JP3620817B2 - Sintered oil-impregnated bearing - Google Patents

Sintered oil-impregnated bearing Download PDF

Info

Publication number
JP3620817B2
JP3620817B2 JP29716998A JP29716998A JP3620817B2 JP 3620817 B2 JP3620817 B2 JP 3620817B2 JP 29716998 A JP29716998 A JP 29716998A JP 29716998 A JP29716998 A JP 29716998A JP 3620817 B2 JP3620817 B2 JP 3620817B2
Authority
JP
Japan
Prior art keywords
bearing
groove
rotating shaft
core rod
impregnated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP29716998A
Other languages
Japanese (ja)
Other versions
JP2000120688A (en
Inventor
近藤  誠
秀和 徳島
元博 宮坂
俊一 富樫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Powdered Metals Co Ltd
Original Assignee
Hitachi Powdered Metals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Powdered Metals Co Ltd filed Critical Hitachi Powdered Metals Co Ltd
Priority to JP29716998A priority Critical patent/JP3620817B2/en
Publication of JP2000120688A publication Critical patent/JP2000120688A/en
Application granted granted Critical
Publication of JP3620817B2 publication Critical patent/JP3620817B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、スピンドルモータ用軸受等の比較的高速で回転する軸を高精度で支持する際に用いて好適な焼結含油軸受に関する。
【0002】
【従来の技術】
焼結含油軸受は、含有された潤滑油が回転軸との摺動面である軸孔の内周面にしみ出して油膜が形成されることにより、摩擦抵抗が低減して騒音や振動が抑えられるといった特性を有する。また、振動や騒音の抑制効果をさらに高めた焼結含油軸受として、軸孔の内周面の軸方向中央に、回転軸が接触しない逃げの隙間(以下、中膨らみ部と称する)を形成して回転軸が摺動する部分を両端部に限定し、摩擦抵抗の低減を向上させたものがある。
【0003】
【発明が解決しようとする課題】
ところで、CD−ROMドライバ用等の、回転軸が立つ状態とされるスピンドルモータの軸受においては、通常、回転軸の荷重が、回転軸を横向きにした場合と異なり周方向1個所に偏らないので、潤滑油の圧力上昇によって発生する動圧効果は期待されず、しかも、10000/rpm程度の高速回転なので、上記のような中膨らみ部を有する軸受であっても、十分な潤滑作用を得ることは困難であった。例えば、運転時間の経過に伴って摩擦抵抗が増加したり回転数が変動したりする現象が起こり、そのような軸受の中膨らみ部には、特に負荷が大きい軸方向一端側に、スラッジ状の物質が観察される場合があった。これは、摺動面への潤滑油の供給が不十分であったり、軸受の発熱により潤滑油が変質したりすることが原因と想定された。
【0004】
したがって本発明は、支持する回転軸が比較的高速で回転し、かつその回転軸から受ける負荷が軸方向に偏っている場合であっても、含油による潤滑作用が十分に行われて高い軸受性能を発揮する焼結含油軸受を提供することを目的としている。
【0005】
【課題を解決するための手段】
本発明は、軸孔の内周面の軸方向両端部に、回転軸が摺動する軸受部が形成され、これら軸受部の間に、回転軸と接触しない中膨らみ部が形成された焼結含油軸受において、少なくとも一方の軸受部から中膨らみ部にわたって、該軸受の端面に開口しない状態に形成された複数の溝が周方向に配列されていることを特徴としている。
【0006】
本発明によれば、軸受中の潤滑油が、回転軸と中膨らみ部との間の隙間から溝を経て軸受部に多く流入し、さらに軸受部における溝と溝の間に動圧効果が惹起されることにより、軸受性能が向上する。
【0007】
上記溝が軸受部を貫通して端面に開口していると、潤滑油が漏出して潤滑油の循環作用が確保されない。したがって本発明では、軸受部に形成する溝の長さを軸受部の長さの10〜80%とすることを好ましい態様としている。また、軸方向両端部の軸受部にかかる回転軸の負荷に差異がある場合、すなわち負荷が軸方向に偏っている場合は、負荷が大きい方の軸受部側に溝を形成して対処すればよい。しかしながら、これは本発明の最も簡素な構成であり、軸方向両端部の軸受部から中膨らみ部にわたって溝をそれぞれ形成することが望ましい。
【0008】
【発明の実施の形態】
以下、図面を参照して本発明の一実施形態を説明する。
(1)一実施形態
図1は、本発明の一実施形態に係る円柱状の焼結含油軸受(以下、軸受と略記する)10が適用されたCD−ROMドライバ用のスピンドルモータ1を示している。このモータ1は、ハウジング2、駆動コイル3およびマグネットロータ4を備えたアウタロータ型であり、マグネットロータ4は、10000/rpm程度で高速回転する。軸受10はハウジング2の芯2aに圧入され、この軸受10に回転軸5が回転自在に挿入されている。モータ1は、マグネットロータ4が上側に配され、回転軸5が立つ状態で機器に組み込まれる。回転軸5のスラスト荷重は、ハウジング2の底部に固定された受け板6により支持され、ラジアル荷重が軸受10により支持される。回転軸5は軸受10から上方に突出し、その突出端がマグネットロータ4のボス4aに圧入されている。マグネットロータ4のボス4aには、図示せぬCD−ROMをマグネットロータ4に着脱させるディスクチャック7が装着されている。軸受10は、金属粉を圧縮成形して焼結した多孔質焼結体で、潤滑油への浸漬を経て含油焼結軸受とされたものである。
【0009】
軸受10は、図2(a)に示すように、軸芯に、回転軸5が回転自在に挿入される軸孔11が形成されているが、この軸孔11の内径は全長にわたって均一ではない。すなわち、その内周面の軸方向両端部に、回転軸5を実質的に支持する軸受部12が形成され、これら軸受部12の間に、軸受部12よりも大径で回転軸5が接触しない中膨らみ部13が、軸受部12と同軸的に形成されている。各軸受部12の開口端縁および軸受部12から中膨らみ部13に移行する各段部12a,13aは、面取り加工されてテーパ状に形成されている。
【0010】
軸孔11の内周面には、一方(図2(a)で上側)の軸受部12から中膨らみ部13にわたって、複数(例えば3つ)の溝14が、周方向に等間隔に配列されている。これら溝14は、図2(b)に示すように半楕円状であって、中膨らみ部13の端縁から軸受部12にわたって形成されており、その底面は、段部13aよりもなだらかなテーパ面となっている。溝14の軸受部12に形成された部分の長さは、軸受部12の長さの10〜80%の範囲である。この軸受12は、図1で示したモータ1のハウジング2に、溝14が形成された方の軸受部12が上側に配されて圧入されている。
【0011】
次に、上記軸受10の製造方法の一例を説明する。
まず、図3(a)に示すように、ダイ20の型孔に下パンチ21bおよびコアロッド22を挿入し、これらによって形成されるキャビティ23に原料粉末Pを充填する。コアロッド22は、図4に示すように、軸受部12を形成するロッド22aの途中に、中膨らみ部13および溝14を形成するための大径部22bおよび突起22cが形成されたものを用いる。次いで、図3(b)に示すように、上下のパンチ21a,21bにより粉末Pを圧縮成形し、この後、図3(c)に示すように、コアロッド22と下パンチ21bを上方に移動させて圧粉体P1をダイ20から抜き出し、圧粉体P1にスプリングバッグを生じせしめてコアロッド22から取り出す。次いで、圧粉体P1を焼結し、その焼結体を、図5(a)に示すように、軸孔に円柱状のコアロッド32を通してダイ30内にセットし、上下のパンチ31a,31bにより焼結体を圧縮してサイジングを施し、中膨らみ部13および溝14を拡張させ、軸受10を成形する。このサイジングでは、図5(b)に示すように、段差形状の型孔を有する上下のダイ30a,30bを用いて焼結体の中央部を膨出させ、中膨らみ部13および溝14が拡張しやすくなる手段を採ることもできる。
【0012】
上記軸受10にあっては、モータ1の運転時に、含浸された潤滑油が回転軸5と中膨らみ部13との間の隙間から溝14に流入することにより、上側の軸受部12への潤滑油の供給量が特に増加する。また、上側の軸受部12においては、周方向に隣り合う溝14と溝14との間に潤滑油による動圧効果が発生する。ここで、回転軸5から軸受10にかかる負荷(ラジアル荷重)は、マグネットロータ4側である上側の軸受部12に大きくかかるので、この上側の軸受部12への潤滑油の供給ならびに軸支持のための剛性が重要となってくるが、本実施形態では、上記溝14の作用によって上側の軸受部12の潤滑性と動圧発生による軸支持のための剛性が向上し、よって軸受性能が大幅に向上する。また、溝14は軸受部12を貫通して端面に開口しておらず、軸受部12における長さが軸受部12の10〜80%の範囲とされているので、溝14からの潤滑油の漏出が防止され、潤滑油の循環作用が確保される。
【0013】
(2)軸受の形態
次いで、軸受の様々な形態について例示する。
▲1▼図6に示すように、両端部の軸受部12から中膨らみ部13にわたって、上記一実施形態に示した溝14が、上下対称の状態に形成されている。
▲2▼図7に示すように、一端側に軸受部12が、また他端側に軸受部12よりも大径の膨らみ部13Aが形成された軸受分割体10Aが、膨らみ部13Aどうしを向かい合わせてハウジング15内に圧入され、各膨らみ部13Aの合体により中膨らみ部13が形成されている。各軸受分割体10Aには、軸受部12から膨らみ部13Aにわたって、複数の溝14が形成されている。
▲3▼図8(a)、(b)に示すように、軸方向に並ぶ一対の溝14をつなぐ直線状の溝14aが、中膨らみ部13の内周面に形成されている。
▲4▼図9に示すように、溝14と、軸受部12および中膨らみ部13との境界が面取り加工されて画然としていない。図9における軸方向に延びる多数の線Lは、溝14の形状を明らかにするための等幅線であり、実際には存在しない。
【0014】
(3)溝の形状の形態
次いで、軸受部12と中膨らみ部13との間に形成される溝14の形状の様々な形態について例示する。
▲1▼図10(a)に示すように、半楕円状であって、底面に段差がある。
▲2▼図10(b)に示すように、矩形状である。
▲3▼図10(c)に示すように、直角三角形状である。
▲4▼図10(d)に示すように、二等辺三角形状である。
【0015】
(4)溝の側面視形状の形態
次いで、軸受部12と中膨らみ部13との間に形成される溝14の側面視形状の様々な形態について例示する。
▲1▼図11(a)に示すように、三角形状である。
▲2▼図11(b)に示すように、平行四辺形状である。
▲3▼図11(c)に示すように、底面がなだらかな三角形状である。
【0016】
(5)軸受の製造方法の形態
次に、軸受10の製造方法の様々な形態について例示する。
▲1▼図12(a)に示すように、ダイ20、上下のパンチ21a,21bおよびコアロッド40により粉末Pを圧縮する。軸孔を形成するコアロッド40は、図12(b)に示すように、三角柱状である。粉末Pが圧縮成形された圧粉体の軸孔は、コアロッドに応じた断面三角形状となり、3つの角部がそれぞれ溝となる。圧粉体を成形、焼結後、焼結体を軸方向に圧縮してサイジングを行い、このサイジングにより、溝の中央部を拡張させて中膨らみ部を形成するとともに、溝の端面側の開口端を閉塞する。
【0017】
▲2▼軸孔形成用のコアロッドを円柱状として圧粉体を単純な円筒状とし、この圧粉体を焼結後、図3(b)に示したように、中膨らみ部13および溝14を形成するコアロッド22を用いてサイジングし、スプリングバックにより取り出す。圧粉体の軸孔は、コアロッド22の大径部22bが挿入可能な径とする。
【0018】
▲3▼単純な円筒状の焼結体の軸孔に、図12(b)で示した三角柱状のコアロッド40を圧入し、軸孔の内周面に3つの溝をコイニングにより形成する。次いで、図5(a)に示した方法で焼結体をサイジングする。
【0019】
▲4▼図13(a)に示すように、ダイ20、上下のパンチ21a,21bおよびコアロッド50により粉末Pを圧縮成形する。軸孔を形成するコアロッド50は、中膨らみ部13を形成する大径部50aの一端に、軸受部12を形成する小径部50bが形成された円柱状のもので、大径部50aおよび大径部50aから小径部50bにわたる部分の外周面には、突条51が形成されている。粉末Pが圧縮成形された圧粉体の軸孔の内周面には、突条51に応じた溝14が形成される。圧粉体を成形、焼結後、図13(b)に示すように、段差形状の型孔を有するダイ60、上下のパンチ61a,61bおよびコアロッド50よりも細い円柱状のコアロッド62により、焼結体を軸方向に圧縮してサイジングを行い、このサイジングにより、中央部を拡張させて中膨らみ部13を拡張形成するとともに、溝14の両端を閉塞して軸受10を成形する。図13(a)は粉末を圧縮成形する圧粉体の成形工程として示したが、円筒状の焼結体の軸孔にコアロッド50を圧入して溝14をコイニングにより形成し、図13(b)のサイジングに移行してもよい。
【0020】
▲5▼図14(a)に示すように、ダイ20、上下のパンチ21a,21bおよびコアロッド70により、粉末Pを圧縮成形する。軸孔を形成するコアロッド70は、中膨らみ部13を形成する大径部70aの一端に軸受部12を形成する小径部70bが形成された円柱状のもので、大径部70aから小径部70bにわたる部分の外周面に、溝14を形成するための複数の突起70cが形成されている。粉末Pが圧縮成形された圧粉体の軸孔の内周面には、突起70cに応じた溝14が形成される。圧粉体を成形、焼結後、図13(b)と同様のダイ60、上下のパンチ61a,61bおよび円柱状のコアロッド62により、焼結体を軸方向に圧縮してサイジングを行い、このサイジングにより、中膨らみ部13および溝14を拡張形成して軸受10を成形する。図14(a)は粉末を圧縮成形する圧粉体の成形工程として示したが、円筒状の焼結体の軸孔にコアロッド70を圧入して溝14をコイニングにより形成し、図14(b)のサイジングに移行してもよい。
【0021】
▲6▼図15(a)に示すように、一端側に軸受部12、他端側に膨らみ部13Aを有する焼結体を得た後、この焼結体を、図15(b)に示すように、ダイ60、上下のパンチ61a,61bおよび溝14を形成するための複数の突起80を備えたコアロッド81によりサイジングして溝14を有する軸受分割体10Aを得る。この軸受分割体10Aを、図7に示すようにハウジング15内に2つ組み込んで、軸受を構成する。
【0022】
【発明の効果】
以上説明したように、本発明によれば、含浸された潤滑油が回転軸と中膨らみ部との間の隙間から溝に流入することにより、軸受部への潤滑油の供給量が増加するとともに、周方向に隣り合う溝と溝との間に潤滑油による動圧効果が発生するので、軸受部の潤滑性ならびに軸支持のための剛性が向上し、軸受性能が大幅に向上する。
【図面の簡単な説明】
【図1】本発明の一実施形態に係る軸受が適用されたスピンドルモータの断面図である。
【図2】本発明の一実施形態に係る軸受の(a)縦断面図、(b)内周面の一部斜視図である。
【図3】本発明の一実施形態に係る軸受の製造方法の一例を示す図であって、粉末圧縮工程を(a)〜(c)の順に示す断面図である。
【図4】同工程で用いるコアロッドの一部斜視図である。
【図5】本発明の一実施形態に係る軸受の製造方法の一例であって、焼結体のサイジング工程を(a),(b)の順に示す断面図である。
【図6】本発明に係る軸受の形態例を示す縦断面図である。
【図7】本発明に係る軸受の形態例を示す縦断面図である。
【図8】本発明に係る軸受の形態例を示す(a)縦断面図、(b)内周面の一部斜視図である。
【図9】本発明に係る軸受の形態例を示す内周面の一部斜視図である。
【図10】(a)〜(d)は本発明に係る軸受の形状の形態例を示す正面図である。
【図11】(a)〜(c)は本発明に係る軸受の側面視形状の形態例を示す断面図である。
【図12】本発明に係る軸受の製造方法の形態例を示す図であって、(a)は粉末圧縮工程の断面図、(b)は同工程で用いるコアロッドの一部斜視図である。
【図13】本発明に係る軸受の製造方法の形態例を示す図であって、(a)は粉末圧縮工程の断面図、(b)は焼結体のサイジング工程の断面図である。
【図14】本発明に係る軸受の製造方法の形態例を示す図であって、(a)は粉末圧縮工程の断面図、(b)は焼結体のサイジング工程の断面図である。
【図15】本発明に係る軸受の製造方法の形態例を示す図であって、(a)は粉末圧縮工程の断面図、(b)は焼結体のサイジング工程の断面図である。
【符号の説明】
5…回転軸、10…焼結含油軸受、11…軸孔、12…軸受部、
13…中膨らみ部、14…溝。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a sintered oil impregnated bearing suitable for use in supporting a shaft rotating at a relatively high speed, such as a spindle motor bearing, with high accuracy.
[0002]
[Prior art]
Sintered oil-impregnated bearings reduce the frictional resistance and suppress noise and vibration by forming an oil film by oozing out the contained lubricating oil to the inner peripheral surface of the shaft hole, which is the sliding surface with the rotating shaft. It has the characteristic that it is. In addition, as a sintered oil-impregnated bearing that further enhances the effect of suppressing vibration and noise, a clearance gap (hereinafter referred to as a middle bulge portion) that does not contact the rotating shaft is formed at the axial center of the inner peripheral surface of the shaft hole. In some cases, the portion where the rotating shaft slides is limited to both ends, and the reduction of the frictional resistance is improved.
[0003]
[Problems to be solved by the invention]
By the way, in a spindle motor bearing, such as for a CD-ROM driver, in which the rotating shaft is standing, the load on the rotating shaft is not normally biased to one place in the circumferential direction unlike when the rotating shaft is turned sideways. In addition, the dynamic pressure effect generated by the increase in the pressure of the lubricating oil is not expected, and since it rotates at a high speed of about 10,000 / rpm, even a bearing having the above-described middle bulge portion can obtain a sufficient lubricating action. Was difficult. For example, a phenomenon in which the frictional resistance increases or the rotational speed fluctuates with the lapse of operating time occurs, and the middle swelling portion of such a bearing has a sludge-like shape particularly at one end in the axial direction where the load is large. In some cases, material was observed. This was assumed to be caused by insufficient supply of the lubricating oil to the sliding surface or deterioration of the lubricating oil due to heat generation of the bearing.
[0004]
Therefore, according to the present invention, even when the supporting rotating shaft rotates at a relatively high speed and the load received from the rotating shaft is biased in the axial direction, the lubricating action by the oil impregnation is sufficiently performed and high bearing performance is achieved. An object of the present invention is to provide a sintered oil-impregnated bearing that exhibits the following.
[0005]
[Means for Solving the Problems]
In the present invention, a bearing portion in which a rotating shaft slides is formed at both axial end portions of the inner peripheral surface of the shaft hole, and an intermediate bulge portion that does not contact the rotating shaft is formed between these bearing portions. The oil-impregnated bearing is characterized in that a plurality of grooves formed so as not to open at the end face of the bearing are arranged in the circumferential direction from at least one bearing portion to the middle swelling portion.
[0006]
According to the present invention, a large amount of lubricating oil in the bearing flows into the bearing portion through the groove from the gap between the rotating shaft and the middle bulge portion, and a dynamic pressure effect is caused between the groove in the bearing portion. As a result, the bearing performance is improved.
[0007]
If the groove penetrates the bearing portion and opens at the end face, the lubricating oil leaks out and the circulating action of the lubricating oil is not ensured. Therefore, in this invention, it is set as the preferable aspect that the length of the groove | channel formed in a bearing part shall be 10 to 80% of the length of a bearing part. In addition, if there is a difference in the load on the rotating shaft applied to the bearing portions at both ends in the axial direction, that is, if the load is biased in the axial direction, a groove should be formed on the side of the bearing portion with the larger load. Good. However, this is the simplest configuration of the present invention, and it is desirable to form grooves respectively from the bearing portions at both ends in the axial direction to the middle swelling portion.
[0008]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, an embodiment of the present invention will be described with reference to the drawings.
(1) One embodiment Fig. 1 shows a spindle motor for a CD-ROM driver to which a cylindrical sintered oil-impregnated bearing (hereinafter abbreviated as a bearing) 10 according to an embodiment of the present invention is applied. 1 is shown. The motor 1 is an outer rotor type including a housing 2, a drive coil 3, and a magnet rotor 4. The magnet rotor 4 rotates at a high speed of about 10,000 / rpm. The bearing 10 is press-fitted into the core 2 a of the housing 2, and the rotary shaft 5 is rotatably inserted into the bearing 10. The motor 1 is incorporated in a device with the magnet rotor 4 disposed on the upper side and the rotating shaft 5 standing. The thrust load of the rotating shaft 5 is supported by the receiving plate 6 fixed to the bottom of the housing 2, and the radial load is supported by the bearing 10. The rotating shaft 5 protrudes upward from the bearing 10, and the protruding end is press-fitted into the boss 4 a of the magnet rotor 4. A disc chuck 7 for attaching and detaching a CD-ROM (not shown) to the magnet rotor 4 is mounted on the boss 4a of the magnet rotor 4. The bearing 10 is a porous sintered body obtained by compressing and sintering metal powder, and is an oil-impregnated sintered bearing after being immersed in lubricating oil.
[0009]
As shown in FIG. 2A, the bearing 10 is formed with a shaft hole 11 into which the rotary shaft 5 is rotatably inserted, but the inner diameter of the shaft hole 11 is not uniform over the entire length. . That is, bearing portions 12 that substantially support the rotating shaft 5 are formed at both axial ends of the inner peripheral surface, and the rotating shaft 5 has a larger diameter than the bearing portion 12 and contacts between the bearing portions 12. A middle bulge portion 13 that is not formed is formed coaxially with the bearing portion 12. The opening edge of each bearing part 12 and each step part 12a and 13a which transfers to the middle swelling part 13 from the bearing part 12 are chamfered, and are formed in the taper shape.
[0010]
On the inner peripheral surface of the shaft hole 11, a plurality of (for example, three) grooves 14 are arranged at equal intervals in the circumferential direction from one bearing portion 12 (upper side in FIG. 2A) to the middle swelling portion 13. ing. These grooves 14 are semi-elliptical as shown in FIG. 2B, and are formed from the end edge of the middle bulge portion 13 to the bearing portion 12, and the bottom surface thereof is more gently tapered than the step portion 13a. It is a surface. The length of the portion formed in the bearing portion 12 of the groove 14 is in the range of 10 to 80% of the length of the bearing portion 12. The bearing 12 is press-fitted into the housing 2 of the motor 1 shown in FIG. 1 with the bearing portion 12 having a groove 14 formed on the upper side.
[0011]
Next, an example of a method for manufacturing the bearing 10 will be described.
First, as shown in FIG. 3A, the lower punch 21b and the core rod 22 are inserted into the mold hole of the die 20, and the raw material powder P is filled into the cavity 23 formed by these. As shown in FIG. 4, the core rod 22 is used in which a large-diameter portion 22 b and a protrusion 22 c for forming the middle swelling portion 13 and the groove 14 are formed in the middle of the rod 22 a forming the bearing portion 12. Next, as shown in FIG. 3 (b), the powder P is compression-molded by the upper and lower punches 21a and 21b, and thereafter, as shown in FIG. 3 (c), the core rod 22 and the lower punch 21b are moved upward. Thus, the green compact P1 is extracted from the die 20, and a spring bag is formed on the green compact P1 and is extracted from the core rod 22. Next, the green compact P1 is sintered, and the sintered body is set in the die 30 through the cylindrical core rod 32 in the shaft hole as shown in FIG. 5 (a), and the upper and lower punches 31a and 31b. The sintered body is compressed and subjected to sizing, the middle bulge portion 13 and the groove 14 are expanded, and the bearing 10 is formed. In this sizing, as shown in FIG. 5 (b), the central portion of the sintered body is expanded using the upper and lower dies 30a and 30b having stepped mold holes, and the middle swelling portion 13 and the groove 14 are expanded. It is also possible to take measures that make it easier to do.
[0012]
In the bearing 10, when the motor 1 is operated, the impregnated lubricating oil flows into the groove 14 from the gap between the rotating shaft 5 and the middle bulging portion 13, thereby lubricating the upper bearing portion 12. The oil supply is particularly increased. Further, in the upper bearing portion 12, a dynamic pressure effect by the lubricating oil is generated between the grooves 14 adjacent to each other in the circumferential direction. Here, since the load (radial load) applied to the bearing 10 from the rotating shaft 5 is greatly applied to the upper bearing portion 12 on the magnet rotor 4 side, supply of lubricating oil to the upper bearing portion 12 and shaft support are performed. However, in the present embodiment, the lubrication of the upper bearing portion 12 and the rigidity for supporting the shaft due to the generation of dynamic pressure are improved by the action of the groove 14, so that the bearing performance is greatly improved. To improve. Further, since the groove 14 does not pass through the bearing portion 12 and is not opened at the end surface, and the length of the bearing portion 12 is in the range of 10 to 80% of the bearing portion 12, the lubricating oil from the groove 14 Leakage is prevented and the circulation of lubricating oil is ensured.
[0013]
(2) Form of bearing Next, various forms of the bearing will be exemplified.
{Circle around (1)} As shown in FIG. 6, the groove 14 shown in the above embodiment is formed in a vertically symmetrical state from the bearing portion 12 at both ends to the middle bulge portion 13.
(2) As shown in FIG. 7, the bearing divided body 10A in which the bearing portion 12 is formed on one end side and the bulging portion 13A having a larger diameter than the bearing portion 12 is formed on the other end side faces the bulging portions 13A. Together, they are press-fitted into the housing 15, and the middle bulge portion 13 is formed by combining the bulge portions 13 </ b> A. A plurality of grooves 14 are formed in each bearing divided body 10A from the bearing portion 12 to the bulging portion 13A.
{Circle around (3)} As shown in FIGS. 8A and 8B, a linear groove 14 a connecting a pair of grooves 14 arranged in the axial direction is formed on the inner peripheral surface of the middle bulge portion 13.
{Circle around (4)} As shown in FIG. 9, the boundary between the groove 14, the bearing portion 12, and the middle swelling portion 13 is chamfered and is not clear. A large number of lines L extending in the axial direction in FIG. 9 are equal width lines for clarifying the shape of the groove 14 and do not actually exist.
[0014]
(3) Form of groove shape Next, various forms of the shape of the groove 14 formed between the bearing portion 12 and the middle bulge portion 13 will be illustrated.
(1) As shown in FIG. 10 (a), it is semi-elliptical and has a step on the bottom.
{Circle around (2)} As shown in FIG.
(3) As shown in FIG. 10 (c), it is a right triangle.
(4) As shown in FIG. 10 (d), it is an isosceles triangle.
[0015]
(4) Form of groove in side view shape Next, various forms of groove 14 formed in side view shape between the bearing portion 12 and the middle bulge portion 13 will be described.
(1) As shown in FIG. 11 (a), it has a triangular shape.
{Circle over (2)} As shown in FIG.
(3) As shown in FIG. 11 (c), the bottom surface has a gentle triangular shape.
[0016]
(5) Form of manufacturing method of bearing Next, various forms of the manufacturing method of the bearing 10 will be illustrated.
(1) As shown in FIG. 12A, the powder P is compressed by the die 20, the upper and lower punches 21a, 21b and the core rod 40. The core rod 40 that forms the shaft hole has a triangular prism shape as shown in FIG. The shaft hole of the green compact in which the powder P is compression-molded has a triangular cross-section corresponding to the core rod, and the three corners are grooves. After compacting and sintering the green compact, the sintered body is compressed in the axial direction to perform sizing. By this sizing, the central portion of the groove is expanded to form a middle bulge portion, and the opening on the end face side of the groove is formed. Close the end.
[0017]
(2) The core rod for forming the shaft hole is formed into a columnar shape, and the green compact is made into a simple cylindrical shape. After the green compact is sintered, as shown in FIG. Sizing is performed using the core rod 22 that forms the shape and is taken out by springback. The shaft hole of the green compact has a diameter into which the large diameter portion 22b of the core rod 22 can be inserted.
[0018]
(3) The triangular cylindrical core rod 40 shown in FIG. 12B is press-fitted into a shaft hole of a simple cylindrical sintered body, and three grooves are formed on the inner peripheral surface of the shaft hole by coining. Next, the sintered body is sized by the method shown in FIG.
[0019]
(4) As shown in FIG. 13A, the powder P is compression-molded by the die 20, the upper and lower punches 21a, 21b and the core rod 50. The core rod 50 that forms the shaft hole is a columnar member in which a small diameter portion 50b that forms the bearing portion 12 is formed at one end of the large diameter portion 50a that forms the middle bulge portion 13, and the large diameter portion 50a and the large diameter portion 50a. A protrusion 51 is formed on the outer peripheral surface of the portion extending from the portion 50a to the small diameter portion 50b. Grooves 14 corresponding to the protrusions 51 are formed on the inner peripheral surface of the shaft hole of the green compact in which the powder P is compression-molded. After the green compact is formed and sintered, as shown in FIG. 13B, the die 60 having stepped mold holes, the upper and lower punches 61a and 61b, and the cylindrical core rod 62 narrower than the core rod 50 are used for firing. The sizing is performed by compressing the ligated body in the axial direction, and by this sizing, the middle bulge portion 13 is expanded and the middle bulge portion 13 is expanded, and both ends of the groove 14 are closed to form the bearing 10. FIG. 13 (a) shows the green compact molding process for compressing powder, but the core rod 50 is press-fitted into the axial hole of the cylindrical sintered body to form the groove 14 by coining. ) Sizing may be used.
[0020]
(5) As shown in FIG. 14A, the powder P is compression-molded by the die 20, the upper and lower punches 21a, 21b and the core rod 70. The core rod 70 that forms the shaft hole is a cylindrical shape in which a small diameter portion 70b that forms the bearing portion 12 is formed at one end of the large diameter portion 70a that forms the middle bulge portion 13, and from the large diameter portion 70a to the small diameter portion 70b. A plurality of protrusions 70c for forming the grooves 14 are formed on the outer peripheral surface of the extending portion. Grooves 14 corresponding to the projections 70c are formed on the inner peripheral surface of the shaft hole of the green compact in which the powder P is compression-molded. After forming and sintering the green compact, the sintered body is axially compressed by the die 60, the upper and lower punches 61a and 61b, and the cylindrical core rod 62 similar to FIG. By sizing, the middle bulge portion 13 and the groove 14 are expanded and the bearing 10 is molded. FIG. 14 (a) shows the green compact molding process for compressing powder, but the core rod 70 is press-fitted into the axial hole of the cylindrical sintered body to form the groove 14 by coining. ) Sizing may be used.
[0021]
(6) As shown in FIG. 15 (a), after obtaining a sintered body having a bearing portion 12 on one end side and a bulging portion 13A on the other end side, this sintered body is shown in FIG. 15 (b). As described above, sizing is performed by the core rod 81 having the die 60, the upper and lower punches 61a and 61b, and the plurality of protrusions 80 for forming the groove 14, and the bearing divided body 10A having the groove 14 is obtained. As shown in FIG. 7, two of the bearing divided bodies 10A are incorporated in the housing 15 to constitute a bearing.
[0022]
【The invention's effect】
As described above, according to the present invention, since the impregnated lubricating oil flows into the groove from the gap between the rotating shaft and the middle bulge portion, the supply amount of the lubricating oil to the bearing portion increases. Since the dynamic pressure effect by the lubricating oil is generated between the grooves adjacent in the circumferential direction, the lubricity of the bearing portion and the rigidity for supporting the shaft are improved, and the bearing performance is greatly improved.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view of a spindle motor to which a bearing according to an embodiment of the present invention is applied.
2A is a longitudinal sectional view of a bearing according to an embodiment of the present invention, and FIG. 2B is a partial perspective view of an inner peripheral surface thereof.
FIG. 3 is a view showing an example of a bearing manufacturing method according to an embodiment of the present invention, and is a cross-sectional view showing a powder compression step in the order of (a) to (c).
FIG. 4 is a partial perspective view of a core rod used in the same process.
FIG. 5 is an example of a bearing manufacturing method according to an embodiment of the present invention, and is a cross-sectional view showing a sintered body sizing step in the order of (a) and (b).
FIG. 6 is a longitudinal sectional view showing a form example of a bearing according to the present invention.
FIG. 7 is a longitudinal sectional view showing a form example of a bearing according to the present invention.
8A is a longitudinal sectional view showing an example of a bearing according to the present invention, and FIG. 8B is a partial perspective view of an inner peripheral surface.
FIG. 9 is a partial perspective view of an inner peripheral surface showing a form example of a bearing according to the present invention.
FIGS. 10A to 10D are front views showing an example of the shape of the bearing according to the present invention. FIGS.
11A to 11C are cross-sectional views showing examples of the shape of the bearing according to the present invention in a side view.
12A and 12B are views showing an example of a manufacturing method of a bearing according to the present invention, in which FIG. 12A is a cross-sectional view of a powder compression step, and FIG. 12B is a partial perspective view of a core rod used in the step.
13A and 13B are views showing an example of a manufacturing method of a bearing according to the present invention, in which FIG. 13A is a cross-sectional view of a powder compression step, and FIG. 13B is a cross-sectional view of a sintered body sizing step.
14A and 14B are diagrams showing an example of a manufacturing method of a bearing according to the present invention, in which FIG. 14A is a cross-sectional view of a powder compression step, and FIG. 14B is a cross-sectional view of a sintered body sizing step.
FIGS. 15A and 15B are diagrams showing an example of a manufacturing method of a bearing according to the present invention, in which FIG. 15A is a cross-sectional view of a powder compression process, and FIG.
[Explanation of symbols]
5 ... Rotating shaft, 10 ... Sintered oil-impregnated bearing, 11 ... Shaft hole, 12 ... Bearing part,
13 ... middle bulge part, 14 ... groove.

Claims (3)

軸孔の内周面の軸方向両端部に、回転軸が摺動する軸受部が形成され、これら軸受部の間に、回転軸と接触しない中膨らみ部が形成された焼結含油軸受において、
少なくとも一方の前記軸受部から前記中膨らみ部にわたって、該軸受の端面に開口しない状態に形成された複数の溝が周方向に配列されていることを特徴とする焼結含油軸受。
In a sintered oil-impregnated bearing in which bearing portions on which the rotating shaft slides are formed at both ends in the axial direction of the inner peripheral surface of the shaft hole, and an intermediate bulge portion that does not contact the rotating shaft is formed between these bearing portions,
A sintered oil-impregnated bearing characterized in that a plurality of grooves formed so as not to open at the end face of the bearing are arranged in the circumferential direction from at least one of the bearing portions to the middle swelling portion.
前記溝の前記軸受部に形成された部分の長さが、該軸受部の長さの10〜80%であることを特徴とする請求項1に記載の焼結含油軸受。The length of the part formed in the said bearing part of the said groove | channel is 10 to 80% of the length of this bearing part, The sintered oil-impregnated bearing of Claim 1 characterized by the above-mentioned. 前記各軸受部にかかる前記回転軸の負荷に差異があり、負荷が大きい軸受部側に、前記溝が形成されていることを特徴とする請求項1または2に記載の焼結含油軸受。3. The sintered oil-impregnated bearing according to claim 1, wherein there is a difference in the load of the rotating shaft applied to each of the bearing portions, and the groove is formed on the bearing portion side where the load is large.
JP29716998A 1998-10-19 1998-10-19 Sintered oil-impregnated bearing Expired - Fee Related JP3620817B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29716998A JP3620817B2 (en) 1998-10-19 1998-10-19 Sintered oil-impregnated bearing

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29716998A JP3620817B2 (en) 1998-10-19 1998-10-19 Sintered oil-impregnated bearing

Publications (2)

Publication Number Publication Date
JP2000120688A JP2000120688A (en) 2000-04-25
JP3620817B2 true JP3620817B2 (en) 2005-02-16

Family

ID=17843086

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29716998A Expired - Fee Related JP3620817B2 (en) 1998-10-19 1998-10-19 Sintered oil-impregnated bearing

Country Status (1)

Country Link
JP (1) JP3620817B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4654379B2 (en) * 2005-02-01 2011-03-16 シコー株式会社 Motor bearing and motor

Also Published As

Publication number Publication date
JP2000120688A (en) 2000-04-25

Similar Documents

Publication Publication Date Title
JP3475215B2 (en) Composite porous bearing
JP3607492B2 (en) Dynamic pressure type porous oil-impregnated bearing and manufacturing method thereof
JP4522619B2 (en) Sintered oil-impregnated bearing, manufacturing method thereof and motor
US6120188A (en) Bearing unit manufacturing method bearing unit and motor using the bearing unit
CN105579721B (en) Sintered-metal bearing and its manufacture method
JP3620817B2 (en) Sintered oil-impregnated bearing
JP3770578B2 (en) Method for producing sintered oil-impregnated bearing
JP3607478B2 (en) Dynamic pressure type porous oil-impregnated bearing
JP7076266B2 (en) Manufacturing method of sintered oil-impregnated bearing
JP4172944B2 (en) Hydrodynamic bearing device and manufacturing method thereof
JP3585693B2 (en) Sintered oil-impregnated bearing
JP3818626B2 (en) Method for producing sintered oil-impregnated bearing
JP2011021649A (en) Fluid bearing device
JP4188288B2 (en) Manufacturing method of dynamic pressure type porous oil-impregnated bearing
JP3784690B2 (en) Dynamic pressure type porous oil-impregnated bearing and manufacturing method thereof
JP4327038B2 (en) Spindle motor
JP7094118B2 (en) Sintered metal dynamic pressure bearing
WO2023189389A1 (en) Oil-impregnated sintered bearing and fluid dynamic bearing device including same
JP3602320B2 (en) Manufacturing method of hydrodynamic sintered oil-impregnated bearing
JP3734130B2 (en) Method for producing sintered oil-impregnated bearing
JP3647008B2 (en) Method for producing sintered oil-impregnated bearing
JP3856363B2 (en) Manufacturing method of bearing
JP3326024B2 (en) Bearing device for small motor
JP2001059106A (en) Manufacture of bearing
JP3797465B2 (en) Manufacturing method of bearing

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040901

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040909

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041020

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20041112

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20041115

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071126

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081126

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081126

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091126

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101126

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111126

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111126

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121126

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131126

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees