JP2010031909A - Sintered bearing and its manufacturing method - Google Patents

Sintered bearing and its manufacturing method Download PDF

Info

Publication number
JP2010031909A
JP2010031909A JP2008192417A JP2008192417A JP2010031909A JP 2010031909 A JP2010031909 A JP 2010031909A JP 2008192417 A JP2008192417 A JP 2008192417A JP 2008192417 A JP2008192417 A JP 2008192417A JP 2010031909 A JP2010031909 A JP 2010031909A
Authority
JP
Japan
Prior art keywords
bearing
sintered
green compact
peripheral surface
core pin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2008192417A
Other languages
Japanese (ja)
Inventor
Takehiro Shogetsu
健浩 松月
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NTN Corp
Original Assignee
NTN Corp
NTN Toyo Bearing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NTN Corp, NTN Toyo Bearing Co Ltd filed Critical NTN Corp
Priority to JP2008192417A priority Critical patent/JP2010031909A/en
Publication of JP2010031909A publication Critical patent/JP2010031909A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Sliding-Contact Bearings (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To stably enhance support capacity of a sintered bearing having an inner recess part. <P>SOLUTION: This sintered bearing 1 is formed by sintering a green compact, and forms bearing surfaces 2 and 4 in two places separated in the axial direction of an inner peripheral surface, and has the inner recess part 3 forming an inside diametrical dimension of an area between bearing surfaces in a larger diameter than the bearing surfaces 2 and 4. The inner recess part 3 is formed in a predetermined shape in its whole by spring-back caused by releasing pressurizing force when molding the green compact. The inner recess part 3 and the first bearing surface 2, and the inner recess part 3 and the second bearing surface 4 have respectively crossing corner parts 3d and 3e. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、焼結軸受およびその製造方法に関する。   The present invention relates to a sintered bearing and a manufacturing method thereof.

多孔質体からなる焼結軸受は、通常、その内部気孔に潤滑油を含浸させた状態で用いられ(焼結含油軸受)、支持すべき軸との相対移動に伴って軸との摺動部に油膜を形成し、この油膜で軸を支持するものである。焼結軸受は、安価に製作可能であると共に自己潤滑機能を有する等、数々の優れた特徴を具備することから、種々の動力伝達機構や駆動機構等に好適に使用されている。この種の焼結軸受では、油膜切れの防止、軸との摺動時におけるトルク低減等を目的として、例えば特開平2−8302号公報(特許文献1)や特開平7−332363号公報(特許文献2)に記載のように、内周面の軸方向に離隔した二箇所に軸受面を設けると共に、軸受面間に内径寸法が軸受面よりも大径の中逃げ部を設ける場合がある。   Sintered bearings made of porous materials are usually used in a state in which the internal pores are impregnated with lubricating oil (sintered oil-impregnated bearings), and slide parts with the shafts as they move relative to the shaft to be supported. An oil film is formed on the shaft, and the shaft is supported by this oil film. Sintered bearings are suitable for various power transmission mechanisms and drive mechanisms because they can be manufactured at low cost and have many excellent features such as a self-lubricating function. In this type of sintered bearing, for example, Japanese Patent Laid-Open No. 2-8302 (Patent Document 1) and Japanese Patent Laid-Open No. 7-332363 (Patent Document) for the purpose of preventing oil film breakage and reducing torque during sliding with a shaft. As described in Document 2), there are cases where bearing surfaces are provided at two locations spaced apart in the axial direction on the inner peripheral surface, and an intermediate clearance portion having an inner diameter larger than the bearing surface is provided between the bearing surfaces.

上記特許文献1には、次のようにして上記形状の焼結軸受が得られる旨開示されている。まず原料粉を圧粉して、一端側に内周小径部を有する断面略L字形状の圧粉体を成形し、この圧粉体を焼結して焼結体を得る。次いで、この焼結体の内周に均一外径のサイジングコアを挿入した状態で絞り加工を施すことにより、当該焼結体の他端部にも内周小径部を成形すると共に、両内周小径部の内周面を所定の軸受面に成形する。   Patent Document 1 discloses that a sintered bearing having the above shape can be obtained as follows. First, the raw material powder is compacted to form a green compact having a substantially L-shaped cross section having an inner peripheral small diameter portion on one end side, and the green compact is sintered to obtain a sintered body. Next, by drawing the sizing core having a uniform outer diameter in the inner periphery of the sintered body, the inner peripheral small diameter part is formed at the other end of the sintered body, and both inner peripheral parts are formed. The inner peripheral surface of the small diameter portion is formed into a predetermined bearing surface.

他方、上記特許文献2では、次のようにして上記形状の焼結軸受が得られる旨開示されている。まず、小径内周面101aおよび大径内周面101bを有する第1ダイ101の内周にガイドコア102を配設した状態で粉末充填部に原料粉を充填した後、小径外周面103aおよび大径外周面103bを有する段付きの第1コアロッド103を原料粉(粉末充填部)の内周に圧入しながら、上下パンチ104,105で原料粉を圧縮する(図5(a)を参照)。これにより、外周面の一端側領域が大径に成形されると共にその他領域が小径に成形され、かつ、内周面の他端側領域が小径に成形されると共にその他領域が大径に成形された第1の圧粉体200を得る。次いで、図5(b)に示すように、第1の圧粉体200の内周に均一外径のコア112を挿入しながら上パンチ113で第1の圧粉体200を均一内径の第2ダイ111の内周に圧入する。これにより、第1の圧粉体200の外周面の一端側領域(外周面が大径に成形された領域)が内径側に変形し、中逃げ部202が形成された第2の圧粉体201を得る。その後、この第2の圧粉体201を焼結して焼結体を形成し、この焼結体の中逃げ部202の両端側領域に対してサイジングを施すことで所定形状の焼結軸受を得る。
特開平2−8302号公報 特開平7−332363号公報
On the other hand, Patent Document 2 discloses that a sintered bearing having the above shape can be obtained as follows. First, after the raw material powder is filled in the powder filling portion in a state where the guide core 102 is disposed on the inner periphery of the first die 101 having the small diameter inner peripheral surface 101a and the large diameter inner peripheral surface 101b, the small diameter outer peripheral surface 103a and the large diameter The raw material powder is compressed by the upper and lower punches 104 and 105 while the stepped first core rod 103 having the diameter outer peripheral surface 103b is press-fitted into the inner periphery of the raw material powder (powder filling part) (see FIG. 5A). As a result, the one end side region of the outer peripheral surface is formed with a large diameter and the other region is formed with a small diameter, and the other end side region of the inner peripheral surface is formed with a small diameter and the other region is formed with a large diameter. A first green compact 200 is obtained. Next, as shown in FIG. 5 (b), the first green compact 200 is inserted into the second core having the uniform inner diameter by the upper punch 113 while the core 112 having a uniform outer diameter is inserted into the inner periphery of the first green compact 200. Press fit into the inner periphery of the die 111. Thereby, the one end side area (area where the outer peripheral surface is formed to have a large diameter) of the outer peripheral surface of the first green compact 200 is deformed to the inner diameter side, and the second green compact in which the middle escape portion 202 is formed. 201 is obtained. Thereafter, the second green compact 201 is sintered to form a sintered body, and sizing is performed on both end side regions of the center relief portion 202 of the sintered body to obtain a sintered bearing having a predetermined shape. obtain.
JP-A-2-8302 Japanese Patent Laid-Open No. 7-332363

しかしながら、上記特許文献1,2のようにして成形された焼結軸受では、均一形状の中逃げ部、ひいては焼結軸受を得るのが困難で、高い支持能力を安定的に確保するのが困難である。特に、上記特許文献2の焼結軸受では、図5(b)中上側の軸受面と大径内周面202aとを繋ぐ段差面202bが、何れの工程においても成形された面とはならないことから、図中上側の摺動部に所定の潤滑油量を安定供給することができないという問題がある。これはすなわち、支持能力が不安定化することを意味し、一層の支持能力向上を図る上で不利となる。また、所定形状の圧粉体の成形に二工程を要し、かつ異なる構成の金型を用いる必要があることから、コスト高となる。   However, in the sintered bearings formed as described in Patent Documents 1 and 2, it is difficult to obtain a uniform relief portion and thus a sintered bearing, and it is difficult to stably secure a high support capacity. It is. In particular, in the sintered bearing of Patent Document 2, the stepped surface 202b that connects the bearing surface on the upper side in FIG. 5B and the large-diameter inner peripheral surface 202a is not a surface formed in any process. Therefore, there is a problem that a predetermined amount of lubricating oil cannot be stably supplied to the upper sliding portion in the figure. This means that the supporting ability becomes unstable, which is disadvantageous for further improvement of the supporting ability. In addition, two steps are required to form a green compact having a predetermined shape, and a die having a different configuration needs to be used, resulting in high costs.

本発明の第1の課題は、中逃げ部を有する焼結軸受の支持能力を安定的に高めることにある。また、本発明の第2の課題は、この種の焼結軸受の製造コストの低廉化を図ることにある。   The first object of the present invention is to stably increase the support capability of a sintered bearing having a middle relief portion. A second object of the present invention is to reduce the manufacturing cost of this kind of sintered bearing.

上記第1の課題を解決するためになされた本発明に係る焼結軸受は、圧粉体を焼結してなり、内周面の軸方向に離隔した二箇所に軸受面が設けられ、軸受面間に、内径寸法が軸受面よりも大径に形成された中逃げ部を有するものであって、圧粉体成形時の加圧力を解除することで生じるスプリングバックにより、中逃げ部全体が所定形状に形成され、かつ軸受面と中逃げ部が交わる角部を有することを特徴とするものである。なお、ここでいう「軸受面と中逃げ部が交わる角部を有する」とは、軸受面と中逃げ部とが角部でもって接続されている、と換言することができ、軸受面の一端とこれに近接する中逃げ部の一端との間に滑らかな円弧面等が介在している場合を排除する意味である。   A sintered bearing according to the present invention made to solve the first problem is obtained by sintering a green compact, and bearing surfaces are provided at two locations separated in the axial direction of the inner peripheral surface. Between the faces, there is a middle relief part whose inner diameter is formed larger than the bearing surface, and the whole middle relief part is formed by the spring back generated by releasing the pressurizing force at the time of compacting It is formed in a predetermined shape and has a corner portion where the bearing surface and the middle escape portion intersect. Here, “having a corner where the bearing surface and the middle relief portion intersect” can be said that the bearing surface and the middle relief portion are connected at the corner, and one end of the bearing surface. And a case where a smooth circular arc surface or the like is interposed between one end of the intermediate escape portion adjacent to the intermediate escape portion.

上記のように、本発明に係る焼結軸受は、圧粉体成形時の加圧力を解除することで生じるスプリングバックにより、中逃げ部全体が所定形状に形成され、かつ、軸受面と中逃げ部が交わる角部を有することを特徴とするものである。これはすなわち、中逃げ部全体が、圧粉体成形時に用いるコアピン形状に倣って成形された成形面とされ、かつコアピンが、圧粉体の内周面と非接触に圧粉体内周から引き抜かれている(換言すると、いわゆる無理抜きによって圧粉体内周から引き抜かれていない)ことを意味する。そのため、コアピンを所定形状に形成しておけば、個体間で中逃げ部形状にばらつきが生じるのを回避して中逃げ部を高精度に仕上げることができる。また、中逃げ部全体の表面性状(表面開孔率等)を均質化することができるので、軸との摺動部に供給される油量に差異が生じ、両摺動部間における支持能力に差異が生じるような事態も可及的に防止することができる。以上のことから、本発明によれば、この種の焼結軸受の支持能力向上を図ることができる。   As described above, in the sintered bearing according to the present invention, the entire middle relief portion is formed in a predetermined shape by the spring back generated by releasing the pressing force at the time of compacting, and the bearing surface and the middle relief are formed. It has the corner | angular part which a part intersects, It is characterized by the above-mentioned. In other words, the entire center relief portion is formed as a molding surface that follows the shape of the core pin used at the time of compacting, and the core pin is pulled from the inner periphery of the compact without contact with the inner peripheral surface of the compact. It means that it has been pulled out (in other words, it has not been pulled out from the inner periphery of the green compact by so-called forced removal). Therefore, if the core pin is formed in a predetermined shape, it is possible to avoid the variation in the shape of the middle escape portion between individuals and finish the middle escape portion with high accuracy. In addition, since the surface properties (surface open area ratio, etc.) of the entire center relief part can be homogenized, the amount of oil supplied to the sliding part with the shaft varies, and the support capacity between both sliding parts It is possible to prevent as much as possible a situation in which there is a difference between the two. From the above, according to the present invention, it is possible to improve the support capability of this kind of sintered bearing.

上記構成の焼結軸受は、例えば以下のようにして製造することができる。すなわち、上記第2の課題を解決するためになされた本発明に係る焼結軸受の製造方法は、コアピンの外周に粉末充填部を形成し、この粉末充填部に充填した原料粉を加圧することにより、コアピンの外周に固着した圧粉体を成形する工程と、加圧力を解除することで圧粉体に生じるスプリングバックを利用して圧粉体をコアピンから分離した後、この圧粉体の内周面と非接触にコアピンを引き抜く工程と、を含むことを特徴とするものである。   The sintered bearing having the above-described configuration can be manufactured, for example, as follows. That is, the manufacturing method of the sintered bearing according to the present invention made to solve the second problem is to form a powder filling portion on the outer periphery of the core pin and pressurize the raw material powder filled in the powder filling portion. Thus, after the green compact is separated from the core pin using the step of forming the green compact fixed to the outer periphery of the core pin and the spring back generated in the green compact by releasing the applied pressure, And a step of pulling out the core pin in a non-contact manner with the inner peripheral surface.

上記の方法であれば、圧粉体を成形する一工程を経るだけで完成品形状に略等しい形状を得ることができる。そのため、サイジング工程で絞り加工を施すことによって完成品形状を得ていた特許文献1に比べて工程および装置を簡略化することが、またあるいは、圧粉工程を2工程に分けて行うことで完成品形状を得ていた特許文献2の構成に比べ工程数および保有設備を減じることができ、製造コストを低廉化することができる。また、加圧力を解除するで圧粉体に生じるスプリングバックを利用して圧粉体をコアピンから分離することができるので、その他の分離機構は不要となる。また、圧粉体の内周面と非接触にコアピンが引き抜かれることから、所定形状に成形された圧粉体の内周面(中逃げ部および軸受面となる領域)がコアピンの引き抜きに伴って損傷するような事態も生じない。さらに、特に特許文献1のような絞り加工では、所定の完成品形状を得るためには比較的軸受長さを長くとる必要があるが、上記本発明の方法であれば、このような寸法的な制約もない。   If it is said method, the shape substantially equivalent to a finished product shape can be obtained only through one process which shape | molds a green compact. Therefore, the process and equipment can be simplified compared to Patent Document 1 where the finished product shape has been obtained by drawing in the sizing process, or alternatively, the compacting process is completed in two processes. Compared to the configuration of Patent Document 2 that has obtained the product shape, the number of processes and owned equipment can be reduced, and the manufacturing cost can be reduced. Further, since the green compact can be separated from the core pin by utilizing the spring back generated in the green compact by releasing the applied pressure, no other separation mechanism is required. In addition, since the core pin is pulled out in non-contact with the inner peripheral surface of the green compact, the inner peripheral surface of the green compact formed into a predetermined shape (the region that becomes the middle escape portion and the bearing surface) is accompanied by the core pin being pulled out. No damage will occur. Further, in particular, in drawing processing as in Patent Document 1, it is necessary to make the bearing length relatively long in order to obtain a predetermined finished product shape. There are no restrictions.

上記方法において、コアピンを、円筒状の下パンチに対して軸方向に相対移動可能に下パンチの内周に挿通し、粉末充填部を、コアピンと下パンチの軸方向の相対移動によって形成することができる。このようにすれば、圧粉体の成形装置を従来構成に比べて簡略化することができる。   In the above method, the core pin is inserted into the inner periphery of the lower punch so as to be axially movable relative to the cylindrical lower punch, and the powder filling portion is formed by relative movement of the core pin and the lower punch in the axial direction. Can do. In this way, the green compact molding apparatus can be simplified as compared with the conventional configuration.

粉末充填部に対する原料粉の充填は、コアピンと下パンチの軸方向の相対移動量(粉末充填部の容積増大量)に対応させて徐々に行うようにするのが望ましい。均一密度の圧粉体を成形するためである。すなわち、所定容積の粉末充填部を形成した後、この粉末充填部に原料粉を一度に充填するようにしたのでは、粉末充填部内に余分な空気等が混入し、均一密度の圧粉体を得るのが困難となるからである。   The filling of the raw material powder into the powder filling part is desirably performed gradually in correspondence with the axial relative movement amount of the core pin and the lower punch (volume increase amount of the powder filling part). This is because a green compact with a uniform density is formed. That is, after forming a powder filling part of a predetermined volume, the powder filling part is filled with the raw material powder at once. Excess air or the like is mixed in the powder filling part, and a compact powder of uniform density is formed. It is difficult to obtain.

円筒状の下パンチの内周にコアピンを相対移動可能に配設し、両者の相対移動によって粉末充填部を形成するようにした場合、下パンチの孔径は、内周面成形部を有するコアピンが相対移動可能なように、少なくともコアピンの内周面成形部の最大外径以上とする必要がある。このとき、内周面成形部の基端側に何ら工夫を施していなければ、下パンチとコアピンとの間に径方向の隙間が形成され、この隙間に原料粉が入り込んでしまうおそれがある。このような事態が生じると、バリの発生、コアピンの芯ずれ、金型の破損等、圧粉体を精度良く成形する上での障害となる。かかる事態に鑑み、図3(a)に示すように、コアピンの外周面に設けた内周面成形部の基端側に隣接して、外径寸法が内周面成形部の最大外径以上とされた突出部を設け、この突出部を下パンチの内周に配設した状態で原料粉を粉末充填部に充填するのが望ましい。   When the core pin is disposed on the inner periphery of the cylindrical lower punch so as to be relatively movable, and the powder filling portion is formed by the relative movement of the two, the hole diameter of the lower punch is that of the core pin having the inner peripheral surface forming portion. In order to be able to move relative to each other, at least the maximum outer diameter of the inner peripheral surface molding portion of the core pin needs to be set. At this time, a radial gap is formed between the lower punch and the core pin, and there is a possibility that the raw material powder may enter the gap if no effort is made on the base end side of the inner peripheral surface molding portion. When such a situation occurs, it becomes an obstacle to accurately forming the green compact, such as generation of burrs, misalignment of the core pin, and breakage of the mold. In view of this situation, as shown in FIG. 3 (a), the outer diameter dimension is equal to or greater than the maximum outer diameter of the inner peripheral surface molded portion adjacent to the proximal end side of the inner peripheral surface molded portion provided on the outer peripheral surface of the core pin. It is desirable to fill the powder filling portion with the raw material powder in a state where the protruding portion is provided and this protruding portion is disposed on the inner periphery of the lower punch.

粉末充填部に充填された原料粉を加圧する際には、原料粉の両端側から均等に加圧するのが望ましい。均一密度の圧粉体を得るためである。   When pressurizing the raw material powder filled in the powder filling portion, it is desirable to pressurize evenly from both ends of the raw material powder. This is to obtain a green compact with a uniform density.

また、コアピンの内周面成形部から圧粉体を分離する際に行う加圧力の解除は、径方向の加圧力→軸方向の加圧力の順番で行っても良いし、軸方向の加圧力→径方向の加圧力の順番で行っても良い。これらは、適宜選択することができる。   Moreover, the release of the pressing force performed when the green compact is separated from the inner peripheral surface molding portion of the core pin may be performed in the order of radial pressing force → axial pressing force, or axial pressing force. → It may be performed in the order of the pressure in the radial direction. These can be appropriately selected.

上記構成を有する焼結軸受において、軸受面と中逃げ部の表面性状、例えば表面開孔率を異ならせることができる。かかる構成は、例えば焼結体形成後に、焼結体内周面の一端側領域および他端側領域にのみサイジングを施して軸受面を成形することで得ることができる。このようにすれば、軸との摺動部で高い油膜剛性を確保しつつ、軸との摺動部には円滑に潤滑油を供給して軸受性能向上を図ることができ、しかもサイジング工程およびサイジング装置を簡略化して製造コストを低廉化することができる。   In the sintered bearing having the above-described configuration, the surface properties of the bearing surface and the middle escape portion, for example, the surface area ratio can be made different. Such a configuration can be obtained, for example, by forming a bearing surface by forming sizing only on one end side region and the other end side region of the peripheral surface of the sintered body after forming the sintered body. In this way, while ensuring high oil film rigidity at the sliding portion with the shaft, the lubricating oil can be smoothly supplied to the sliding portion with the shaft to improve the bearing performance, and the sizing process and The sizing device can be simplified and the manufacturing cost can be reduced.

以上に示すように、本発明によれば、中逃げ部を有する焼結軸受の支持能力を安定的に高めることができる。また、この種の焼結軸受を安価に製造することが可能となる。   As described above, according to the present invention, it is possible to stably increase the support capability of a sintered bearing having a middle relief portion. Also, this kind of sintered bearing can be manufactured at low cost.

以下、本発明の実施形態を図1〜図4に基づいて説明する。   Hereinafter, embodiments of the present invention will be described with reference to FIGS.

図1は、本発明に係る焼結軸受1の一例を概念的に示す断面図である。同図に示す焼結軸受1は、焼結金属の多孔質体からなり、内部気孔に潤滑油を含浸させたものであって(焼結含油軸受)、例えばHDD用のスピンドルモータに組み込まれて支持すべき軸(この場合、スピンドル軸。図中二点鎖線で示す。)を相対回転自在に支持するために用いられる。   FIG. 1 is a sectional view conceptually showing an example of a sintered bearing 1 according to the present invention. A sintered bearing 1 shown in the figure is made of a sintered metal porous body, and has internal pores impregnated with lubricating oil (sintered oil-impregnated bearing), and is incorporated in a spindle motor for HDD, for example. It is used to support a shaft to be supported (in this case, a spindle shaft, indicated by a two-dot chain line in the figure) in a relatively rotatable manner.

焼結軸受1は、軸方向の二箇所に離隔形成された第1および第2軸受面2,4と、両軸受面2,4間に内径寸法が軸受面2,4よりも大径に形成された中逃げ部3と、軸受面2,4と中逃げ部3が交わる角部3d,3eとを有する。より詳述すると、中逃げ部3は、大径内周面3a、大径内周面3aと第1軸受面2とを繋ぐテーパ状の第1段差面3b、および大径内周面3aと第2軸受面4とを繋ぐテーパ状の第2段差面3cで構成されており、第1段差面3bと第1軸受面2とは角部3dでもって接続され、第2段差面3cと第2軸受面4とは角部3eでもって接続される。この中逃げ部3は、後述する圧粉体1’の成形時に用いるコアピン14の外周面形状(成形部14a形状)に倣って成形された成形面とされる。軸受面2,4と大径内周面3aとの間の径方向寸法差は、この焼結軸受1の用途によっても異なるが、本実施形態のようにスピンドルモータ用の焼結軸受では、半径寸法で5μm〜20μmの範囲内とされる。   The sintered bearing 1 has first and second bearing surfaces 2 and 4 spaced apart at two axial positions, and an inner diameter dimension between the bearing surfaces 2 and 4 larger than that of the bearing surfaces 2 and 4. And the corner portions 3d and 3e at which the bearing surfaces 2 and 4 intersect. More specifically, the middle escape portion 3 includes a large-diameter inner peripheral surface 3a, a tapered first step surface 3b connecting the large-diameter inner peripheral surface 3a and the first bearing surface 2, and a large-diameter inner peripheral surface 3a. The second step surface 3c is connected to the second bearing surface 4, and the first step surface 3b and the first bearing surface 2 are connected by a corner 3d, and the second step surface 3c and the second step surface 3c are connected to each other. The two bearing surfaces 4 are connected by corner portions 3e. The intermediate relief portion 3 is a molding surface that is molded in accordance with the outer peripheral surface shape (the shape of the molding portion 14a) of the core pin 14 used when molding the green compact 1 'described later. The radial dimensional difference between the bearing surfaces 2 and 4 and the large-diameter inner peripheral surface 3a varies depending on the application of the sintered bearing 1, but in the sintered bearing for a spindle motor as in this embodiment, the radius The size is in the range of 5 μm to 20 μm.

詳細は後述するが、両軸受面2,4はサイジングが施された面とされる一方、中逃げ部3はサイジングが施されていない面とされる。そのため、軸受面2,4と中逃げ部3とでは表面性状が異なる。具体的には、軸受面2,4の表面開孔率は、中逃げ部3の表面開孔率よりも小さい。なお、中逃げ部3は、図示例のものに限らず例えば単一の円弧面状に形成することも可能である。   As will be described in detail later, the bearing surfaces 2 and 4 are sizing surfaces, while the middle relief portion 3 is a sizing surface. Therefore, the surface properties are different between the bearing surfaces 2 and 4 and the middle escape portion 3. Specifically, the surface opening ratio of the bearing surfaces 2 and 4 is smaller than the surface opening ratio of the middle escape portion 3. The middle escape portion 3 is not limited to the illustrated example, and can be formed in a single arcuate shape, for example.

以上の構成からなる焼結軸受1とスピンドル軸とが相対回転すると、焼結軸受1の内部に含浸させた潤滑油の滲み出しにより、軸受面2,4と軸との間の軸受隙間に油膜が形成され、該油膜によって軸が相対回転自在に非接触支持される。また、焼結軸受1とスピンドル軸の相対回転時には、中逃げ部3から軸との摺動部(軸受隙間)に潤滑油が順次供給される。そのため、軸受隙間における油膜切れは可及的に防止される。   When the sintered bearing 1 having the above configuration and the spindle shaft rotate relative to each other, an oil film is formed in the bearing gap between the bearing surfaces 2 and 4 and the shaft by the seepage of the lubricating oil impregnated into the sintered bearing 1. The shaft is non-contact supported by the oil film so as to be relatively rotatable. Further, during relative rotation of the sintered bearing 1 and the spindle shaft, the lubricating oil is sequentially supplied from the middle escape portion 3 to the sliding portion (bearing gap) with the shaft. Therefore, the oil film breakage in the bearing gap is prevented as much as possible.

以上の構成からなる焼結軸受1は、主に、圧粉工程と、焼結工程と、サイジング工程とを順に経て製造され、その後内部気孔に潤滑油を含浸させる含油工程を経て完成する。以下、各工程について説明する。   The sintered bearing 1 having the above-described configuration is mainly manufactured through a compacting process, a sintering process, and a sizing process in order, and then completed through an oil impregnation process in which the internal pores are impregnated with a lubricating oil. Hereinafter, each step will be described.

(A)圧粉工程
この圧粉工程では、成形型内に充填した原料粉を圧縮することで所定形状の圧粉体を得る。図2は、圧粉体1’の成形に用いる製造装置10の全体構造を概念的に示す断面図であり、以下示す各構成部材が原点位置にある状態を示すものである。同図に示す製造装置10は、円筒状の上パンチ11および下パンチ12と、中実軸状のコアピン14と、内周に下パンチ12およびコアピン14が配設された円筒状のダイ13とを主要な構成部材として備える。
(A) Compacting process In this compacting process, the compacting powder of a predetermined shape is obtained by compressing the raw material powder filled in the mold. FIG. 2 is a cross-sectional view conceptually showing the overall structure of the manufacturing apparatus 10 used for forming the green compact 1 ′, and shows a state in which the following constituent members are at the origin position. The manufacturing apparatus 10 shown in the figure includes a cylindrical upper punch 11 and a lower punch 12, a solid shaft-shaped core pin 14, and a cylindrical die 13 in which the lower punch 12 and the core pin 14 are disposed on the inner periphery. Are provided as main constituent members.

下パンチ12は、ダイ13に対して軸方向に相対移動可能(昇降可能)とされ、原点位置では、その上端面12bがダイ13の上端面13bと同一平面上に位置するように構成されている。コアピン14は、下パンチ12(さらにはダイ13)に対して軸方向に相対移動可能とされ、原点位置では、その上端面12bが下パンチ12およびダイ13の上端面12b、13bと同一平面上に位置するように構成されている。上パンチ11は、下パンチ12に対して相対的に近接または離反することで、ダイ13に対して挿脱可能となっている。なお、本実施形態では、ダイ13が図示しない静止部材に固定された静止側を構成し、その他の部材が図示しない適当な駆動機構で各々独立して昇降可能な可動側を構成する。   The lower punch 12 can be moved relative to the die 13 in the axial direction (movable up and down), and the upper end surface 12b of the lower punch 12 is located on the same plane as the upper end surface 13b of the die 13 at the origin position. Yes. The core pin 14 can be moved relative to the lower punch 12 (and the die 13) in the axial direction. At the origin position, the upper end surface 12b is flush with the lower punch 12 and the upper end surfaces 12b and 13b of the die 13. It is comprised so that it may be located in. The upper punch 11 can be inserted into and removed from the die 13 by being relatively close to or away from the lower punch 12. In this embodiment, the die 13 constitutes a stationary side fixed to a stationary member (not shown), and the other members constitute movable sides that can be moved up and down independently by an appropriate driving mechanism (not shown).

コアピン14には、圧粉体1’の内周面を成形するための内周面成形部14aが設けられている。内周面成形部14aは、コアピン14の先端側から順に、焼結軸受1の第1軸受面2,中逃げ部3,および第2軸受面4となる領域を圧粉体内周面にそれぞれ成形するための第1〜第3成形部14a1,14a2,14a3からなり、その形状は焼結軸受1の内周面形状に倣ったものとされる。第1成形部14aと第2成形部14a2、および第2成形部14a2と第3成形部14a3は、それぞれ角部でもって接続される。コアピン14は、第3成形部14a3の基端側に隣接して第3成形部14a3よりも大径の突出部14a4をさらに有する。この突出部14a4は、後述する原料粉の充填時に、下パンチ12の内周に原料粉が入り込むのを極力防止するために設けられる。但し、これを設けることによって下パンチ12とコアピン14の軸方向相対移動が阻害されないように、突出部14a4の外径寸法は、内周面成形部14aの最大外径(すなわち、第2成形部14a2の外径寸法)と同一もしくは若干量大径とされる。また、圧粉体1’の成形時にコアピン14の上端側一部領域は上パンチ11の内周に導入される(図3(b)を参照)。そのため、コアピン14の第1成形部14a1の全長は、成形すべき第1軸受面2となる領域の軸方向寸法よりも所定量長くなっている。   The core pin 14 is provided with an inner peripheral surface molding portion 14a for molding the inner peripheral surface of the green compact 1 '. The inner peripheral surface forming portion 14a is formed in order from the tip end side of the core pin 14 to form the first bearing surface 2, the middle escape portion 3, and the second bearing surface 4 of the sintered bearing 1 on the green compact inner peripheral surface. The first to third molding portions 14 a 1, 14 a 2, 14 a 3 are configured to follow the inner peripheral surface shape of the sintered bearing 1. The first molding part 14a and the second molding part 14a2, and the second molding part 14a2 and the third molding part 14a3 are connected at the corners, respectively. The core pin 14 further includes a protruding portion 14a4 having a larger diameter than the third molded portion 14a3 adjacent to the proximal end side of the third molded portion 14a3. This protrusion 14a4 is provided in order to prevent the raw material powder from entering the inner periphery of the lower punch 12 when filling the raw material powder described later. However, the outer diameter dimension of the protrusion 14a4 is the maximum outer diameter of the inner peripheral surface molding portion 14a (that is, the second molding portion so that the axial movement of the lower punch 12 and the core pin 14 is not hindered by providing this. 14a2), which is the same as or slightly larger in diameter. In addition, when the green compact 1 ′ is formed, a partial region on the upper end side of the core pin 14 is introduced into the inner periphery of the upper punch 11 (see FIG. 3B). Therefore, the total length of the first molding portion 14a1 of the core pin 14 is longer by a predetermined amount than the axial dimension of the region to be the first bearing surface 2 to be molded.

圧粉工程で用いる製造装置10は主に以上の構成からなり、以下示す態様で圧粉体1’が圧縮成形される。   The manufacturing apparatus 10 used in the compacting process mainly has the above-described configuration, and the compact 1 'is compression-molded in the following manner.

まず、図3(a)に示すように下パンチ12を下降させ、ダイ13の内周面13a、下パンチ12の上端面12b、およびコアピン14の外周面とで所定容積の粉末充填部15を形成し、この粉末充填部15に原料粉16を充填する。原料粉16は、ダイ13の上端面13bと略同一の高さまで充填される。粉末充填部15に対する原料粉16の充填は、粉末充填部15の容積増大量(下パンチ12の下降量)に対応させるかたちで徐々に行われる。所定容積の粉末充填部15の形成後、一度に原料粉16を充填したのでは、粉末充填部15内(個々の原料粉16間)に余分な空気等が混入し、均一密度の圧粉体1’を成形できないおそれがあるからである。なお、粉末充填部15が、コアピン14に対して下パンチ12を下降させることによって形成されることから、図5(a)に示す従来構成に比べ、製造装置10の全体構成は簡略化される。   First, as shown in FIG. 3A, the lower punch 12 is lowered, and a powder filling portion 15 having a predetermined volume is formed by the inner peripheral surface 13 a of the die 13, the upper end surface 12 b of the lower punch 12, and the outer peripheral surface of the core pin 14. The raw material powder 16 is filled in the powder filling portion 15. The raw material powder 16 is filled up to substantially the same height as the upper end surface 13 b of the die 13. The filling of the raw material powder 16 into the powder filling unit 15 is gradually performed in a manner corresponding to the volume increase amount of the powder filling unit 15 (the descending amount of the lower punch 12). If the raw material powder 16 is filled at a time after the powder filling portion 15 having a predetermined volume is formed, excess air or the like is mixed in the powder filling portion 15 (between individual raw material powders 16), and the green compact has a uniform density. This is because 1 'may not be molded. Since the powder filling portion 15 is formed by lowering the lower punch 12 with respect to the core pin 14, the overall configuration of the manufacturing apparatus 10 is simplified compared to the conventional configuration shown in FIG. .

原料粉16の充填段階において、コアピン14の突出部14a4は、常時下パンチ12の内周に配設されている。このようにすることで、下パンチ12の内周面12aとコアピン14の外周面との間に原料粉16が入り込む事態を極力回避することができ、所定形状の圧粉体1’を精度良く成形することができる。なお、原料粉16としては、Fe、Fe系合金、Cu、Cu系合金等の金属粉末を主成分とし、必要に応じてSn等のバインダ、さらには黒鉛や二硫化モリブデン等の固体潤滑剤を添加したものが使用される。   In the filling stage of the raw material powder 16, the protruding portion 14 a 4 of the core pin 14 is always disposed on the inner periphery of the lower punch 12. By doing in this way, the situation where the raw material powder 16 enters between the inner peripheral surface 12a of the lower punch 12 and the outer peripheral surface of the core pin 14 can be avoided as much as possible, and the green compact 1 ′ having a predetermined shape can be accurately obtained. Can be molded. The raw material powder 16 is mainly composed of a metal powder such as Fe, Fe-based alloy, Cu, Cu-based alloy, a binder such as Sn, and a solid lubricant such as graphite or molybdenum disulfide as necessary. The added one is used.

ところで、焼結軸受1の両端部間での密度差が大きくなると、支持能力が不安定化するおそれがある。そこで、原料粉16の充填段階においては、上パンチ11による原料粉16の圧縮量と略等しい軸方向寸法分だけ、粉末充填部15の下端(下パンチ12の上端面12b)をコアピン14の第3成形部14a3と突出部14a4との境界部よりも下方に位置させるようにし、図3(b)に示す原料粉16の圧縮段階での圧縮量が上下で概ね等しくなるようにしている。   By the way, when the density difference between the both ends of the sintered bearing 1 becomes large, there is a possibility that the supporting ability becomes unstable. Therefore, in the filling stage of the raw material powder 16, the lower end of the powder filling portion 15 (upper end surface 12 b of the lower punch 12) is connected to the core pin 14 by the axial dimension substantially equal to the compression amount of the raw material powder 16 by the upper punch 11. The compression amount in the compression stage of the raw material powder 16 shown in FIG. 3B is made substantially equal in the vertical direction so as to be positioned below the boundary portion between the three molded portions 14a3 and the protruding portions 14a4.

すなわち、本実施形態においては、粉末充填部15に対する原料粉16の充填後、上パンチ11を下降させるのと同時に下パンチ12を上昇させる(上パンチ11と下パンチ12とを相対的に接近させる)ことで粉末充填部15に充填された原料粉16を両端から均等に加圧する(図3(b)を参照)。これにより、コアピン14の内周面成形部14aの外周に固着した圧粉体1’が得られる。この圧粉体1’は、上記のようにして成形されるものであるから、両端部間の密度が略等しいものとなる。   That is, in this embodiment, after filling the raw material powder 16 into the powder filling unit 15, the upper punch 11 is lowered and the lower punch 12 is raised at the same time (the upper punch 11 and the lower punch 12 are relatively moved closer to each other). ) To uniformly pressurize the raw material powder 16 filled in the powder filling unit 15 from both ends (see FIG. 3B). Thereby, the green compact 1 'fixed to the outer periphery of the inner peripheral surface molding portion 14a of the core pin 14 is obtained. Since the green compact 1 ′ is molded as described above, the density between both ends is substantially equal.

以上のようにして圧粉体1’を成形した後、この状態を保持したまま両パンチ11,12およびコアピン14を連動して上昇させることで、ダイ13の内周から圧粉体1’を取り出す(圧粉体1’に付与していた径方向の加圧力を解除する)。そして、図3(c)に示すように上パンチ11をさらに上昇させることで、圧粉体1’に付与していた軸方向の加圧力を解除すると、圧粉体1’の内部に蓄積されていた弾性復元力が解放されて圧粉体1’にスプリングバックが生じ、圧粉体1’の内周面が拡径する結果、コアピン14の内周面成形部14aから圧粉体1’が分離する。このとき、圧粉体1’の内周面とコアピン14の内周面成形部14aとの間には微小な径方向隙間が形成されるが、この径方向隙間の隙間幅は、コアピン14を圧粉体1’の内周面とは非接触に引き抜くことができるような隙間幅とされる。圧粉体1’内周からコアピン14を引き抜く際に、コアピン14の引き抜きがいわゆる無理抜きとなって圧粉体1’の内周面が損傷しないようにするためである。   After the green compact 1 ′ is formed as described above, the green compact 1 ′ is moved from the inner periphery of the die 13 by raising both punches 11 and 12 and the core pin 14 while maintaining this state. Take out (release the radial pressure applied to the green compact 1 '). Then, as shown in FIG. 3 (c), when the upper punch 11 is further raised to release the axial pressure applied to the green compact 1 ′, it is accumulated inside the green compact 1 ′. The elastic restoring force that has been released is released, and a spring back is generated in the green compact 1 ′. As a result, the inner peripheral surface of the green compact 1 ′ expands in diameter. Is separated. At this time, a minute radial gap is formed between the inner peripheral surface of the green compact 1 ′ and the inner peripheral surface molding portion 14 a of the core pin 14. The gap width is such that it can be pulled out without contact with the inner peripheral surface of the green compact 1 ′. This is because when the core pin 14 is pulled out from the inner periphery of the green compact 1 ′, the core pin 14 is pulled out so-called forcibly so that the inner peripheral surface of the green compact 1 ′ is not damaged.

具体的には、圧粉体1’内周面の最小内径部とコアピン14の最大外径部(ここでは第2成形部14a2)との間に微小な径方向隙間を形成する。このような径方向隙間は、圧粉体1’内周面のスプリングバック量(拡径量)が、コアピン14の第2成形部14a2と第3成形部14a3間の径方向寸法差よりも大きくなるように、加圧力や原料粉16の組成等を調整することによって得られる。   Specifically, a minute radial gap is formed between the minimum inner diameter portion of the inner peripheral surface of the green compact 1 ′ and the maximum outer diameter portion (here, the second molding portion 14 a 2) of the core pin 14. In such a radial clearance, the spring back amount (expansion amount) of the inner peripheral surface of the green compact 1 ′ is larger than the radial dimension difference between the second molded portion 14 a 2 and the third molded portion 14 a 3 of the core pin 14. Thus, it can be obtained by adjusting the pressing force, the composition of the raw material powder 16, and the like.

以上のようにしてコアピン14の外周面と圧粉体1’の内周面との間に径方向隙間が形成された後、図3(d)に示すようにコアピン14を下降させ、圧粉体1’の内周からコアピン14を引き抜くと、所定形状の圧粉体1’が完成する。上述の構成から、コアピン14は圧粉体1’の内周面とは非接触に引き抜くことができ、従ってコアピン14の引き抜きに伴って圧粉体1’の内周面が損傷等することはない。この圧粉体1’は焼結工程に移送される。   After the radial gap is formed between the outer peripheral surface of the core pin 14 and the inner peripheral surface of the green compact 1 ′ as described above, the core pin 14 is lowered as shown in FIG. When the core pin 14 is pulled out from the inner periphery of the body 1 ', a green compact 1' having a predetermined shape is completed. From the above-described configuration, the core pin 14 can be pulled out of contact with the inner peripheral surface of the green compact 1 ′, and therefore the inner peripheral surface of the green compact 1 ′ is damaged as the core pin 14 is pulled out. Absent. The green compact 1 'is transferred to the sintering process.

なお、本実施形態では、ダイ13の内周から圧粉体1’を取り出した後(径方向の加圧力を解除した後)、圧粉体1’に付与していた軸方向の加圧力を解除するようにしたが、これとは逆の手順を踏んでも良い。すなわち、まず上パンチ11を上昇させて軸方向の加圧力を解除した後、下パンチ12およびコアピン14を連動して上昇させることによりダイ13の内周から圧粉体1’を取り出す(径方向の加圧力を解除する)ようにしても良い。   In the present embodiment, after the green compact 1 ′ is taken out from the inner periphery of the die 13 (after the radial pressure is released), the axial pressure applied to the green compact 1 ′ is applied. Although it was made to cancel, you may take the reverse procedure. That is, the upper punch 11 is first lifted to release the axial pressure, and then the lower punch 12 and the core pin 14 are lifted together to take out the green compact 1 ′ from the inner periphery of the die 13 (radial direction). The pressure may be released).

(B)焼結工程
この焼結工程では、圧粉工程で得られた圧粉体1’を、使用した金属粉末の焼結温度まで加熱することで焼結して焼結体1”を得る。使用する金属粉末の種類によっては、焼結による浸炭作用を避けるため、焼結作業を非浸炭雰囲気下で行っても良い。
(B) Sintering Step In this sintering step, the green compact 1 ′ obtained in the green compacting step is heated to the sintering temperature of the used metal powder to obtain a sintered body 1 ″. Depending on the type of metal powder used, the sintering operation may be performed in a non-carburizing atmosphere in order to avoid carburizing by sintering.

(C)サイジング工程
このサイジング工程では、焼結工程で得られた焼結体1”に対して適当な圧迫力を付与して焼結体1”にサイジングを施す。図4(a)(b)はサイジング工程を概念的に示すものであり、詳細には、図4(a)はサイジングの直前段階を示す断面図、図4(b)はサイジング中の断面図をそれぞれ示している。
(C) Sizing Step In this sizing step, an appropriate pressing force is applied to the sintered body 1 ″ obtained in the sintering step to size the sintered body 1 ″. 4 (a) and 4 (b) conceptually show a sizing process. Specifically, FIG. 4 (a) is a cross-sectional view showing a stage immediately before sizing, and FIG. 4 (b) is a cross-sectional view during sizing. Respectively.

同図に示すサイジング装置20は、焼結体1”の外周面を圧入する円筒状のダイ23と、焼結体1”の内周面(厳密には内周面のうち軸受面に対応する領域。すなわち、中逃げ部の両端側領域)を成形するコアロッド24と、焼結体1”の両端面を拘束する上パンチ21および下パンチ22とを主要な構成として備える。ダイ23の内周面23aおよびコアロッド24の外周面24aは径一定とされる。この製造装置20では、ダイ23が静止側を、両パンチ21,22およびコアロッド24が図示しない適当な駆動機構で昇降する可動側を構成する。詳細には、上パンチ21はコアロッド24の外周に外挿され、両者共に独立して昇降可能である。また、下パンチ22は、上パンチ21およびコアロッド24とは独立して昇降可能である。   The sizing device 20 shown in the figure corresponds to a cylindrical die 23 for press-fitting the outer peripheral surface of the sintered body 1 ″, and the inner peripheral surface of the sintered body 1 ″ (strictly speaking, it corresponds to the bearing surface of the inner peripheral surface. A core rod 24 for forming a region, that is, a region on both ends of the middle escape portion), and an upper punch 21 and a lower punch 22 for restraining both end surfaces of the sintered body 1 ″ are provided as main components. The surface 23a and the outer peripheral surface 24a of the core rod 24 are made constant in diameter.In this manufacturing apparatus 20, the die 23 is on the stationary side, and both punches 21 and 22 and the core rod 24 are moved up and down by an appropriate drive mechanism (not shown). Specifically, the upper punch 21 is extrapolated to the outer periphery of the core rod 24, and both can be lifted and lowered independently, and the lower punch 22 can be lifted and lowered independently of the upper punch 21 and the core rod 24. It is.

以上の構成からなるサイジング装置20において、まず図4(a)に示すように、焼結体1”を装置内の所定箇所、ここでは下パンチ22上に配置する。この状態から、上パンチ21およびコアロッド24を下降させて、コアロッド24を焼結体1”の内周に挿入すると共に、上パンチ21と下パンチ22とで焼結体1”の両端面を拘束する。この状態を保持したまま上パンチ21、下パンチ22、およびコアピン27を連動して下降させ、図4(b)に示すようにダイ23の内周に焼結体1”を圧入すると、焼結体1”はダイ23から加圧力を受けて縮径する向きに変形する。そして、焼結体1”の内周面の一端側領域と他端側領域とがコアロッド24の外周面24aに押し当てられる結果、当該領域の表層部分が塑性流動を起こしてコアロッド24の外周面24aに食い付き、所定の軸受面2,4が成形される。   In the sizing apparatus 20 having the above configuration, first, as shown in FIG. 4A, the sintered body 1 ″ is disposed on a predetermined portion in the apparatus, here, the lower punch 22. From this state, the upper punch 21 is disposed. Then, the core rod 24 is lowered, and the core rod 24 is inserted into the inner periphery of the sintered body 1 ″, and both end faces of the sintered body 1 ″ are constrained by the upper punch 21 and the lower punch 22. This state is maintained. If the upper punch 21, the lower punch 22, and the core pin 27 are moved downward together and the sintered body 1 "is press-fitted into the inner periphery of the die 23 as shown in FIG. 4B, the sintered body 1" As a result, the one end side region and the other end side region of the inner peripheral surface of the sintered body 1 ″ are pressed against the outer peripheral surface 24a of the core rod 24. The surface layer of the region causes plastic flow and the core A nip on the outer circumferential surface 24a of the head 24, a predetermined bearing surfaces 2,4 is molded.

以上のようにして焼結体1”に対してサイジングを施した後、この状態を保持したまま上パンチ21、下パンチ22、およびコアロッド24を連動して上昇させ、ダイ23から焼結体1”を取り出す。次いで上パンチ21およびコアロッド24をさらに上昇させると、焼結体1”の内部に蓄積されていた弾性復元力が解放されて焼結体1”の内径寸法が拡大し(スプリングバック)、焼結体1”の内周面とコアロッド24の外周面との間に微小な径方向隙間が形成される。そしてコアロッド24を抜き取ると、完成品形状の焼結軸受1が得られる。このサイジング工程で用いるコアロッド24は均一外径に形成されたものであるから、以上のようにしてサイジングが施された焼結体1”(焼結軸受1)の軸受面2,4と軸受面間領域(中逃げ部3)とは、表面性状が異なるものとなる。具体的には、軸受面2,4領域は目潰し処理されてその表面開孔率が中逃げ部3よりも小さくなる。そして、離型された焼結軸受1は含油工程に移送される。   After sizing the sintered body 1 ″ as described above, the upper punch 21, the lower punch 22 and the core rod 24 are moved up in conjunction with this state, and the sintered body 1 is moved from the die 23. "Take out. Next, when the upper punch 21 and the core rod 24 are further raised, the elastic restoring force accumulated in the sintered body 1 ″ is released, and the inner diameter dimension of the sintered body 1 ″ is expanded (spring back). A minute radial gap is formed between the inner peripheral surface of the body 1 ″ and the outer peripheral surface of the core rod 24. When the core rod 24 is extracted, the sintered bearing 1 in the finished product shape is obtained. Since the core rod 24 used has a uniform outer diameter, the bearing surfaces 2 and 4 of the sintered body 1 ″ (sintered bearing 1) sized as described above and the region between the bearing surfaces (medium) The surface portion is different from the escape portion 3). Specifically, the bearing surfaces 2 and 4 are subjected to a crushing process, and the surface open area ratio becomes smaller than that of the middle escape portion 3. Then, the released sintered bearing 1 is transferred to the oil impregnation process.

(D)含油工程
この工程では、サイジング工程を経て所定形状に成形された焼結軸受1に潤滑油が含浸され、これにより内部気孔に潤滑油を含浸させてなる焼結軸受1が完成する。なお、焼結体軸受1の内部気孔への潤滑油の含浸は、例えば、所定の減圧環境下で、潤滑油が充満された潤滑油浴中に焼結軸受1を一定時間浸漬させることにより行われる。このとき、潤滑油の含浸を確実かつ短時間に行うため、潤滑油を加熱した状態で含浸作業を行っても良い。
(D) Oil impregnation step In this step, the sintered bearing 1 formed into a predetermined shape through the sizing step is impregnated with the lubricating oil, thereby completing the sintered bearing 1 in which the internal pores are impregnated with the lubricating oil. The impregnation of the lubricating oil into the internal pores of the sintered body bearing 1 is performed, for example, by immersing the sintered bearing 1 in a lubricating oil bath filled with the lubricating oil for a certain period of time in a predetermined reduced pressure environment. Is called. At this time, in order to perform the impregnation of the lubricating oil reliably and in a short time, the impregnation operation may be performed while the lubricating oil is heated.

以上に示すように、本発明に係る焼結軸受1は、圧粉体成形時の加圧力を解除することで生じるスプリングバックにより、中逃げ部3全体が成形され、かつ、軸受面2,4と中逃げ部3が交わる角部3d,3eを有する。これはすなわち、上述したように、中逃げ部3全体が、コアピン14の内周面成形部14a(第2成形部14a2)に倣って成形された成形面とされ、かつコアピン14が、圧粉体1’の内周面と非接触に圧粉体1’内周から引き抜かれていることを意味する。そのため、個体間で中逃げ部3形状にばらつきが生じるのを回避して、中逃げ部3を高精度に仕上げることができる。また、中逃げ部3全体の表面性状(表面開孔率等)を均質化することができるので、軸との間に形成される二つの摺動部に供給される油量に差異が生じ、両摺動部間における支持能力に差異が生じるような事態を可及的に防止することができる。従って、この焼結軸受1の支持能力が安定的に高まる。   As described above, in the sintered bearing 1 according to the present invention, the entire intermediate relief portion 3 is formed by the spring back generated by releasing the pressing force at the time of compacting, and the bearing surfaces 2 and 4 are formed. And corner portions 3d and 3e where the middle escape portion 3 intersects. That is, as described above, the entire inner relief portion 3 is formed as a molding surface that is molded following the inner peripheral surface molding portion 14a (second molding portion 14a2) of the core pin 14, and the core pin 14 is compacted. It means that the green compact 1 'is pulled out from the inner periphery of the body 1' in a non-contact manner. Therefore, it is possible to avoid the occurrence of variations in the shape of the middle escape portion 3 among individuals, and to finish the middle escape portion 3 with high accuracy. Moreover, since the surface properties (surface open area ratio, etc.) of the entire middle escape portion 3 can be homogenized, a difference occurs in the amount of oil supplied to the two sliding portions formed between the shaft, It is possible to prevent as much as possible a situation in which a difference occurs in the support capability between both sliding portions. Therefore, the support capability of the sintered bearing 1 is stably increased.

また、圧粉体1’の成形工程のみで完成品形状に略等しい形状が得られることから、サイジング工程で絞り加工を施すことで完成品形状を得ていた特許文献1に比べて工程および装置構成を簡略化することが、またあるいは、圧粉工程を2工程に分けて行うことで完成品形状を得ていた特許文献2の構成に比べ工程数を減じることができる。また、加圧力を解除することによる圧粉体1’のスプリングバックを利用して圧粉体1’をコアピン14から分離するようにしたので、その他の分離機構は不要となる。また、特に特許文献1のような絞り加工では、所定の完成品形状を得るために比較的軸受長さを長くとる必要があるが、上記本発明の方法であればこのような寸法的な制約もない。以上のことから、この焼結軸受1の製造コストを低廉化することができる。   Further, since a shape substantially equal to the finished product shape can be obtained only by the molding process of the green compact 1 ′, the process and apparatus are compared with Patent Document 1 in which the finished product shape is obtained by drawing in the sizing process. The number of steps can be reduced compared to the configuration of Patent Document 2 in which the configuration is simplified, or alternatively, the compacting step is performed in two steps to obtain a finished product shape. Further, since the green compact 1 ′ is separated from the core pin 14 by utilizing the spring back of the green compact 1 ′ by releasing the applied pressure, no other separation mechanism is required. In particular, in the drawing process as in Patent Document 1, it is necessary to take a relatively long bearing length in order to obtain a predetermined finished product shape. Nor. From the above, the manufacturing cost of the sintered bearing 1 can be reduced.

また、両軸受面2,4にのみサイジングを施したことから、軸との摺動部で高い油膜剛性を確保しつつ、軸との摺動部には相対的に表面開孔率の大きい中逃げ部3から潤沢な油を供給することができる。これにより、高い軸受性能を安定的に維持することができる。また、両軸受面2,4にのみサイジングを施すようにしたので、サイジング工程、およびサイジング装置を簡略化して製造コストの更なる低廉化を図ることができる。   In addition, since the sizing is applied only to both the bearing surfaces 2 and 4, while ensuring high oil film rigidity at the sliding portion with the shaft, the sliding portion with the shaft has a relatively large surface opening ratio. Abundant oil can be supplied from the escape portion 3. Thereby, high bearing performance can be maintained stably. Further, since the sizing is performed only on both the bearing surfaces 2 and 4, the sizing process and the sizing device can be simplified, and the manufacturing cost can be further reduced.

以上では、本発明を、均一外径の焼結軸受の製造時に適用する場合について説明を行ったが、以上で説明した焼結軸受の形態はあくまでも一例であり、本発明の構成を、外径寸法が軸方向の各所で異なる焼結軸受に適用することももちろん可能である。また、本発明は、軸に対して相対回転する焼結軸受のみならず、軸に対して相対的に直動運動する焼結軸受、およびこの種の焼結軸受を製造する際にも好適である。   In the above, the case where the present invention is applied at the time of manufacturing a sintered bearing having a uniform outer diameter has been described. However, the form of the sintered bearing described above is merely an example, and the configuration of the present invention is not limited to the outer diameter. It is of course possible to apply to sintered bearings whose dimensions are different in the axial direction. The present invention is suitable not only for manufacturing sintered bearings that rotate relative to the shaft, but also for manufacturing sintered bearings that move linearly relative to the shaft, and this type of sintered bearing. is there.

本発明に係る焼結軸受の一例を概念的に示す断面図である。It is sectional drawing which shows notionally an example of the sintered bearing which concerns on this invention. 圧粉工程で用いる製造装置の全体構造を概念的に示す断面図である。It is sectional drawing which shows notionally the whole structure of the manufacturing apparatus used at a compaction process. 圧粉工程の流れを概念的に示すもので、(a)図は粉末充填部に原料粉を充填した段階の断面図、(b)図は圧粉段階の断面図、(c)図は圧粉後の段階の断面図、(d)図は装置の各構成部材が原点復帰した段階の断面図である。The flow of a compacting process is shown conceptually. (A) is a cross-sectional view of the stage where the raw material powder is filled in the powder filling part, (b) is a cross-sectional view of the compacting stage, and (c) is the pressure Sectional drawing of the stage after powdering, (d) is a sectional view of the stage where each component of the apparatus has returned to the origin. サイジング工程の流れを概念的に示すもので、(a)図は装置に焼結体を配置した段階の断面図、(b)図は焼結体にサイジングを行っている段階の断面図である。The flow of a sizing process is shown notionally, (a) A figure is a sectional view of the stage which has arranged a sintered compact in an apparatus, and (b) figure is a sectional view of the stage which performs sizing to a sintered compact. . 従来採用されていた焼結軸受の製造工程を概念的に示すもので、(a)図は第2の圧粉工程を概念的に示す断面図、(b)図はサイジング工程を概念的に示す断面図である。FIG. 1 conceptually shows a manufacturing process of a sintered bearing that has been conventionally employed. FIG. 1A is a sectional view conceptually showing a second compacting process, and FIG. 2B is a conceptual view showing a sizing process. It is sectional drawing.

符号の説明Explanation of symbols

1 焼結軸受
1’ 圧粉体
1” 焼結体
2,4 軸受面
3 中逃げ部
3a 大径内周面
3b,3c 段差面
3d,3e 角部
10 製造装置(圧粉工程用)
12 下パンチ
14 コアピン
14a 内周面成形部
14a2 第2成形部
14a4 突出部
15 粉末充填部
16 原料粉
DESCRIPTION OF SYMBOLS 1 Sintered bearing 1 'Compact 1 "Sintered body 2, 4 Bearing surface 3 Middle escape part 3a Large diameter inner peripheral surface 3b, 3c Step surface 3d, 3e Corner | angular part 10 Manufacturing apparatus (for compacting processes)
12 Lower punch 14 Core pin 14a Inner peripheral surface molding part 14a2 Second molding part 14a4 Projection part 15 Powder filling part 16 Raw material powder

Claims (10)

圧粉体を焼結してなり、内周面の軸方向に離隔した二箇所に軸受面が設けられ、軸受面間に、内径寸法が軸受面よりも大径に形成された中逃げ部を有する焼結軸受であって、
圧粉体成形時の加圧力を解除することで生じるスプリングバックにより、中逃げ部全体が所定形状に形成され、かつ、軸受面と中逃げ部が交わる角部を有することを特徴とする焼結軸受。
A bearing surface is provided at two locations in the axial direction of the inner peripheral surface that are sintered with the green compact, and an inner clearance portion having an inner diameter dimension larger than the bearing surface is formed between the bearing surfaces. A sintered bearing comprising:
Sintering characterized in that the entire center relief part is formed in a predetermined shape by the springback generated by releasing the pressing force during compacting, and has a corner where the bearing surface and the center relief part intersect bearing.
軸受面と中逃げ部の表面性状を異ならせた請求項1に記載の焼結軸受。   The sintered bearing according to claim 1, wherein the surface properties of the bearing surface and the intermediate relief portion are different. 圧粉体を焼結してなり、内周面の軸方向に離隔した二箇所に軸受面が設けられ、軸受面間に、内径寸法が軸受面よりも大径に形成された中逃げ部を有する焼結軸受の製造方法であって、
コアピンの外周に粉末充填部を形成し、この粉末充填部に充填した原料粉を加圧することにより、コアピンの外周に固着した圧粉体を成形する工程と、
加圧力を解除することで圧粉体に生じるスプリングバックを利用して圧粉体をコアピンから分離した後、この圧粉体の内周面と非接触にコアピンを引き抜く工程と、
を含むことを特徴とする焼結軸受の製造方法。
A bearing surface is provided at two locations in the axial direction of the inner peripheral surface that are sintered with the green compact, and an inner clearance portion having an inner diameter dimension larger than the bearing surface is formed between the bearing surfaces. A method for producing a sintered bearing comprising:
Forming a powder filling part on the outer periphery of the core pin, and pressing the raw material powder filled in the powder filling part to form a green compact fixed to the outer periphery of the core pin;
A step of separating the green compact from the core pin using springback generated in the green compact by releasing the pressure, and then pulling the core pin out of contact with the inner peripheral surface of the green compact;
The manufacturing method of the sintered bearing characterized by including.
コアピンを、円筒状の下パンチに対して軸方向に相対移動可能に下パンチの内周に挿通し、粉末充填部を、コアピンと下パンチの軸方向の相対移動によって形成する請求項3に記載の焼結軸受の製造方法。   The core pin is inserted into the inner periphery of the lower punch so as to be axially movable relative to the cylindrical lower punch, and the powder filling portion is formed by relative movement of the core pin and the lower punch in the axial direction. Method for manufacturing a sintered bearing. 粉末充填部に対する原料粉の充填を、コアピンと下パンチの軸方向の相対移動量に対応させて徐々に行う請求項4に記載の焼結軸受の製造方法。   The method for manufacturing a sintered bearing according to claim 4, wherein filling of the raw material powder into the powder filling portion is gradually performed in accordance with an axial relative movement amount of the core pin and the lower punch. コアピンの外周面に設けた内周面成形部の基端側に隣接して、外径寸法が内周面成形部の最大外径以上の突出部を設け、
該突出部を下パンチの内周に配設した状態で、原料粉を粉末充填部に充填する請求項4又は5に記載の焼結軸受の製造方法。
Adjacent to the base end side of the inner peripheral surface molding portion provided on the outer peripheral surface of the core pin, a protrusion having an outer diameter dimension equal to or larger than the maximum outer diameter of the inner peripheral surface molding portion is provided.
The method for manufacturing a sintered bearing according to claim 4 or 5, wherein the raw material powder is filled in the powder filling portion in a state where the protruding portion is disposed on the inner periphery of the lower punch.
粉末充填部に充填した原料粉を、その両端側から均等に加圧する請求項3〜6の何れかに記載の焼結軸受の製造方法。   The manufacturing method of the sintered bearing in any one of Claims 3-6 which pressurize equally the raw material powder with which the powder filling part was filled from the both ends side. 径方向の加圧力を解除した後、軸方向の加圧力を解除する請求項3〜7の何れかに記載の焼結軸受の製造方法。   The method for manufacturing a sintered bearing according to any one of claims 3 to 7, wherein the axial pressure is released after the radial pressure is released. 軸方向の加圧力を解除した後、径方向の加圧力を解除する請求項3〜7の何れかに記載の焼結軸受の製造方法。   The method for manufacturing a sintered bearing according to any one of claims 3 to 7, wherein the radial pressure is released after the axial pressure is released. 圧粉体からコアピンを引き抜いた後、圧粉体を焼結し、得られた焼結体の内周面の一端側領域および他端側領域にサイジングを施して軸受面を成形する工程をさらに含む請求項3〜9の何れかに記載の焼結軸受の製造方法。   After the core pin is pulled out of the green compact, the green compact is sintered, and a step of forming a bearing surface by sizing one end side region and the other end side region of the inner peripheral surface of the obtained sintered body is further performed. The manufacturing method of the sintered bearing in any one of Claims 3-9 containing.
JP2008192417A 2008-07-25 2008-07-25 Sintered bearing and its manufacturing method Withdrawn JP2010031909A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008192417A JP2010031909A (en) 2008-07-25 2008-07-25 Sintered bearing and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008192417A JP2010031909A (en) 2008-07-25 2008-07-25 Sintered bearing and its manufacturing method

Publications (1)

Publication Number Publication Date
JP2010031909A true JP2010031909A (en) 2010-02-12

Family

ID=41736622

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008192417A Withdrawn JP2010031909A (en) 2008-07-25 2008-07-25 Sintered bearing and its manufacturing method

Country Status (1)

Country Link
JP (1) JP2010031909A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017002937A (en) * 2015-06-05 2017-01-05 株式会社椿本チエイン Bearing and manufacturing method for the same
WO2018117183A1 (en) * 2016-12-22 2018-06-28 三菱マテリアル株式会社 Oil-impregnated sintered bearing and method for manufacturing same
CN111566366A (en) * 2017-11-15 2020-08-21 三菱综合材料株式会社 Sintered oil-retaining bearing and method for manufacturing same

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017002937A (en) * 2015-06-05 2017-01-05 株式会社椿本チエイン Bearing and manufacturing method for the same
WO2018117183A1 (en) * 2016-12-22 2018-06-28 三菱マテリアル株式会社 Oil-impregnated sintered bearing and method for manufacturing same
CN110168241A (en) * 2016-12-22 2019-08-23 三菱综合材料株式会社 Sintered metal bearing and its manufacturing method
JPWO2018117183A1 (en) * 2016-12-22 2019-10-31 三菱マテリアル株式会社 Sintered oil-impregnated bearing and manufacturing method thereof
EP3561326A4 (en) * 2016-12-22 2020-09-09 Mitsubishi Materials Corporation Oil-impregnated sintered bearing and method for manufacturing same
CN110168241B (en) * 2016-12-22 2021-07-23 大冶美有限公司 Sintered oil-retaining bearing and method for manufacturing same
US11073178B2 (en) 2016-12-22 2021-07-27 Diamet Corporation Oil-impregnated sintered bearing and method for manufacturing the same
CN111566366A (en) * 2017-11-15 2020-08-21 三菱综合材料株式会社 Sintered oil-retaining bearing and method for manufacturing same
US11248654B2 (en) 2017-11-15 2022-02-15 Mitsubishi Materials Corporation Oil impregnated sintered bearing and production method thereof
CN111566366B (en) * 2017-11-15 2022-03-25 大冶美有限公司 Sintered oil-retaining bearing and method for manufacturing same

Similar Documents

Publication Publication Date Title
JP5384014B2 (en) Sintered bearing
WO2015045813A1 (en) Sintered metal bearing and fluid-dynamic bearing device provided with said bearing
JP2006125516A (en) Oil-retaining sintered bearing
US5282688A (en) Sintered oil impregnated bearing and its manufacturing method
JP2010031909A (en) Sintered bearing and its manufacturing method
JP4522619B2 (en) Sintered oil-impregnated bearing, manufacturing method thereof and motor
US20190353205A1 (en) Method of molding double-layer sliding bearing
WO2015151698A1 (en) Sintered bearing, fluid dynamic bearing device provided with same, and sintered bearing manufacturing method
JPH11236604A (en) Oil-impregnated sintered bearing and its production
WO2017159345A1 (en) Dynamic pressure bearing and method for manufacturing same
JP7076266B2 (en) Manufacturing method of sintered oil-impregnated bearing
JP6449059B2 (en) Sintered oil-impregnated bearing and manufacturing method thereof
JP2004360863A (en) Dynamic-pressure bearing manufacturing method
WO2017047697A1 (en) Method for manufacturing green compact and method for manufacturing sintered metal part
JP2002327749A (en) Oil impregnated sintered bearing and manufacturing method of the same
JP3602320B2 (en) Manufacturing method of hydrodynamic sintered oil-impregnated bearing
WO2018047765A1 (en) Slide bearing
JP2006153056A (en) Oil impregnated sintered bearing and its manufacturing method
JP4188288B2 (en) Manufacturing method of dynamic pressure type porous oil-impregnated bearing
JP2000065065A (en) Dynamic pressure bearing
JP2001295845A (en) Oil-impregnated sintered bearing and its manufacturing method
JP3856363B2 (en) Manufacturing method of bearing
JP2008248976A (en) Manufacturing method for oil-impregnated sintered bearing
JP2007100803A (en) Method for manufacturing oil impregnated sintered bearing, and sizing pin to be used for the method
JP2000054003A (en) Formation of metallic material

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20111004