JP3602317B2 - Dynamic pressure type porous oil-impregnated bearing unit - Google Patents

Dynamic pressure type porous oil-impregnated bearing unit Download PDF

Info

Publication number
JP3602317B2
JP3602317B2 JP34962697A JP34962697A JP3602317B2 JP 3602317 B2 JP3602317 B2 JP 3602317B2 JP 34962697 A JP34962697 A JP 34962697A JP 34962697 A JP34962697 A JP 34962697A JP 3602317 B2 JP3602317 B2 JP 3602317B2
Authority
JP
Japan
Prior art keywords
bearing
oil
impregnated
housing
inner diameter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP34962697A
Other languages
Japanese (ja)
Other versions
JPH11182533A (en
Inventor
夏比古 森
一男 岡村
康裕 山本
誠 白波
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NTN Corp
Original Assignee
NTN Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NTN Corp filed Critical NTN Corp
Priority to JP34962697A priority Critical patent/JP3602317B2/en
Publication of JPH11182533A publication Critical patent/JPH11182533A/en
Application granted granted Critical
Publication of JP3602317B2 publication Critical patent/JP3602317B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、動圧型の多孔質含油軸受をハウジングに固定してユニット化した動圧型多孔質含油軸受ユニットに関する。この軸受ユニットは、磁気ディスク装置(HDD、FDD等)、光ディスク装置(CD−ROM、DVD−ROM/RAM等)、光磁気ディスク装置(MD、MO等)などの情報記憶装置や、情報処理装置(レーザビームプリンタ等)のスピンドルモータを初めとして、高回転精度が要求される機器の支持装置として好適なものである。
【0002】
【従来の技術】
上記各種情報機器のスピンドルモータには、高回転精度の他、高速化、低コスト化、低騒音化などが求められている。これらの要求性能を決定付ける構成要素の一つに当該モータのスピンドルを支持する軸受があり、従来では、当該軸受としてボールベアリングか焼結含油軸受が用いられている。
【0003】
【発明が解決しようとする課題】
しかし、ボールベアリングを用いた場合には、以下の不具合がある。
【0004】
▲1▼この種のスピンドル用モータは8000〜10000rpm程度、特にレーザビームプリンタでは数万rpmの高速で使用される場合が多い。ボールベアリングには特有のレース音(ボールが軌道輪を転がる音)や、保持器の自励振動による騒音発生があり、高速で使用すると騒音レベルが大きく、低騒音化は限界にきている。
【0005】
▲2▼ボールベアリングは、外輪、内輪、ボール、保持器、シール、グリース等の多くの構成部品からなるため、低コスト化には限界がある。
【0006】
一方、焼結含油軸受の場合は、性能的には低騒音であること、部品点数が少なく管理しやすいこと、などの点ではボールベアリングより優れているが、次のような欠点がある。
【0007】
▲1▼CD−ROMやDVD−ROM等のスピンドルモータでは、ディスクのアンバランス荷重により、軸受に振れ回り荷重が加わる。回転数が高く、振れ回りが大きい場合には、回転に伴って荷重負荷域が周方向に移動するため、油膜がこれに追従することができない。また、焼結含油軸受では、回転に伴って空気も巻き込まれるが、高速回転下ではこの巻き込み量が多くなり、油膜形成を阻害する。油膜形成が不十分である場合には、金属接触が発生して摩耗が進行し、この摩耗によって振れ回りが大きくなるため、さらに油膜の形成が困難になるという悪循環に陥る。従って、耐久性の点で問題がある。
【0008】
▲2▼HDD、LBP等のスピンドルモータのように、アンバランス荷重が小さく、スピンドルの軸姿勢が縦軸で使われることが多い場合には軸の偏心が小さくなる。焼結含油軸受は真円軸受の一種であるから、このような条件下では、ホワールなどの不安定振動が発生しやすく、高回転精度を達成することができない。
【0009】
そこで、本発明はボールベアリングや焼結含油軸受が抱える前記問題点を解決することを目的とする。
【0010】
【課題を解決するための手段】
上記問題点を解決するものとして、本発明にかかる動圧型多孔質含油軸受ユニットは、回転軸の外径面と軸受隙間を介して対向する軸受面を有する、銅あるいは鉄、または両者を主成分とする焼結金属製の軸受本体に、潤滑油あるいは潤滑グリースを含浸させた多孔質含油軸受を、ハウジングの内径面に固定したものであって、複数の軸受面を軸方向に離隔させて設け、軸受本体の軸受面に動圧溝を軸方向に対して傾斜させて設け、各軸受面を圧縮成形することにより、軸受面表面の開孔部を均一に分布させると共に、その表面層の密度を内部よりも大きくし、軸受本体の軸受面を含む部分の表面層の密度を、軸受面間の領域を含む部分の表面層の密度よりも大きくし、動圧溝で軸受隙間に油の動圧油膜を形成して回転軸を非接触支持すると共に、軸受面の開孔部を介して油を軸受本体の内部と軸受隙間との間で循環させるようにし、動圧溝の、油を軸方向中央側に押し込む力によって集められた油を軸受隙間から軸受本体内部に還流させるようにしたものである。
【0011】
多孔質含油軸受では、回転軸の回転に伴って軸受本体の内部の潤滑剤(潤滑油または潤滑グリース)が軸受本体の内周面(内径チャンファ部も含む)からにじみ出し、軸受隙間に引き込まれる。軸受隙間に引き込まれた油は潤滑油膜を形成して回転軸を非接触支持する。この際、軸受面に、軸方向に傾斜した複数の動圧溝(例えばへリングボーン型やスパイラル型とする)を設けると、その動圧作用によってさらに軸受本体内部の潤滑剤を軸受隙間に引き込むと共に、軸受面に潤滑剤を押し込み続けるので、油膜力が高まり、軸受の剛性を向上させることができる。また、ホワールなどの不安定振動の発生を防止することもできる。
【0012】
軸受隙間に正圧が発生すると、軸受面の表面に孔(開孔部:多孔質体組織の細孔が外表面に開口した部分をいう)があるため、潤滑剤は軸受本体の内部に還流するが、次々と新たな潤滑剤が押し込まれ続けるので油膜力および剛性は高い状態で維持される。したがって高回転精度が達成され、軸振れやNRRO(非繰り返し精度)、ジッタ等が低減される。また、軸と軸受本体が非接触で回転するために低騒音であり、しかも低コストである。さらに、油膜内に気泡が発生したり巻き込まれた場合でも、油が循環しているために気泡が軸受本体の内部に吸収され、軸受機能が不安定化することもない。
【0013】
多孔質含油軸受としては、銅または鉄、あるいは両者を主成分とする焼結含油軸受が適している。このような焼結含油軸受であれば、製作が容易で低コストに供給することができる
ウジングに2個の多孔質含油軸受を収納する場合、2個の軸受の同軸度、円筒度などの精度が問題となる。精度が悪い場合、軸と軸受が線接触したり、最悪の場合には軸が2個の軸受を貫通しない場合も起こり得る。
【0014】
この場合には、軸受本体の軸受面間の領域の内径寸法を軸受面の内径寸法よりも大きくするとよい。この軸受は、軸受本体を1個とし、その内径面の複数箇所に動圧軸受面を設けたものであるから、複数個の軸受を別体に配置したことに起因する精度不良等の上記弊害を回避することが可能となる。
【0015】
軸受面間の領域が軸受面と同径のストレート面であると、油の粘性抵抗によってトルク上昇を招きかねないが、当該領域の内径寸法を軸受面の内径寸法よりも大きく設定しておけば、トルク上昇を確実に回避することができる。
【0016】
なお、必ずしも複数の軸受面の全てに前記動圧溝を形成する必要はなく、使用条件等によっては少なくとも一つの軸受面に動圧溝を形成することもできる。
多孔質含油軸受のハウジング内径面への固定は、多孔質含油軸受をハウジングの内径面に圧入することによって行うことができる。この圧入作業は、動圧溝のない通常の焼結含油軸受であれば、図9に示すように、軸受21に圧入ピン(22:矯正ピン)を挿入すると共に、軸受21の一端面を圧入治具23で加圧することにより行うことができる。すなわち、加圧に伴って収縮する軸受内径面を圧入ピン22に食いつかせ、軸受内径面を矯正しつつ軸受外径面をハウジング24の内径面に圧入するのである。
【0017】
しかし動圧溝を有する場合、この方法では軸受の内外径の同軸度の狂い(偏り、偏肉)などの影響により、圧入時の矯正によって動圧溝の一部がつぶれかねない。圧入ピン22を使用せずに圧入すれば動圧溝がつぶれるという不具合を回避できるが、その場合には、圧入時の軸受21の収縮度合いが軸受精度(軸受各部の偏肉、密度の違いなど)やハウジング24の形状(肉厚の変化など)に影響され、軸受面同士の円筒度や同軸度などが狂うおそれがある。
【0018】
これを解決するには、軸受本体の外径面のうち軸受面間の領域に対応した外径部と、これに対向するハウジングの内径面との間に圧入締め代を形成すると共に、軸受本体の外径面のうち軸受面に対応した外径部と、これに対向するハウジング内径面との間に前記圧入締め代よりも小さい締め代もしくは隙間を形成すればよい。この構成であれば、圧入という低コストの組立方法を採用しつつも、圧入の前後で軸受面の寸法や精度が変化することがないので、低コスト化と軸受面精度の確保を同時に達成することができる。
【0019】
また、多孔質含油軸受をハウジングの内径面に接着して固定しても同様の効果が得られる。このように接着する場合は、接着剤成分を含む油の軸受内部への侵入等が懸念されるが、これらを防止するには、軸受本体の外径面のうちハウジングの内径面に接着される部分の表面開孔率を12%以下、望ましくは8%以下にし、塗付した接着剤の軸受内部への侵入を防止すればよい。また、接着剤としては、嫌気性接着剤あるいは紫外線硬化型接着剤、またはその双方の性質を有する接着剤を用いるのがよい。
【0020】
軸受本体の軸受面の表面開孔率を、前記軸受面間の領域の表面開孔率よりも小さくすれば、軸受面の剛性を高めると共に、油膜強度を向上させることができる。また、軸受面間領域での油含有量を増加させて耐久性の向上を図ることができる。
【0021】
軸受本体の外径面とハウジングの内径面との間には、軸受本体の軸方向の両端部に開口する通気路を設けておくのが望ましい。
【0022】
軸受本体の一方の端面に組立方向を識別するための識別マークを形成しておけば、多孔質含油軸受をハウジングに固定する際の方向が容易に判別可能となる。
【0023】
【発明の実施の形態】
以下、本発明の実施形態を図1乃至図8に基いて説明する。
【0024】
図1に示すように、本発明にかかる動圧型多孔質含油軸受ユニットは、多孔質含油軸受1をハウジング2の内径面2aに固定することにより構成される。
【0025】
ハウジング2は、その内径面に小径部2a1と大径部2a2とを有する厚肉円筒状をなし、銅やアルミニウム等の軟質金属を切削加工等して成形される。
【0026】
図2に示すように、多孔質含油軸受1は、回転軸(3:図4および図5参照)の外径面と軸受隙間4を介して対向する軸受面1bを有する多孔質の軸受本体1aに、潤滑油あるいは潤滑グリースを含浸させて構成される。軸受本体1aは、粉末冶金、鋳鉄、合成樹脂、セラミックスなどを焼結または発泡成形等することにより、多数の細孔を有する厚肉円筒状の多孔質体として成形されたもので、例えば銅系あるいは鉄系、またはその双方を主成分とする焼結金属で形成される。
【0027】
潤滑油、あるいは潤滑グリースの基油としては、40℃での動粘度が5〜60cStに設定されたものを使用する。40℃での動粘度を60cStより大きくすると、高速での駆動に支障を来す。逆に5cStより小さくすると、動粘度が小さすぎて油が飛散しやすく、耐久性に問題を生じる。潤滑剤を潤滑グリースとすると、剪断力を受ける軸受隙間以外では見かけの粘度が油に比べて著しく大きくなり、周囲へ流出しにくくなる。しかし、油に混合分散させる増稠剤の量を5wt%より大きくすると見かけの粘度が高すぎて軸受本体に含浸しにくくなり、また含浸後に表面に付着した過剰なグリースの除去作業が煩雑なものとなる。一方、増稠剤量を0.5wt%より小さくすると、グリースとした効果が少なく、流出度合いが油を使用する場合と変わらなくなる。したがって、潤滑グリースの増稠剤濃度は0.5〜5.0wt%に設定されたものを使用する。潤滑油あるいは潤滑グリース基油の種類は特に限定されるものではないが、ポリαオレフィン系、エーテル系、あるいはエステル系合成油(ジエステル、ポリオールエステル系合成油)が適している。また、潤滑グリースの増稠剤としては、取り扱いが簡便で生産性に優れるリチウム系増稠剤が適している。
【0028】
軸受本体1aの内周には、軸方向に離隔する2つの軸受面1bが形成され、2つの軸受面1bの双方に、それぞれ軸方向に対して傾斜させた複数の動圧溝1c(へリングボーン型)が円周方向に配列形成される。この実施形態の軸受面1bは、一方に傾斜する動圧溝1cが配列された第1の溝領域m1と、第1の溝領域m1から軸方向に離隔し、他方に傾斜する動圧溝1cが配列された第2の溝領域m2と、2つの溝領域の間に位置する環状の平滑部nとを備え、2つの溝領域m1、m2の動圧溝1cは平滑部nで区画されて非連続になっている。平滑部nと動圧溝1c間の背の部分1eは同一レベルにある。
【0029】
この非連続型の動圧溝は、連続型、すなわち平滑部nを省略し、動圧溝1cを両溝領域m1、m2間で互いに連続するV字状に形成した場合に比べ、平滑部nに油が集められるために油膜圧力が高く、また溝のない平滑部nを有するので軸受剛性も高いという利点を有する。なお、特に支障がなければ連続型の動圧溝を採用しても構わない。
【0030】
一般にへリングボーン型の動圧溝では、連続型の方が軸受内に負圧を生じる部分がなく、したがって気泡が発生せず、油のシール性に優れるといわれているが、本発明のように軸受本体1aが多孔質体の場合には、油が軸受隙間と軸受内部との間で循環するため、気泡が発生しても軸受隙間に滞留せず、したがって、油が気泡によって軸受隙間4から押し出され、シール性を損なうという不具合は生じないと考えられる。
【0031】
平滑部nの軸受幅方向の比率Rは、個々の軸受面1bの軸方向幅を1とした場合、R=0.1〜0.6の範囲、望ましくは、R=0.2〜0.4の範囲に設定するのが良い。軸受面幅1に対して0.1未満では、平滑部nを設けたことによる効果(動圧の増加、軸受剛性の増加)が顕著に現れず、連続した溝の場合と変わらない。また、軸受け幅1に対してRを0.6より大きくすると、動圧溝が少なくなり、油を軸方向中央部に押し込む力が弱くなって動圧効果が有効に発揮されない。
【0032】
動圧溝1cの溝深さ(h:図4参照)と半径隙間cとの比、および軸受隙間(半径隙間:c)と回転軸3の半径rとの比には最適な範囲があり、この範囲外では充分な動圧効果が得られない。この最適範囲を明らかにすべく、CD−ROM実機モータおよびLBP実機モータを用いて軸振れを測定した結果、c/hが0.5〜4.0の範囲内、c/rが0.0005〜0.003の範囲内であれば、軸振れを実用上十分なレベルに抑えられることが判明した。したがって、高精度を維持するためには、c/h=0.5〜4.0に設定し、かつc/r=0.0005〜0.003に設定するのが望ましい。なお、図4では、半径隙間cや溝深さhは実際よりも誇張して描かれている。
【0033】
以上説明した動圧溝1cは、例えば圧縮成形により形成することができる。すなわち、コアロッド(例えばサイジングピン)の外周面に動圧溝1c形状に対応した凹凸形状の溝型を形成し、コアロッドの外周面に軸受本体1aの素材である多孔質材を供給し、多孔質材に圧迫力を加えてその内径部をコアロッドの溝型に加圧し、当該内径部に溝型の形状に対応した動圧溝1cを転写する。この時、背の部分1eを動圧溝1cと同時成形することができる。動圧溝の形成後は、圧迫力を除去することによる多孔質材のスプリングバックを利用してコアロッドを多孔質材の内径部から離型する。
【0034】
この時、動圧溝1cを転写するサイジングピンを精度良く仕上げておけば、軸受の精度も良くなる。サイジングピンの精度を必要とされる精度、例えば真円度1μm以内、円筒度2μm以内などに仕上げることはさほど難しくなく、容易に達成できる。
【0035】
なお、以上の動圧溝サイジングを行なう前に、多孔質材の内径部に回転サイジングを施し、当該内径面の開孔部の分布を予め均一化させておくのが望ましい。
【0036】
軸受本体1aにおける軸受面1b間の領域1dの内径寸法D1は、軸受面1bの内径寸法D2(厳密には、動圧溝1c間の背部分1eの領域の内径寸法)よりも大きく設定される。図面では、領域1dの軸方向断面は軸受面1bに連続した1つの円弧で描かれ、その円弧の最大径部は領域1dの軸方向中央部に位置している。但し、その断面形状は任意に選択することができ、円弧の他、楕円、放物線等の他の曲線や直線で描いてもよく、あるいはこれらの組み合わせとしてもよい。さらに領域1dの最大径部は、一方の軸受面1b側に偏在していてもよい。
【0037】
軸受本体1aの軸受面1bを含む部分の密度は、軸受面間の領域1dを含む部分の密度よりも大きくすると良い(ここでの「密度」は、軸受面や軸受面間領域から深さ0.1mmまでの表面層の密度をいう)。多孔質体の密度は単位体積当たりの細孔率に関係し、密度が大きいほど組織内における細孔の体積割合が小さくなり、同時に表面における表面開孔率が小さくなる。これにより、軸受面1bでの油膜強度を向上させると共に、軸受剛性を向上させることができ、同時に領域1dでの油含有量を増加させて耐久性の向上を図ることができる。具体的には、軸受面1bの表面密度を6.5〜7.2[g /cm]、領域1dの表面密度を6.0〜6.6[g /cm]の範囲内に設定し、軸受面1bでの表面開孔率を2〜30%、望ましくは2〜12%の範囲内に設定するのがよい。なお、表面開孔率の設定は、密度の設定により、あるいは表面処理(回転サイジング等による開孔率の調整)、さらには密度の設定と表面処理との併用により行なうことができる。
【0038】
軸受本体1aの外径面は、一方の軸受面1bに対応する外径面1b1が小径で、軸受面間の領域1dに対応する外径面1d1および他方の軸受面1bに対応する外径面1b2が大径になった段付き円筒状に形成される。図1に示すように、多孔質含油軸受1をハウジング2の内周に圧入すると、領域1dに対応した外径部1d1がハウジング内径面2aの小径部2a1に、一方の軸受面に対応した外径部1b1がハウジング内径面2aの小径部2a1に、他方の軸受面に対応した外径部1b1がハウジング内径面2aの大径部2a2にそれぞれ対向する。この時、領域1dに対応した外径部1d1とハウジング内径面2aの小径部2a1との間に圧入締め代を形成しておけば、両者の密着嵌合によって軸受1の固定力を確保することができる。領域1dは軸受面1bよりも大径に形成されており、軸の支持には直接関与しないので、当該1dに圧入力に見合う程度の変形が生じても軸受の精度には影響がない。一方、2つの軸受面1bに対応する外径面1b1、1b2とこれに対向するハウジング内径面2a1、2a2との間に、前記圧入締め代よりも小さい締め代(軸受精度に影響しない程度の締め代)もしくは半径方向の隙間を形成しておけば(本実施形態では半径方向の隙間9a、9bを設けた場合を例示する)、圧入力による軸受面1bの変形を防止しまたは緩和することができ、軸受精度の低下を防止することができる。
【0039】
実際に圧入前後で軸受面の寸法および精度変化を測定しても、内径寸法、真円度、円筒度、同軸度の何れについてもほとんど変化がなかった。具体的に、圧入の前後において、内径寸法はφ3.002、円筒度は2μm以下、同軸度(一方の軸受面に対する他方の軸受面の軸ずれ量を意味する)は2μm以下でそれぞれ変化がなく、また、真円度は圧入前に0.9μmであったものが圧入後に1.0μmに変化したにすぎなかった。
【0040】
図5は、上述の軸受ユニットをスピンドルモータ(図面はCD−ROM装置のスピンドルモータを示す)に組み込んだ状態を示している。多孔質含油軸受1の内径部に挿入されたシャフト3(回転軸)は、軸受隙間4に形成された動圧油膜によって非接触支持され、ロータ5とステータ6との間に生じる励磁力によって回転駆動される。シャフト3は、ハウジング2の一方の開口部に嵌め込んだスラスト板7によって接触支持されている。
【0041】
ところで、通常、シャフト3はハウジング2にスラスト板7を装着した状態で軸受1の内径部に挿入される。この挿入時には、空気は軸受1とシャフト3の間の軸受隙間4から逃げることになるが、軸受隙間4は数μm程度しかないため、空気がハウジング2の下方空間に閉じ込められ、シャフト3の挿入が難しくなる。また、モータを駆動すると発熱するが、この発熱によって閉じ込められた空気が膨張し、シャフト3を押し上げて軸受性能を不安定化させるおそれもある。
【0042】
この場合には、図1および5に示すように、軸受本体1aの外径面とハウジング2の内径面2aとの間に、軸受本体1aの軸方向両端に開口する通気路8を設ければよい。通気路8は、軸受本体1aの外径面に軸方向の溝1gを設けることによって形成することができるが、軸受本体1aの外径面とハウジング2の内径面2aとの間に隙間(例えば外径面1b1とハウジング内径面2a1との間の隙間9aや、外径面1b2とハウジング内径面2a2との間の隙間9b)があれば、当該隙間9a、9bと溝1gとで通気路8を構成してもよい。この時の溝1gは、軸受本体1aの外径面のうち、少なくともハウジング内径面2aへの圧入部分(本実施形態では、軸受面間の領域1dに対応する外径部1d1)に形成されていれば足りる。溝1gは、軸受本体1aの外径面の1箇所だけでなく、円周方向の複数箇所(図面では3箇所)に設けることもでき、また、ハウジング内径面2aに設けてもよい。
【0043】
多孔質含油軸受1は、ハウジング2の内径面2aに圧入する他、接着で固定してもよい。図6は、このような接着時に使用する接着装置の一例を示すもので、ハウジング2内に軸受1を挿入して治具11で位置決め保持し、図示しないディスペンサで軸受本体1aの外径面とハウジング内径面2aとの間に接着剤を注入するものである。この場合の軸受1やハウジング2としては、図1に示すものをそのまま使用することができる。ただし、軸受本体1aの外径面やハウジング2の内径面2aは、段部のないストレート面としてもよい。接着剤の注入は、通気路8を避けて行なわれる。注入した接着剤は毛細管現象で接合面に浸透して広がる。なお、接着は、軸受本体の外径面に付着した油をウェスなどで拭き取るか、あるいは遠心分離機などで除去した上で行なうのが望ましい。
【0044】
ところで、このように接着する場合は、軸受本体1a外径面のうち、ハウジング2の内径面2aとの接着部において接着剤成分と油とが混じり合うため、接着力が低下したり、あるいは接着剤成分を含む油が接合部から軸受内部に侵入し、さらにこれが軸受面に滲出して軸受機能上好ましくない影響を与えるおそれもある。
【0045】
これを回避するには、軸受本体1a外径面のうちハウジング2の内径面2aに接着される部分の表面開孔率を12%以下、望ましくは8%以下にするとよい。この程度の表面開孔率であれば、塗布した接着剤のほとんどが接合面に残り、軸受内部に侵入することがなくなる。したがって、接着力が落ちることはなく、また、潤滑に対して悪影響を及ぼすこともない。なお、表面開孔率は、前記動圧サイジング工程でのサイジング代を0.1mm以上とすれば実現することができる。
【0046】
接着剤としては、嫌気性接着剤や紫外線硬化型接着剤、あるいは双方の性質を有する接着剤が使用される。これらは、油面での接着力に優れており、軸受本体1aやハウジング2の素材としてよく使用される銅系材料に対する反応性もよい。また、固着スピードが速いため、軸受1やハウジング2を治具11で位置決め保持する時間を短くすることができる。さらには、何れも1液性で、例えばエポキシ接着剤のように2液を混合する必要がなく、作業性に優れる。特に紫外線硬化型接着剤の場合は、仮に軸受外径部のチャンファなどに接着剤が付着して残っても紫外線を照射することにより、そこで固めてしまうことができる。
【0047】
実際に図6に示す装置を用いて軸受1をハウジング2に接着固定し、抜去力や軸振れ等を計測する試験を行なった。但し、この試験では軸受本体1aの外径面のサイジング代を0.15mmとし、これにより軸受本体の外径面の表面開孔率を6〜10%に設定した。また、軸受(φ3×φ6×9)とハウジング2(C3602)との間の隙間は直径で20μmとし、接着剤として日本ロックタイト社製嫌気性接着剤603を使用した。接着剤1.0mgを注入した後、約30秒で軸受は固着し、約1分後に治具11から軸受ユニットを外したが、軸受1がずれるような不具合は生じなかった。
【0048】
接着後24hで抜去力を測定したところ、50kgf以上となった。通常、上記寸法程度の軸受に求められる抜去力は5〜10kgfであるから、十分にこの要求を満足できることが判明した。また、接着後の軸受ユニットをLBPモータに組み込み、機能評価試験を実施した。15000rpmで軸振れは2μm以下となり、非繰り返し回転精度(NRRO)も0.03μm以下であり、動圧軸受として満足できる性能を示した。また、連続運転試験でも3000hを経過しても性能の劣化はなく、十分実用に耐えるものであることが判明した。
【0049】
多孔質含油軸受1をハウジング2に圧入あるいは接着といった方法で固定する際には、所定の動圧を発生させるため、軸受1をハウジング2内で回転軸3の回転方向に合った向きに配置する必要がある。軸受1の向きを目視で判別するとすれば、見づらく固定時の作業性が悪化する。
【0050】
そこで、この場合には、図7および図8に示すように、軸受本体1aの一方の端面に、組立方向を識別するための識別マーク12を形成すればよい。図面は識別マーク12としてリング溝を形成した場合を例示するが、識別マーク12の形状は任意に選択することができる。識別マーク12の有無の判別は目視で行なう他、画像処理装置等を用いて機械的に行なうことも可能である。
【0051】
この識別マーク12は、例えば動圧サイジング時において多孔質材を軸方向両側からパンチで加圧する際に、一方のパンチ(例えば下パンチ)の加圧面にマーク形状に対応した型を予め形成しておくことにより成形することができる。
【0052】
以上の軸受ユニットは上述の各種スピンドルモータ等の他、軸流ファンや換気扇、扇風機などの電気製品、自動車用電装品など、各種のモータに広範囲に利用することができる。
【0053】
【発明の効果】
以上のように、本発明によれば、
▲1▼ボールベアリングを使用した軸受ユニットに比べて、低騒音化および低コスト化を図ることができる。
【0054】
▲2▼動圧溝の動圧作用によって軸受剛性を高くすることができ、また、回転精度を向上させて軸振れ、NRRO、ジッタの低減を図ることできる。軸受面には良好な油膜が常時形成されるので、耐久寿命を大幅に向上させることができる。
【図面の簡単な説明】
【図1】本発明にかかる軸受ユニットの軸方向断面図である。
【図2】上記軸受ユニットで使用する多孔質含油軸受の軸方向断面図である。
【図3】図2中のA矢視図である。
【図4】上記多孔質含油軸受の半径方向断面図である。
【図5】CD−ROM装置のスピンドルモータの軸方向断面図である。
【図6】接着装置の一例を示す軸方向断面図である。
【図7】軸受に識別マークを設けた動圧型多孔質含油軸受ユニットの軸方向断面図である。
【図8】図7中のB部分の拡大図である。
【図9】軸受の圧入方法を示す軸方向断面図である。
【符号の説明】
1 多孔質含油軸受
1a 軸受本体
1b 軸受面
1c 動圧溝
1d 軸受面間領域
2 ハウジング
2a ハウジング内径面
3 回転軸(シャフト)
4 軸受隙間
8 通気路
9a 隙間
9b 隙間
12 識別マーク
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a hydrodynamic porous oil-impregnated bearing unit in which a hydrodynamic porous oil-impregnated bearing is fixed to a housing to form a unit. The bearing unit is an information storage device such as a magnetic disk device (HDD, FDD, etc.), an optical disk device (CD-ROM, DVD-ROM / RAM, etc.), a magneto-optical disk device (MD, MO, etc.), and an information processing device. It is suitable as a supporting device for equipment requiring high rotational accuracy, such as a spindle motor of a laser beam printer or the like.
[0002]
[Prior art]
The spindle motors of the various information devices are required to have high rotational accuracy, high speed, low cost, low noise, and the like. One of the components that determine these required performances is a bearing that supports the spindle of the motor. Conventionally, a ball bearing or a sintered oil-impregnated bearing is used as the bearing.
[0003]
[Problems to be solved by the invention]
However, when a ball bearing is used, there are the following problems.
[0004]
{Circle around (1)} This kind of spindle motor is often used at a high speed of about 8000 to 10000 rpm, particularly, tens of thousands of rpm in a laser beam printer. Ball bearings have a unique race sound (sound of the ball rolling on the raceway) and noise generated by the self-excited vibration of the cage. When used at high speed, the noise level is large, and noise reduction has reached its limit.
[0005]
{Circle around (2)} Since the ball bearing is composed of many components such as an outer ring, an inner ring, a ball, a retainer, a seal, and grease, there is a limit in reducing the cost.
[0006]
On the other hand, a sintered oil-impregnated bearing is superior to a ball bearing in terms of low noise in terms of performance, small number of parts and easy management, but has the following disadvantages.
[0007]
(1) In a spindle motor such as a CD-ROM and a DVD-ROM, a whirling load is applied to a bearing due to an unbalanced load of a disk. When the rotation speed is high and the whirling is large, the load area moves in the circumferential direction with the rotation, so that the oil film cannot follow this. In the case of a sintered oil-impregnated bearing, air is also entrained with the rotation. However, under high-speed rotation, the entrained amount increases, impeding the formation of an oil film. If the oil film formation is insufficient, metal contact occurs and abrasion proceeds, and the abrasion increases due to the abrasion, resulting in a vicious cycle in which the formation of an oil film becomes more difficult. Therefore, there is a problem in durability.
[0008]
{Circle around (2)} As in the case of a spindle motor such as an HDD or an LBP, when the unbalance load is small and the spindle attitude of the spindle is often used on the vertical axis, the eccentricity of the axis is reduced. Since a sintered oil-impregnated bearing is a kind of a perfect circular bearing, unstable vibration such as whirl tends to occur under such conditions, and high rotational accuracy cannot be achieved.
[0009]
Then, this invention aims at solving the said problem which a ball bearing and a sintered oil-impregnated bearing have.
[0010]
[Means for Solving the Problems]
As a solution to the above problems, a hydrodynamic porous oil-impregnated bearing unit according to the present invention has a bearing surface facing an outer diameter surface of a rotating shaft and a bearing gap,Made of copper or iron, or a sintered metal mainly composed of bothBearing body, a porous oil-impregnated bearing impregnated with lubricating oil or lubricating grease is fixed to the inner diameter surface of the housing,Provide a plurality of bearing surfaces spaced apart in the axial direction,Bearing bodyeachA dynamic pressure groove is provided on the bearing surface at an angle to the axial direction,By compressing and molding each bearing surface, the apertures on the bearing surface are evenly distributed, the density of the surface layer is made larger than that inside, and the density of the surface layer of the bearing body including the bearing surface is reduced. Larger than the density of the surface layer of the portion including the area between the bearing surfaces,A dynamic pressure oil film is formed in the bearing gap by the dynamic pressure groove to support the rotating shaft in a non-contact manner, and to circulate the oil between the inside of the bearing body and the bearing gap through the opening in the bearing surface. WestThe oil collected by the force of pushing the oil of the dynamic pressure groove toward the center in the axial direction is returned to the inside of the bearing body from the bearing gap.With something likeis there.
[0011]
In a porous oil-impregnated bearing, the lubricant (lubricating oil or lubricating grease) inside the bearing body oozes from the inner peripheral surface (including the inner diameter chamfer portion) of the bearing body as the rotating shaft rotates, and is drawn into the bearing gap. . The oil drawn into the bearing gap forms a lubricating oil film and supports the rotating shaft in a non-contact manner. At this time, if a plurality of axially inclined dynamic pressure grooves (for example, a herringbone type or a spiral type) are provided on the bearing surface, the lubricant inside the bearing body is further drawn into the bearing gap by the dynamic pressure action. At the same time, since the lubricant is continuously pushed into the bearing surface, the oil film strength is increased, and the rigidity of the bearing can be improved. Further, generation of unstable vibration such as whirl can be prevented.
[0012]
When a positive pressure is generated in the bearing gap, there is a hole in the surface of the bearing surface (opening portion: a portion in which pores of the porous body structure are opened on the outer surface), so that the lubricant returns to the inside of the bearing body. However, since new lubricants continue to be pushed in one after another, the oil film strength and the rigidity are maintained in a high state. Accordingly, high rotational accuracy is achieved, and shaft runout, NRRO (non-repetition accuracy), jitter and the like are reduced. In addition, since the shaft and the bearing body rotate in a non-contact manner, low noise and low cost are obtained. Further, even when bubbles are generated or entrained in the oil film, the oil is circulated, so that the bubbles are absorbed into the inside of the bearing body and the bearing function is not destabilized.
[0013]
Suitable porous oil-impregnated bearings are sintered oil-impregnated bearings containing copper or iron or both as the main components.I have.Such a sintered oil-impregnated bearing can be easily manufactured and supplied at low cost..
CWhen two porous oil-impregnated bearings are housed in a housing, the accuracy of the two bearings, such as coaxiality and cylindricity, becomes a problem. If the accuracy is poor, the shaft may come into line contact with the bearing, or in the worst case, the shaft may not pass through the two bearings.
[0014]
In this case, Bearing bodyIf the inner diameter of the area between the bearing surfaces is larger than the inner diameter of the bearing surfaceGood.Since this bearing has a single bearing body and is provided with dynamic pressure bearing surfaces at a plurality of locations on the inner diameter surface thereof, the above-described adverse effects such as poor accuracy caused by disposing a plurality of bearings separately are described. Can be avoided.
[0015]
If the area between the bearing surfaces is a straight surface having the same diameter as the bearing surface, torque may increase due to the viscous resistance of the oil, but if the inner diameter of the area is set to be larger than the inner diameter of the bearing surface. Thus, an increase in torque can be reliably avoided.
[0016]
It is not always necessary to form the dynamic pressure grooves on all of the plurality of bearing surfaces, and it is also possible to form the dynamic pressure grooves on at least one bearing surface depending on the use conditions and the like.
PorousThe oil-impregnated bearing can be fixed to the inside diameter of the housing by pressing the porous oil-impregnated bearing into the inside diameter of the housing.it can.In this press-fitting operation, in the case of a normal sintered oil-impregnated bearing having no dynamic pressure groove, as shown in FIG. 9, a press-fit pin (22: straightening pin) is inserted into the bearing 21 and one end face of the bearing 21 is press-fitted. It can be performed by pressing with a jig 23. That is, the inner diameter surface of the bearing that contracts with pressurization is pierced by the press-fit pin 22, and the outer diameter surface of the bearing is pressed into the inner diameter surface of the housing 24 while correcting the inner diameter surface of the bearing.
[0017]
However, when a dynamic pressure groove is provided, in this method, a part of the dynamic pressure groove may be crushed by correction at the time of press-fitting due to an influence of deviation in coaxiality (unevenness, uneven thickness) of the inner and outer diameters of the bearing. If the press-fitting is performed without using the press-fit pin 22, it is possible to avoid the problem that the dynamic pressure groove is crushed. ) And the shape of the housing 24 (such as a change in wall thickness), the cylindricity and coaxiality of the bearing surfaces may be deviated.
[0018]
In order to solve this, a press-fit interference is formed between an outer diameter portion of the outer diameter surface of the bearing body corresponding to a region between the bearing surfaces and an inner diameter surface of the housing facing the outer diameter portion. If an outer diameter portion corresponding to the bearing surface of the outer diameter surface and a housing allowance or clearance smaller than the press-fitting allowance are formed between the outer diameter portion corresponding to the bearing surface and the inner diameter surface of the housing opposed thereto.Good.With this configuration, the dimensions and accuracy of the bearing surface do not change before and after press-fitting, while adopting the low-cost assembly method of press-fitting, so that cost reduction and securing of bearing surface accuracy are achieved at the same time. be able to.
[0019]
The same effect can be obtained even if the porous oil-impregnated bearing is adhered and fixed to the inner surface of the housing.Can beIn the case of such bonding, there is a concern that oil containing an adhesive component may enter the inside of the bearing. However, in order to prevent such a problem, the oil is bonded to the inner diameter surface of the housing among the outer diameter surfaces of the bearing body. The surface porosity of the part is 12% or less, preferably 8% or lessWest,What is necessary is just to prevent the applied adhesive from entering the inside of the bearing. As the adhesive, it is preferable to use an anaerobic adhesive or an ultraviolet-curable adhesive, or an adhesive having both properties.Good.
[0020]
Bearing bodyThe surface porosity of the bearing surface is smaller than the surface porosity of the region between the bearing surfaces.if,The rigidity of the bearing surface can be increased, and the oil film strength can be improved. In addition, durability can be improved by increasing the oil content in the region between the bearing surfaces.
[0021]
It is desirable to provide a ventilation path between the outer diameter surface of the bearing body and the inner diameter surface of the housing, which is open at both axial ends of the bearing body.New
[0022]
Form an identification mark on one end face of the bearing body to identify the assembly directionIf you do,The direction in which the porous oil-impregnated bearing is fixed to the housing can be easily determined.
[0023]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, an embodiment of the present invention will be described with reference to FIGS.
[0024]
As shown in FIG. 1, the hydrodynamic porous oil-impregnated bearing unit according to the present invention is configured by fixing a porous oil-impregnated bearing 1 to an inner diameter surface 2 a of a housing 2.
[0025]
The housing 2 has a thick cylindrical shape having a small-diameter portion 2a1 and a large-diameter portion 2a2 on the inner diameter surface, and is formed by cutting a soft metal such as copper or aluminum.
[0026]
As shown in FIG. 2, the porous oil-impregnated bearing 1 has a porous bearing body 1a having a bearing surface 1b opposed to an outer diameter surface of a rotating shaft (3: see FIGS. 4 and 5) via a bearing gap 4. And lubricating oil or lubricating grease. The bearing body 1a is formed as a thick cylindrical porous body having a large number of pores by sintering, foaming, or the like of powder metallurgy, cast iron, synthetic resin, ceramics, or the like. Alternatively, it is formed of a sintered metal mainly composed of iron or both.
[0027]
As the lubricating oil or the base oil of the lubricating grease, one having a kinematic viscosity at 40 ° C. of 5 to 60 cSt is used. If the kinematic viscosity at 40 ° C. is larger than 60 cSt, high-speed driving is hindered. Conversely, if it is less than 5 cSt, the kinematic viscosity is too small and oil is liable to be scattered, causing a problem in durability. When lubricating grease is used as the lubricant, the apparent viscosity becomes significantly larger than that of the oil except for the bearing gap where the shearing force is applied, and it is difficult to flow out to the surroundings. However, if the amount of the thickener mixed and dispersed in the oil is larger than 5% by weight, the apparent viscosity is too high to impregnate the bearing body, and the work of removing excess grease adhering to the surface after impregnation is complicated. It becomes. On the other hand, when the amount of the thickener is less than 0.5 wt%, the effect of forming grease is small, and the degree of outflow is the same as when oil is used. Therefore, the lubricating grease used should have a thickener concentration of 0.5 to 5.0 wt%. The type of the lubricating oil or the lubricating grease base oil is not particularly limited, but a poly-α-olefin-based, ether-based, or ester-based synthetic oil (diester, polyol ester-based synthetic oil) is suitable. As the thickener for lubricating grease, a lithium-based thickener which is easy to handle and has excellent productivity is suitable.
[0028]
Two bearing surfaces 1b axially separated from each other are formed on the inner periphery of the bearing main body 1a, and a plurality of dynamic pressure grooves 1c (herrings) that are respectively inclined with respect to the axial direction are formed on both of the two bearing surfaces 1b. (Bone type) are arranged in the circumferential direction. The bearing surface 1b of this embodiment includes a first groove region m1 in which the inclined hydrodynamic grooves 1c are arranged on one side, and a hydrodynamic groove 1c axially separated from the first groove region m1 and inclined on the other side. Are provided, and an annular smooth portion n is located between the two groove regions, and the dynamic pressure groove 1c of the two groove regions m1 and m2 is partitioned by the smooth portion n. It is discontinuous. The back portion 1e between the smooth portion n and the dynamic pressure groove 1c is at the same level.
[0029]
This non-continuous type dynamic pressure groove is a continuous type, that is, the smooth portion n is omitted and the dynamic pressure groove 1c is formed in a V-shape that is continuous with each other between the two groove regions m1 and m2. This has the advantage that the oil film pressure is high due to the oil being collected and that the bearing stiffness is high because it has a smooth portion n without grooves. If there is no particular problem, a continuous dynamic pressure groove may be employed.
[0030]
Generally, in the herringbone type dynamic pressure groove, it is said that the continuous type has no portion that generates a negative pressure in the bearing, so that no bubbles are generated, and the oil sealing property is excellent, but as in the present invention, When the bearing body 1a is a porous body, the oil circulates between the bearing gap and the inside of the bearing, so that even if bubbles are generated, the oil does not stay in the bearing gap. It is considered that there is no problem that the material is extruded from the material and the sealing property is impaired.
[0031]
Assuming that the axial width of each bearing surface 1b is 1, the ratio R of the smooth portion n in the bearing width direction is in the range of R = 0.1 to 0.6, preferably, R = 0.2 to 0. It is better to set it in the range of 4. If the width is less than 0.1 with respect to the bearing surface width 1, the effects (increase in dynamic pressure and increase in bearing stiffness) provided by the smooth portion n do not appear remarkably, and are the same as in the case of continuous grooves. Further, when R is larger than 0.6 with respect to the bearing width 1, the dynamic pressure groove is reduced, the force for pushing the oil into the central portion in the axial direction is weakened, and the dynamic pressure effect is not effectively exhibited.
[0032]
There is an optimal range for the ratio between the groove depth (h: see FIG. 4) of the dynamic pressure groove 1c and the radial gap c, and the ratio between the bearing gap (radial gap: c) and the radius r of the rotating shaft 3. Outside this range, a sufficient dynamic pressure effect cannot be obtained. In order to clarify this optimum range, the shaft runout was measured using a CD-ROM actual motor and an LBP actual motor, and as a result, c / h was in the range of 0.5 to 4.0 and c / r was 0.0005. It has been found that the shaft runout can be suppressed to a practically sufficient level within the range of 0.003 to 0.003. Therefore, in order to maintain high accuracy, it is desirable to set c / h = 0.5 to 4.0 and c / r = 0.0005 to 0.003. In FIG. 4, the radial gap c and the groove depth h are exaggerated as compared with the actual case.
[0033]
The dynamic pressure groove 1c described above can be formed by, for example, compression molding. That is, a groove having an uneven shape corresponding to the shape of the dynamic pressure groove 1c is formed on the outer peripheral surface of a core rod (for example, a sizing pin), and a porous material as a material of the bearing body 1a is supplied to the outer peripheral surface of the core rod. A pressing force is applied to the material to press the inner diameter portion thereof into the groove shape of the core rod, and the dynamic pressure groove 1c corresponding to the shape of the groove shape is transferred to the inner diameter portion. At this time, the back portion 1e can be formed simultaneously with the dynamic pressure groove 1c. After the formation of the dynamic pressure grooves, the core rod is released from the inner diameter of the porous material by utilizing the springback of the porous material by removing the pressing force.
[0034]
At this time, if the sizing pin for transferring the dynamic pressure groove 1c is finished with high accuracy, the accuracy of the bearing is also improved. It is not so difficult to finish the precision of the sizing pin to the required precision, for example, within a circularity of 1 μm or less and a cylindricity of 2 μm or less, and it can be easily achieved.
[0035]
Before performing the above-described dynamic pressure groove sizing, it is preferable to perform rotational sizing on the inner diameter portion of the porous material to make the distribution of the apertures on the inner diameter surface uniform in advance.
[0036]
The inner diameter D1 of the region 1d between the bearing surfaces 1b in the bearing body 1a is set to be larger than the inner diameter D2 of the bearing surface 1b (strictly speaking, the inner diameter of the region of the back portion 1e between the dynamic pressure grooves 1c). . In the drawing, the axial cross section of the region 1d is drawn by one circular arc that is continuous with the bearing surface 1b, and the maximum diameter portion of the circular arc is located at the axial center of the region 1d. However, the cross-sectional shape can be arbitrarily selected, and may be drawn by another curve or straight line such as an ellipse, a parabola, or a combination thereof, in addition to a circular arc. Further, the maximum diameter portion of the region 1d may be unevenly distributed on one bearing surface 1b side.
[0037]
The density of the portion including the bearing surface 1b of the bearing main body 1a may be higher than the density of the portion including the region 1d between the bearing surfaces (the "density" herein means that the depth from the bearing surface or the region between the bearing surfaces is 0%). .. Refers to the density of the surface layer up to 1 mm). The density of the porous body is related to the porosity per unit volume. As the density increases, the volume ratio of the pores in the tissue decreases, and at the same time, the surface porosity on the surface decreases. As a result, the oil film strength on the bearing surface 1b can be improved, and the bearing rigidity can be improved. At the same time, the oil content in the region 1d can be increased to improve the durability. Specifically, the surface density of the bearing surface 1b is adjusted to 6.5 to 7.2 [g / cm].3], The surface density of the region 1d is 6.0 to 6.6 [g / cm].3], And the surface porosity on the bearing surface 1b is set in the range of 2 to 30%, preferably 2 to 12%. The setting of the surface porosity can be performed by setting the density, or by performing a surface treatment (adjustment of the porosity by rotational sizing or the like), and furthermore, by setting the density and using the surface treatment in combination.
[0038]
The outer diameter surface of the bearing body 1a is such that the outer diameter surface 1b1 corresponding to the one bearing surface 1b has a small diameter, the outer diameter surface 1d1 corresponding to the region 1d between the bearing surfaces, and the outer diameter surface corresponding to the other bearing surface 1b. 1b2 is formed in a stepped cylindrical shape having a large diameter. As shown in FIG. 1, when the porous oil-impregnated bearing 1 is press-fitted into the inner periphery of the housing 2, the outer diameter portion 1d1 corresponding to the region 1d corresponds to the small diameter portion 2a1 of the housing inner diameter surface 2a, and the outer diameter portion corresponding to one bearing surface. The diameter portion 1b1 faces the small diameter portion 2a1 of the housing inner diameter surface 2a, and the outer diameter portion 1b1 corresponding to the other bearing surface faces the large diameter portion 2a2 of the housing inner diameter surface 2a. At this time, if a press-fitting allowance is formed between the outer diameter portion 1d1 corresponding to the region 1d and the small diameter portion 2a1 of the housing inner diameter surface 2a, the fixing force of the bearing 1 can be secured by the close fitting of both. Can be. The region 1d is formed to have a diameter larger than that of the bearing surface 1b, and is not directly involved in supporting the shaft. Therefore, even if a deformation corresponding to the press-fitting occurs in the region 1d, the accuracy of the bearing is not affected. On the other hand, between the outer diameter surfaces 1b1 and 1b2 corresponding to the two bearing surfaces 1b and the housing inner diameter surfaces 2a1 and 2a2 facing the outer diameter surfaces 1b1 and 1b2, a tightening allowance smaller than the press-fitting allowance (a tightening allowance that does not affect bearing accuracy). Alternatively, if a radial gap is formed (this embodiment exemplifies a case where the radial gaps 9a and 9b are provided), deformation of the bearing surface 1b due to press-in can be prevented or reduced. As a result, a decrease in bearing accuracy can be prevented.
[0039]
Actually, when the dimensions and precision changes of the bearing surface were measured before and after press-fitting, there was almost no change in any of the inner diameter, roundness, cylindricity, and coaxiality. Specifically, before and after press-fitting, the inner diameter dimension is φ3.002, the cylindricity is 2 μm or less, and the coaxiality (meaning the amount of axial misalignment of one bearing surface with respect to the other bearing surface) is 2 μm or less, and there is no change. The roundness was 0.9 μm before press-fitting, but only changed to 1.0 μm after press-fitting.
[0040]
FIG. 5 shows a state where the above-described bearing unit is incorporated in a spindle motor (the drawing shows a spindle motor of a CD-ROM device). The shaft 3 (rotating shaft) inserted into the inner diameter of the porous oil-impregnated bearing 1 is supported in a non-contact manner by a hydrodynamic oil film formed in the bearing gap 4, and is rotated by an exciting force generated between the rotor 5 and the stator 6. Driven. The shaft 3 is supported in contact with a thrust plate 7 fitted into one opening of the housing 2.
[0041]
By the way, the shaft 3 is usually inserted into the inner diameter of the bearing 1 with the thrust plate 7 mounted on the housing 2. At the time of this insertion, air escapes from the bearing gap 4 between the bearing 1 and the shaft 3, but since the bearing gap 4 is only about a few μm, air is trapped in the space below the housing 2 and the shaft 3 is inserted. Becomes difficult. In addition, when the motor is driven, heat is generated, and the heat may cause the trapped air to expand, pushing up the shaft 3 and destabilizing the bearing performance.
[0042]
In this case, as shown in FIGS. 1 and 5, between the outer diameter surface of the bearing main body 1 a and the inner diameter surface 2 a of the housing 2, a ventilation path 8 opened at both axial ends of the bearing main body 1 a is provided. Good. The air passage 8 can be formed by providing an axial groove 1g on the outer diameter surface of the bearing body 1a, and a gap (for example, between the outer diameter surface of the bearing body 1a and the inner diameter surface 2a of the housing 2). If there is a gap 9a between the outer diameter surface 1b1 and the housing inner diameter surface 2a1 and a gap 9b) between the outer diameter surface 1b2 and the housing inner diameter surface 2a2, the air passage 8 is formed by the gaps 9a and 9b and the groove 1g. May be configured. At this time, the groove 1g is formed in at least a portion of the outer diameter surface of the bearing body 1a which is press-fitted into the housing inner diameter surface 2a (in the present embodiment, an outer diameter portion 1d1 corresponding to a region 1d between the bearing surfaces). Is enough. The groove 1g can be provided not only at one position on the outer diameter surface of the bearing body 1a but also at a plurality of positions (three positions in the drawing) in the circumferential direction, or may be provided on the inner diameter surface 2a of the housing.
[0043]
The porous oil-impregnated bearing 1 may be press-fitted into the inner diameter surface 2a of the housing 2 or fixed by bonding. FIG. 6 shows an example of a bonding apparatus used for such bonding, in which the bearing 1 is inserted into the housing 2 and positioned and held by the jig 11, and the outer diameter of the bearing body 1a is fixed by a dispenser (not shown). An adhesive is injected between the housing and the inner surface 2a. As the bearing 1 and the housing 2 in this case, those shown in FIG. 1 can be used as they are. However, the outer diameter surface of the bearing main body 1a and the inner diameter surface 2a of the housing 2 may be straight surfaces without steps. The injection of the adhesive is performed while avoiding the air passage 8. The injected adhesive penetrates and spreads on the joint surface by capillary action. The bonding is desirably performed after the oil adhering to the outer diameter surface of the bearing body is wiped off with a rag or the like or removed by a centrifuge.
[0044]
In the case of bonding in this manner, the adhesive component and the oil are mixed at the portion of the outer diameter surface of the bearing main body 1a which is bonded to the inner diameter surface 2a of the housing 2, so that the bonding force is reduced or the bonding force is reduced. Oil containing an agent component may enter the inside of the bearing from the joint, and may ooze out on the bearing surface, which may have an undesirable effect on the bearing function.
[0045]
To avoid this, the surface porosity of the portion of the outer diameter surface of the bearing body 1a that is bonded to the inner diameter surface 2a of the housing 2 may be set to 12% or less, preferably 8% or less. With such a surface porosity, most of the applied adhesive remains on the joint surface and does not enter the inside of the bearing. Therefore, the adhesive strength does not decrease and there is no adverse effect on lubrication. The surface porosity can be realized by setting the sizing margin in the dynamic pressure sizing step to 0.1 mm or more.
[0046]
As the adhesive, an anaerobic adhesive, an ultraviolet curable adhesive, or an adhesive having both properties is used. These have excellent adhesive strength on the oil surface, and have good reactivity with a copper-based material often used as a material of the bearing body 1a and the housing 2. Further, since the fixing speed is high, the time for positioning and holding the bearing 1 and the housing 2 by the jig 11 can be shortened. Further, each of them is a one-liquid type, and there is no need to mix two liquids as in the case of an epoxy adhesive, for example, so that the workability is excellent. In particular, in the case of an ultraviolet curable adhesive, even if the adhesive adheres to a chamfer or the like at the outer diameter of the bearing and remains, it can be hardened there by irradiating with ultraviolet rays.
[0047]
The bearing 1 was bonded and fixed to the housing 2 using an apparatus shown in FIG. 6, and a test for measuring the removal force, shaft runout, and the like was performed. However, in this test, the sizing margin of the outer diameter surface of the bearing main body 1a was set to 0.15 mm, thereby setting the surface porosity of the outer diameter surface of the bearing main body to 6 to 10%. The gap between the bearing (φ3 × φ6 × 9) and the housing 2 (C3602) was 20 μm in diameter, and an anaerobic adhesive 603 manufactured by Loctite Japan was used as the adhesive. After injecting 1.0 mg of the adhesive, the bearing was fixed in about 30 seconds, and the bearing unit was removed from the jig 11 about 1 minute later.
[0048]
When the removal force was measured 24 hours after bonding, it was 50 kgf or more. Usually, the removal force required for a bearing having the above dimensions is 5 to 10 kgf, and it has been found that this requirement can be sufficiently satisfied. Further, the bearing unit after bonding was incorporated into an LBP motor, and a function evaluation test was performed. At 15000 rpm, the shaft runout was 2 μm or less, and the non-repeatable rotation accuracy (NRRO) was 0.03 μm or less, showing satisfactory performance as a dynamic pressure bearing. In addition, even in the continuous operation test, it was found that the performance did not deteriorate even after lapse of 3000 hours, and that it was sufficiently practical.
[0049]
When the porous oil-impregnated bearing 1 is fixed to the housing 2 by a method such as press-fitting or bonding, the bearing 1 is arranged in the housing 2 in a direction matching the rotation direction of the rotating shaft 3 in order to generate a predetermined dynamic pressure. There is a need. If the direction of the bearing 1 is visually determined, the workability at the time of fixing is difficult to see, and the workability at the time of fixing is deteriorated.
[0050]
Therefore, in this case, as shown in FIGS. 7 and 8, an identification mark 12 for identifying the assembling direction may be formed on one end face of the bearing main body 1a. Although the drawing illustrates a case where a ring groove is formed as the identification mark 12, the shape of the identification mark 12 can be arbitrarily selected. The presence or absence of the identification mark 12 can be visually determined, or can be mechanically determined using an image processing device or the like.
[0051]
For example, when the porous material is pressed with a punch from both sides in the axial direction at the time of dynamic pressure sizing, a mold corresponding to the mark shape is formed in advance on the pressing surface of one punch (for example, a lower punch). By placing it, it can be molded.
[0052]
The bearing units described above can be widely used for various motors such as the above-mentioned various spindle motors and the like, electric products such as axial fans, ventilation fans and electric fans, and electric components for automobiles.
[0053]
【The invention's effect】
As described above, according to the present invention,
{Circle around (1)} Noise and cost can be reduced compared to a bearing unit using a ball bearing.
[0054]
{Circle over (2)} The bearing pressure can be increased by the dynamic pressure action of the dynamic pressure groove, and the rotational accuracy can be improved to reduce shaft runout, NRRO and jitter. Since a good oil film is always formed on the bearing surface, the durability life can be greatly improved.
[Brief description of the drawings]
FIG. 1 is an axial sectional view of a bearing unit according to the present invention.
FIG. 2 is an axial sectional view of a porous oil-impregnated bearing used in the bearing unit.
FIG. 3 is a view as viewed in the direction of the arrow A in FIG. 2;
FIG. 4 is a radial sectional view of the porous oil-impregnated bearing.
FIG. 5 is an axial sectional view of a spindle motor of the CD-ROM device.
FIG. 6 is an axial sectional view showing an example of a bonding device.
FIG. 7 is an axial sectional view of a hydrodynamic porous oil-impregnated bearing unit having an identification mark provided on a bearing.
FIG. 8 is an enlarged view of a portion B in FIG. 7;
FIG. 9 is an axial sectional view showing a method of press-fitting a bearing.
[Explanation of symbols]
1 Porous oil-impregnated bearing
1a Bearing body
1b Bearing surface
1c Dynamic pressure groove
1d Bearing surface area
2 Housing
2a Housing inner diameter
3 rotating shaft
4 Bearing clearance
8 Ventilation path
9a gap
9b gap
12 Identification mark

Claims (10)

回転軸の外径面と軸受隙間を介して対向する軸受面を有する、銅あるいは鉄、または両者を主成分とする焼結金属製の軸受本体に、潤滑油あるいは潤滑グリースを含浸させた多孔質含油軸受を、ハウジングの内径面に固定したものであって、
複数の軸受面を軸方向に離隔させて設け、軸受本体の軸受面に動圧溝を軸方向に対して傾斜させて設け、各軸受面を圧縮成形することにより、軸受面表面の開孔部を均一に分布させると共に、その表面層の密度を内部よりも大きくし、軸受本体の軸受面を含む部分の表面層の密度を、軸受面間の領域を含む部分の表面層の密度よりも大きくし、動圧溝で軸受隙間に油の動圧油膜を形成して回転軸を非接触支持すると共に、軸受面の開孔部を介して油を軸受本体の内部と軸受隙間との間で循環させるようにし、動圧溝の、油を軸方向中央側に押し込む力によって集めた油を軸受隙間から軸受本体内部に還流させる動圧型多孔質含油軸受ユニット。
Porous body in which a bearing body made of copper or iron, or a sintered metal mainly composed of both, has a bearing surface facing the outer diameter surface of the rotating shaft via a bearing gap, and is impregnated with lubricating oil or lubricating grease. An oil-impregnated bearing fixed to the inner diameter surface of the housing,
A plurality of bearing surfaces are provided apart from each other in the axial direction, dynamic pressure grooves are provided on each bearing surface of the bearing body at an angle to the axial direction, and each bearing surface is compression-molded to form a hole in the surface of the bearing surface. Parts are distributed uniformly, the density of the surface layer is made larger than that of the inside, and the density of the surface layer of the portion including the bearing surface of the bearing body is made higher than the density of the surface layer of the portion including the region between the bearing surfaces. Increase the size, form a dynamic pressure oil film in the bearing gap with the dynamic pressure groove to support the rotating shaft in a non-contact manner, and transfer the oil between the inside of the bearing body and the bearing gap through the opening in the bearing surface. A hydrodynamic porous oil-impregnated bearing unit that circulates and returns oil collected by the force of pushing the oil of the dynamic pressure groove toward the center in the axial direction into the bearing body from the bearing gap .
軸受本体の軸受面間の領域の内径寸法を軸受面の内径寸法よりも大きくした請求項記載の動圧型多孔質含油軸受ユニット。Hydrodynamic type porous oil-impregnated bearing unit inner diameter dimension of the region between the bearing surfaces of the bearing body according to claim 1, wherein the larger than the inner diameter of the bearing surface. 多孔質含油軸受をハウジングの内径面に圧入して固定した請求項1または2記載の動圧型多孔質含油軸受ユニット。 3. The hydrodynamic porous oil-impregnated bearing unit according to claim 1, wherein the porous oil-impregnated bearing is press-fitted and fixed to an inner diameter surface of the housing. 軸受本体の外径面のうち軸受面間の領域に対応した外径部と、これに対向するハウジングの内径面との間に圧入締め代を形成すると共に、軸受本体の外径面のうち軸受面に対応した外径部と、これに対向するハウジング内径面との間に前記圧入締め代よりも小さい締め代もしくは隙間を形成した請求項記載の動圧型多孔質含油軸受ユニット。A press fit is formed between an outer diameter portion of the outer diameter surface of the bearing body corresponding to a region between the bearing surfaces and an inner diameter surface of the housing facing the outer diameter portion. 4. The hydrodynamic porous oil-impregnated bearing unit according to claim 3 , wherein a tightening margin or a gap smaller than the press-fitting margin is formed between the outer diameter portion corresponding to the surface and the housing inner diameter surface facing the outer diameter portion. 多孔質含油軸受をハウジングの内径面に接着して固定した請求項1または2記載の動圧型多孔質含油軸受ユニット。 3. The hydrodynamic porous oil-impregnated bearing unit according to claim 1, wherein the porous oil-impregnated bearing is adhered and fixed to the inner diameter surface of the housing. 軸受本体の外径面のうちハウジングの内径面に接着される部分の表面開孔率を12%以下にした請求項記載の動圧型多孔質含油軸受ユニット。6. The hydrodynamic porous oil-impregnated bearing unit according to claim 5, wherein a surface porosity of a portion of the outer diameter surface of the bearing body that is bonded to the inner diameter surface of the housing is 12% or less. 嫌気性接着剤あるいは紫外線硬化型接着剤、またはその双方の性質を有する接着剤を用いて多孔質含油軸受をハウジングの内径面に接着した請求項または記載の動圧型多孔質含油軸受ユニット。Anaerobic adhesive or ultraviolet curing adhesive, or hydrodynamic type porous oil-impregnated bearing unit according to claim 5 or 6, wherein the porous oil-impregnated bearing with an adhesive adhered to the inner surface of the housing having the properties of both. 軸受面の表面開孔率を、軸受面間の領域の表面開孔率よりも小さくした請求項乃至何れか記載の動圧型多孔質含油軸受ユニット。The surface porosity of the bearing surface, hydrodynamic type porous oil-impregnated bearing unit as set forth in any one of claims 2 to 7 was smaller than the surface porosity of the region between the bearing surfaces. 軸受本体の外径面とハウジングの内径面との間に、軸受本体の軸方向の両端部に開口する通気路を設けた請求項1乃至何れか記載の動圧型多孔質含油軸受ユニット。The hydrodynamic porous oil-impregnated bearing unit according to any one of claims 1 to 8, wherein ventilation passages are provided between the outer diameter surface of the bearing body and the inner diameter surface of the housing, the ventilation paths being open at both axial ends of the bearing body. 軸受本体の一方の端面に組立方向を識別するための識別マークを形成した請求項1乃至何れか記載の動圧型多孔質含油軸受ユニット。Hydrodynamic type porous oil-impregnated bearing unit as set forth in any one of claims 1 to 9 to form an identification mark for identifying the one assembly direction on the end face of the bearing body.
JP34962697A 1997-12-18 1997-12-18 Dynamic pressure type porous oil-impregnated bearing unit Expired - Lifetime JP3602317B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP34962697A JP3602317B2 (en) 1997-12-18 1997-12-18 Dynamic pressure type porous oil-impregnated bearing unit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP34962697A JP3602317B2 (en) 1997-12-18 1997-12-18 Dynamic pressure type porous oil-impregnated bearing unit

Publications (2)

Publication Number Publication Date
JPH11182533A JPH11182533A (en) 1999-07-06
JP3602317B2 true JP3602317B2 (en) 2004-12-15

Family

ID=18405015

Family Applications (1)

Application Number Title Priority Date Filing Date
JP34962697A Expired - Lifetime JP3602317B2 (en) 1997-12-18 1997-12-18 Dynamic pressure type porous oil-impregnated bearing unit

Country Status (1)

Country Link
JP (1) JP3602317B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007117321A (en) * 2005-10-26 2007-05-17 Matsushita Electric Works Ltd Massage machine

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070230843A1 (en) 2006-01-06 2007-10-04 Tetsuya Kurimura Fluid lubricated bearing device
JP2006242224A (en) * 2005-03-01 2006-09-14 Ntn Tokushu Gokin Kk Sintered metal bearing
WO2009041232A1 (en) * 2007-09-26 2009-04-02 Ntn Corporation Hydrodynamic bearing device
DE102009001495A1 (en) * 2009-03-11 2010-09-23 Federal-Mogul Deva Gmbh Sliding plug and sliding element
JP5523223B2 (en) * 2010-07-01 2014-06-18 日立粉末冶金株式会社 Sintered oil-impregnated bearing
JP4947204B2 (en) * 2010-09-24 2012-06-06 日本電産株式会社 Fluid dynamic pressure bearing, fluid dynamic pressure bearing manufacturing method, spindle motor, and recording disk drive device.
JP2013044395A (en) * 2011-08-24 2013-03-04 Ntn Corp Fluid dynamic-pressure bearing device
DE102020202738A1 (en) * 2020-03-04 2021-09-09 Mahle International Gmbh Plain bearing, method for producing a plain bearing, internal combustion engine with plain bearing and electrical machine with plain bearing

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007117321A (en) * 2005-10-26 2007-05-17 Matsushita Electric Works Ltd Massage machine
JP4730060B2 (en) * 2005-10-26 2011-07-20 パナソニック電工株式会社 Massage machine

Also Published As

Publication number Publication date
JPH11182533A (en) 1999-07-06

Similar Documents

Publication Publication Date Title
US5834870A (en) Oil impregnated porous bearing units and motors provided with same
KR100549102B1 (en) Spindle motor and rotating shaft supporting device of information equipment
US6299356B1 (en) Hydrodynamic type porous oil-impregnated bearing
US6250807B1 (en) Hydrodynamic type bearing and hydrodynamic type bearing unit
KR100696238B1 (en) Dynamic pressure bearing-unit and method for manufacturing the same
US7466050B2 (en) Brushless motor and method of manufacturing the same
US20150043844A1 (en) Sintered metal bearing
JP3602317B2 (en) Dynamic pressure type porous oil-impregnated bearing unit
US8578610B2 (en) Method for manufacturing fluid dynamic bearing device
CN105190062A (en) Fluid dynamic bearing device and motor provided with same
JP2000240653A (en) Oil-impregnated sintered bearing, manufacture therefor, and spindle motor for information apparatus
JP3607492B2 (en) Dynamic pressure type porous oil-impregnated bearing and manufacturing method thereof
JP3607661B2 (en) Hydrodynamic porous oil-impregnated bearing and method for producing the same
KR20070004786A (en) Dynamic pressure bearing device
JP3799176B2 (en) Hydrodynamic sintered oil-impregnated bearing unit
JP3686665B2 (en) Hydrodynamic bearing unit and method for manufacturing the same
JP4579218B2 (en) Manufacturing method of hydrodynamic bearing unit
JP3908834B2 (en) Support device for spindle motor of information equipment
JPH11191944A (en) Spindle motor and rotary shaft supporting device of laser beam printer
JP3602325B2 (en) Dynamic pressure type porous oil-impregnated bearing
JP3773721B2 (en) Hydrodynamic bearing
JPS5817219A (en) Dynamic-pressure radial bearing device
JP2005180707A (en) Dynamic pressure type sintered oil-impregnated bearing unit
JP2005195180A (en) Dynamic oil-impregnated sintered bearing unit
JP4509922B2 (en) Hydrodynamic sintered oil-impregnated bearing for information equipment spindle motor

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040514

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040527

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040726

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040820

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040922

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071001

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081001

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091001

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101001

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111001

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121001

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121001

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131001

Year of fee payment: 9

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term