JP2004308683A - Manufacturing method for sintered oil retaining bearing and sintered oil retaining bearing - Google Patents

Manufacturing method for sintered oil retaining bearing and sintered oil retaining bearing Download PDF

Info

Publication number
JP2004308683A
JP2004308683A JP2003099060A JP2003099060A JP2004308683A JP 2004308683 A JP2004308683 A JP 2004308683A JP 2003099060 A JP2003099060 A JP 2003099060A JP 2003099060 A JP2003099060 A JP 2003099060A JP 2004308683 A JP2004308683 A JP 2004308683A
Authority
JP
Japan
Prior art keywords
bearing
sintered
shaft support
diameter
sintered body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003099060A
Other languages
Japanese (ja)
Inventor
Tsuneo Maruyama
恒夫 丸山
Teruo Shimizu
輝夫 清水
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP2003099060A priority Critical patent/JP2004308683A/en
Priority to EP04725193.9A priority patent/EP1610011B1/en
Priority to EP12152069.6A priority patent/EP2447555B1/en
Priority to US10/551,739 priority patent/US8360648B2/en
Priority to PCT/JP2004/004814 priority patent/WO2004090360A1/en
Priority to KR1020057018238A priority patent/KR20050116395A/en
Publication of JP2004308683A publication Critical patent/JP2004308683A/en
Priority to US13/676,757 priority patent/US8726515B2/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To effectively control an offset of a bearing by forming a bearing hole at the inside of a sintered body after sintering in a manufacturing process of a sintered oil retaining bearing. <P>SOLUTION: The sintered oil retaining bearing has a bearing hole with a circular cross section supporting a rotary shaft formed on a bearing body made of sintered metal, and is provided with a shaft supporting portion with a uniform diameter having the inside as a frictional surface and a tapered enlarged diameter portion formed continuously with the shaft supporting portion with its diameter increasing outwardly. The bearing hole having a uniform diameter including the shaft supporting portion is formed by pressurizing the inner periphery of the cylindrical sintered body W after the sintering process, and the enlarged diameter portion is formed continuously with the shaft supporting portion by pressurizing again the inner periphery of the sintered body W. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、焼結含油軸受の製造方法および焼結含油軸受に関する。
【0002】
【従来の技術】
焼結体の内部にあらかじめ潤滑油を含侵させておき、軸の回転によるポンプ作用と摩擦熱による熱膨張で油をしみ出させて摩擦面を潤滑する焼結含油軸受は、無給油で長期間使用できることから、自動車や家電製品、音響機器等の回転軸の軸受として広く採用されている。
【0003】
上記従来の焼結含油軸受においては、軸受孔に挿通された回転軸を心出し(軸受の中心軸線と回転軸の軸線とを一致させること)するために、軸受孔の一部分を他の部分より小径にし、この部分だけを回転軸に接触させる構造を採用している。
【0004】
ところで、上記のように軸受孔の一部分を他の部分より小径にすると、軸受全体の長さに対して実際に回転軸に接触する部分の長さが短くなるために軸支持の状態が不安定になり易く、回転軸が心ずれし易いという問題がある。
【0005】
そこで、従来の焼結含油軸受の中には、軸受孔を、回転軸を支持する軸支部と、軸支部に連なって外方に向かって径が拡大する拡径部とからなる形状とし、さらに拡径部の焼結密度を軸支部より密に形成して回転軸の心ずれを抑制するものがある(例えば下記の特許文献1)。
【0006】
この構造を採用した軸受においては、回転軸にせん断荷重が作用すると、回転軸に振れが生じることで回転軸と軸支部との間を潤滑していた潤滑油が拡径部側に押し出され、回転軸と拡径部との間に充たされる。回転軸と拡径部との間に充たされた潤滑油は、回転軸が振れることで拡径部に押し付けられるように加圧されるが、拡径部が密に形成されていることから、軸受本体の内部には押し込まれず、回転軸と拡径部との間に残って回転軸に対し反力を作用させる。この反力により回転軸の振れが抑制され、軸受に対する回転軸の心ずれが防止される。
【0007】
【特許文献1】
特公平8−19941号公報
【0008】
【発明が解決しようとする課題】
ところで、上記の軸受において拡径部のテーパ角(軸支部の軸線に沿う軸受の長手方向すなわち当該軸受に支持される回転軸の長手方向に対して拡径部の斜面がなす角。軸支部の内面と拡径部の斜面とがなす角にも等しい。)は2〜3°の非常に小さな角度に設定されるので、非常に高い工作精度を要求される。テーパ角の設定が精緻に行えていないと、上記のような回転軸の心ずれ抑制作用が十分に発揮されない可能性がある。
【0009】
本発明は上記の事情に鑑みてなされたものであり、焼結含油軸受の製造過程において焼結を終えた中間体の内側に軸受孔を高精度に形成することで軸受の心ずれ抑制作用を良好に発揮させることを目的としている。
【0010】
【課題を解決するための手段】
上記の課題を解決するための手段として、次のような構成の焼結含油軸受の製造方法、および焼結含油軸受を採用する。
すなわち本発明に係る請求項1記載の焼結含油軸受の製造方法は、焼結金属により形成された軸受本体に、回転軸を支持する軸受孔が形成され、該軸受孔が、内面を摩擦面として径の大きさが一定の軸支部と、該軸支部に連なって設けられ、外方に向かって径が拡大してテーパ状をなす拡径部とを備える焼結含油軸受の製造方法であって、
焼結を終えた円筒形状の焼結体の内周面を加圧して前記軸支部を含む径の大きさが一定の軸受孔を形成し、続いて前記焼結体の内周面を再度加圧して前記軸支部に連なるように前記拡径部を形成することを特徴とする。
【0011】
請求項2記載の焼結含油軸受の製造方法は、請求項1記載の焼結含油軸受の製造方法において、前記拡径部の形成に、基端の径が前記焼結体の内径よりも大きな略円錐形のプレス型を用いることを特徴とする。
【0012】
請求項3記載の焼結含油軸受の製造方法は、請求項2記載の焼結含油軸受の製造方法において、前記プレス型を、前記焼結体の両側からそれぞれ同時に挿入し、該プレス型の先端どうしを当接させないようにしながら前記焼結体の内周面に押し付けて前記軸支部の両側に前記拡径部を形成することを特徴とする。
【0013】
請求項4記載の焼結含油軸受は、焼結金属により形成された軸受本体に、回転軸を支持する軸受孔が形成され、該軸受孔が、内面を摩擦面として径の大きさが一定の軸支部と、該軸支部に連なって設けられ、外方に向かって径が拡大してテーパ状をなす拡径部とを備える焼結含油軸受であって、
焼結を終えた円筒形状の焼結体の内周面を加圧して前記軸支部を含む径の大きさが一定の軸受孔を形成し、続いて前記焼結体の内周面を再度加圧して前記軸支部に連なるように前記拡径部を形成したことを特徴とする。
【0014】
本発明においては、焼結を終えた円筒形状の焼結体の内周面を加圧して軸支部を含む径の大きさが一定の軸受孔を形成し、続いて同焼結体の内周面を再度加圧して軸支部に連なるように拡径部を形成することにより、軸支部の内面と拡径部の斜面とがなす角を正確に形成することが可能である。
焼結を終えた円筒形状の焼結体の内周面を加圧して軸支部を含む径の大きさが一定の軸受孔を形成する工程、および焼結体の内周面を再度加圧して軸支部に連なるように拡径部を形成する工程は、いずれも軸受の寸法精度を高めるためのサイジング(saizing)と呼ばれる工程であるが、このサイジングの工程において、軸支部を含む径の大きさが一定の軸受孔を先に形成し、その軸受孔を基準にして拡径部を形成することで、軸受孔に含まれる軸支部に対する拡径部の位置合わせが正確になされ、これによって軸支部の内面と拡径部の斜面とがなす角が正確に形成される。
【0015】
本発明においては、拡径部の形成に、基端の径が前記焼結体の内径よりも大きな略円錐形のプレス型を用いることにより、拡径部を高精度に形成することが可能である。拡径部は上記のプレス型の円錐面を転写されるようにして形成されるが、もともと径の大きさが一定の軸受孔を加圧することで、外側に押し広げられた肉の一部が若干軸支部側に移動し、軸支部の内面がせり上がるようにして軸支部の内径を縮めてしまう。このとき、プレス型が略円錐形であるので、せり上がった軸支部の内面がプレス型の円錐面に押し付けられて拡径部となり、軸支部と拡径部との境界が凹凸を生じることなく高精度に形成される。
【0016】
本発明においては、上記のプレス型を、焼結体の両側からそれぞれ同時に挿入し、該プレス型の先端どうしを当接させないようにしながら焼結体の内周面に押し付けて軸支部の両側に拡径部を形成することにより、軸支部の内面が均一にせり上がり、軸支部の内径がどの部分でも一定になる。
【0017】
【発明の実施の形態】
本発明に係る第1の実施形態を図1ないし図4に示して説明する。
図1に示す焼結含油軸受(以下では単に軸受とする)は、焼結金属により形成された軸受本体1の内部に、回転軸2が挿通される軸受孔3が形成されている。軸受孔3は、回転軸2の長手方向の軸線Oに直交する面内における断面形状が円形をなしており、軸受本体1のほぼ中央にあって回転軸2の直径よりも径が若干大きく、かつ長手方向のいずれの位置においても径の大きさが一定の軸支部3aと、軸支部3aに連なって長手方向の両側にそれぞれ設けられ、外方に向かって単調に径が拡大してテーパ状をなす拡径部3b,3cとを備えている。いずれの拡径部3b,3cも、その傾斜面と軸受本体1の軸方向に平行な直孔部3aの内面(または回転軸2の軸線O)とがなす角(テーパ角)θ1は、3°以下に設定されている。なお、図1ではθ1を明確にするために誇張して図示してある。
【0018】
拡径部3b,3cをなす軸受本体1の内壁部4は、軸支部3aをなす内壁部5よりも焼結密度が高い、すなわち内壁部4の表面および内部に残る気孔が、内壁部5の表面および内部に残る気孔よりも小さく、数も少なくなっている。このような軸受本体1の各部における粗密の違いは、焼結工程の後に行う矯正(再加圧)工程において、該当する部分に対する加圧力を加減することによって実現されている。
【0019】
上記構成の軸受は、軸受本体1に潤滑油を含侵させたうえで、軸受孔3に回転軸2を挿通されて使用される。軸受に支持された回転軸2を回転させるために比較的小さなトルクが伝達されたときには、回転軸2に作用するせん断荷重も小さく、回転軸2に振れはほとんど生じないので、回転軸2の表面が軸支部3aに接し、この部分を摩擦面として支持される。軸支部3aでは、回転軸2の回転によるポンプ作用と摩擦熱による熱膨張とによって軸受本体1の内部から潤滑油がしみ出し、摩擦面を潤滑する。
【0020】
上記構成の軸受の製造工程を図2ないし図4を参照して説明する。
原料粉末の混合、成形、焼結の各工程を行い、続いてサイジングを行う。サイジングには、軸支部3aを含む軸受孔3を形成する工程と、軸支部3aの両側に拡径部3b,3cを形成する工程の2つがある。
軸支部3aを含む軸受孔3を形成する工程では、図2(a)〜(c)に示すように、円筒形状の孔10aが形成されたダイ10、孔10aに下方から遊びを持って挿入可能な丸棒状の第1のコアロッド11、孔10aに上方から嵌入可能で先端面が単純な円環形状をなす第1の上パンチ12、同じく孔10aに下方から嵌入可能で先端面が単純な円環形状をなす第1の下パンチ13が用いられる。
【0021】
第1のコアロッド11は、基端側と先端側とで2段階に径が変化し、より径の大きな基端側の外径が焼結体Wの内径とほぼ同じとなっており、第1の下パンチ13の内側に挿抜される。ダイ10は定位置に固定されており、コアロッド11、第1の上パンチ12、第2の下パンチ13は図示しない駆動装置により駆動されるようになっている。
【0022】
まず、図2(a)に示すように、ダイ10の孔10aに第1の下パンチ13を嵌入し、さらに第1の下パンチ13を通じて孔10aに第1のコアロッド11を挿入しておく。そして、ダイ10の上方から孔10aに焼結体Wを入れる。焼結体Wは、内側に第1のコアロッド11の先細の先端を通されて孔10a内に配置される。
【0023】
次に、図2(b)に示すように、孔10aに第1の上パンチ11を嵌入し、焼結体Wを下方に強く押し下げる。押し下げられた焼結体Wは、第1の上パンチ11と、第1の下パンチ13とに挟まれて上下から加圧され、上下方向に若干押し縮められる。さらに、外面を孔10aの内周面に押し付けられて滑らかな円筒面状に矯正され、内面を第1のコアロッド11の外周面に押し付けられて滑らかな円筒面状に矯正される(焼結体Wの内側には、軸支部3aを含む径の大きさが一定の軸受孔3が形成される)。
【0024】
矯正が完了したら、第1の上パンチ11を孔10aから抜き出し、続いて図2(c)に示すように、第1の下パンチ13を上方に押し上げ、矯正を終えた焼結体Wを孔10aから取り出す。
【0025】
軸支部3aの両側に拡径部3b,3cを形成する工程では、図3(a)〜(c)に示すように、焼結体Wの外径にほぼ等しい内径の孔20aが形成されたダイ20、孔20aに上方から遊びを持って挿入可能な丸棒状の第2のコアロッド21、同じく孔20aに下方から遊びを持って挿入可能な丸棒状の第3のコアロッド22、孔20aに上方から嵌入可能で先端面が単純な円環形状をなす第2の上パンチ23、同じく孔20aに下方から嵌入可能で先端面が単純な円環形状をなす第2の下パンチ24が用いられる。
【0026】
第2、第3のコアロッド21,22は、外径が焼結体Wの内径よりも大きく、かつ先端21a,22aが円錐台形状のプレス型をなしている。両先端21a,22aは同寸法で、基端21b,22bの径が焼結体Wの内径よりも大きく、先端面21c,22c(先端)の外径は焼結体Wの内径よりも小さく形成されている。第2のコアロッド21は第2の上パンチ23の内側に、第3のコアロッド22は第2の下パンチ24の内側に挿抜される。
ダイ20は定位置に固定されており、第2、第3のコアロッド21,22、第2の上パンチ23、第2の下パンチ24は図示しない駆動装置により駆動されるようになっている。
【0027】
まず、図3(a)に示すように、ダイ20の孔20aに第2の下パンチ24を嵌入し、さらに第2の下パンチ24を通じて孔20aに第3のコアロッド22を挿入しておく。また、ダイ20の上方には、内側に第2のコアロッド21を挿入した第2の上パンチ23を待機させておく。そして、ダイ20の上方から孔20aに、軸支部3aを含む軸受孔3の形成を終えた焼結体Wを入れる。
【0028】
次に、図3(b)に示すように、孔20aに第2の上パンチ23および第2のコアロッド21を同期させて嵌入し、焼結体Wを下方に押し下げる。押し下げられた焼結体Wは、第2のコアロッド21と、第3のコアロッド22とに挟まれて加圧される。このとき、各コアロッドの先端面21c,22cどうしを当接させないことを考慮して各コアロッド21,22の駆動量や先端形状を決定しておく。
【0029】
各コアロッドの先端21a,22aは、先行して実施されたサイジングによって形成された軸受孔3の両端開口に当接し、軸受孔3の長手方向に案内されるように軸受孔3の内側に押し込まれる。焼結体Wは、軸受孔3の内側に各コアロッドの先端21a,22aの円錐面をそれぞれ押し付けられて矯正される(軸支部3aの両側には、拡径部3b,3cが形成される)。このとき、拡径部3b,3cに当たる部分は2度加圧されることにより焼結密度が高められ、軸支部3aとの間に粗密の差が与えられる。
【0030】
矯正が完了したら、第2のコアロッド21および第2の上パンチ23を孔20aから抜き出し、続いて図3(c)に示すように、第2の下パンチ24を上方に押し上げ、矯正を終えた焼結体Wを孔20aから取り出す。
【0031】
上記のように、サイジングの工程において軸支部3aを含む径の大きさが一定の軸受孔3を先に形成し、その軸受孔3を基準にして拡径部3b,3cを形成することで、軸支部3aに対する拡径部3b,3cの位置合わせが正確になされ、軸支部3aの内周面と拡径部3b,3cの斜面とがなす角θ1が非常に正確に形成される。
【0032】
また、拡径部3b,3cの形成に、先端が円錐台形状のプレス型をなす第2、第3のコアロッド21,22を用いると、図4に示すように、拡径部3b,3cは各コアロッドの先端21a,22aの円錐面を転写されるようにして形成されるが、もともと径の大きさが一定の軸受孔3を加圧することで、外側に押し広げられた肉の一部(図中のX部分)が若干軸支部3a側に移動し、軸支部3aの内面がせり上がるようにして軸支部3aの内径を縮めてしまう。このとき、各コアロッドの先端21a,22aが略円錐形であるので、せり上がった軸支部3aの内面がその円錐面に押し付けられて拡径部3b,3cとなり、軸支部3aと拡径部3b,3cとの境界が凹凸を生じることなく高精度に形成される。また、軸支部3aとなる部分は先行して加圧されて硬さを増しているので、両側からコアロッドを挿入されても内面にうねりのような変形が起こらず、滑らかな円筒面が保たれる。
【0033】
さらに、第2、第3のコアロッド21,22を焼結体Wの両側からそれぞれ同時に挿入し、各コアロッドの先端21a,22aどうしを当接させないようにしながら焼結体Wの内周面に押し付けることにより、軸支部3aの内面が図4のように均一にせり上がり、軸支部3aの内径がどの部分でも一定になる。
【0034】
次に、本発明に係る第2の実施形態を図5および図6に示して説明する。なお、上記実施形態において既に説明した構成要素には同一符号を付して説明は省略する。
本実施形態の軸受には、図5に示すように、拡径部3bは軸支部3aの一側方にのみ設けられており、軸支部3aの他側方には面取り部3dが設けられている。この面取り部3dは、主に軸受孔3に回転軸2を通し易くするために設けられたもので、回転軸2との間で心ずれ抑制の機能を発揮するものではない。
【0035】
上記構成の軸受の製造工程を図6を参照して説明する。なお、原料粉末の混合から焼結までの工程、さらに軸支部3aを含む軸受孔3を形成するサイジングの工程については上記第1の実施形態と同じなのでその説明は省略する。
軸支部3aの両側に拡径部3bを形成する工程では、図6(a)〜(c)に示すように、焼結体Wの外径にほぼ等しい内径の孔30aが形成されたダイ30、孔30aに上方から遊びを持って挿入可能な丸棒状の第4のコアロッド31、孔30aに上方から嵌入可能で先端面が単純な円環形状をなす第3の上パンチ32、同じく孔30aに下方から嵌入可能で先端面が単純な円環形状をなす第3の下パンチ33が用いられる。
【0036】
第4のコアロッド31は、外径が焼結体Wの内径よりも大きく、かつ先端31aが円錐台形状のプレス型をなし、基端31bの径が焼結体Wの内径よりも大きく、先端面31cの外径は焼結体Wの内径よりも小さく形成されており、第3の上パンチ32の内側に挿抜される。
ダイ30は定位置に固定されており、第4のコアロッド31、第3の上パンチ32、第3の下パンチ33は図示しない駆動装置により駆動されるようになっている。
【0037】
まず、図6(a)に示すように、ダイ30の孔30aに第3の下パンチ33を嵌入しておく。また、ダイ30の上方には、内側に第4のコアロッド31を挿入した第3の上パンチ32を待機させておく。そして、ダイ30の上方から孔30aに、軸支部3aを含む軸受孔3ならびに面取り部3dの形成を終えた焼結体Wを入れる。
【0038】
次に、図6(b)に示すように、孔30aに第3の上パンチ32および第4のコアロッド31を同期させて嵌入し、焼結体Wを下方に押し下げる。押し下げられた焼結体Wは、第4のコアロッド31と、第3の下パンチ33とに挟まれて加圧される。
【0039】
第4のコアロッド31の先端31aは、先行して実施されたサイジングによって形成された軸受孔3の一端の開口に当接し、軸受孔3の長手方向に案内されるように軸受孔3の内側に押し込まれる。焼結体Wは、軸受孔3の内側に第4のコアロッド31の先端31aの円錐面を押し付けられて矯正される(軸支部3aの一側方には、拡径部3bが形成される)。このとき、拡径部3bに当たる部分は2度加圧されることにより焼結密度が高められ、軸支部3aとの間に粗密の差が与えられる。
【0040】
矯正が完了したら、第3の上パンチ32および第4のコアロッド31を孔30aから抜き出し、続いて図6(c)に示すように、第3の下パンチ33を上方に押し上げ、矯正を終えた焼結体Wを孔30aから取り出す。
【0041】
上記のように、サイジングの工程において軸支部3aを含む径の大きさが一定の軸受孔3を先に形成し、その軸受孔3を基準にして拡径部3bを形成することで、軸支部3aに対する拡径部3bの位置合わせが正確になされ、軸支部3aの内周面と拡径部3bの斜面とがなす角θ1が非常に正確に形成される。
【0042】
ところで、上記第1、第2の実施形態の軸受はいずれも、軸受本体1の各部に粗密の違いを設けて回転軸の心ずれを防止する構造を備えているが、本発明はこのような構造を備える焼結含油軸受にのみ適用されるものではなく、軸受本体の焼結密度が均一な焼結含油軸受にも適用可能であることはいうまでもない。
【0043】
【発明の効果】
以上説明したように、本発明によれば、軸支部を含む径の大きさが一定の軸受孔を先に形成し、その軸受孔を基準にして拡径部を形成することで、軸受孔に含まれる軸支部に対する拡径部の位置合わせが正確になされるので、軸支部の内面と拡径部の斜面とがなす角を正確に形成することができ、結果的に焼結含油軸受の心ずれ抑制作用を良好に発揮させることができる。
【図面の簡単な説明】
【図1】本発明の第1の実施形態を示す図であって、回転軸の軸線方向に沿う平面で断面視した焼結含油軸受である。
【図2】図1の焼結含油軸受を製造する工程のひとつであるサイジングの進め方を段階的に示す状態説明図である。
【図3】同じく、図1の焼結含油軸受を製造する工程のひとつであるサイジングの進め方を段階的に示す状態説明図である。
【図4】サイジングにより変化する軸受の形状を示す状態説明図である。
【図5】本発明の第2の実施形態を示す図であって、回転軸の軸線方向に沿う平面で断面視した焼結含油軸受である。
【図6】図5の焼結含油軸受を製造する工程のひとつであるサイジングの進め方を段階的に示す状態説明図である。
【符号の説明】
1 軸受本体
2 回転軸
3 軸受孔
3a 軸支部
3b,3c 拡径部
21,22 第1,第2のコアロッド
21a,22a 先端(プレス型)
W 焼結体
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a method for manufacturing a sintered oil-impregnated bearing and a sintered oil-impregnated bearing.
[0002]
[Prior art]
Lubricating oil is impregnated in the sintered body in advance, and the oil is extruded by the pump action due to the rotation of the shaft and the thermal expansion due to frictional heat to lubricate the friction surface. Because it can be used for a period, it is widely used as a bearing for rotating shafts of automobiles, home appliances, audio equipment, and the like.
[0003]
In the above-mentioned conventional sintered oil-impregnated bearing, in order to center the rotating shaft inserted in the bearing hole (to make the center axis of the bearing coincide with the axis of the rotating shaft), a part of the bearing hole is separated from other parts. A structure is adopted in which the diameter is reduced and only this portion is brought into contact with the rotating shaft.
[0004]
By the way, if one part of the bearing hole is made smaller in diameter than the other part as described above, the length of the part that actually contacts the rotating shaft becomes shorter than the entire length of the bearing, and the shaft support state becomes unstable. And there is a problem that the axis of rotation tends to be misaligned.
[0005]
Therefore, in conventional sintered oil-impregnated bearings, the bearing hole is formed of a shaft supporting portion that supports the rotating shaft, and a diameter-enlarging portion that is connected to the shaft supporting portion and whose diameter increases outward. There is one in which the sintering density of the enlarged diameter portion is formed more densely than that of the shaft support portion to suppress misalignment of the rotating shaft (for example, Patent Document 1 below).
[0006]
In a bearing employing this structure, when a shear load is applied to the rotating shaft, a run-out occurs in the rotating shaft, so that the lubricating oil that has lubricated between the rotating shaft and the shaft support portion is pushed out to the enlarged diameter portion side, It is filled between the rotating shaft and the enlarged diameter portion. The lubricating oil filled between the rotating shaft and the enlarged diameter portion is pressurized so as to be pressed against the enlarged diameter portion by swinging the rotating shaft, but because the enlarged diameter portion is formed densely. However, it is not pushed into the inside of the bearing main body, but remains between the rotating shaft and the enlarged diameter portion to exert a reaction force on the rotating shaft. Due to this reaction force, run-out of the rotary shaft is suppressed, and misalignment of the rotary shaft with respect to the bearing is prevented.
[0007]
[Patent Document 1]
Japanese Patent Publication No. 8-19941
[Problems to be solved by the invention]
By the way, in the above bearing, the taper angle of the enlarged diameter portion (the angle formed by the slope of the enlarged diameter portion with respect to the longitudinal direction of the bearing along the axis of the bearing portion, that is, the longitudinal direction of the rotating shaft supported by the bearing. The angle between the inner surface and the slope of the enlarged diameter portion is also set to a very small angle of 2 to 3 °, so that extremely high machining accuracy is required. If the taper angle is not precisely set, the above-described action of suppressing the misalignment of the rotating shaft may not be sufficiently exhibited.
[0009]
The present invention has been made in view of the above circumstances, and in the manufacturing process of a sintered oil-impregnated bearing, a bearing hole is formed with high precision inside an intermediate body after sintering, thereby suppressing the bearing misalignment. The purpose is to show it well.
[0010]
[Means for Solving the Problems]
As means for solving the above problems, a method for manufacturing a sintered oil-impregnated bearing having the following configuration and a sintered oil-impregnated bearing are employed.
That is, in the method for manufacturing a sintered oil-impregnated bearing according to claim 1 of the present invention, a bearing body for supporting a rotating shaft is formed in a bearing body formed of a sintered metal, and the bearing hole has an inner surface having a friction surface. The present invention provides a method for manufacturing a sintered oil-impregnated bearing comprising: a shaft supporting portion having a constant diameter; and a diameter-enlarging portion provided in connection with the shaft supporting portion, the diameter increasing outward and forming a tapered shape. hand,
The inner peripheral surface of the cylindrical sintered body after sintering is pressurized to form a bearing hole having a constant diameter including the shaft support, and then the inner peripheral surface of the sintered body is re-applied. The enlarged diameter portion is formed so as to be connected to the shaft support by pressing.
[0011]
A method for manufacturing a sintered oil-impregnated bearing according to a second aspect is the method for manufacturing a sintered oil-impregnated bearing according to the first aspect, wherein a diameter of a base end is larger than an inner diameter of the sintered body in forming the enlarged diameter portion. It is characterized in that a substantially conical press die is used.
[0012]
A method for manufacturing a sintered oil-impregnated bearing according to a third aspect is the method for manufacturing a sintered oil-impregnated bearing according to the second aspect, wherein the press dies are simultaneously inserted from both sides of the sintered body, respectively, and a tip of the press dies is provided. The enlarged diameter portions are formed on both sides of the shaft support portion by pressing against the inner peripheral surface of the sintered body while preventing them from contacting each other.
[0013]
In the sintered oil-impregnated bearing according to claim 4, a bearing hole for supporting a rotating shaft is formed in a bearing body formed of a sintered metal, and the bearing hole has a constant diameter with an inner surface as a friction surface. A shaft support portion, a sintered oil-impregnated bearing provided with a diameter-enlarging portion that is provided in connection with the shaft support portion and has a diameter that increases outward and forms a tapered shape,
The inner peripheral surface of the cylindrical sintered body after sintering is pressurized to form a bearing hole having a constant diameter including the shaft support, and then the inner peripheral surface of the sintered body is re-applied. The enlarged diameter portion is formed so as to be connected to the shaft support by pressing.
[0014]
In the present invention, the inner peripheral surface of the sintered cylindrical body after the sintering is pressed to form a bearing hole having a constant diameter including the shaft support portion, and then the inner peripheral surface of the sintered body is formed. By forming the enlarged diameter portion so as to be continuous with the pivot portion by pressing the surface again, it is possible to accurately form an angle formed by the inner surface of the pivot portion and the slope of the enlarged diameter portion.
A step of forming a bearing hole having a constant diameter including the shaft support by pressing the inner peripheral surface of the cylindrical sintered body after sintering, and pressing the inner peripheral surface of the sintered body again. The process of forming the enlarged diameter portion so as to be continuous with the shaft support portion is a process called sizing for improving the dimensional accuracy of the bearing. In this sizing process, the size of the diameter including the shaft support portion is large. By first forming a fixed bearing hole and forming the enlarged diameter portion based on the bearing hole, the positioning of the enlarged diameter portion with respect to the bearing portion included in the bearing hole is accurately performed, thereby The angle formed between the inner surface of the diaper and the slope of the enlarged diameter portion is accurately formed.
[0015]
In the present invention, the enlarged diameter portion can be formed with high accuracy by using a substantially conical press die whose base end diameter is larger than the inner diameter of the sintered body. is there. The enlarged diameter part is formed by transferring the conical surface of the above-mentioned press die, but by pressing a bearing hole having a constant diameter from the beginning, a part of the meat expanded outward is The shaft is slightly moved to the side of the shaft support, and the inner surface of the shaft support is raised, thereby reducing the inner diameter of the shaft support. At this time, since the press die has a substantially conical shape, the inner surface of the raised shaft support is pressed against the conical surface of the press die to form an enlarged diameter portion, and the boundary between the shaft support and the enlarged diameter portion does not have irregularities. Formed with high precision.
[0016]
In the present invention, the above-mentioned press dies are simultaneously inserted from both sides of the sintered body, respectively, and pressed against the inner peripheral surface of the sintered body while preventing the tips of the press dies from coming into contact with each other. By forming the enlarged diameter portion, the inner surface of the shaft support portion is uniformly raised, and the inner diameter of the shaft support portion is constant at any portion.
[0017]
BEST MODE FOR CARRYING OUT THE INVENTION
A first embodiment according to the present invention will be described with reference to FIGS.
In the sintered oil-impregnated bearing shown in FIG. 1 (hereinafter simply referred to as a bearing), a bearing hole 3 through which a rotating shaft 2 is inserted is formed inside a bearing body 1 formed of a sintered metal. The bearing hole 3 has a circular cross section in a plane perpendicular to the longitudinal axis O of the rotating shaft 2, is substantially at the center of the bearing body 1, and has a diameter slightly larger than the diameter of the rotating shaft 2. In addition, a shaft supporting portion 3a having a constant diameter at any position in the longitudinal direction and provided on both sides in the longitudinal direction so as to be continuous with the shaft supporting portion 3a. And enlarged diameter portions 3b and 3c. The angle (taper angle) θ1 between the inclined surface of each of the enlarged diameter portions 3b and 3c and the inner surface of the straight hole portion 3a (or the axis O of the rotating shaft 2) parallel to the axial direction of the bearing body 1 is 3 ° is set below. Note that FIG. 1 is exaggerated in order to clarify θ1.
[0018]
The inner wall portion 4 of the bearing body 1 forming the enlarged diameter portions 3b and 3c has a higher sintering density than the inner wall portion 5 forming the shaft support portion 3a, that is, pores remaining on the surface and inside of the inner wall portion 4 are formed. It is smaller and smaller in number than the pores remaining on the surface and inside. Such a difference in density in each part of the bearing body 1 is realized by increasing or decreasing the pressure applied to the corresponding part in a correction (re-pressurization) step performed after the sintering step.
[0019]
The bearing having the above configuration is used after the bearing body 1 is impregnated with lubricating oil and the rotating shaft 2 is inserted through the bearing hole 3. When a relatively small torque is transmitted to rotate the rotating shaft 2 supported by the bearing, the shear load acting on the rotating shaft 2 is small, and the rotating shaft 2 hardly oscillates. Is in contact with the shaft support 3a, and this portion is supported as a friction surface. In the shaft support 3a, the lubricating oil exudes from the inside of the bearing main body 1 due to the pumping action due to the rotation of the rotating shaft 2 and the thermal expansion due to frictional heat, and lubricates the friction surface.
[0020]
The manufacturing process of the bearing having the above configuration will be described with reference to FIGS.
The respective steps of mixing, molding, and sintering the raw material powder are performed, and then sizing is performed. The sizing includes two steps, a step of forming the bearing hole 3 including the shaft support 3a and a step of forming the enlarged diameter portions 3b and 3c on both sides of the shaft support 3a.
In the step of forming the bearing hole 3 including the shaft support 3a, as shown in FIGS. 2A to 2C, the die 10 having the cylindrical hole 10a formed therein is inserted with play from below into the hole 10a. A possible first core rod 11 having a round rod shape, a first upper punch 12 which can be fitted into the hole 10a from above and has a simple annular end face, and can be fitted into the hole 10a from below and has a simple tip face. A first lower punch 13 having an annular shape is used.
[0021]
The diameter of the first core rod 11 changes in two steps between the base end side and the distal end side, and the outer diameter of the larger base end side is substantially the same as the inner diameter of the sintered body W. Of the lower punch 13. The die 10 is fixed at a fixed position, and the core rod 11, the first upper punch 12, and the second lower punch 13 are driven by a driving device (not shown).
[0022]
First, as shown in FIG. 2A, the first lower punch 13 is fitted into the hole 10a of the die 10, and the first core rod 11 is inserted into the hole 10a through the first lower punch 13. Then, the sintered body W is put into the hole 10a from above the die 10. The sintered body W is placed inside the hole 10a through the tapered tip of the first core rod 11 inside.
[0023]
Next, as shown in FIG. 2B, the first upper punch 11 is fitted into the hole 10a, and the sintered body W is strongly pushed downward. The pressed-down sintered body W is sandwiched between the first upper punch 11 and the first lower punch 13 and is pressed from above and below and is slightly compressed in the vertical direction. Further, the outer surface is pressed against the inner peripheral surface of the hole 10a to be corrected into a smooth cylindrical surface, and the inner surface is pressed against the outer peripheral surface of the first core rod 11 to be corrected into a smooth cylindrical surface (sintered body). A bearing hole 3 having a constant diameter including the shaft support 3a is formed inside W.)
[0024]
When the straightening is completed, the first upper punch 11 is pulled out from the hole 10a, and subsequently, the first lower punch 13 is pushed upward as shown in FIG. Remove from 10a.
[0025]
In the step of forming the enlarged diameter portions 3b and 3c on both sides of the shaft support portion 3a, holes 20a having an inner diameter substantially equal to the outer diameter of the sintered body W were formed as shown in FIGS. A die 20, a round rod-shaped second core rod 21 that can be inserted into the hole 20a with play from above, a third round rod-shaped core rod 22 that can be inserted into the hole 20a with play from below, and an upper part into the hole 20a. A second upper punch 23, which can be fitted into the hole 20a and has a simple annular shape, and a second lower punch 24, which can be fitted into the hole 20a from below and has a simple annular shape, are used.
[0026]
Each of the second and third core rods 21 and 22 has a press die having an outer diameter larger than the inner diameter of the sintered body W and tips 21a and 22a having a truncated cone shape. The two ends 21a and 22a have the same dimensions, the diameter of the base ends 21b and 22b is larger than the inner diameter of the sintered body W, and the outer diameter of the front end faces 21c and 22c (tip) is smaller than the inner diameter of the sintered body W. Have been. The second core rod 21 is inserted inside the second upper punch 23, and the third core rod 22 is inserted inside the second lower punch 24.
The die 20 is fixed at a fixed position, and the second and third core rods 21 and 22, the second upper punch 23, and the second lower punch 24 are driven by a driving device (not shown).
[0027]
First, as shown in FIG. 3A, the second lower punch 24 is fitted into the hole 20a of the die 20, and the third core rod 22 is inserted into the hole 20a through the second lower punch 24. Above the die 20, a second upper punch 23 into which the second core rod 21 is inserted is kept on standby. Then, the sintered body W after the formation of the bearing hole 3 including the shaft support 3a is put into the hole 20a from above the die 20.
[0028]
Next, as shown in FIG. 3B, the second upper punch 23 and the second core rod 21 are synchronously fitted into the holes 20a, and the sintered body W is pushed downward. The pressed-down sintered body W is pressed between the second core rod 21 and the third core rod 22. At this time, the drive amount and the tip shape of each of the core rods 21 and 22 are determined in consideration of preventing the tip surfaces 21c and 22c of the core rods from abutting each other.
[0029]
The tips 21a and 22a of the core rods abut the openings at both ends of the bearing hole 3 formed by sizing performed in advance, and are pushed inside the bearing hole 3 so as to be guided in the longitudinal direction of the bearing hole 3. . The sintered body W is straightened by pressing the conical surfaces of the tips 21a and 22a of the core rods inside the bearing hole 3 (the enlarged diameter portions 3b and 3c are formed on both sides of the shaft support 3a). . At this time, the portions corresponding to the enlarged diameter portions 3b and 3c are pressurized twice so that the sintering density is increased, and a difference in density between the shaft supporting portion 3a and the sintering portion is given.
[0030]
When the straightening is completed, the second core rod 21 and the second upper punch 23 are pulled out from the hole 20a, and then, as shown in FIG. 3C, the second lower punch 24 is pushed upward to complete the straightening. The sintered body W is taken out from the hole 20a.
[0031]
As described above, in the sizing process, the bearing hole 3 having a constant diameter including the shaft support portion 3a is formed first, and the enlarged diameter portions 3b and 3c are formed with the bearing hole 3 as a reference. The positioning of the enlarged diameter portions 3b and 3c with respect to the shaft support portion 3a is accurately performed, and the angle θ1 formed between the inner peripheral surface of the shaft support portion 3a and the inclined surfaces of the enlarged diameter portions 3b and 3c is formed very accurately.
[0032]
When the second and third core rods 21 and 22 each having a truncated cone-shaped press die are used to form the enlarged diameter portions 3b and 3c, as shown in FIG. The conical surfaces of the tips 21a and 22a of the core rods are formed so as to be transferred, and a part of the meat that is spread outward by pressing the bearing hole 3 having a constant diameter is originally applied. (X part in the figure) slightly moves to the side of the shaft support 3a, and the inner surface of the shaft support 3a rises to reduce the inner diameter of the shaft support 3a. At this time, since the tips 21a and 22a of the core rods are substantially conical, the inner surface of the raised shaft support 3a is pressed against the conical surface to become the enlarged diameter portions 3b and 3c, and the shaft support 3a and the enlarged diameter portion 3b , 3c are formed with high accuracy without unevenness. Also, since the portion serving as the shaft support portion 3a is pressurized in advance and has increased hardness, even when the core rod is inserted from both sides, deformation such as undulation does not occur on the inner surface, and a smooth cylindrical surface is maintained. It is.
[0033]
Further, the second and third core rods 21 and 22 are simultaneously inserted from both sides of the sintered body W, respectively, and pressed against the inner peripheral surface of the sintered body W while preventing the tips 21a and 22a of the core rods from coming into contact with each other. As a result, the inner surface of the shaft support 3a is uniformly raised as shown in FIG. 4, and the inner diameter of the shaft support 3a is constant at any portion.
[0034]
Next, a second embodiment according to the present invention will be described with reference to FIGS. Note that components already described in the above embodiment are given the same reference numerals, and description thereof is omitted.
In the bearing of this embodiment, as shown in FIG. 5, the enlarged diameter portion 3b is provided only on one side of the shaft support 3a, and a chamfered portion 3d is provided on the other side of the shaft support 3a. I have. The chamfered portion 3d is provided mainly for facilitating the passage of the rotary shaft 2 through the bearing hole 3, and does not exhibit a function of suppressing misalignment with the rotary shaft 2.
[0035]
The manufacturing process of the bearing having the above configuration will be described with reference to FIG. The steps from the mixing of the raw material powders to the sintering, and the sizing step of forming the bearing hole 3 including the shaft support 3a are the same as those in the first embodiment, and the description thereof will be omitted.
In the step of forming the enlarged diameter portions 3b on both sides of the shaft support 3a, as shown in FIGS. 6 (a) to 6 (c), a die 30 having a hole 30a having an inner diameter substantially equal to the outer diameter of the sintered body W is formed. A fourth core rod 31 in the form of a round bar that can be inserted into the hole 30a with play from above, a third upper punch 32 that can be fitted into the hole 30a from above and has a simple annular end face, and the hole 30a as well. A third lower punch 33 that can be fitted from below and has a simple annular shape at the distal end surface is used.
[0036]
The fourth core rod 31 has an outer diameter larger than the inner diameter of the sintered body W, a tip 31a in the shape of a frustoconical press, a base end 31b larger than the inner diameter of the sintered body W, The outer diameter of the surface 31c is formed smaller than the inner diameter of the sintered body W, and is inserted and removed inside the third upper punch 32.
The die 30 is fixed at a fixed position, and the fourth core rod 31, the third upper punch 32, and the third lower punch 33 are driven by a driving device (not shown).
[0037]
First, as shown in FIG. 6A, the third lower punch 33 is fitted into the hole 30a of the die 30. Above the die 30, a third upper punch 32 into which the fourth core rod 31 is inserted is kept on standby. Then, the sintered body W after the formation of the bearing hole 3 including the shaft support 3a and the chamfered portion 3d is put into the hole 30a from above the die 30.
[0038]
Next, as shown in FIG. 6B, the third upper punch 32 and the fourth core rod 31 are synchronously fitted into the hole 30a, and the sintered body W is pushed downward. The pressed-down sintered body W is pressed between the fourth core rod 31 and the third lower punch 33.
[0039]
The tip 31a of the fourth core rod 31 abuts the opening at one end of the bearing hole 3 formed by sizing performed in advance, and is positioned inside the bearing hole 3 so as to be guided in the longitudinal direction of the bearing hole 3. Pushed. The sintered body W is corrected by pressing the conical surface of the tip 31a of the fourth core rod 31 into the inside of the bearing hole 3 (an enlarged diameter portion 3b is formed on one side of the shaft support 3a). . At this time, the portion corresponding to the enlarged diameter portion 3b is pressurized twice so that the sintering density is increased, and a difference in density between the shaft support 3a and the shaft support 3a is given.
[0040]
When the correction is completed, the third upper punch 32 and the fourth core rod 31 are pulled out from the hole 30a, and subsequently, as shown in FIG. 6C, the third lower punch 33 is pushed upward to complete the correction. The sintered body W is taken out from the hole 30a.
[0041]
As described above, in the sizing step, the bearing hole 3 having a constant diameter including the shaft support portion 3a is formed first, and the enlarged diameter portion 3b is formed based on the bearing hole 3 so that the shaft support portion is formed. The position of the enlarged diameter portion 3b with respect to 3a is accurately adjusted, and the angle θ1 formed by the inner peripheral surface of the shaft support 3a and the inclined surface of the enlarged diameter portion 3b is formed very accurately.
[0042]
By the way, the bearings of the first and second embodiments are both provided with a structure for preventing the misalignment of the rotating shaft by providing a difference in density between each part of the bearing body 1. It goes without saying that the present invention is not only applied to a sintered oil-impregnated bearing having a structure, but is also applicable to a sintered oil-impregnated bearing having a uniform sintered density of the bearing body.
[0043]
【The invention's effect】
As described above, according to the present invention, a bearing hole having a constant diameter including the shaft support portion is formed first, and the enlarged diameter portion is formed based on the bearing hole, so that the bearing hole is formed. Since the positioning of the enlarged diameter portion with respect to the included shaft support portion is accurately performed, the angle between the inner surface of the shaft support portion and the inclined surface of the enlarged diameter portion can be formed accurately, and as a result, the core of the sintered oil-impregnated bearing is formed. The effect of suppressing displacement can be favorably exhibited.
[Brief description of the drawings]
FIG. 1 is a view showing a first embodiment of the present invention, and is a sintered oil-impregnated bearing viewed in cross section along a plane along the axial direction of a rotating shaft.
FIG. 2 is a state explanatory view showing stepwise a sizing procedure which is one of the steps of manufacturing the sintered oil-impregnated bearing of FIG.
3 is a state explanatory view showing stepwise a sizing procedure, which is one of the steps for manufacturing the sintered oil-impregnated bearing of FIG.
FIG. 4 is a state explanatory view showing the shape of a bearing that changes with sizing.
FIG. 5 is a view showing a second embodiment of the present invention, and is a sintered oil-impregnated bearing viewed in cross section along a plane along the axial direction of a rotating shaft.
FIG. 6 is a state explanatory view showing stepwise a sizing procedure, which is one of the steps for manufacturing the sintered oil-impregnated bearing of FIG.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Bearing main body 2 Rotating shaft 3 Bearing hole 3a Shaft support part 3b, 3c Enlarged diameter part 21, 22 First and second core rods 21a, 22a Tip (press type)
W sintered body

Claims (4)

焼結金属により形成された軸受本体に、回転軸を支持する軸受孔が形成され、該軸受孔が、内面を摩擦面として径の大きさが一定の軸支部と、該軸支部に連なって設けられ、外方に向かって径が拡大してテーパ状をなす拡径部とを備える焼結含油軸受の製造方法であって、
焼結を終えた円筒形状の焼結体の内周面を加圧して前記軸支部を含む径の大きさが一定の軸受孔を形成し、続いて前記焼結体の内周面を再度加圧して前記軸支部に連なるように前記拡径部を形成することを特徴とする焼結含油軸受の製造方法。
A bearing hole for supporting the rotating shaft is formed in a bearing body formed of a sintered metal, and the bearing hole is provided continuously with the shaft support portion having a constant diameter with the inner surface as a friction surface. A method for manufacturing a sintered oil-impregnated bearing comprising: a diameter-enlarging portion whose diameter increases outward and forms a tapered shape,
The inner peripheral surface of the cylindrical sintered body after sintering is pressurized to form a bearing hole having a constant diameter including the shaft support, and then the inner peripheral surface of the sintered body is re-applied. A method for manufacturing a sintered oil-impregnated bearing, comprising forming the enlarged diameter portion so as to be connected to the shaft support portion by pressing.
前記拡径部の形成に、基端の径が前記焼結体の内径よりも大きな略円錐形のプレス型を用いることを特徴とする請求項1記載の焼結含油軸受の製造方法。The method for manufacturing a sintered oil-impregnated bearing according to claim 1, wherein a substantially conical press die whose base end is larger than the inner diameter of the sintered body is used for forming the enlarged diameter portion. 前記プレス型を、前記焼結体の両側からそれぞれ同時に挿入し、該プレス型の先端どうしを当接させないようにしながら前記焼結体の内周面に押し付けて前記軸支部の両側に前記拡径部を形成することを特徴とする請求項2記載の焼結含油軸受の製造方法。The press dies are simultaneously inserted from both sides of the sintered body, respectively, and pressed against the inner peripheral surface of the sintered body while preventing the tips of the press dies from coming into contact with each other. 3. The method for manufacturing a sintered oil-impregnated bearing according to claim 2, wherein a portion is formed. 焼結金属により形成された軸受本体に、回転軸を支持する軸受孔が形成され、該軸受孔が、内面を摩擦面として径の大きさが一定の軸支部と、該軸支部に連なって設けられ、外方に向かって径が拡大してテーパ状をなす拡径部とを備える焼結含油軸受であって、
焼結を終えた円筒形状の焼結体の内周面を加圧して前記軸支部を含む径の大きさが一定の軸受孔を形成し、続いて前記焼結体の内周面を再度加圧して前記軸支部に連なるように前記拡径部を形成したことを特徴とする焼結含油軸受。
A bearing hole for supporting the rotating shaft is formed in a bearing body formed of a sintered metal, and the bearing hole is provided continuously with the shaft support portion having a constant diameter with the inner surface as a friction surface. Is a sintered oil-impregnated bearing having a diameter-enlarging portion whose diameter increases outward and forms a tapered shape,
The inner peripheral surface of the cylindrical sintered body after sintering is pressurized to form a bearing hole having a constant diameter including the shaft support, and then the inner peripheral surface of the sintered body is re-applied. The sintered oil-impregnated bearing, wherein the enlarged diameter portion is formed so as to be connected to the shaft support portion by pressing.
JP2003099060A 2003-04-02 2003-04-02 Manufacturing method for sintered oil retaining bearing and sintered oil retaining bearing Pending JP2004308683A (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP2003099060A JP2004308683A (en) 2003-04-02 2003-04-02 Manufacturing method for sintered oil retaining bearing and sintered oil retaining bearing
EP04725193.9A EP1610011B1 (en) 2003-04-02 2004-04-01 Oil-impregnated sintered bearing and method of producing the same
EP12152069.6A EP2447555B1 (en) 2003-04-02 2004-04-01 Oil-impregnated sintered bearing and method of manufacturing the same
US10/551,739 US8360648B2 (en) 2003-04-02 2004-04-01 Oil-impregnated sintered bearing and method of producing the same
PCT/JP2004/004814 WO2004090360A1 (en) 2003-04-02 2004-04-01 Oil-impregnated sintered bearing and method of producing the same
KR1020057018238A KR20050116395A (en) 2003-04-02 2004-04-01 Oil-impregnated sintered bearing and method of producing the same
US13/676,757 US8726515B2 (en) 2003-04-02 2012-11-14 Oil-impregnated sintered bearing and method of producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003099060A JP2004308683A (en) 2003-04-02 2003-04-02 Manufacturing method for sintered oil retaining bearing and sintered oil retaining bearing

Publications (1)

Publication Number Publication Date
JP2004308683A true JP2004308683A (en) 2004-11-04

Family

ID=33463626

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003099060A Pending JP2004308683A (en) 2003-04-02 2003-04-02 Manufacturing method for sintered oil retaining bearing and sintered oil retaining bearing

Country Status (1)

Country Link
JP (1) JP2004308683A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016147925A1 (en) * 2015-03-17 2016-09-22 Ntn株式会社 Method for manufacturing sintered bearing, and sintered bearing
JP2016172900A (en) * 2015-03-17 2016-09-29 Ntn株式会社 Method for manufacturing sintered bearing, and sintered bearing
JP2016173138A (en) * 2015-03-17 2016-09-29 Ntn株式会社 Sintered bearing
JP2016173135A (en) * 2015-03-17 2016-09-29 Ntn株式会社 Oil-impregnated sintered bearing and manufacturing method of the same
JP2019052767A (en) * 2018-12-18 2019-04-04 Ntn株式会社 Sintered bearing and power transmission mechanism with the same
JPWO2018117183A1 (en) * 2016-12-22 2019-10-31 三菱マテリアル株式会社 Sintered oil-impregnated bearing and manufacturing method thereof

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016147925A1 (en) * 2015-03-17 2016-09-22 Ntn株式会社 Method for manufacturing sintered bearing, and sintered bearing
JP2016172900A (en) * 2015-03-17 2016-09-29 Ntn株式会社 Method for manufacturing sintered bearing, and sintered bearing
JP2016173138A (en) * 2015-03-17 2016-09-29 Ntn株式会社 Sintered bearing
JP2016173135A (en) * 2015-03-17 2016-09-29 Ntn株式会社 Oil-impregnated sintered bearing and manufacturing method of the same
US10697496B2 (en) 2015-03-17 2020-06-30 Ntn Corporation Sintered bearing
US11454282B2 (en) 2015-03-17 2022-09-27 Ntn Corporation Sintered bearing
JPWO2018117183A1 (en) * 2016-12-22 2019-10-31 三菱マテリアル株式会社 Sintered oil-impregnated bearing and manufacturing method thereof
JP2019052767A (en) * 2018-12-18 2019-04-04 Ntn株式会社 Sintered bearing and power transmission mechanism with the same

Similar Documents

Publication Publication Date Title
US8726515B2 (en) Oil-impregnated sintered bearing and method of producing the same
JP3954695B2 (en) Manufacturing method of dynamic pressure type porous oil-impregnated bearing
JP2004308683A (en) Manufacturing method for sintered oil retaining bearing and sintered oil retaining bearing
JP2009068558A (en) Powder compact, sintered bearing, and process for producing the same
JP6516126B2 (en) Sizing method for ring-like sintered body
JP2006038185A (en) Composite sintered bearing
JP2008267394A (en) Method of manufacturing bearing unit
JP2001254739A (en) Sintered oil retaining bearing and manufacturing method
JP3818626B2 (en) Method for producing sintered oil-impregnated bearing
US20070039186A1 (en) Dynamic bearing manufacturing method
JP3602319B2 (en) Manufacturing method of hydrodynamic porous oil-impregnated bearing
JP3698352B2 (en) Manufacturing method of bearing
JP3797465B2 (en) Manufacturing method of bearing
JP6864459B2 (en) Sintered oil-impregnated bearing and its manufacturing method
JP2007314856A (en) Production method of sintered component
JP2007023327A (en) Method and device for producing internal relief bearing
JP2001032838A (en) Manufacture of bearing
JP2021088766A (en) Sintered oilless bearing and its manufacturing method
JP2001041244A (en) Manufacture of bearing
JPH0968225A (en) Sintered bearing and its manufacture
JPH10122240A (en) Bearing of inner diameter intermediate part with hollow shape
JP2001059106A (en) Manufacture of bearing
JP2005106105A (en) Bearing machining method and its machining device
JP2002097503A (en) Method of manufacturing sintered bearing with dynamic pressure groove
JP2001159424A (en) Method of manufacturing bearing

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20060125

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20060130

A625 Written request for application examination (by other person)

Free format text: JAPANESE INTERMEDIATE CODE: A625

Effective date: 20060331

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090602

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090803

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090908