 20C.
The mold is released as shown in FIG. Demolded bearing 20C
In this case, since the outer diameter surface is restrained by the die 31 and spring back occurs in which the entire diameter slightly increases, it is possible to remove the bearing 20C from the core rod 32A without abrading the convex portion between the dynamic pressure grooves 14. it can.

【0025】第3実施形態によって製造された軸受20
Cによれば、軸支面12で回転軸を支持する2点支持構
造に加え、動圧溝14に発生する動圧効果(動圧溝に流
入する潤滑油の高圧化に伴う剛性向上)によって回転軸
の支持力が相乗的に高まり、回転軸の支持力がより安定
する。なお、潤滑油が動圧溝14の一部に集中して動圧
が上昇する効果が十分に期待される観点から、軸受20
Cは、回転軸の回転方向が動圧溝14のV字の先端方向
(図4(b)で矢印R方向)に向くようにセットされる
ことが好ましい。
Bearing 20 manufactured according to the third embodiment
According to C, in addition to the two-point support structure that supports the rotating shaft on the shaft supporting surface 12, due to the dynamic pressure effect generated in the dynamic pressure groove 14 (improved rigidity due to the high pressure of the lubricating oil flowing into the dynamic pressure groove). The supporting force of the rotating shaft increases synergistically, and the supporting force of the rotating shaft becomes more stable. From the viewpoint that the effect that the lubricating oil concentrates on a part of the dynamic pressure groove 14 and the dynamic pressure rises is sufficiently expected, the bearing 20
C is preferably set so that the rotation direction of the rotating shaft is oriented in the direction of the V-shaped tip of the dynamic pressure groove 14 (the direction of arrow R in FIG. 4B).

【0026】上記第3実施形態のように動圧溝形成用の
コアロッド32Aを用いて軸支面に動圧溝を形成する形
態は、第1、第2実施形態にも勿論適用することができ
る。
The form in which the dynamic pressure grooves are formed on the shaft supporting surface by using the core rods 32A for forming the dynamic pressure grooves as in the third embodiment can be applied to the first and second embodiments. .

【0027】なお、第3実施形態で示した動圧溝の形状
は任意であり、その数も適宜に選択されるが、回転軸を
より安定して支持する観点から、複数が軸支面の周方向
に沿って等間隔をおいて配置されると好ましい。第3実
施形態では、ヘリングボーン状として、つまり形状によ
って、動圧上昇が生じる効果を得るようにしているが、
深さの断面形状によってもその効果を得ることができ
る。
The shape of the dynamic pressure groove shown in the third embodiment is arbitrary, and the number thereof is appropriately selected. However, from the viewpoint of more stably supporting the rotating shaft, a plurality of grooves are formed on the shaft supporting surface. It is preferable that they are arranged at equal intervals along the circumferential direction. In the third embodiment, the effect of increasing the dynamic pressure is obtained as a herringbone shape, that is, depending on the shape.
The effect can also be obtained depending on the cross-sectional shape of the depth.

【0028】それには、概略形状を軸方向に沿って延び
る溝とし、回転軸が一方向のみに回転する場合には、回
転軸の回転方向の逆方向側の端部を最深部とし、この最
深部から回転軸の回転方向に向かってしだいに浅くなる
よう傾斜させる。また、回転軸が正逆双方向に回転する
場合には、周方向の中間部を最深部とし、この最深部か
ら周方向両端部に向かってしだいに浅くなるよう傾斜さ
せる。このように形成された動圧溝は、横断面(輪切り
にした場合の断面)形状が回転軸の回転方向に向かって
浅くなるくさび状の隙間となり、溝の浅い先端部に潤滑
油が集中するくさび効果を得ることができる。
The rough shape is a groove extending along the axial direction. When the rotating shaft rotates only in one direction, the end of the rotating shaft in the direction opposite to the rotating direction is the deepest portion. From the section to the direction of rotation of the rotating shaft. When the rotating shaft rotates in both the forward and reverse directions, the middle part in the circumferential direction is set as the deepest part, and the inclination is made so as to gradually become shallower from the deepest part toward both ends in the circumferential direction. The thus formed dynamic pressure groove has a wedge-shaped gap in which the cross-section (cross-section when cut into a circle) becomes shallower in the direction of rotation of the rotary shaft, and the lubricating oil concentrates on the shallow tip of the groove. A wedge effect can be obtained.

【0029】また、第3実施形態で示した動圧溝14
は、コアロッド32Aに形成した凸部32aにより形成
されているが、このような凸部に代え、凹部によって動
圧溝を形成することができる。すなわち、第3実施形態
と刻設のパターンが逆であって、素材1Aの内径小径部
の内径面がコアロッドに圧接させられるとコアロッドに
形成した凹部に導入されて凸部が突設され、この凸部の
内径面が軸支面に、また、凸部間の溝が動圧溝として機
能する。この場合、凸部がさらに突設されることによ
り、その高さだけ中逃げ量が大きい軸受が得られる。な
お、コアロッドに形成する凹部は、放電加工や電解腐食
といった手段により形成することができる。
The dynamic pressure groove 14 shown in the third embodiment
Is formed by the convex portion 32a formed on the core rod 32A, but a dynamic pressure groove can be formed by a concave portion instead of such a convex portion. That is, the pattern of the engraving is opposite to that of the third embodiment, and when the inner diameter surface of the inner diameter small diameter portion of the material 1A is pressed against the core rod, it is introduced into the concave portion formed in the core rod, and the convex portion protrudes. The inner diameter surface of the convex portion functions as a bearing surface, and the groove between the convex portions functions as a dynamic pressure groove. In this case, by further projecting the convex portion, a bearing having a large amount of middle clearance by its height can be obtained. The concave portion formed in the core rod can be formed by means such as electric discharge machining or electrolytic corrosion.

【0030】[0030]

【発明の効果】以上説明したように、本発明によれば、
軸受本体がハウジング内に組み込まれた構成であって、
比較的大きな中逃げ部を有する2点支持構造の軸受を、
比較的簡素な方法で効率よく製造することができる。ま
た、本発明によって製造された軸受は、軸方向両端部の
軸支面においては、内径および同軸度が高い精度で一致
するとともに高密度化されて耐摩耗性の向上が図られ、
一方、中逃げ部が形成された軸方向中央部においては、
密度が低いことから潤滑油の含有量や保油量が十分に確
保される。これらの結果、優れた軸受性能を発揮する。
As described above, according to the present invention,
The bearing body is configured to be incorporated in the housing,
A two-point support structure bearing with a relatively large middle relief
It can be efficiently manufactured by a relatively simple method. In the bearing manufactured by the present invention, the inner diameter and the coaxiality of the bearing surfaces at both ends in the axial direction are matched with high accuracy, and the density is increased to improve wear resistance.
On the other hand, in the central portion in the axial direction where the middle relief portion is formed,
Since the density is low, the content of lubricating oil and the amount of retained oil are sufficiently ensured. As a result, excellent bearing performance is exhibited.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明の第1実施形態に係る軸受の製造工程
を(a)〜(f)の順に示す縦断面図である。
FIG. 1 is a longitudinal sectional view showing a manufacturing process of a bearing according to a first embodiment of the present invention in the order of (a) to (f).

【図2】 本発明の第2実施形態に係る軸受の製造工程
の一部を(a),(b)の順に示す縦断面図である。
FIG. 2 is a longitudinal sectional view showing a part of a manufacturing process of a bearing according to a second embodiment of the present invention in the order of (a) and (b).

【図3】 本発明の第3実施形態に係る軸受の製造工程
の一部を(a)〜(c)の順に示す縦断面図である。
FIG. 3 is a longitudinal sectional view showing a part of a manufacturing process of a bearing according to a third embodiment of the present invention in the order of (a) to (c).

【図4】 (a)は本発明の第3実施形態で用いるコア
ロッドの一部斜視図、(b)は本発明の第3実施形態で
製造された軸受の一部を示す縦割り斜視図である。
FIG. 4A is a partial perspective view of a core rod used in a third embodiment of the present invention, and FIG. 4B is a vertical perspective view showing a part of a bearing manufactured in the third embodiment of the present invention. is there.

【符号の説明】[Explanation of symbols]

1A…素材 10A,10C…軸受本体 12…軸支面 13…中逃げ部 20A,20C…軸受 21…ハウジング 32,32A…コアロッド 32a…動圧溝形成用の凸部 1A: Material 10A, 10C: Bearing body 12: Bearing surface 13: Middle relief 20A, 20C: Bearing 21: Housing 32, 32A: Core rod 32a: Convex part for forming a dynamic pressure groove

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 3J011 BA02 CA01 CA02 DA02 LA01 SB19 4K018 CA13 CA15 FA02 FA46 HA03 JA34 KA03 KA22  ──────────────────────────────────────────────────続 き Continued on the front page F term (reference) 3J011 BA02 CA01 CA02 DA02 LA01 SB19 4K018 CA13 CA15 FA02 FA46 HA03 JA34 KA03 KA22

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 円筒状の軸受本体を円筒状のハウジング
内に組み込んでなる軸受の製造方法であって、 前記軸受本体に成形される円筒状の素材を前記ハウジン
グ内に挿入し、かつ、素材内に外径均一のコアロッドを
挿入した状態から、素材を軸方向に圧縮することによ
り、 素材の外径面をハウジングの内径面に圧着させる一方、 素材の軸方向両端部の内径面をコアロッドに圧接させて
回転軸を支持する軸支面に形成するとともに、これら軸
支面間に、回転軸と接触しない中逃げ部を形成すること
を特徴とする軸受の製造方法。
1. A method of manufacturing a bearing, comprising a cylindrical bearing main body incorporated in a cylindrical housing, wherein a cylindrical material molded into the bearing main body is inserted into the housing, and The outer diameter surface of the material is pressed against the inner diameter surface of the housing by compressing the material in the axial direction from the state where the core rod with a uniform outer diameter is inserted inside, while the inner diameter surface of both ends in the axial direction of the material is attached to the core rod. A method of manufacturing a bearing, comprising: forming on a bearing surface for supporting a rotary shaft by pressing, and forming a middle relief portion not in contact with the rotary shaft between the bearing surfaces.
【請求項2】 前記素材の軸方向両端部の内径面が圧接
させられる前記コアロッドの外径面に、動圧溝形成用の
凸部または凹部が形成されていることを特徴とする請求
項1に記載の軸受の製造方法。
2. A convex portion or a concave portion for forming a dynamic pressure groove is formed on an outer diameter surface of the core rod to which inner diameter surfaces of both ends in the axial direction of the material are pressed. 3. The method for producing a bearing according to item 1.
JP11219638A 1999-08-03 1999-08-03 Manufacture of bearing Pending JP2001050274A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11219638A JP2001050274A (en) 1999-08-03 1999-08-03 Manufacture of bearing

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11219638A JP2001050274A (en) 1999-08-03 1999-08-03 Manufacture of bearing

Publications (1)

Publication Number Publication Date
JP2001050274A true JP2001050274A (en) 2001-02-23

Family

ID=16738674

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11219638A Pending JP2001050274A (en) 1999-08-03 1999-08-03 Manufacture of bearing

Country Status (1)

Country Link
JP (1) JP2001050274A (en)

Similar Documents

Publication Publication Date Title
JP5217078B2 (en) Method for producing sintered oil-impregnated bearing
JP3607492B2 (en) Dynamic pressure type porous oil-impregnated bearing and manufacturing method thereof
JP2006520877A (en) Sintered plain bearing with continuously changing hole compression
JP3607661B2 (en) Hydrodynamic porous oil-impregnated bearing and method for producing the same
JP3607478B2 (en) Dynamic pressure type porous oil-impregnated bearing
JP2001056028A (en) Manufacture of bearing
JP3856363B2 (en) Manufacturing method of bearing
JP2001050274A (en) Manufacture of bearing
JP3818626B2 (en) Method for producing sintered oil-impregnated bearing
JP3698352B2 (en) Manufacturing method of bearing
JP2001059106A (en) Manufacture of bearing
JP7076266B2 (en) Manufacturing method of sintered oil-impregnated bearing
JP2001032838A (en) Manufacture of bearing
JP2001020956A (en) Manufacture method of bearing
JP2001041244A (en) Manufacture of bearing
JP3797465B2 (en) Manufacturing method of bearing
JP2001059105A (en) Manufacture of bearing
JP2001059104A (en) Manufacture of bearing
JP2001050277A (en) Manufacture of bearing
JP2001012470A (en) Manufacture of bearing
JP4188288B2 (en) Manufacturing method of dynamic pressure type porous oil-impregnated bearing
JP2001032839A (en) Manufacture of bearing
JP3784690B2 (en) Dynamic pressure type porous oil-impregnated bearing and manufacturing method thereof
JP4327038B2 (en) Spindle motor
JP3734130B2 (en) Method for producing sintered oil-impregnated bearing

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050607

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050630

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050823

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060411

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20060801