JP6189065B2 - Fluid dynamic bearing device and assembly method thereof - Google Patents

Fluid dynamic bearing device and assembly method thereof Download PDF

Info

Publication number
JP6189065B2
JP6189065B2 JP2013062174A JP2013062174A JP6189065B2 JP 6189065 B2 JP6189065 B2 JP 6189065B2 JP 2013062174 A JP2013062174 A JP 2013062174A JP 2013062174 A JP2013062174 A JP 2013062174A JP 6189065 B2 JP6189065 B2 JP 6189065B2
Authority
JP
Japan
Prior art keywords
gap
outer member
adhesive
radial
cylindrical portion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2013062174A
Other languages
Japanese (ja)
Other versions
JP2014185735A (en
Inventor
大智 加藤
大智 加藤
藤原 幹久
幹久 藤原
智行 瀬戸
智行 瀬戸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NTN Corp
Original Assignee
NTN Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NTN Corp filed Critical NTN Corp
Priority to JP2013062174A priority Critical patent/JP6189065B2/en
Publication of JP2014185735A publication Critical patent/JP2014185735A/en
Application granted granted Critical
Publication of JP6189065B2 publication Critical patent/JP6189065B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Connection Of Motors, Electrical Generators, Mechanical Devices, And The Like (AREA)
  • Sliding-Contact Bearings (AREA)
  • Mounting Of Bearings Or Others (AREA)

Description

本発明は、内方部材と外方部材との間の軸受隙間に生じる潤滑油の動圧作用で、内方部材を相対回転自在に支持する流体動圧軸受装置およびその組立方法に関する。   The present invention relates to a fluid dynamic pressure bearing device that supports an inner member in a relatively rotatable manner by a dynamic pressure action of lubricating oil generated in a bearing gap between the inner member and the outer member, and an assembling method thereof.

換気扇等の電気機器に搭載されるモータには軸受が組み込まれており、この軸受によって、回転軸が相対回転自在に支持されている。この種の軸受として、外輪と、内輪と、これらの間に介在された複数の転動体と、複数の転動体を保持する保持器とからなる、いわゆる転がり軸受が一般的に使用されている(例えば、特許文献1)。   A motor mounted on an electric device such as a ventilation fan incorporates a bearing, and the rotation shaft is supported by the bearing so as to be relatively rotatable. As this type of bearing, a so-called rolling bearing comprising an outer ring, an inner ring, a plurality of rolling elements interposed therebetween, and a cage for holding the plurality of rolling elements is generally used ( For example, Patent Document 1).

例えば、住宅に設けられる小型の換気扇、特に、24時間換気システムに設けられる小型の換気扇は、低コスト化が要求されているが、転がり軸受は、上述のとおり数多くの部品で構成されていることから低コスト化には限度がある。また、上記システムの換気扇は基本的に連続運転されることから、特に低騒音であることが求められる。しかしながら、転がり軸受では、運転時に保持器のポケットと転動体とが衝突することによって生じるいわゆる保持器音や、内外輪の軌道面上を転動体が転動することによって生じる摩擦音等の発生が避けられないことから、更なる静粛性向上の要請に対応するのが困難である。   For example, a small ventilation fan installed in a house, especially a small ventilation fan provided in a 24-hour ventilation system, is required to be low in cost, but the rolling bearing is composed of many parts as described above. Therefore, there is a limit to cost reduction. Moreover, since the ventilation fan of the said system is fundamentally operated continuously, it is calculated | required that it is especially low noise. However, rolling bearings avoid the generation of so-called cage noise caused by collision between the cage pocket and rolling elements during operation, and friction noise caused by rolling of the rolling elements on the raceway surface of the inner and outer rings. Since it is not possible, it is difficult to meet the demand for further improvement in quietness.

上記のような事情に鑑み、換気扇等のモータに組み込む軸受として、流体動圧軸受を使用する場合がある。例えば特許文献2に示されている流体動圧軸受装置は、図12に示すように、内方部材101と、内方部材101の外周面101a及び両端面101b,101cを囲む外方部材102とを有し、内方部材101と外方部材102との間には潤滑油が満たされる。内方部材101が回転すると、内方部材101の外周面101aと外方部材102の内周面102aとの間にラジアル軸受隙間R’が形成されると共に、内方部材101の軸方向両端面101b,101cと外方部材102の内側端面102b,102cとの間にそれぞれスラスト軸受隙間T’が形成され、これらのラジアル軸受隙間R’及びスラスト軸受隙間T’の潤滑油に生じる動圧作用で、内方部材101が回転自在に支持される。このように、転がり軸受を流体動圧軸受で代替することにより、部品数の削減による低コスト化や、静粛性の向上を図っている。   In view of the above circumstances, a fluid dynamic pressure bearing may be used as a bearing incorporated in a motor such as a ventilation fan. For example, as shown in FIG. 12, the fluid dynamic pressure bearing device disclosed in Patent Document 2 includes an inner member 101, and an outer member 102 that surrounds the outer peripheral surface 101 a and both end surfaces 101 b and 101 c of the inner member 101. The space between the inner member 101 and the outer member 102 is filled with lubricating oil. When the inner member 101 rotates, a radial bearing gap R ′ is formed between the outer peripheral surface 101a of the inner member 101 and the inner peripheral surface 102a of the outer member 102, and both axial end surfaces of the inner member 101 Thrust bearing gaps T ′ are formed between 101b and 101c and the inner end faces 102b and 102c of the outer member 102, respectively, and the dynamic pressure generated in the lubricating oil in these radial bearing gaps R ′ and thrust bearing gaps T ′. The inner member 101 is rotatably supported. Thus, by replacing the rolling bearing with a fluid dynamic pressure bearing, the cost is reduced by reducing the number of parts and the quietness is improved.

特開2000−249142号公報JP 2000-249142 A 特開2011−231874号公報JP 2011-231874 A

特許文献1では、図12に示すように、断面L字型をなした第1外方部材110と第2外方部材120とを組み合せて外方部材102を構成している。外方部材102を組み立てるに際には、第1外方部材110の円筒部111と第2外方部材120の円筒部121とを嵌合させた状態で、これらの間に接着剤を注入することで固定される。この場合、接着剤が硬化するまでの間、第1外方部材110と第2外方部材120とを保持する必要がある。特許文献1では、図13に示すように、第1外方部材110の外周面の円周方向複数箇所に突起130を設け、この突起130を対向する第2外方部材120の円筒状内周面に圧入することで、両者を仮固定している。   In Patent Document 1, as shown in FIG. 12, an outer member 102 is configured by combining a first outer member 110 and a second outer member 120 having an L-shaped cross section. When assembling the outer member 102, the cylindrical portion 111 of the first outer member 110 and the cylindrical portion 121 of the second outer member 120 are fitted together, and an adhesive is injected between them. It is fixed by that. In this case, it is necessary to hold the first outer member 110 and the second outer member 120 until the adhesive is cured. In Patent Document 1, as shown in FIG. 13, protrusions 130 are provided at a plurality of circumferential positions on the outer peripheral surface of the first outer member 110, and the cylindrical inner periphery of the second outer member 120 facing the protrusion 130. Both are temporarily fixed by press-fitting into the surface.

しかし、突起130を圧入することにより、第1外方部材110の円筒部111が縮径方向に変形してラジアル軸受面の精度低下を招いたり、第2外方部材120の円筒部121が拡径方向に変形して他部材への組付性が低下したりする恐れがある。また、第1外方部材110と第2外方部材120とを圧入することにより削り屑が生じ、この削り屑が周囲に落ちたり、軸受内部の潤滑油にコンタミとして混入して軸受性能を低下させたりする恐れがある。   However, when the protrusions 130 are press-fitted, the cylindrical portion 111 of the first outer member 110 is deformed in the diameter reducing direction, leading to a decrease in accuracy of the radial bearing surface, or the cylindrical portion 121 of the second outer member 120 is expanded. There is a possibility that the assembly to other members may be deteriorated due to deformation in the radial direction. In addition, by pressing the first outer member 110 and the second outer member 120, shavings are generated, and the shavings fall to the surroundings or are mixed into the lubricating oil inside the bearing as contamination, thereby reducing the bearing performance. There is a risk of letting

上記のような不具合を回避するためには、第1外方部材110と第2外方部材120とを隙間を介して嵌合させ、この状態で両者を接着固定すればよい(隙間接着)。しかし、この場合、接着剤が硬化するまで第1外方部材110及び第2外方部材120を治具で保持する必要があるため、この間に次の外方部材を組み立てるためには別の治具が必要となる。従って、このような方法で流体動圧軸受装置を量産すると、膨大な数の治具が必要となるため、生産コストが高騰する。   In order to avoid the above problems, the first outer member 110 and the second outer member 120 may be fitted through a gap, and both may be bonded and fixed in this state (gap adhesion). However, in this case, since it is necessary to hold the first outer member 110 and the second outer member 120 with a jig until the adhesive is cured, another assembly is required to assemble the next outer member during this time. Tools are required. Therefore, when the fluid dynamic bearing device is mass-produced by such a method, an enormous number of jigs are required, and the production cost increases.

以上の事情に鑑み、本発明は、外方部材の変形、削り屑の発生、及び高コスト化を招くことなく、流体動圧軸受装置の組立を容易化することを目的とする。   In view of the above circumstances, an object of the present invention is to facilitate assembly of a fluid dynamic bearing device without causing deformation of an outer member, generation of shavings, and cost increase.

例えば、硬化速度の早い接着剤(例えば瞬間接着剤)を用いて第1外方部材と第2外方部材を固定すれば、第1外方部材と第2外方部材とを治具で保持する時間を短縮することができるため、治具の個数を減らすことが可能となる。しかし、外方部材と内方部材との間は潤滑油が満たされるため、第1外方部材の円筒部の外周面と第2外方部材の円筒部の内周面との間の半径方向隙間を接着剤で完全に封止して潤滑油の漏れ出しを防止する必要があるが、瞬間接着剤は、隙間を完全に埋めて封止する機能(封止性)に劣るものが多いため、上記の半径方向隙間を完全に封止できずに油漏れが生じる恐れがある。   For example, if the first outer member and the second outer member are fixed using an adhesive having a high curing speed (for example, an instantaneous adhesive), the first outer member and the second outer member are held by a jig. Since it is possible to reduce the time required for the jig, the number of jigs can be reduced. However, since the lubricating oil is filled between the outer member and the inner member, the radial direction between the outer peripheral surface of the cylindrical portion of the first outer member and the inner peripheral surface of the cylindrical portion of the second outer member. It is necessary to completely seal the gap with an adhesive to prevent the lubricant from leaking out. However, instant adhesives are often inferior in their ability to completely fill the gap and seal (sealing performance). The above-mentioned radial gap cannot be completely sealed, and oil leakage may occur.

そこで、本発明に係る流体動圧軸受装置は、環状の内方部材と、内方部材の外周面と半径方向に対向する円筒部、及び、内方部材の軸方向一方の端面と軸方向に対向する平板部を有する第1外方部材と、第1外方部材の円筒部の外周面に固定された円筒部、及び、内方部材の軸方向他方の端面と軸方向に対向する平板部を有する第2外方部材と、第1外方部材の円筒部の内周面と内方部材の外周面との間に形成されるラジアル軸受隙間と、内方部材の軸方向一方の端面と第1外方部材の平板部との間、及び、内方部材の軸方向他方の端面と第2外方部材の平板部との間にそれぞれ形成されるスラスト軸受隙間と、ラジアル軸受隙間及びスラスト軸受隙間に介在させた潤滑油とを備え、第1外方部材の円筒部の外周面と第2外方部材の円筒部の内周面とを圧入することなく半径方向隙間を介して嵌合させ、この半径方向隙間に、第1外方部材と第2外方部材とを仮固定する第1接着剤と、半径方向隙間を完全に封止する第2接着剤とを介在させたものである。   Therefore, a fluid dynamic pressure bearing device according to the present invention includes an annular inner member, a cylindrical portion that faces the outer peripheral surface of the inner member in the radial direction, and one axial end surface of the inner member in the axial direction. The 1st outer member which has a flat plate part which opposes, the cylindrical part fixed to the outer peripheral surface of the cylindrical part of the 1st outer member, and the flat plate part which faces the other axial end face of an inner member in the axial direction A radial bearing gap formed between the inner peripheral surface of the cylindrical portion of the first outer member and the outer peripheral surface of the inner member, and one end surface in the axial direction of the inner member. A thrust bearing gap, a radial bearing gap and a thrust formed between the flat plate portion of the first outer member and between the other axial end surface of the inner member and the flat plate portion of the second outer member. Lubricating oil interposed in the bearing gap, the outer peripheral surface of the cylindrical portion of the first outer member and the cylindrical portion of the second outer member A first adhesive that temporarily fits the first outer member and the second outer member into the radial gap, and a radial gap is fitted into the peripheral surface without being press-fitted through the radial gap. A second adhesive that completely seals is interposed.

この流体動圧軸受装置は、第1外方部材と第2外方部材との軸方向間に内方部材を配すると共に、第1外方部材の円筒部の外周面と第2外方部材の円筒部の内周面とを圧入することなく半径方向隙間を介して嵌合させるステップと、第1スラスト軸受隙間及び第2スラスト軸受隙間の隙間幅を設定した状態で、第1外方部材と第2外方部材とを第1接着剤で仮固定するステップと、上記の半径方向隙間を、第2接着剤で完全に封止するステップとを順に経て組み立てることができる。   In this fluid dynamic pressure bearing device, an inner member is arranged between the first outer member and the second outer member in the axial direction, and the outer peripheral surface of the cylindrical portion of the first outer member and the second outer member are arranged. The first outer member in a state in which the inner circumferential surface of the cylindrical portion is fitted through the radial gap without press fitting, and the gap widths of the first thrust bearing gap and the second thrust bearing gap are set. And the second outer member can be assembled by sequentially performing a step of temporarily fixing the second outer member with the first adhesive and a step of completely sealing the radial gap with the second adhesive.

上記のように、第1外方部材と第2外方部材とを圧入することなく半径方向隙間を介して嵌合させることで、圧入による変形や削り屑の発生を回避できる。また、第1外方部材と第2外方部材を仮固定する第1接着剤は、封止性は要求されないため硬化時間の短い接着剤(例えば瞬間接着剤)を使用することができる。このように、第1外方部材と第2外方部材とを瞬間接着剤等で仮固定することで、スラスト軸受隙間を設定した状態で第1外方部材と第2外方部材を保持する時間、すなわち治具を使用する時間を短縮できるため、量産時における治具の使用個数を削減することができる。このとき、第1外方部材と第2外方部材との間の半径方向隙間に供給した第1接着剤に硬化促進剤を付与すれば、第1接着剤の硬化時間がさらに短くなるため、第1外方部材と第2外方部材とを治具で保持する時間をさらに短縮できる。さらに、第1外方部材と第2外方部材とを仮固定することで、その後に半径方向隙間に充填される第2接着剤には硬化時間の制約はなくなり、封止性に優れたものを用いることができるため、半径方向隙間を完全に封止することが可能となる。   As described above, by causing the first outer member and the second outer member to be fitted through the radial gap without press-fitting, deformation due to press-fitting and generation of shavings can be avoided. In addition, since the first adhesive that temporarily fixes the first outer member and the second outer member does not require sealing properties, an adhesive having a short curing time (for example, an instantaneous adhesive) can be used. In this manner, the first outer member and the second outer member are temporarily fixed with an instantaneous adhesive or the like to hold the first outer member and the second outer member in a state where the thrust bearing gap is set. Since the time, that is, the time for using the jig can be shortened, the number of jigs used in mass production can be reduced. At this time, if the curing accelerator is applied to the first adhesive supplied to the radial gap between the first outer member and the second outer member, the curing time of the first adhesive is further shortened, The time for holding the first outer member and the second outer member with the jig can be further shortened. Furthermore, by temporarily fixing the first outer member and the second outer member, the second adhesive that is subsequently filled into the radial gap has no limitation on the curing time, and has excellent sealing properties. Therefore, the radial gap can be completely sealed.

第1接着剤としては、例えばシアノアクリレート系の瞬間接着剤や嫌気性接着剤を使用することができる。第2接着剤としては、例えばエポキシ系接着剤や紫外線硬化型接着剤を使用することができる。   As the first adhesive, for example, a cyanoacrylate-based instantaneous adhesive or an anaerobic adhesive can be used. As the second adhesive, for example, an epoxy-based adhesive or an ultraviolet curable adhesive can be used.

第1外方部材と第2外方部材との間の半径方向隙間は、30〜100μmの範囲内とすることが好ましい。半径方向隙間が30μm未満になると、接着剤を充填することが困難となり、半径方向隙間が100μmを超えると、第1接着剤による仮固定が困難となるからである。   The radial gap between the first outer member and the second outer member is preferably in the range of 30 to 100 μm. When the radial gap is less than 30 μm, it is difficult to fill the adhesive, and when the radial gap exceeds 100 μm, temporary fixing with the first adhesive is difficult.

第1外方部材と第2外方部材との間の半径方向隙間に、大きさの異なる第1隙間及び第2隙間を設け、第1隙間に第1接着剤を配すると共に、第2隙間に第2接着剤を配すれば、第1隙間及び第2隙間を、それぞれ第1接着剤及び第2接着剤に適した大きさに設定することができる。例えば、第1接着剤としては硬化時間が短いものが好ましいが、このような接着剤は封止性に劣るものが多いため、第1隙間は比較的小さい方が好ましい。また、第2接着剤は粘性が高いものが多いため、第2隙間は比較的大きい方が好ましい。以上より、第1隙間は第2隙間よりも小さくすることが好ましい。   A first gap and a second gap having different sizes are provided in a radial gap between the first outer member and the second outer member, and the first adhesive is disposed in the first gap, and the second gap If a 2nd adhesive agent is distribute | arranged to, a 1st clearance gap and a 2nd clearance gap can be set to the magnitude | size suitable for a 1st adhesive agent and a 2nd adhesive agent, respectively. For example, the first adhesive preferably has a short curing time, but since such adhesives often have poor sealing properties, the first gap is preferably relatively small. Further, since many second adhesives have high viscosity, it is preferable that the second gap is relatively large. From the above, it is preferable that the first gap is smaller than the second gap.

例えば、第1外方部材と第2外方部材との間の半径方向隙間の大気開放側の端部に第1接着剤を塗布して仮固定すると、硬化した第1接着剤が邪魔になって第2接着剤の半径方向隙間への供給が阻害される恐れがある。そこで、第1接着剤を半径方向隙間の閉塞側に配し、この第1接着剤よりも大気開放側に第2接着剤を充填すれば、上記の不具合を回避できる。   For example, when the first adhesive is applied and temporarily fixed to the end portion on the air opening side of the radial gap between the first outer member and the second outer member, the cured first adhesive becomes an obstacle. Therefore, the supply of the second adhesive to the radial gap may be hindered. Therefore, if the first adhesive is disposed on the closed side of the radial gap and the second adhesive is filled on the air opening side with respect to the first adhesive, the above-described problem can be avoided.

以上のように、本発明によれば、外方部材の変形及び削り屑の発生や、高コスト化を招くことなく、流体動圧軸受装置の組立を容易化することができる。   As described above, according to the present invention, the assembly of the fluid dynamic pressure bearing device can be facilitated without causing deformation of the outer member, generation of shavings, and cost increase.

換気扇モータ用の軸受ユニットの縦断面図である。It is a longitudinal cross-sectional view of the bearing unit for ventilation fan motors. 本発明の実施形態に係る流体動圧軸受装置の縦断面図である。1 is a longitudinal sectional view of a fluid dynamic bearing device according to an embodiment of the present invention. (a)は内方部材を図2のA方向から見た側面図、(b)は同B方向からみた側面図、(c)は同C方向から見た側面図である。(A) is the side view which looked at the inward member from A direction of FIG. 2, (b) is the side view seen from the B direction, (c) is the side view seen from the C direction. 図2の拡大図である。FIG. 3 is an enlarged view of FIG. 2. 上記流体動圧軸受装置の組立方法を示す断面図である。It is sectional drawing which shows the assembly method of the said fluid dynamic pressure bearing apparatus. 上記流体動圧軸受装置の組立方法を示す断面図である。It is sectional drawing which shows the assembly method of the said fluid dynamic pressure bearing apparatus. 上記流体動圧軸受装置の組立方法を示す断面図である。It is sectional drawing which shows the assembly method of the said fluid dynamic pressure bearing apparatus. 上記流体動圧軸受装置の組立方法を示す断面図である。It is sectional drawing which shows the assembly method of the said fluid dynamic pressure bearing apparatus. 他の実施形態に係る流体動圧軸受装置の拡大断面図である。It is an expanded sectional view of the fluid dynamic bearing device concerning other embodiments. 他の実施形態に係る流体動圧軸受装置の拡大断面図である。It is an expanded sectional view of the fluid dynamic bearing device concerning other embodiments. 他の実施形態に係る流体動圧軸受装置の断面図である。It is sectional drawing of the fluid dynamic pressure bearing apparatus which concerns on other embodiment. 従来の流体動圧軸受装置の断面図である。It is sectional drawing of the conventional fluid dynamic pressure bearing apparatus. 図12のX−X線における断面図である。It is sectional drawing in the XX line of FIG.

以下に本発明の実施の形態を図面に基づいて説明する。   Embodiments of the present invention will be described below with reference to the drawings.

図1は、本発明の一実施形態に係る流体動圧軸受装置4を組み込んだ軸受ユニット1の軸方向断面図である。この軸受ユニット1は、例えば、住宅の居室に設置される24時間換気システムの小型換気扇用モータ(より厳密に言えば、換気扇用インナーロータ型モータ)に組み込まれて使用されるものである。軸受ユニット1は、回転軸2と、回転軸2の外周面に固定されたモータロータ3、回転軸2の端部に設けられたファン6とからなる回転体を回転自在に支持するために、モータロータ3の軸方向両側に設けられ、回転軸2とハウジング5の間に配置された一対の流体動圧軸受装置4、4から構成される。軸方向一方(図中右側)の流体動圧軸受装置4とハウジング5との間には、スプリング7が圧縮状態で配置されている。尚、ステータは図示を省略している。   FIG. 1 is an axial sectional view of a bearing unit 1 incorporating a fluid dynamic bearing device 4 according to an embodiment of the present invention. The bearing unit 1 is used, for example, by being incorporated in a small ventilation fan motor (more strictly speaking, an inner rotor type motor for a ventilation fan) of a 24-hour ventilation system installed in a living room of a house. The bearing unit 1 is a motor rotor for rotatably supporting a rotating body including a rotating shaft 2, a motor rotor 3 fixed to the outer peripheral surface of the rotating shaft 2, and a fan 6 provided at an end of the rotating shaft 2. 3, and a pair of fluid dynamic bearing devices 4, 4 disposed between the rotating shaft 2 and the housing 5. A spring 7 is disposed in a compressed state between the fluid dynamic bearing device 4 and the housing 5 on one axial side (the right side in the figure). The stator is not shown.

流体動圧軸受装置4は、図2に示すように、内方部材10と、この内方部材10を回転自在に支持する外方部材20とを備える。内方部材10は、内周面13が回転軸2の外周面に圧入や接着により固定される(図1参照)。外方部材20は、外周面22a2がハウジング5の内周面に嵌合し、軸方向に摺動可能な状態で取り付けられる(図1参照)。軸方向および半径方向で互いに対向する内方部材10と外方部材20の各面間(ラジアル軸受隙間Rおよびスラスト軸受隙間T)には潤滑油が介在している(図2参照)。尚、図1中の流体動圧軸受装置4、4は、同一構造である。   As shown in FIG. 2, the fluid dynamic bearing device 4 includes an inner member 10 and an outer member 20 that rotatably supports the inner member 10. The inner member 10 has an inner peripheral surface 13 fixed to the outer peripheral surface of the rotary shaft 2 by press-fitting or bonding (see FIG. 1). The outer member 20 is attached so that the outer peripheral surface 22a2 is fitted to the inner peripheral surface of the housing 5 and is slidable in the axial direction (see FIG. 1). Lubricating oil is interposed between the surfaces of the inner member 10 and the outer member 20 (radial bearing gap R and thrust bearing gap T) facing each other in the axial direction and the radial direction (see FIG. 2). Note that the fluid dynamic bearing devices 4 and 4 in FIG. 1 have the same structure.

内方部材10は、環状をなし、金属、例えば焼結金属で形成される。内方部材10は、断面略矩形状をなした略円筒状の軸受部10aと、軸受部10aの内周に設けられ、回転軸2の外周面に固定される略円筒状の固定部10bとを有する。本実施形態では、軸受部10aと固定部10bとが一体に形成される。尚、図2では、軸受部10aと固定部10bとの概念的な境界を点線で示している。   The inner member 10 has an annular shape and is formed of a metal, for example, a sintered metal. The inner member 10 includes a substantially cylindrical bearing portion 10a having a substantially rectangular cross section, a substantially cylindrical fixing portion 10b provided on the inner periphery of the bearing portion 10a and fixed to the outer peripheral surface of the rotary shaft 2. Have In the present embodiment, the bearing portion 10a and the fixed portion 10b are integrally formed. In FIG. 2, a conceptual boundary between the bearing portion 10a and the fixed portion 10b is indicated by a dotted line.

内方部材10の軸受部10aの外周面11は円筒面状を成し、この面がラジアル軸受面として機能する。軸受部10aの外周面11には動圧溝11aが形成される。本実施形態では、例えば図3(b)に示すようなヘリングボーン形状の動圧溝11aが、外周面11の全面に形成される。動圧溝11aは、例えば転造加工により形成される。本実施形態では、内方部材10が焼結金属で形成されるため、転造加工の圧迫による内方部材10の外周面11の塑性流動を焼結金属の内部気孔で吸収できる。このため、塑性流動による内方部材10の表面の盛り上がりが抑えられ、動圧溝11aを精度良く形成することができる。尚、図3(b)では、動圧溝11a間の丘部をクロスハッチングで示している。   The outer peripheral surface 11 of the bearing portion 10a of the inner member 10 forms a cylindrical surface, and this surface functions as a radial bearing surface. A dynamic pressure groove 11a is formed on the outer peripheral surface 11 of the bearing portion 10a. In the present embodiment, for example, a herringbone-shaped dynamic pressure groove 11 a as shown in FIG. 3B is formed on the entire outer peripheral surface 11. The dynamic pressure groove 11a is formed by rolling, for example. In this embodiment, since the inner member 10 is formed of sintered metal, the plastic flow of the outer peripheral surface 11 of the inner member 10 due to compression of the rolling process can be absorbed by the internal pores of the sintered metal. For this reason, the rise of the surface of the inner member 10 due to plastic flow is suppressed, and the dynamic pressure groove 11a can be formed with high accuracy. In addition, in FIG.3 (b), the hill part between the dynamic-pressure grooves 11a is shown by cross hatching.

内方部材10の軸受部10aの軸方向両側の端面12は、軸方向と直交する方向に延在し、この面がスラスト軸受面として機能する。軸受部10aの軸方向両側の端面12には動圧溝12aが形成される。本実施形態では、例えば図3(a)及び(c)に示すように、ヘリングボーン形状の動圧溝12aが、端面12の全面に形成される。本実施形態では、内方部材10が焼結金属で形成されるため、動圧溝12aをプレス加工により精度良く形成することができる。動圧溝12aは、例えば焼結金属製の内方部材10のサイジングと同時に型成形することができる。尚、図3(a)及び(c)では、動圧溝12a間の丘部をクロスハッチングで示している。   End surfaces 12 on both axial sides of the bearing portion 10a of the inner member 10 extend in a direction orthogonal to the axial direction, and these surfaces function as thrust bearing surfaces. Dynamic pressure grooves 12a are formed on the end faces 12 on both axial sides of the bearing portion 10a. In this embodiment, for example, as shown in FIGS. 3A and 3C, a herringbone-shaped dynamic pressure groove 12 a is formed on the entire end surface 12. In this embodiment, since the inner member 10 is formed of a sintered metal, the dynamic pressure groove 12a can be formed with high accuracy by pressing. The dynamic pressure groove 12a can be molded simultaneously with the sizing of the inner member 10 made of sintered metal, for example. 3A and 3C, the hill portion between the dynamic pressure grooves 12a is indicated by cross hatching.

固定部10bは、軸受部10aの軸方向両側の端面12よりも軸方向外側に突出し、その突出した部分の外周面14が、外方部材20の内径端と半径方向に対向している。固定部10bの内周面13は、回転軸2の外周面に固定される。   The fixed portion 10b protrudes outward in the axial direction from the end surfaces 12 on both axial sides of the bearing portion 10a, and the outer peripheral surface 14 of the protruding portion faces the inner diameter end of the outer member 20 in the radial direction. The inner peripheral surface 13 of the fixed portion 10 b is fixed to the outer peripheral surface of the rotating shaft 2.

内方部材10は、例えば銅鉄系の焼結金属で形成され、本実施形態では、銅の配合比率が20〜80%の銅鉄系の焼結金属で形成される。銅の配合比率が20%未満になると動圧溝の成形性や潤滑性で問題となり、一方、銅の配合比率が80%を超えると鉄の割合が過小となって耐摩耗性が不足する恐れがあるためである。また、内方部材10のうち、少なくともラジアル軸受面を形成する外周面11は、焼結部材の表面開孔率を2〜20%とする。表面開孔率が2%未満では潤滑油の循環が十分でなく、表面開孔率が20%を超えると潤滑油の圧力が低下する。さらに、内方部材10の密度は、潤滑油の連通性や塑性加工性を維持するために、6〜8g/cm3とされる。 The inner member 10 is formed of, for example, a copper iron-based sintered metal, and in this embodiment, the inner member 10 is formed of a copper iron-based sintered metal with a copper blending ratio of 20 to 80%. If the copper content is less than 20%, there will be a problem with the formability and lubricity of the dynamic pressure groove. On the other hand, if the copper content exceeds 80%, the iron content will be too low and wear resistance may be insufficient. Because there is. Moreover, the outer peripheral surface 11 which forms a radial bearing surface at least among the inward members 10 makes the surface opening rate of a sintered member 2-20%. When the surface opening ratio is less than 2%, the circulation of the lubricating oil is not sufficient, and when the surface opening ratio exceeds 20%, the pressure of the lubricating oil decreases. Further, the density of the inner member 10 is set to 6 to 8 g / cm 3 in order to maintain the communication property and plastic workability of the lubricating oil.

外方部材20は、図2に示すように、断面L字形状をなした環状の第1外方部材21及び第2外方部材22からなる。第1外方部材21は、円筒部21aと、円筒部21aの軸方向一端(図2の右端)から内径側に延在する平板部21bとを一体に有する。第2外方部材22は、円筒部22aと、円筒部22aの軸方向他端(図2の左端)から内径側に延在する平板部22bとを一体に有する。本実施形態では、例えば金属板をプレス加工して、第1外方部材21及び第2外方部材22が形成される。金属板は、ステンレス鋼板や冷間圧延鋼板等を用いることができ、その板厚は0.1〜1mm程度である。   As shown in FIG. 2, the outer member 20 includes an annular first outer member 21 and second outer member 22 having an L-shaped cross section. The first outer member 21 integrally includes a cylindrical portion 21a and a flat plate portion 21b extending from the one axial end of the cylindrical portion 21a (the right end in FIG. 2) to the inner diameter side. The second outer member 22 integrally includes a cylindrical portion 22a and a flat plate portion 22b extending from the other axial end of the cylindrical portion 22a (the left end in FIG. 2) to the inner diameter side. In the present embodiment, for example, the first outer member 21 and the second outer member 22 are formed by pressing a metal plate. A stainless steel plate, a cold-rolled steel plate, etc. can be used for a metal plate, The plate | board thickness is about 0.1-1 mm.

図4に示すように、第1外方部材21の円筒部21aの外周面21a2と第2外方部材22の円筒部22aの内周面22a1とは、何れの箇所でも圧入されておらず、半径方向隙間Pを介して嵌合している。図示例では、第1外方部材21の外周面21a2及び第2外方部材22の内周面22a1が共に平滑な円筒面であり、半径方向隙間Pが軸方向で一定となっている。半径方向隙間Pの大きさは、例えば30〜100μmの範囲に設定される。   As shown in FIG. 4, the outer peripheral surface 21a2 of the cylindrical portion 21a of the first outer member 21 and the inner peripheral surface 22a1 of the cylindrical portion 22a of the second outer member 22 are not press-fitted in any place, It fits via the radial clearance P. In the illustrated example, the outer peripheral surface 21a2 of the first outer member 21 and the inner peripheral surface 22a1 of the second outer member 22 are both smooth cylindrical surfaces, and the radial gap P is constant in the axial direction. The size of the radial gap P is set in a range of 30 to 100 μm, for example.

半径方向隙間Pには、第1接着剤Q1及び第2接着剤Q2が介在している。第1接着剤Q1は、第1外方部材21と第2外方部材22を仮固定するためのものである。第1接着剤Q1としては、硬化時間が短いものが使用されるが、硬化時間が短すぎると後述するスラスト軸受隙間の設定に要する作業時間が確保できないため、一定時間(例えば60秒)は硬化しないものが好ましい。具体的には、第1接着剤Q1として、例えば瞬間接着剤(シアノアクリレート系接着剤)、嫌気性接着剤、あるいは紫外線硬化型接着剤等が使用される。第2接着剤Q2は、半径方向隙間Pの全周を完全に封止している。第2接着剤Q2としては、封止性に優れたものが使用できる。例えば、硬化時に体積収縮が生じるものは、半径方向隙間Pを完全に封止することができない恐れがあるため、第2接着剤としては体積収縮を生じないものが好ましい。また、現実の半径方向隙間Pは隙間幅が完全に均一ではないため、第2接着剤Q2の粘度が低すぎると、毛管現象により第2接着剤が隙間の狭い側に移動し、半径方向隙間Pを完全に封止することができない恐れがある。従って、第2接着剤Q2としては、粘度が比較的高いもの(例えば、2800cp以上(23℃、50rpm/cp))が好ましい。具体的には、第2接着剤Q2として、例えばエポキシ系接着剤や、紫外線硬化型接着剤が使用できる。本実施形態では、第1接着剤Q1としてシアノアクリレート系接着剤が使用され、第2接着剤Q2としてエポキシ系接着剤が使用される。第1接着剤Q1は、例えば円周方向に離隔した複数箇所に配され、且つ、第2接着剤Q2よりも半径方向隙間Pの閉塞側(図4の左側)に配される。尚、第1接着剤Q1及び第2接着剤Q2の配置箇所は上記に限らず、例えば、第1接着剤Q1を全周に配してもよい。   The first adhesive Q1 and the second adhesive Q2 are interposed in the radial gap P. The first adhesive Q1 is for temporarily fixing the first outer member 21 and the second outer member 22. As the first adhesive Q1, a material having a short curing time is used. However, if the curing time is too short, the working time required for setting a thrust bearing gap, which will be described later, cannot be secured. Those that do not are preferred. Specifically, as the first adhesive Q1, for example, an instantaneous adhesive (cyanoacrylate adhesive), an anaerobic adhesive, an ultraviolet curable adhesive, or the like is used. The second adhesive Q2 completely seals the entire circumference of the radial gap P. As the second adhesive Q2, one having excellent sealing properties can be used. For example, a material that undergoes volume shrinkage upon curing may not be able to completely seal the radial gap P, so that the second adhesive preferably does not cause volume shrinkage. Further, since the gap width of the actual radial gap P is not completely uniform, if the viscosity of the second adhesive Q2 is too low, the second adhesive moves to the narrow gap side due to capillary action, and the radial gap P may not be completely sealed. Accordingly, the second adhesive Q2 is preferably one having a relatively high viscosity (for example, 2800 cp or more (23 ° C., 50 rpm / cp)). Specifically, for example, an epoxy adhesive or an ultraviolet curable adhesive can be used as the second adhesive Q2. In the present embodiment, a cyanoacrylate adhesive is used as the first adhesive Q1, and an epoxy adhesive is used as the second adhesive Q2. The first adhesive Q1 is disposed, for example, at a plurality of locations separated in the circumferential direction, and is disposed closer to the closed side (left side in FIG. 4) of the radial gap P than the second adhesive Q2. In addition, the arrangement | positioning location of the 1st adhesive agent Q1 and the 2nd adhesive agent Q2 is not restricted above, For example, you may distribute | arrange the 1st adhesive agent Q1 to a perimeter.

図2に示すように、第1外方部材21の円筒部21aの内周面21a1は平滑な円筒面で形成され、ラジアル軸受面として機能する。第1外方部材21の平板部21bの内側端面21b1、及び、第2外方部材22の平板部22bの内側端面22b1は、平滑な平坦面で形成され、それぞれスラスト軸受面として機能する。外方部材20の内周面21a1(ラジアル軸受面)と内方部材10の軸受部10aの外周面11(ラジアル軸受面)との間にはラジアル軸受隙間Rが形成され、外方部材20の内側端面21b1,22b1(スラスト軸受面)と内方部材10の軸受部10aの両端面12(スラスト軸受面)との間には、それぞれスラスト軸受隙間Tが形成される。   As shown in FIG. 2, the inner peripheral surface 21a1 of the cylindrical portion 21a of the first outer member 21 is formed as a smooth cylindrical surface and functions as a radial bearing surface. The inner end surface 21b1 of the flat plate portion 21b of the first outer member 21 and the inner end surface 22b1 of the flat plate portion 22b of the second outer member 22 are formed as smooth flat surfaces, and each function as a thrust bearing surface. A radial bearing gap R is formed between the inner peripheral surface 21 a 1 (radial bearing surface) of the outer member 20 and the outer peripheral surface 11 (radial bearing surface) of the bearing portion 10 a of the inner member 10. Thrust bearing gaps T are formed between the inner end surfaces 21b1 and 22b1 (thrust bearing surfaces) and both end surfaces 12 (thrust bearing surfaces) of the bearing portion 10a of the inner member 10, respectively.

第1外方部材21の平板部21bの内径端、及び、第2外方部材22の平板部22bの内径端は、内方部材10の固定部10bの外周面14と適宜の半径方向隙間をもって対向している。図示例では、平板部21b,22bの内径端に、軸方向外側に向けて拡径したテーパ面21b2,22b2が形成され、このテーパ面21b2,22b2と固定部10bの外周面14との間に断面楔状のシール空間Sが形成される。このシール空間Sにより、潤滑油の漏れ出しが防止される。さらに、内方部材10の固定部10bの端面15や、外方部材20の外側端面(平板部21b,22bの外側端面)に撥油剤を塗布すれば、シール空間Sからの油漏れをより確実に防止できる。   The inner diameter end of the flat plate portion 21 b of the first outer member 21 and the inner diameter end of the flat plate portion 22 b of the second outer member 22 have an appropriate radial clearance from the outer peripheral surface 14 of the fixed portion 10 b of the inner member 10. Opposite. In the illustrated example, tapered surfaces 21b2 and 22b2 having diameters increased outward in the axial direction are formed at the inner diameter ends of the flat plate portions 21b and 22b, and between the tapered surfaces 21b2 and 22b2 and the outer peripheral surface 14 of the fixing portion 10b. A wedge-shaped seal space S is formed. The seal space S prevents leakage of the lubricating oil. Furthermore, if an oil repellent is applied to the end surface 15 of the fixed portion 10b of the inner member 10 and the outer end surface of the outer member 20 (the outer end surfaces of the flat plate portions 21b and 22b), oil leakage from the seal space S can be ensured. Can be prevented.

以上の構成からなる流体動圧軸受装置4の内部空間には焼結金属製の内方部材10の内部気孔を含めて、潤滑油が充填される。潤滑油は、図2に示すように、内方部材10と外方部材20との間の隙間に満たされ、スラスト軸受隙間T及びシール空間Sの毛細管力により外径側(ラジアル軸受隙間R側)に引き込まれる。潤滑油の油面は、スラスト軸受隙間Tあるいはシール空間Sに保持される。   The internal space of the fluid dynamic bearing device 4 having the above configuration is filled with lubricating oil including the internal pores of the sintered metal inner member 10. As shown in FIG. 2, the lubricating oil is filled in the gap between the inner member 10 and the outer member 20, and the outer diameter side (radial bearing gap R side) is generated by the capillary force of the thrust bearing gap T and the seal space S. ). The oil surface of the lubricating oil is held in the thrust bearing gap T or the seal space S.

回転軸2が回転すると、各流体動圧軸受装置4のラジアル軸受隙間Rの油膜の圧力が動圧溝11aにより高められ、この油膜の動圧作用により回転軸2および内方部材10が外方部材20に対してラジアル方向に非接触支持される。これと同時に、各流体動圧軸受装置4のスラスト軸受隙間Tの油膜の圧力が動圧溝12aにより高められ、回転軸2および内方部材10が外方部材20に対して、両スラスト方向に非接触支持される(図2参照)。   When the rotating shaft 2 rotates, the pressure of the oil film in the radial bearing gap R of each fluid dynamic bearing device 4 is increased by the dynamic pressure groove 11a, and the rotating shaft 2 and the inner member 10 are moved outward by the dynamic pressure action of the oil film. The member 20 is supported in a non-contact manner in the radial direction. At the same time, the pressure of the oil film in the thrust bearing gap T of each fluid dynamic pressure bearing device 4 is increased by the dynamic pressure groove 12a, so that the rotary shaft 2 and the inner member 10 are in both thrust directions with respect to the outer member 20. Non-contact support (see FIG. 2).

スラスト軸受隙間Tの潤滑油に動圧作用が生じると、図中右側の流体動圧軸受装置4の外方部材20が図中右側にスライドしてスプリング7を圧縮することにより、両流体動圧軸受装置4,4のスラスト軸受隙間Tが確保される。このように、外方部材20をハウジング5に対して軸方向移動可能な状態で嵌合することで、スラスト軸受隙間Tを高精度に設定することができる。これにより、外方部材20に対して内方部材10が確実に非接触支持され、接触摺動による騒音の発生をより確実に防止できる。   When a dynamic pressure action occurs in the lubricating oil in the thrust bearing gap T, the outer member 20 of the fluid dynamic pressure bearing device 4 on the right side in the figure slides to the right side in the figure to compress the spring 7, thereby both fluid dynamic pressures. The thrust bearing gap T of the bearing devices 4 and 4 is ensured. Thus, the thrust bearing gap T can be set with high accuracy by fitting the outer member 20 to the housing 5 so as to be movable in the axial direction. Thereby, the inner member 10 is reliably non-contact supported with respect to the outer member 20, and generation | occurrence | production of the noise by contact sliding can be prevented more reliably.

次に、上記の流体動圧軸受装置4の組立方法について説明する。   Next, a method for assembling the fluid dynamic bearing device 4 will be described.

この組立方法に用いられる治具30は、図5に示すように、固定治具31と、固定治具31の内側に配置され上下方向に移動可能な移動治具32とからなる。固定治具31は、載置面31a、ガイド面31b、及び、移動治具32と摺動自在に嵌合する内周面31cを有する。移動治具32は、肩面32a、ガイド面32bおよび固定治具31と摺動自在に嵌合する外周面32cを有する。   As shown in FIG. 5, the jig 30 used in this assembling method includes a fixing jig 31 and a moving jig 32 that is arranged inside the fixing jig 31 and is movable in the vertical direction. The fixing jig 31 has a mounting surface 31a, a guide surface 31b, and an inner peripheral surface 31c that is slidably fitted to the moving jig 32. The moving jig 32 has an outer peripheral surface 32c that is slidably fitted to the shoulder surface 32a, the guide surface 32b, and the fixing jig 31.

まず、固定治具31のガイド面31bに第2外方部材22の平板部22bを下向きにして挿入し、平板部22bを載置面31aに当接させて設置する。その後、内方部材10の内周面13を移動治具32のガイド面32bに嵌合させると共に、内方部材10を第2外方部材22の内周に挿入し、内方部材10の軸受部10aの下側端面12を第2外方部材22の平板部22bの内側端面22b1に当接させる。このとき、移動治具32の肩面32aは、内方部材10の固定部10bの下側端面15よりも下方に位置している。   First, the flat plate portion 22b of the second outer member 22 is inserted downward into the guide surface 31b of the fixing jig 31, and the flat plate portion 22b is placed in contact with the mounting surface 31a. Thereafter, the inner peripheral surface 13 of the inner member 10 is fitted to the guide surface 32 b of the moving jig 32, and the inner member 10 is inserted into the inner periphery of the second outer member 22. The lower end surface 12 of the portion 10 a is brought into contact with the inner end surface 22 b 1 of the flat plate portion 22 b of the second outer member 22. At this time, the shoulder surface 32 a of the moving jig 32 is positioned below the lower end surface 15 of the fixed portion 10 b of the inner member 10.

その後、図6に示すように、移動治具32を上昇させ、移動治具32の肩面32aを内方部材10の固定部10bの下側端面15に当接させる。この位置を基準位置として、移動治具32をさらに上昇させて内方部材10を第2外方部材22から離隔させ、両スラスト軸受隙間Tの合計量Δとなる位置で止め、この位置で静止状態を維持する。   Thereafter, as shown in FIG. 6, the moving jig 32 is raised, and the shoulder surface 32 a of the moving jig 32 is brought into contact with the lower end surface 15 of the fixed portion 10 b of the inner member 10. With this position as a reference position, the moving jig 32 is further raised to separate the inner member 10 from the second outer member 22 and stopped at a position where the total amount Δ of both thrust bearing gaps T is reached. Maintain state.

次に、図7に示すように、第1外方部材21を第2外方部材22に組み付ける。このとき、第1外方部材21の円筒部21aの外周面21a2には、予め第1接着剤Q1を塗布しておく。本実施形態では、円筒部21aの外周面21a2のうち、軸方向中央よりやや下方の円周方向に離隔した複数箇所に、第1接着剤Q1を点状に塗布しておく(図示省略)。こうして第1接着剤Q1が塗布された第1外方部材21の円筒部21aの外周面21a2を、第2外方部材22の円筒部22aの内周面22a1に圧入することなく半径方向隙間を介して嵌合させ、平板部21bの下側端面21b1が内方部材10の軸受部10aの上側端面12に当接したら、スラスト軸受隙間Tの設定が完了する。スラスト軸受隙間Tの設定が完了するまでの間に第1接着剤Q1が硬化すると、作業が阻害されるため、第1接着剤Q1には、スラスト軸受隙間Tの設定作業時間を確保できる硬化時間(例えば60秒以上)を有するものが使用される。また、第1接着剤Q1として粘度が800mPa・sec以上のものを使用することで、第1接着剤Q1が下方に垂れてラジアル軸受面やスラスト軸受面に付着する事態や、スラスト軸受隙間Tの設定が完了する前に第1接着剤Q1が硬化する事態を防止できる。   Next, as shown in FIG. 7, the first outer member 21 is assembled to the second outer member 22. At this time, the first adhesive Q1 is applied in advance to the outer peripheral surface 21a2 of the cylindrical portion 21a of the first outer member 21. In this embodiment, the 1st adhesive agent Q1 is apply | coated to the some location spaced apart in the circumferential direction a little below the axial direction center among the outer peripheral surfaces 21a2 of the cylindrical part 21a (illustration omitted). Thus, the outer circumferential surface 21a2 of the cylindrical portion 21a of the first outer member 21 to which the first adhesive Q1 is applied is not pressed into the inner peripheral surface 22a1 of the cylindrical portion 22a of the second outer member 22, and a radial gap is formed. When the lower end surface 21b1 of the flat plate portion 21b comes into contact with the upper end surface 12 of the bearing portion 10a of the inner member 10, the setting of the thrust bearing gap T is completed. If the first adhesive Q1 is cured before the setting of the thrust bearing gap T is completed, the operation is hindered. Therefore, the first adhesive Q1 has a setting time that can secure the setting work time of the thrust bearing gap T. Those having (for example, 60 seconds or more) are used. In addition, by using the first adhesive Q1 having a viscosity of 800 mPa · sec or more, the first adhesive Q1 hangs down and adheres to the radial bearing surface or the thrust bearing surface, and the thrust bearing gap T It is possible to prevent the first adhesive Q1 from being cured before the setting is completed.

こうして、スラスト軸受隙間Tが設定された状態で、第1外方部材21の円筒部21aと第2外方部材22の円筒部22aとの間の半径方向隙間Pに介在した第1接着剤Q1を硬化させることで、第1外方部材21と第2外方部材22とが仮固定される。本実施形態では、半径方向隙間Pに介在した第1接着剤Q1に硬化促進剤を付与することにより、第1接着剤Q1の硬化を促進する。これにより、第1接着剤Q1として、硬化時間が比較的長いものでも使用することが可能となる。硬化促進剤は、半径方向隙間Pの大気開放側の端部(図7の上端)のうち、円周方向に離隔した複数箇所(例えば直径方向で対向した2箇所)から滴下される。硬化促進剤としては、例えば、硬化促進成分として芳香族アミンを0.1〜30%含むものを使用することができる。硬化促進剤の溶媒としては、揮発性の高い有機溶媒、例えばアセトンを使用することができる。こうして、硬化促進剤の成分を調整して揮発時間を管理することにより、第1接着剤Q1が硬化する前に第1隙間P1からはみ出してラジアル軸受面やスラスト軸受面まで回り込む事態を防止することができる。   Thus, the first adhesive Q1 interposed in the radial gap P between the cylindrical portion 21a of the first outer member 21 and the cylindrical portion 22a of the second outer member 22 in a state where the thrust bearing gap T is set. The first outer member 21 and the second outer member 22 are temporarily fixed by curing. In the present embodiment, the curing of the first adhesive Q1 is promoted by applying a curing accelerator to the first adhesive Q1 interposed in the radial gap P. As a result, even the first adhesive Q1 having a relatively long curing time can be used. The curing accelerator is dropped from a plurality of locations (for example, two locations facing each other in the diametrical direction) separated in the circumferential direction among the end portions (the upper end in FIG. 7) of the radial gap P on the atmosphere opening side. As a hardening accelerator, what contains 0.1-30% of aromatic amines as a hardening acceleration | stimulation component can be used, for example. As a solvent for the curing accelerator, a highly volatile organic solvent such as acetone can be used. In this way, by adjusting the components of the curing accelerator and managing the volatilization time, it is possible to prevent a situation where the first adhesive Q1 protrudes from the first gap P1 before it cures and goes around to the radial bearing surface or the thrust bearing surface. Can do.

第1接着剤Q1が硬化して第1外方部材21と第2外方部材22とが仮固定されたら、内方部材10及び外方部材20からなるサブアッシを治具30から取り外す。こうして、第1外方部材21と第2外方部材22とを仮固定して治具30から取り外すことにより、各製品の製造工程における治具30の使用時間が短縮され、この治具30を次の製品(流体動圧軸受装置4)の組立工程に使用することができる。その結果、量産時における治具30の使用個数を削減することができ、生産コストを低減できる。   When the first adhesive Q1 is cured and the first outer member 21 and the second outer member 22 are temporarily fixed, the sub-assembly including the inner member 10 and the outer member 20 is removed from the jig 30. Thus, by temporarily fixing the first outer member 21 and the second outer member 22 and removing them from the jig 30, the usage time of the jig 30 in the manufacturing process of each product is shortened. It can be used in the assembly process of the next product (fluid dynamic bearing device 4). As a result, the number of jigs 30 used in mass production can be reduced, and the production cost can be reduced.

その後、図8に示すように、第1外方部材21の円筒部21aの外周面21a2と第2外方部材22の円筒部22aの内周面22a1との間の半径方向隙間Pに、ノズル40から第2接着剤Q2を注入し、半径方向隙間Pを完全に封止する。このとき、第2外方部材22の円筒部22aの端部にテーパ面22a3を設けることで、第2接着剤Q2の注入が容易化される。その後、サブアッシごと焼成して第2接着剤Q2を固化する。尚、第2接着剤Q2が嫌気性接着剤の場合、焼成は不要である。   Thereafter, as shown in FIG. 8, the nozzle is formed in the radial gap P between the outer peripheral surface 21 a 2 of the cylindrical portion 21 a of the first outer member 21 and the inner peripheral surface 22 a 1 of the cylindrical portion 22 a of the second outer member 22. The second adhesive Q2 is injected from 40 to completely seal the radial gap P. At this time, by providing the tapered surface 22a3 at the end of the cylindrical portion 22a of the second outer member 22, the injection of the second adhesive Q2 is facilitated. Then, the second adhesive Q2 is solidified by firing together with the subassembly. In addition, baking is unnecessary when the 2nd adhesive agent Q2 is an anaerobic adhesive agent.

以上のように組み立てられた内方部材10と外方部材20との間に、焼結金属製の内方部材10の内部気孔を含めて、潤滑油が注入される。その後、流体動圧軸受装置4の使用環境で想定される最高温度(上限)を超える設定温度まで加熱し、このときの熱膨張によりシール空間Sから溢れ出した潤滑油を拭き取る。その後、常温まで冷却することにより潤滑油が収縮し、油面が軸受内部側(外径側)に後退してスラスト軸受隙間Tの内径側端部近傍、あるいは、シール空間Sに保持される。これにより、想定される温度範囲内であれば、熱膨張により潤滑油が漏れ出すことはない。以上により、流体動圧軸受装置4が完成する。   Lubricating oil is injected between the inner member 10 and the outer member 20 assembled as described above, including the internal pores of the inner member 10 made of sintered metal. After that, the fluid dynamic pressure bearing device 4 is heated to a set temperature exceeding the maximum temperature (upper limit) assumed in the usage environment, and the lubricating oil overflowing from the seal space S due to thermal expansion at this time is wiped off. Thereafter, the lubricating oil contracts by cooling to room temperature, and the oil surface is retracted to the bearing inner side (outer diameter side) and held in the vicinity of the inner diameter side end of the thrust bearing gap T or in the seal space S. Thereby, if it is in the assumed temperature range, lubricating oil will not leak by thermal expansion. Thus, the fluid dynamic bearing device 4 is completed.

本発明は上記の実施形態に限られない。以下、本発明の他の実施形態を説明するが、上記の実施形態と同様の機能を有する箇所には、同一の符号を付して重複説明を省略する。   The present invention is not limited to the above embodiment. Hereinafter, although other embodiment of this invention is described, the same code | symbol is attached | subjected to the location which has the function similar to said embodiment, and duplication description is abbreviate | omitted.

上記の実施形態では、第1接着剤Q1が第2接着剤Q2よりも半径方向隙間Pの閉塞側(図4の左側)に配された場合を示したが、これに限られない。例えば図9に示すように、半径方向隙間Pの大気開放側の端部(図中右端)の円周方向複数箇所に第1接着剤Q1を配し、これよりも閉塞側に第2接着剤Q2を配してもよい。この場合、半径方向隙間Pの大気開放側の端部で第1接着剤Q1を硬化させた後、半径方向隙間Pに第2接着剤Q2を注入する必要があるため、硬化した第1接着剤Q1が邪魔になって第2接着剤Q2の注入作業が阻害される恐れがある。従って、作業性の観点からは、上記の実施形態のように、第2接着剤Q2を第1接着剤Q1よりも大気開放側に充填することが好ましい。   In the above embodiment, the case where the first adhesive Q1 is disposed closer to the closed side (the left side in FIG. 4) of the radial gap P than the second adhesive Q2 is shown, but the present invention is not limited thereto. For example, as shown in FIG. 9, the first adhesive Q1 is disposed at a plurality of locations in the circumferential direction at the end portion (right end in the drawing) of the radial gap P on the atmosphere opening side, and the second adhesive is disposed closer to the closing side than this. Q2 may be arranged. In this case, since it is necessary to inject the second adhesive Q2 into the radial gap P after the first adhesive Q1 is cured at the end of the radial gap P on the atmosphere opening side, the cured first adhesive There is a possibility that the operation of injecting the second adhesive Q2 may be hindered by Q1 being in the way. Therefore, from the viewpoint of workability, it is preferable to fill the second adhesive Q2 closer to the atmosphere release side than the first adhesive Q1 as in the above embodiment.

また、上記の実施形態では、図4に示すように、第1外方部材21の外周面21a2と第2外方部材22の内周面22a1との間の半径方向隙間Pの隙間幅が軸方向で一定である場合を示したが、これに限らず、例えば図10に示すように、隙間幅の異なる第1隙間P1及び第2隙間P2を設けてもよい。この場合、第1隙間P1に第1接着剤Q1を配し、第2隙間P2に第2接着剤Q2を配することにより、第1隙間P1及び第2隙間P2を、それぞれ第1接着剤Q1及び第2接着剤Q2に適した大きさに設定することができる。例えば、第1接着剤Q1は封止性に劣ることが多いため、第1隙間P1は小さい方が好ましく、第2接着剤Q2は粘度が高く隙間に入り込みにくいことが多いため、第2隙間P2はある程度大きい方が好ましい。従って、第1隙間P1は第2隙間P2よりも小さくすることが好ましく、例えば、第1隙間P1は30〜100μmの範囲内、第2隙間P2は30〜120μmの範囲内で、第1隙間P1が第2隙間P2より小さい値に設定される。   In the above embodiment, as shown in FIG. 4, the gap width of the radial gap P between the outer peripheral surface 21 a 2 of the first outer member 21 and the inner peripheral surface 22 a 1 of the second outer member 22 is an axis. Although the case where the direction is constant is shown, the present invention is not limited to this, and for example, as shown in FIG. 10, a first gap P1 and a second gap P2 having different gap widths may be provided. In this case, by arranging the first adhesive Q1 in the first gap P1 and arranging the second adhesive Q2 in the second gap P2, the first gap P1 and the second gap P2 are respectively changed to the first adhesive Q1. And it can set to the magnitude | size suitable for the 2nd adhesive agent Q2. For example, since the first adhesive Q1 is often inferior in sealing performance, the first gap P1 is preferably small, and the second adhesive Q2 is often viscous and difficult to enter the gap, so the second gap P2 Is preferably somewhat large. Accordingly, the first gap P1 is preferably smaller than the second gap P2. For example, the first gap P1 is in the range of 30 to 100 μm, the second gap P2 is in the range of 30 to 120 μm, and the first gap P1. Is set to a value smaller than the second gap P2.

また、図10では、第2隙間P2が、第1隙間P1よりも大気開放側(軸方向一方側、図中右側)に配され、且つ、大気開放側に向けて隙間幅を大きくした断面楔形状とされる。このように、第2隙間P2の開口部(右側端部)の隙間幅を大きくすることで、第2接着剤Q2の第2隙間P2への注入が容易化される。尚、図10では、第1外方部材21の外周面21a2に設けたテーパ面21a20と第2外方部材22の円筒状内周面22a1との間に断面楔形状の第2隙間P2を形成しているが、これに限られない。例えば、第2外方部材22の内周面22a1にテーパ面を設け、このテーパ面と第1外方部材21の円筒状外周面21a2との間に断面楔形状の第2隙間P2を形成してもよい(図示省略)。あるいは、第1外方部材21の外周面21a2及び第2外方部材22の内周面22a1の双方にテーパ面を設け、これらの間に断面楔形状の第2隙間P2を形成してもよい(図示省略)。   Also, in FIG. 10, the second gap P2 is arranged on the atmosphere opening side (on the one side in the axial direction, the right side in the drawing) with respect to the first gap P1, and the cross-sectional wedge has a gap width increased toward the atmosphere opening side. Shaped. Thus, by increasing the gap width of the opening (right end) of the second gap P2, the injection of the second adhesive Q2 into the second gap P2 is facilitated. In FIG. 10, a second gap P2 having a wedge-shaped cross section is formed between the tapered surface 21a20 provided on the outer peripheral surface 21a2 of the first outer member 21 and the cylindrical inner peripheral surface 22a1 of the second outer member 22. However, it is not limited to this. For example, a tapered surface is provided on the inner peripheral surface 22a1 of the second outer member 22, and a second gap P2 having a wedge-shaped cross section is formed between the tapered surface and the cylindrical outer peripheral surface 21a2 of the first outer member 21. (Not shown). Alternatively, both the outer peripheral surface 21a2 of the first outer member 21 and the inner peripheral surface 22a1 of the second outer member 22 may be provided with tapered surfaces, and a second gap P2 having a wedge-shaped cross section may be formed therebetween. (Not shown).

また、上記の実施形態では、第1接着剤Q1に硬化促進剤を付与する場合を示したが、これが不要な場合は硬化促進剤の付与を省略してもよい。また、第1接着剤Q1として紫外線硬化型接着剤を使用する場合は、紫外線を照射して第1接着剤Q1の硬化を促進することができる。   Moreover, in said embodiment, although the case where a hardening accelerator was provided to the 1st adhesive agent Q1 was shown, when this is unnecessary, you may abbreviate | omit provision of a hardening accelerator. Moreover, when using an ultraviolet curable adhesive as the 1st adhesive Q1, it can irradiate with an ultraviolet-ray and can accelerate | stimulate hardening of the 1st adhesive Q1.

また、上記の実施形態では、内方部材10の軸受部10aと固定部10bとが一体に形成されているが、これに限らず、例えば図11に示すように、軸受部10aと固定部10bとを別体に形成してもよい。軸受部10aの内周面と固定部10bの外周面とは、圧入、隙間接着、圧入接着(接着剤介在下での圧入)等の適宜の方法で固定される。これにより、軸受部10a及び固定部10bの形状を単純化できるため、これらの加工が容易化される。また、軸受部10aと固定部10bとを別材料で形成することができる。例えば、軸受部10aは外方部材20と摺動し得るため、耐摩耗性を重視して銅鉄系の焼結金属で形成する一方で、固定部10bは外方部材20と摺動しないため、強度を重視して鉄系の焼結金属や溶製材で形成することができる。尚、軸受部10aと固定部10bとは必ずしも別材料で形成する必要はなく、同一の材料で別体に形成してもよい。   In the above embodiment, the bearing portion 10a and the fixed portion 10b of the inner member 10 are integrally formed. However, the present invention is not limited thereto, and for example, as shown in FIG. 11, the bearing portion 10a and the fixed portion 10b. And may be formed separately. The inner peripheral surface of the bearing portion 10a and the outer peripheral surface of the fixed portion 10b are fixed by an appropriate method such as press-fitting, gap adhesion, press-fitting adhesion (press-fitting with an adhesive interposed). Thereby, since the shape of the bearing part 10a and the fixed part 10b can be simplified, these processes are facilitated. Moreover, the bearing part 10a and the fixing | fixed part 10b can be formed with a different material. For example, since the bearing portion 10a can slide with the outer member 20, it is formed of copper iron-based sintered metal with an emphasis on wear resistance, while the fixed portion 10b does not slide with the outer member 20. The steel can be formed of iron-based sintered metal or melted material with emphasis on strength. Note that the bearing portion 10a and the fixed portion 10b do not necessarily have to be formed of different materials, and may be formed of the same material separately.

また、図3に示すように動圧溝11a,12aが一方向回転用である場合、回転方向を識別するために、第1外方部材21と第2外方部材22とを異なる色相の表面にすることで、誤組みを防止することができる。異なる色相の表面を形成するためには、例えば異なる色相の材質を用いたり、表面処理を施したりすればよい。   In addition, when the dynamic pressure grooves 11a and 12a are for one-way rotation as shown in FIG. 3, the first outer member 21 and the second outer member 22 have different hue surfaces in order to identify the rotation direction. By doing so, it is possible to prevent erroneous assembly. In order to form surfaces having different hues, for example, materials having different hues may be used or surface treatment may be performed.

また、上記の実施形態では、外方部材20の外周面、すなわち第2外方部材22の円筒部22aの外周面22a2が、ハウジング5の内周面に嵌合し、軸方向に摺動可能な状態で取り付けられるが、これに限らず、外方部材20の外周面を静止側部材の内周面に圧入や接着等の適宜の手段で固定してもよい。   In the above embodiment, the outer peripheral surface of the outer member 20, that is, the outer peripheral surface 22 a 2 of the cylindrical portion 22 a of the second outer member 22 is fitted to the inner peripheral surface of the housing 5 and can slide in the axial direction. However, the present invention is not limited to this, and the outer peripheral surface of the outer member 20 may be fixed to the inner peripheral surface of the stationary member by appropriate means such as press fitting or adhesion.

また、上記の実施形態では、内方部材10に動圧溝11a及び12aを形成した場合を示したが、これに限らず、外方部材20に動圧溝を形成してもよい。特に、外方部材20の内側端面21b1,22b1に動圧溝を形成すれば、第1外方部材21及び第2外方部材22のプレス加工と同時に動圧溝を形成することができる。また、必ずしも動圧溝を形成する必要はなく、ラジアル軸受面及びスラスト軸受面の一方又は双方の動圧溝を省略してもよい。   Moreover, although the case where the dynamic pressure grooves 11a and 12a were formed in the inner member 10 was shown in the above embodiment, the present invention is not limited to this, and the dynamic pressure grooves may be formed in the outer member 20. In particular, if the dynamic pressure grooves are formed on the inner end surfaces 21 b 1 and 22 b 1 of the outer member 20, the dynamic pressure grooves can be formed simultaneously with the pressing of the first outer member 21 and the second outer member 22. Further, it is not always necessary to form the dynamic pressure grooves, and one or both of the dynamic pressure grooves of the radial bearing surface and the thrust bearing surface may be omitted.

また、上記の実施形態では、動圧溝11a及び12aが何れもヘリングボーン形状である場合を示したが、これに限らず、スパイラル形状やステップ形状など、他の形状であってもよい。特に、スラスト軸受面に形成される動圧溝12aは、潤滑油を外径側に押し込むポンプアウト型であることが好ましい(図示省略)。これにより、ラジアル軸受隙間Rに積極的に潤滑油が供給されるため、負圧の発生を防止できる。   In the above embodiment, the case where both the dynamic pressure grooves 11a and 12a have the herringbone shape is shown, but the present invention is not limited to this, and other shapes such as a spiral shape and a step shape may be used. In particular, the dynamic pressure groove 12a formed on the thrust bearing surface is preferably a pump-out type that pushes lubricating oil to the outer diameter side (not shown). Thereby, since lubricating oil is positively supplied to the radial bearing gap R, generation of negative pressure can be prevented.

1 軸受ユニット
2 回転軸
3 モータロータ
4 流体動圧軸受装置
5 ハウジング
6 ファン
7 スプリング
10 内方部材
20 外方部材
21 第1外方部材
21a 円筒部
21b 平板部
22 第2外方部材
22a 円筒部
22b 平板部
30 治具
31 固定治具
32 移動治具
40 ノズル
P 半径方向隙間
P1 第1隙間
P2 第2隙間
Q1 第1接着剤
Q2 第2接着剤
R ラジアル軸受隙間
T スラスト軸受隙間
S シール空間
DESCRIPTION OF SYMBOLS 1 Bearing unit 2 Rotating shaft 3 Motor rotor 4 Fluid dynamic pressure bearing apparatus 5 Housing 6 Fan 7 Spring 10 Inner member 20 Outer member 21 First outer member 21a Cylindrical part 21b Flat plate part 22 Second outer member 22a Cylindrical part 22b Flat plate portion 30 Jig 31 Fixing jig 32 Moving jig 40 Nozzle P Radial gap P1 First gap P2 Second gap Q1 First adhesive Q2 Second adhesive R Radial bearing gap T Thrust bearing gap S Seal space

Claims (8)

環状の内方部材と、前記内方部材の外周面と半径方向に対向する円筒部、及び、前記内方部材の軸方向一方の端面と軸方向に対向する平板部を有する第1外方部材と、前記第1外方部材の円筒部の外周面に固定された円筒部、及び、前記内方部材の軸方向他方の端面と軸方向に対向する平板部を有する第2外方部材と、前記第1外方部材の円筒部の内周面と前記内方部材の外周面との間に形成されるラジアル軸受隙間と、前記内方部材の軸方向一方の端面と前記第1外方部材の平板部との間、及び、前記内方部材の軸方向他方の端面と前記第2外方部材の平板部との間にそれぞれ形成されるスラスト軸受隙間と、前記ラジアル軸受隙間及び前記スラスト軸受隙間に介在させた潤滑油とを備えた流体動圧軸受装置であって、
前記第1外方部材の円筒部の外周面と前記第2外方部材の円筒部の内周面とを、圧入することなく半径方向隙間を介して嵌合させ、前記半径方向隙間に、前記第1外方部材と前記第2外方部材とを仮固定する第1接着剤と、前記半径方向隙間を完全に封止する第2接着剤とを介在させ
前記第2外方部材の円筒部の内周面の大気開放側端部に、大気開放側に向けて拡径したテーパ面を設け、
前記半径方向隙間のうち、前記テーパ面よりも閉塞側の領域に、第1隙間と、前記第1隙間よりも隙間幅が大きい第2隙間とを設け、
前記第1隙間に前記第1接着剤を配すると共に、前記第2隙間に前記第2接着剤を配した流体動圧軸受装置。
A first outer member having an annular inner member, a cylindrical portion that is radially opposed to the outer peripheral surface of the inner member, and a flat plate portion that is axially opposed to one axial end surface of the inner member. A cylindrical portion fixed to the outer peripheral surface of the cylindrical portion of the first outer member, and a second outer member having a flat plate portion facing the other end surface in the axial direction of the inner member in the axial direction; A radial bearing gap formed between an inner circumferential surface of the cylindrical portion of the first outer member and an outer circumferential surface of the inner member; one axial end surface of the inner member; and the first outer member. A thrust bearing gap formed between the flat plate portion of the inner member and the other end surface in the axial direction of the inner member and the flat plate portion of the second outer member, and the radial bearing gap and the thrust bearing. A fluid dynamic bearing device comprising a lubricating oil interposed in a gap,
The outer peripheral surface of the cylindrical portion of the first outer member and the inner peripheral surface of the cylindrical portion of the second outer member are fitted through a radial gap without press-fitting, and the radial gap is A first adhesive that temporarily fixes the first outer member and the second outer member, and a second adhesive that completely seals the radial gap ,
A taper surface having a diameter expanded toward the atmosphere opening side is provided on the atmosphere opening side end portion of the inner peripheral surface of the cylindrical portion of the second outer member,
Among the radial gaps, a first gap and a second gap having a gap width larger than the first gap are provided in a region closer to the side closer to the tapered surface,
A fluid dynamic bearing device in which the first adhesive is disposed in the first gap and the second adhesive is disposed in the second gap .
前記第1接着剤が、シアノアクリレート系の瞬間接着剤、又は、嫌気性接着剤である請求項1記載の流体動圧軸受装置。   The fluid dynamic bearing device according to claim 1, wherein the first adhesive is a cyanoacrylate-based instantaneous adhesive or an anaerobic adhesive. 前記第2接着剤が、エポキシ系接着剤又は紫外線硬化型接着剤である請求項1記載の流体動圧軸受装置。   The fluid dynamic bearing device according to claim 1, wherein the second adhesive is an epoxy adhesive or an ultraviolet curable adhesive. 前記半径方向隙間が30〜100μmの範囲内である請求項1記載の流体動圧軸受装置。   The fluid dynamic bearing device according to claim 1, wherein the radial gap is in a range of 30 to 100 μm. 前記第2接着剤を前記第1接着剤よりも前記半径方向隙間の大気開放側に配した請求項1記載の流体動圧軸受装置。   The fluid dynamic bearing device according to claim 1, wherein the second adhesive is disposed closer to the atmosphere opening side of the radial gap than the first adhesive. 環状の内方部材と、前記内方部材の外周面と半径方向に対向する円筒部、及び、前記内方部材の軸方向一方の端面と軸方向に対向する平板部を有する第1外方部材と、前記第1外方部材の円筒部の外周面に固定された円筒部、及び、前記内方部材の軸方向他方の端面と軸方向に対向する平板部を有する第2外方部材と、前記第1外方部材の円筒部の内周面と前記内方部材の外周面との間に形成されるラジアル軸受隙間と、前記内方部材の軸方向一方の端面と前記第1外方部材の平板部との間、及び、前記内方部材の軸方向他方の端面と前記第2外方部材の平板部との間にそれぞれ形成されるスラスト軸受隙間とを備え、前記第2外方部材の円筒部の内周面の大気開放側端部に、大気開放側に向けて拡径したテーパ面を有する流体動圧軸受装置の組立方法であって、
前記第1外方部材と前記第2外方部材との軸方向間に前記内方部材を配すると共に、前記第1外方部材の円筒部の外周面と前記第2外方部材の円筒部の内周面とを圧入することなく半径方向隙間を介して嵌合させ、前記半径方向隙間のうち、前記テーパ面よりも閉塞側の領域に、第1隙間と、前記第1隙間よりも隙間幅が大きい第2隙間とを設けるステップと、
前記第1スラスト軸受隙間及び前記第2スラスト軸受隙間の隙間幅を設定した状態で、前記半径方向隙間の第1隙間に第1接着剤を介在させて、前記第1外方部材と前記第2外方部材とを前記第1接着剤で仮固定するステップと、
前記半径方向隙間の第2隙間を、第2接着剤で完全に封止するステップとを順に経て行う流体動圧軸受装置の組立方法。
A first outer member having an annular inner member, a cylindrical portion that is radially opposed to the outer peripheral surface of the inner member, and a flat plate portion that is axially opposed to one axial end surface of the inner member. A cylindrical portion fixed to the outer peripheral surface of the cylindrical portion of the first outer member, and a second outer member having a flat plate portion facing the other end surface in the axial direction of the inner member in the axial direction; A radial bearing gap formed between an inner circumferential surface of the cylindrical portion of the first outer member and an outer circumferential surface of the inner member; one axial end surface of the inner member; and the first outer member. And a thrust bearing gap formed between the other end surface in the axial direction of the inner member and the flat plate portion of the second outer member, and the second outer member. the atmosphere opening side end portion of the inner peripheral surface of the cylindrical portion of the fluid dynamic bearing device having a tapered surface which is expanded toward the atmosphere opening side A method of assembly,
The inner member is arranged between the first outer member and the second outer member in the axial direction, and the outer peripheral surface of the cylindrical portion of the first outer member and the cylindrical portion of the second outer member are arranged. The inner circumferential surface of the first gap is fitted through a radial gap without press-fitting, and a first gap and a gap larger than the first gap in a region closer to the closing side than the tapered surface in the radial gap. a step of Ru formed a second gap width is large,
With the gap widths of the first thrust bearing gap and the second thrust bearing gap set, a first adhesive is interposed in the first gap of the radial gap, and the first outer member and the second thrust gap are set. a step of temporarily fixing the outer member in said first adhesive,
An assembly method of a fluid dynamic bearing device, wherein the second gap of the radial gap is completely sealed with a second adhesive.
前記半径方向隙間に前記第1接着剤を供給した後、前記第1接着剤に硬化促進剤を付与する請求項記載の流体動圧軸受装置の組立方法。 The fluid dynamic bearing device assembly method according to claim 6 , wherein after the first adhesive is supplied to the radial gap, a curing accelerator is applied to the first adhesive. 前記第1外方部材と前記第2外方部材とを前記第1接着剤で仮固定した後、前記第1接着剤よりも前記半径方向隙間の大気開放側に前記第2接着剤を充填する請求項記載の流体動圧軸受装置の製造方法。 After temporarily fixing the first outer member and the second outer member with the first adhesive, the second adhesive is filled on the air opening side of the radial gap with respect to the first adhesive. A method of manufacturing a fluid dynamic bearing device according to claim 6 .
JP2013062174A 2013-03-25 2013-03-25 Fluid dynamic bearing device and assembly method thereof Expired - Fee Related JP6189065B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013062174A JP6189065B2 (en) 2013-03-25 2013-03-25 Fluid dynamic bearing device and assembly method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013062174A JP6189065B2 (en) 2013-03-25 2013-03-25 Fluid dynamic bearing device and assembly method thereof

Publications (2)

Publication Number Publication Date
JP2014185735A JP2014185735A (en) 2014-10-02
JP6189065B2 true JP6189065B2 (en) 2017-08-30

Family

ID=51833488

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013062174A Expired - Fee Related JP6189065B2 (en) 2013-03-25 2013-03-25 Fluid dynamic bearing device and assembly method thereof

Country Status (1)

Country Link
JP (1) JP6189065B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113187822A (en) * 2021-05-19 2021-07-30 燕山大学 Expansion joint bearing liner bonding and curing device

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3958922B2 (en) * 2000-08-23 2007-08-15 Ntn株式会社 Hydrodynamic bearing unit and manufacturing method thereof
JP2003214432A (en) * 2002-01-24 2003-07-30 Matsushita Electric Ind Co Ltd Bearing device and its sealing method
JP3995490B2 (en) * 2002-02-05 2007-10-24 ミネベア株式会社 Pivot assembly and manufacturing method thereof
JP2003294050A (en) * 2002-04-03 2003-10-15 Koyo Seiko Co Ltd Dynamic pressure bearing and manufacturing method thereof
JP5335621B2 (en) * 2009-08-28 2013-11-06 Ntn株式会社 Slide bearing, slide bearing unit including the same, and motor including the bearing unit
CN102844576B (en) * 2010-03-29 2015-12-02 Ntn株式会社 Fluid dynamic-pressure bearing device and assembling method thereof
JP5528897B2 (en) * 2010-04-28 2014-06-25 Ntn株式会社 Fluid dynamic bearing device and assembly method thereof

Also Published As

Publication number Publication date
JP2014185735A (en) 2014-10-02

Similar Documents

Publication Publication Date Title
US9353790B2 (en) Fluid dynamic bearing device and motor with same
US9476449B2 (en) Fluid dynamic bearing device and motor with same
KR20100125251A (en) Sintered bearing
WO2011122556A1 (en) Fluid dynamic bearing unit and assembly method for same
US9964144B2 (en) Manufacturing method for fluid dynamic bearing devices
JP6189065B2 (en) Fluid dynamic bearing device and assembly method thereof
JP6347929B2 (en) Sintered metal bearing
JP2015132380A (en) Fluid dynamic pressure bearing device and motor having the same
JP3602317B2 (en) Dynamic pressure type porous oil-impregnated bearing unit
JP6877185B2 (en) Fluid dynamic bearing device and motor equipped with it
US20140126846A1 (en) Fluid dynamic bearing device
JP6261922B2 (en) Fluid dynamic bearing device and method for manufacturing inner member
JP6668098B2 (en) Fluid dynamic bearing device
WO2019139007A1 (en) Fluid dynamic bearing device and motor equipped with same
JP6981900B2 (en) Fluid dynamic bearing device and motor equipped with it
JP5687104B2 (en) Axial fan motor
WO2018186221A1 (en) Porous dynamic pressure bearing, fluid dynamic pressure bearing device, and motor
JP7184583B2 (en) Intermediate manufacturer of hydrodynamic bearing devices, motors and bearings
JP2010091004A (en) Hydrodynamic pressure bearing device and manufacturing method therefor
JP2007051782A (en) Dynamic pressure bearing unit and its manufacturing method
WO2012098797A1 (en) Motor
JP2016180496A (en) Bearing member and manufacturing method thereof
JP2018031475A (en) Fluid dynamic pressure bearing device and motor having the same
JP2019019915A (en) Sintered bearing, fluid bearing device and motor
JP2011247279A (en) Fluid dynamic pressure bearing device and method of manufacturing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150918

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160629

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160704

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160901

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170203

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170720

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170802

R150 Certificate of patent or registration of utility model

Ref document number: 6189065

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees