JP5523223B2 - Sintered oil-impregnated bearing - Google Patents

Sintered oil-impregnated bearing Download PDF

Info

Publication number
JP5523223B2
JP5523223B2 JP2010151076A JP2010151076A JP5523223B2 JP 5523223 B2 JP5523223 B2 JP 5523223B2 JP 2010151076 A JP2010151076 A JP 2010151076A JP 2010151076 A JP2010151076 A JP 2010151076A JP 5523223 B2 JP5523223 B2 JP 5523223B2
Authority
JP
Japan
Prior art keywords
oil
thickener
grease
lubricating composition
bearing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2010151076A
Other languages
Japanese (ja)
Other versions
JP2012013167A (en
Inventor
秀和 徳島
剛 柳瀬
康弘 木村
正利 岩崎
文聡 笠原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Powdered Metals Co Ltd
Original Assignee
Hitachi Powdered Metals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Powdered Metals Co Ltd filed Critical Hitachi Powdered Metals Co Ltd
Priority to JP2010151076A priority Critical patent/JP5523223B2/en
Priority to TW100122751A priority patent/TWI497000B/en
Priority to CN2011101834581A priority patent/CN102312922A/en
Publication of JP2012013167A publication Critical patent/JP2012013167A/en
Application granted granted Critical
Publication of JP5523223B2 publication Critical patent/JP5523223B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、各種用途のモータ、電子機器や電源設備等の冷却に用いられる軸流ファンモータの軸受として好適な、温度が高い環境下でも長期にわたり潤滑性能が維持される焼結含油軸受に関する。   The present invention relates to a sintered oil-impregnated bearing suitable as a bearing for an axial fan motor used for cooling various types of motors, electronic devices, power supply facilities, etc., and capable of maintaining lubricating performance for a long time even in a high temperature environment.

電子機器等の冷却に用いられる軸流ファンモータは、枠形のケーシングの中央部にモータが固定されており、そのロータに回転翼(ファン)を取り付けた構造を有する。モータの駆動回路に通電するとロータが回転し、ケーシングとモータの間隙に一定方向の空気流を発生させる。軸流ファンモータは電子機器等の外枠等に設置され、枠内に外気を導入または枠内の空気を排出して電子機器等を冷却する。特に枠内の空気を排出する用途では、軸流ファンモータの温度環境が80〜100℃程度になることがあり、また、運転時間が長いので、その温度環境で耐久性が良い軸受が求められる。   An axial fan motor used for cooling electronic devices or the like has a structure in which a motor is fixed to a central portion of a frame-shaped casing, and a rotor blade (fan) is attached to the rotor. When the motor drive circuit is energized, the rotor rotates and an air flow in a certain direction is generated in the gap between the casing and the motor. The axial fan motor is installed in an outer frame or the like of an electronic device or the like, and cools the electronic device or the like by introducing outside air into the frame or discharging air in the frame. In particular, in applications where the air in the frame is discharged, the temperature environment of the axial fan motor may be about 80 to 100 ° C., and since the operation time is long, a bearing having good durability in that temperature environment is required. .

前記軸流ファンモータの軸受には、焼結含油軸受を用いているものがある(例えば、特許文献1参照)。この種のモータの軸受は、青銅または鉄・青銅系の多孔質焼結合金からなり、その気孔内に炭化水素系の合成油あるいは炭化水素系合成油に増ちょう剤として金属石けんを混合した潤滑組成物を含浸したものである。しかし前記のような高い温度環境で長期間使用される場合、潤滑性能が低下し、金属接触の増大、摩擦力の増大、軸受部の発熱に伴うオイルの劣化、酸化摩耗などが起こり易くなるという現象が認められていた。   Some bearings of the axial fan motor use a sintered oil-impregnated bearing (for example, see Patent Document 1). This type of motor bearing is made of bronze or iron / bronze-based porous sintered alloy, and its pores are lubricated with hydrocarbon-based synthetic oil or hydrocarbon-based synthetic oil mixed with metallic soap as a thickener. It is impregnated with the composition. However, when used in a high temperature environment as described above for a long period of time, the lubrication performance is reduced, and the metal contact increases, the frictional force increases, the oil deteriorates due to the heat generation of the bearing portion, and oxidative wear easily occurs. The phenomenon was recognized.

特開平10−164794号公報Japanese Patent Laid-Open No. 10-164794

ファンモータは高い温度環境で長寿命であることが求められている。換言すると使用される軸受の長寿命化が必要なことであり、高い温度環境下においても潤滑性が長期的に安定するととともに、焼付きや摩耗が発生しないような焼結軸受と気孔に含浸される潤滑組成物との組み合わせを探索することが課題となっていた。   The fan motor is required to have a long life under a high temperature environment. In other words, it is necessary to extend the service life of the bearing used, and it is impregnated into sintered bearings and pores so that the lubricity is stable for a long time even in a high temperature environment and seizure and wear do not occur. It has been a challenge to search for a combination with a lubricating composition.

この種の潤滑組成物としては、炭化水素系合成油に増ちょう剤として金属石けんを混合した潤滑組成物がある。しかしながら、一般的な多孔質焼結合金の気孔径は100μm前後であるのに対し、金属石けんの粒子径は数十μmから数百μmと多孔質焼結合金の気孔径より大きいものが使用されている。これより、増ちょう剤は多孔質焼結合金の気孔内に入り込めず、気孔を通じて潤滑面に増ちょう剤が供給されなくなる。つまり、潤滑面は基油が主体となるため、油膜強度が低くなり、軸受と回転軸が金属接触し易い潤滑状態となり、潤滑性の点で好ましくない。   As this type of lubricating composition, there is a lubricating composition in which a metallic soap is mixed as a thickener with a hydrocarbon-based synthetic oil. However, while the pore diameter of a general porous sintered alloy is around 100 μm, the particle diameter of metal soap is several tens to several hundred μm, which is larger than the pore diameter of a porous sintered alloy. ing. As a result, the thickener cannot enter the pores of the porous sintered alloy, and the thickener is not supplied to the lubricating surface through the pores. In other words, since the lubricating surface is mainly composed of base oil, the oil film strength is lowered, and the bearing and the rotating shaft are in a lubricating state in which metal contact easily occurs, which is not preferable in terms of lubricity.

本発明は、上記状況に鑑みてなされたものであり、増ちょう剤と基油から構成されたグリース状潤滑組成物を多孔質焼結合金の気孔内に含浸させた焼結含油軸受において、軸受潤滑面への増ちょう剤の供給が阻害されない焼結含油軸受を提供することを目的としている。   The present invention has been made in view of the above situation, and is a sintered oil impregnated bearing in which pores of a porous sintered alloy are impregnated with a grease-like lubricating composition composed of a thickener and a base oil. An object of the present invention is to provide a sintered oil-impregnated bearing in which the supply of the thickener to the lubricating surface is not hindered.

本発明は、石けん系増ちょう剤と基油を基本構成とするグリース状潤滑組成物を多孔質焼結合金の気孔内に含浸させた焼結含油軸受において、該グリース状潤滑組成物中の石けん系増ちょう剤の粒子径が、該多孔質焼結合金の気孔径より小さいことを特徴とする。

The present invention relates to a sintered oil-impregnated bearing in which pores of a porous sintered alloy are impregnated with a grease-like lubricating composition consisting essentially of a soap-based thickener and a base oil, and the soap contained in the grease-like lubricating composition. The particle size of the system thickener is smaller than the pore size of the porous sintered alloy.

また、前記グリース状潤滑組成物は、基油に対する増ちょう剤量が重量比で0.2〜2質量%の範囲であることを好ましい態様とする。   Moreover, the said grease-like lubricating composition makes it a preferable aspect that the amount of thickeners with respect to base oil is the range of 0.2-2 mass% by weight ratio.

加えて、前記多孔質焼結合金の気孔径が30〜150μmで、前記グリース状潤滑組成物の増ちょう剤粒子径はレーザ回折散乱式粒度分布測定装置で測定され、最大粒子径が30μm未満であり、前記基油はポリオールエステル油またはポリオールエステル油とポリαオレフィン油の混合油のいずれかで、40℃における動粘度が20〜100mm/sの範囲とすることを好ましい態様とする。 In addition, the pore diameter of the porous sintered alloy is 30 to 150 μm, the thickener particle size of the grease-like lubricating composition is measured with a laser diffraction scattering type particle size distribution measuring device, and the maximum particle size is less than 30 μm. And the base oil is either a polyol ester oil or a mixed oil of a polyol ester oil and a poly-α-olefin oil, and the kinematic viscosity at 40 ° C. is preferably in the range of 20 to 100 mm 2 / s.

このように、増ちょう剤と基油を基本構成とするグリース状潤滑組成物を多孔質焼結合金の気孔内に含浸させた焼結含油軸受において、グリース状潤滑組成物中の増ちょう剤の粒子径が、該多孔質焼結合金の気孔径より小さいグリース状潤滑組成物を多孔質焼結合金に含浸した組み合わせとした。これにより、増ちょう剤が気孔内に入り込んで潤滑面に供給されるので、温度が比較的高い環境下でも潤滑性が良好で、摩耗量が少ない軸受要素が提供することができ、特に、軸流ファンモータ用に好適なものであり、軸流ファンモータに使用すればモータの耐久性の向上、信頼性の向上に寄与することができる。   Thus, in a sintered oil-impregnated bearing in which pores of a porous sintered alloy are impregnated with a grease-like lubricating composition having a thickener and a base oil as basic components, the thickener in the grease-like lubricating composition A porous sintered alloy was impregnated with a grease-like lubricating composition having a particle size smaller than the pore size of the porous sintered alloy. As a result, the thickener enters the pores and is supplied to the lubrication surface, so that it is possible to provide a bearing element with good lubricity and low wear even in a relatively high temperature environment. It is suitable for an axial fan motor, and if used for an axial fan motor, it can contribute to improving the durability and reliability of the motor.

以下、本発明の好適な実施の形態を説明する。
(1)含浸されるグリース状潤滑組成物
温度が比較的高い環境下でも良好な潤滑性能が長期にわたり維持されるような前記多孔質焼結合金からなる軸受との好適な組み合わせとなるグリース状潤滑組成物は、基油がポリオールエステル油またはポリオールエステル油とポリαオレフィン油の混合油のいずれかである。基油は粘度を低くすることにより、低速条件において摺動面にグリース状潤滑組成物を供給しやすくなる。しかしながら、粘度を低くし過ぎた場合、グリース状潤滑組成物の漏れ量が増し、潤滑膜強度が低くなるために金属接触が増大し、軸受に異常を生じる。一方、基油の粘度を高くした場合、軸受内からのグリース状潤滑組成物が出にくくなる。また、粘性抵抗が大きくなるので、軸受の摩擦係数が高くなる。そのため、40℃における動粘度が20〜100mm/sの範囲である。グリース状潤滑組成物は通常の方法により前記多孔質焼結合金の軸受に含浸される。
Hereinafter, preferred embodiments of the present invention will be described.
(1) Grease-like lubricating composition to be impregnated Grease-like lubrication which is a suitable combination with the bearing made of the porous sintered alloy so that good lubricating performance can be maintained for a long time even in a relatively high temperature environment In the composition, the base oil is either a polyol ester oil or a mixed oil of a polyol ester oil and a polyalphaolefin oil. By reducing the viscosity of the base oil, it becomes easy to supply the grease-like lubricating composition to the sliding surface under low speed conditions. However, if the viscosity is too low, the amount of leakage of the grease-like lubricating composition increases, and the strength of the lubricating film decreases, so that the metal contact increases and an abnormality occurs in the bearing. On the other hand, when the viscosity of the base oil is increased, it becomes difficult for the grease-like lubricating composition to come out from the bearing. In addition, since the viscous resistance is increased, the friction coefficient of the bearing is increased. Therefore, the kinematic viscosity at 40 ° C. is in the range of 20 to 100 mm 2 / s. The grease-like lubricating composition is impregnated in the porous sintered alloy bearing by an ordinary method.

(2)増ちょう剤
グリース状潤滑組成物は、増ちょう剤を0.2〜2.0質量%含有する。増ちょう剤としては、各種油脂または脂肪酸の金属塩であるリチウム石けん、ナトリウム石けん、カルシウム石けん、アルミニウム石けん等の金属石けん、コンプレックス石けん、有機系非石けん、無機系非石けん等がある。増ちょう剤としては安価で供給の安定した、より耐熱性の高い物質が求められるが、不均一系であることを感じさせないほど基油と一体となった構造を作るものが望まれる。分散性、耐熱性および潤滑性等からリチウム金属石けんが好適である。また、リチウムを1種または数種の油脂類と組み合わせることにより種々の性能のグリースを得ることができる。そのような油脂類には牛脂、パーム油、ヤシ油等の天然動植物油や、ヒマシ硬化油等の天然動植物油を水添した硬化油、またこれらを分解して得られる各種脂肪酸等が挙げられる。その他アジピン酸,セバシン酸等のジカルボン酸や、安息香酸、サリチル酸等の芳香族カルボン酸、合成脂肪酸等を使用することもできる。特にヒマシ硬化油あるいはその脂肪酸やステアリン酸とリチウムからなる石鹸を増ちょう剤としたグリースは、耐熱および耐水の他に機械的安定性も良好である。
(2) Thickener The grease-like lubricating composition contains 0.2 to 2.0% by mass of a thickener. Examples of thickeners include metal soaps such as lithium soap, sodium soap, calcium soap, and aluminum soap, which are metal salts of various fats and fatty acids, complex soap, organic non-soap, and inorganic non-soap. As a thickener, a substance that is inexpensive, stable in supply, and more heat-resistant is required, but a thickener that has a structure integrated with the base oil so that it does not feel a heterogeneous system is desired. Lithium metal soap is preferred from the viewpoint of dispersibility, heat resistance, lubricity and the like. In addition, greases having various performances can be obtained by combining lithium with one or several kinds of fats and oils. Such fats and oils include natural animal and vegetable oils such as beef tallow, palm oil and coconut oil, hydrogenated hardened oils of natural animal and vegetable oils such as castor hardened oil, and various fatty acids obtained by decomposing them. . In addition, dicarboxylic acids such as adipic acid and sebacic acid, aromatic carboxylic acids such as benzoic acid and salicylic acid, synthetic fatty acids, and the like can also be used. In particular, a grease using castor oil or its fatty acid or soap made of stearic acid and lithium as a thickener has good mechanical stability in addition to heat resistance and water resistance.

増ちょう剤の含有量は、0.2質量%未満では固体潤滑性としての効果を得ることができない。2.0質量%を越えると見掛け粘度が高くなるため、多孔質焼結合金に含浸して使用する場合、摩擦係数が高くなる。   If the content of the thickener is less than 0.2% by mass, the effect as solid lubricity cannot be obtained. If it exceeds 2.0% by mass, the apparent viscosity increases, and therefore, when impregnated into a porous sintered alloy, the friction coefficient increases.

増ちょう剤の粒子径は、多孔質焼結合金の気孔径より小さいものを含浸した組み合わせとする。これより、気孔内に増ちょう剤が入り込み、気孔を通じて増ちょう剤の出入りが容易になる。つまり、潤滑面には、基油と増ちょう剤が供給されるので、油膜強度が高くなり、軸受と回転軸の金属接触が低減される。これより、良好な潤滑性が維持されて、摩耗を少なくすることができる。本発明では、多孔質焼結合金の気孔径が30〜150μmで、増ちょう剤の粒子径については、最大粒子径が30μm未満であると好ましい。   The particle size of the thickener is a combination impregnated with a pore size smaller than that of the porous sintered alloy. Thus, the thickener enters the pores, and the thickener can easily enter and exit through the pores. That is, since the base oil and the thickener are supplied to the lubricating surface, the oil film strength is increased and the metal contact between the bearing and the rotating shaft is reduced. As a result, good lubricity is maintained and wear can be reduced. In the present invention, the porous sintered alloy preferably has a pore diameter of 30 to 150 μm, and the thickener preferably has a maximum particle diameter of less than 30 μm.

以下、実施例および比較例により本発明をさらに詳しく説明する。
増ちょう剤粒子径の適正範囲
はじめに、グリース状潤滑組成物に含有する増ちょう剤粒子径の適正範囲を調べた。軸受原料粉末は、−325〜+150メッシュの還元鉄粉、−350〜+200メッシュの電解銅粉、錫粉の各金属粉末と、成形潤滑剤(ステアリン酸亜鉛粉)とを用意した。各金属粉を所定量配合し、これらの金属粉に対して0.5質量%の成形潤滑剤を追加して混合した。次に、その混合粉末を内径φ3mm、外径φ8mm、全長10mmの円筒体に圧縮成形し、焼結およびサイジングを行った。焼結は水素ガスと窒素ガスの混合ガス中で焼結温度780℃で行い、通常の方法でサイジングを行った。密度は6.4Mg/m、有効多孔率は20.5%、多孔質焼結合金の気孔径は30〜150μmの範囲である。
Hereinafter, the present invention will be described in more detail with reference to Examples and Comparative Examples.
Appropriate Range of Thickener Particle Size First, the proper range of the thickener particle size contained in the grease-like lubricating composition was examined. As the bearing raw material powder, -325 to +150 mesh reduced iron powder, -350 to +200 mesh electrolytic copper powder, tin powder metal powder, and a molding lubricant (zinc stearate powder) were prepared. A predetermined amount of each metal powder was blended, and 0.5% by mass of a molding lubricant was added to and mixed with these metal powders. Next, the mixed powder was compression molded into a cylindrical body having an inner diameter of 3 mm, an outer diameter of 8 mm, and a total length of 10 mm, and sintered and sized. Sintering was performed at a sintering temperature of 780 ° C. in a mixed gas of hydrogen gas and nitrogen gas, and sizing was performed by an ordinary method. The density is 6.4 Mg / m 3 , the effective porosity is 20.5%, and the pore diameter of the porous sintered alloy is in the range of 30 to 150 μm.

多孔質焼結合金の成分としては、組織が鉄相と銅合金相との斑な金属組織をしており、鉄が20〜60質量%、銅合金が80〜40質量%が好適である。より好ましくは、鉄が40質量%前後、銅合金が60質量%前後である。合金中の鉄の含有量が、20質量%未満であると銅系焼結合金で作られた軸受の耐摩耗性と比べて向上の程度が少なく、60質量%超えると回転軸とのなじみ性が低下し、摩擦係数が高くなるので20〜60質量%の範囲内とする。本実施例の多孔質焼結合金は鉄の量が45質量%で、銅合金組成が錫含有量4質量%のものである。   As a component of the porous sintered alloy, the structure has a patchy metal structure of an iron phase and a copper alloy phase, and iron is preferably 20 to 60% by mass and copper alloy is preferably 80 to 40% by mass. More preferably, iron is about 40% by mass and the copper alloy is about 60% by mass. When the iron content in the alloy is less than 20% by mass, the degree of improvement is small compared to the wear resistance of the bearing made of the copper-based sintered alloy, and when it exceeds 60% by mass, the compatibility with the rotating shaft is achieved. In the range of 20 to 60% by mass. The porous sintered alloy of this example has an iron content of 45% by mass and a copper alloy composition with a tin content of 4% by mass.

この軸受試料にグリース状潤滑組成物を通常の減圧含浸装置を用いて含浸した。グリース状潤滑組成物はポリオールエステル油を基油とし、増ちょう剤はリチウム金属石けんである。この種のグリース状潤滑組成物は、高温で使われるため油が酸化しやすく、スラッジの発生が見られる。グリース状潤滑組成物に酸化防止剤としてフェノール系酸化防止剤が0.1〜5.0質量%とアミン系酸化防止剤を0.1〜5.0%を含有させ、酸化によるスラッジ等の発生を防止する。フェノール系酸化防止剤あるいはアミン系酸化防止剤単体は効果が小さい。また、それぞれ0.1%質量未満では効果がなく、それぞれ5.0質量%以上添加しても、それ以上の効果は見られない。本実施例はフェノール系酸化防止剤を1.0質量%、アミン系酸化防止剤を2.0質量%添加した。   This bearing sample was impregnated with a grease-like lubricating composition using a normal vacuum impregnation apparatus. The grease-like lubricating composition is based on polyol ester oil and the thickener is lithium metal soap. Since this type of grease-like lubricating composition is used at a high temperature, the oil is easily oxidized and sludge is generated. The grease-like lubricating composition contains 0.1 to 5.0% by weight of a phenolic antioxidant as an antioxidant and 0.1 to 5.0% of an amine antioxidant, and generates sludge and the like due to oxidation. To prevent. A phenolic antioxidant or an amine antioxidant alone has little effect. Moreover, if less than 0.1% by mass, there is no effect, and even if 5.0% by mass or more is added, no further effect is observed. In this example, 1.0 mass% of a phenolic antioxidant and 2.0 mass% of an amine antioxidant were added.

リチウム金属石けんは、融点以上に温度を上げた後の冷却工程において、冷却速度を変えることで異なる粒子径のものを得ることができる。冷却工程で、放置して冷却すると粒子径は大きくなり、形状は繊維状となり、細かい粒子径と大きい粒子径が混在した増ちょう剤が得られる。冷却工程で急冷させると、粒子径が小さくなり、針状形状を持った微細なリチウム金属石けんを得ることができる。   Lithium metal soaps can be obtained in different particle sizes by changing the cooling rate in the cooling step after raising the temperature above the melting point. In the cooling step, when allowed to cool, the particle size increases, the shape becomes fibrous, and a thickener containing both fine and large particle sizes is obtained. When cooled rapidly in the cooling step, the particle diameter becomes small, and a fine lithium metal soap having a needle-like shape can be obtained.

比較例1〜3は徐冷で得られた繊維形状のもので、実施例1〜2は急冷で得られた針状形状の増ちょう剤である。増ちょう剤の粒子径は(株)堀場製作所製 LA−300で測定し、最大粒子径が200μm、120μm、50μm、25μm、10μmの5種類である。また、増ちょう剤の平均径は次式で求められ、それぞれ90、50、10、5、1μmである。
平均径=Σ{q(J)×X(J)}÷Σ{q(J)}
J :粒子径分割番号
q(J) :頻度分布値(%)
X(J) :J番目の粒子径範囲の代表径(μm)
Comparative Examples 1 to 3 are fiber-shaped obtained by slow cooling, and Examples 1 and 2 are acicular thickeners obtained by rapid cooling. The particle diameter of the thickener was measured with LA-300 manufactured by Horiba, Ltd., and the maximum particle diameter was five types of 200 μm, 120 μm, 50 μm, 25 μm and 10 μm. Further, the average diameter of the thickener is determined by the following equation, and is 90, 50, 10, 5, 1 μm, respectively.
Average diameter = Σ {q (J) × X (J)} ÷ Σ {q (J)}
J: Particle size division number q (J): Frequency distribution value (%)
X (J): representative diameter (μm) of the J-th particle size range

グリース状潤滑組成物の40℃における動粘度は約50mm/sである。試験方法は、モータで回転する軸の固定部に、試験用の軸を水平に固定し、軸受はハウジングに固定して軸と嵌合させ、ハウジングに垂直方向の荷重を与えた状態で軸を回転させて軸受ハウジングにかかる回転トルクを測定できる装置を用いて摩擦係数を測定し、運転初期の摩擦係数と試験後の軸受摩耗量を測定した。回転軸(シャフト)は熱処理されたマルテンサイト系ステンレス鋼SUS420J2材で表面粗さが約0.3Sである。周囲温度は80℃に保持され、軸の回転数を5000rpmとし、負荷面圧を0.1MPaにして1000時間運転した。軸受摩耗量は、試験前の軸受内径寸法と1000時間運転した後の軸受内径寸法との差である。 The kinematic viscosity of the grease-like lubricating composition at 40 ° C. is about 50 mm 2 / s. In the test method, the test shaft is fixed horizontally to the fixed part of the shaft that is rotated by the motor, the bearing is fixed to the housing and fitted with the shaft, and the shaft is mounted with a vertical load applied to the housing. The friction coefficient was measured using an apparatus that can measure the rotational torque applied to the bearing housing by rotating it, and the friction coefficient at the initial stage of operation and the bearing wear after the test were measured. The rotating shaft (shaft) is a heat-treated martensitic stainless steel SUS420J2 material having a surface roughness of about 0.3S. The ambient temperature was maintained at 80 ° C., the shaft rotation speed was 5000 rpm, the load surface pressure was 0.1 MPa, and the system was operated for 1000 hours. The bearing wear amount is the difference between the bearing inner diameter before the test and the bearing inner diameter after 1000 hours of operation.

試験の結果を表1に示す。摩擦係数および摩耗量は、実施例1、2は小さいが、比較例1〜3は大きくなっている。また、比較例1〜3を比較すると、増ちょう剤の最大粒子径が大きいものほど摩擦係数および摩耗量は大きくなっている。実施例1および2は、いずれも増ちょう剤の粒子径が多孔質焼結合金の気孔径より小さいため、気孔内に増ちょう剤は入り込むことができ、多孔質焼結合金のいずれの気孔を通じて出入りし、潤滑面に基油とともに増ちょう剤が一様に供給される。これより、軸受と回転軸の金属接触を低減し、摩擦係数および摩耗量を小さくしたものと考える。実施例1、2から、増ちょう剤粒子径としては、小さければ小さいほど気孔の出入りが容易になるので好適である。なお、比較例1、2、3は、多孔質焼結合金の最大気孔径150μmより小さい増ちょう剤は含浸される。しかし、これらの増ちょう剤は、多孔質焼結合金の全ての気孔内からは出入りすることができないため、潤滑面への増ちょう剤の供給が少なくなる。これより、潤滑面は基油の割合が多くなるため、油膜強度が低く、軸受と回転軸が金属接触し易くなり、摩擦係数および摩耗量は大きくなったものと考える。   The test results are shown in Table 1. The friction coefficient and the amount of wear are small in Examples 1 and 2, but large in Comparative Examples 1 to 3. Further, comparing Comparative Examples 1 to 3, the larger the maximum particle diameter of the thickener, the greater the friction coefficient and the wear amount. In Examples 1 and 2, since the particle diameter of the thickener is smaller than the pore diameter of the porous sintered alloy, the thickener can enter the pores, and through any pore of the porous sintered alloy. The thickener is uniformly supplied along with the base oil to the lubricating surface. From this, it is considered that the metal contact between the bearing and the rotating shaft is reduced, and the friction coefficient and the wear amount are reduced. From Examples 1 and 2, as the thickener particle size, the smaller the particle size, the more easily the entrance and exit of the pores. Note that Comparative Examples 1, 2, and 3 are impregnated with a thickening agent having a pore size smaller than 150 μm of the porous sintered alloy. However, since these thickeners cannot enter and exit from all the pores of the porous sintered alloy, the supply of the thickener to the lubricating surface is reduced. From this, it is considered that the lubricating surface has a higher proportion of base oil, so the oil film strength is low, the bearing and the rotating shaft are likely to be in metal contact, and the friction coefficient and wear amount are increased.

このように、増ちょう剤の最大粒子径を多孔質焼結合金の気孔径より小さくしたグリース状潤滑組成物と多孔質焼結合金の組み合わせは、気孔を通じて潤滑面に増ちょう剤が供給されるので潤滑性が良好で軸受摩耗を低減することができる。   Thus, in the combination of the grease-like lubricating composition and the porous sintered alloy in which the maximum particle size of the thickener is smaller than the pore size of the porous sintered alloy, the thickener is supplied to the lubricating surface through the pores. Therefore, lubricity is good and bearing wear can be reduced.

Figure 0005523223
Figure 0005523223

増ちょう剤含有量の適正範囲
次に、グリース状潤滑組成物に含有する増ちょう剤含有量の適正範囲について調べた。グリース状潤滑組成物はポリオールエステル油を基油とし、増ちょう剤はリチウム金属石けんで、含有量が0.1〜2.5質量%と異なる6種類である。グリース状潤滑組成物の40℃における動粘度は約50mm/sである。増ちょう剤粒子径は、株式会社堀場製作所製LA−300にて測定され、最大粒子径は25μm、平均径は5μmである。また、グリース状潤滑組成物はフェノール系酸化防止剤を1.0質量%、アミン系酸化防止剤を2.0質量%含有する。グリース状潤滑組成物が含浸される試験軸受は前記と同じ軸受試料で、密度は6.4Mg/m、有効多孔率は20.5%、多孔質焼結合金の気孔径は30〜150μmの範囲である。軸受試験方法は前記の試験方法と同じで、運転初期の摩擦係数と1000時間運転後の軸受摩耗量を測定した。
Appropriate Range of Thickener Content Next, the proper range of the thickener content contained in the grease-like lubricating composition was examined. The grease-like lubricating composition uses a polyol ester oil as a base oil, and the thickener is lithium metal soap, and the content is six types different from 0.1 to 2.5% by mass. The kinematic viscosity of the grease-like lubricating composition at 40 ° C. is about 50 mm 2 / s. The particle diameter of the thickener is measured by LA-300 manufactured by Horiba, Ltd. The maximum particle diameter is 25 μm, and the average diameter is 5 μm. Further, the grease-like lubricating composition contains 1.0% by mass of a phenolic antioxidant and 2.0% by mass of an amine antioxidant. The test bearing impregnated with the grease-like lubricating composition is the same bearing sample as described above, the density is 6.4 Mg / m 3 , the effective porosity is 20.5%, and the pore diameter of the porous sintered alloy is 30 to 150 μm. It is a range. The bearing test method was the same as the test method described above, and the friction coefficient at the initial stage of operation and the bearing wear after 1000 hours of operation were measured.

試験の結果を表1に併記する。実施例3、1、4、5は摩擦係数が低く摩耗量も小さい。これに対し、比較例4は、摩擦係数が高く摩耗量も大きい。これは、増ちょう剤の含有量が0.1質量%と少ないために油膜強度が低くなり、軸受と回転軸が金属接触し易くなって摩擦係数および摩耗量が大きくなったものと考える。比較例5は、摩耗量は小さいが、摩擦係数が高い。これは増ちょう剤の含有量が多いためで、見掛け粘度が高いことが原因と考える。これらのことから、増ちょう剤の含有量は0.2〜2質量%が好ましい。   The test results are also shown in Table 1. Examples 3, 1, 4, and 5 have a low friction coefficient and a small amount of wear. In contrast, Comparative Example 4 has a high friction coefficient and a large amount of wear. This is because the oil film strength is low because the content of the thickener is as small as 0.1% by mass, and the friction coefficient and the wear amount are increased because the bearing and the rotating shaft are easily in metal contact. In Comparative Example 5, the wear amount is small, but the friction coefficient is high. This is because the content of the thickener is large, and it is considered that the apparent viscosity is high. Therefore, the content of the thickener is preferably 0.2 to 2% by mass.

基油粘度の適正範囲
次に、グリース状潤滑組成物の基油粘度の適正範囲について調べた。グリース状潤滑組成物はポリオールエステル油を基油とし、増ちょう剤はリチウム金属石けんで、含有量は0.5質量%である。増ちょう剤粒子径は、前記と同様、株式会社堀場製作所製LA−300にて測定され、最大粒子径は25μm、平均径は5μmである。40℃における動粘度は、10、20、50、100、150mm/sと異なる5種類である。グリース状潤滑組成物が含浸される試験軸受は前記と同じ軸受試料である。また、軸受試験方法も前記の試験方法と同じで、運転初期の摩擦係数と1000時間運転後の軸受摩耗量を測定した。
Next, an appropriate range of the base oil viscosity of the grease-like lubricating composition was examined. The grease-like lubricating composition is based on polyol ester oil, the thickener is lithium metal soap, and the content is 0.5% by mass. The thickener particle diameter is measured by LA-300 manufactured by Horiba, Ltd. as described above, and the maximum particle diameter is 25 μm and the average diameter is 5 μm. The kinematic viscosities at 40 ° C. are five types different from 10, 20, 50, 100, and 150 mm 2 / s. The test bearing impregnated with the grease-like lubricating composition is the same bearing sample as described above. The bearing test method was also the same as the test method described above, and the friction coefficient at the initial stage of operation and the amount of bearing wear after 1000 hours of operation were measured.

試験結果を表1に併記する。実施例6、1、7は摩擦係数が低く摩耗量も小さい。比較例6は、摩擦係数が高く摩耗量が大きい。これは、10mm/sと動粘度が低いため、油膜強度が不足して軸受と回転軸が金属接触し易くなったためと考える。比較例7は、摩耗量は小さいが、摩擦係数が高い。150mm/sと粘度が高いため、油膜強度は高いが、粘度が高すぎるため、摩擦係数が高くなったものと考える。これらのことから、グリース状潤滑組成物の40℃における動粘度としては、20〜100mm/sが好適である。 The test results are also shown in Table 1. Examples 6, 1, and 7 have a low coefficient of friction and a small amount of wear. Comparative Example 6 has a high friction coefficient and a large amount of wear. This is considered to be because the kinematic viscosity is low at 10 mm 2 / s, so that the oil film strength is insufficient and the bearing and the rotary shaft are easily in metal contact. In Comparative Example 7, the wear amount is small, but the friction coefficient is high. Since the viscosity is as high as 150 mm 2 / s, the oil film strength is high, but the viscosity is too high, so the friction coefficient is considered high. For these reasons, the kinematic viscosity at 40 ° C. of the grease-like lubricating composition is preferably 20 to 100 mm 2 / s.

本願発明の焼結含油軸受は、ファンモータ用に好適なものであり、ファンモータに使用すればモータの耐久性の向上、信頼性の向上に寄与することができる。   The sintered oil-impregnated bearing of the present invention is suitable for a fan motor, and if used for a fan motor, it can contribute to improvement of the durability and reliability of the motor.

Claims (3)

石けん系増ちょう剤と基油を基本構成とするグリース状潤滑組成物を多孔質焼結合金の気孔内に含浸させた焼結含油軸受において、
該グリース状潤滑組成物中の石けん系増ちょう剤の粒子径が、該多孔質焼結合金の気孔径より小さいことを特徴とする焼結含油軸受。
In a sintered oil-impregnated bearing in which pores of a porous sintered alloy are impregnated with a grease-like lubricating composition consisting of a soap-based thickener and a base oil,
A sintered oil-impregnated bearing characterized in that the particle diameter of the soap-based thickener in the grease-like lubricating composition is smaller than the pore diameter of the porous sintered alloy.
前記グリース状潤滑組成物は、基油に対する増ちょう剤量が重量比で0.2〜2質量%の範囲であることを特徴とする請求項1に記載の焼結含油軸受。   2. The sintered oil-impregnated bearing according to claim 1, wherein the grease-like lubricating composition has a thickener amount with respect to the base oil in a range of 0.2 to 2 mass% by weight. 前記多孔質焼結合金の気孔径が30〜150μmで、レーザ回折散乱式粒度分布測定装置で測定される前記グリース状潤滑組成物の増ちょう剤粒子径は、最大粒子径が30μm未満であり、前記基油はポリオールエステル油またはポリオールエステル油とポリαオレフィン油の混合油のいずれかで、40℃における動粘度が20〜100mm/sの範囲であることを特徴とする請求項1または2に記載の焼結含油軸受。 The pore diameter of the porous sintered alloy is 30 to 150 μm, and the thickening agent particle diameter of the grease-like lubricating composition measured with a laser diffraction / scattering particle size distribution measuring device has a maximum particle diameter of less than 30 μm, The base oil is either a polyol ester oil or a mixed oil of a polyol ester oil and a polyalphaolefin oil, and has a kinematic viscosity at 40 ° C in the range of 20 to 100 mm 2 / s. The sintered oil-impregnated bearing described in 1.
JP2010151076A 2010-07-01 2010-07-01 Sintered oil-impregnated bearing Active JP5523223B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2010151076A JP5523223B2 (en) 2010-07-01 2010-07-01 Sintered oil-impregnated bearing
TW100122751A TWI497000B (en) 2010-07-01 2011-06-29 Oil-impregnated sintered bearing
CN2011101834581A CN102312922A (en) 2010-07-01 2011-07-01 Sintered metal bearing

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010151076A JP5523223B2 (en) 2010-07-01 2010-07-01 Sintered oil-impregnated bearing

Publications (2)

Publication Number Publication Date
JP2012013167A JP2012013167A (en) 2012-01-19
JP5523223B2 true JP5523223B2 (en) 2014-06-18

Family

ID=45426373

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010151076A Active JP5523223B2 (en) 2010-07-01 2010-07-01 Sintered oil-impregnated bearing

Country Status (3)

Country Link
JP (1) JP5523223B2 (en)
CN (1) CN102312922A (en)
TW (1) TWI497000B (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6011805B2 (en) * 2013-04-22 2016-10-19 日立化成株式会社 Sintered oil-impregnated bearing and manufacturing method thereof
CN103497806A (en) * 2013-08-29 2014-01-08 中国石油化工股份有限公司 Oil immersion bearing grease composition and preparation method
CN107427917B (en) * 2015-03-20 2020-02-28 日立化成株式会社 Molding method for molded body by compression molding
JP6625337B2 (en) * 2015-03-27 2019-12-25 Ntn株式会社 Vibration device
CN108746612A (en) * 2018-08-30 2018-11-06 江晓堂 The bearing used in a kind of low lubricant environment invades the metallurgy sintered device of oil
JP2023151683A (en) * 2022-03-31 2023-10-16 出光興産株式会社 Lubricant composition and method for producing the same
WO2023243496A1 (en) * 2022-06-14 2023-12-21 Ntn株式会社 Fluid dynamic pressure bearing lubricant oil composition, fluid dynamic pressure bearing, and fluid dynamic pressure bearing apparatus

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2522874B2 (en) * 1991-11-29 1996-08-07 エヌティエヌ株式会社 Porous plain bearing
JP3370829B2 (en) * 1995-04-21 2003-01-27 株式会社日立製作所 Lubricating grease composition
JPH10164794A (en) * 1996-11-26 1998-06-19 Shicoh Eng Co Ltd Axially gapped type dc brushless axial-flow fan motor
JP3602317B2 (en) * 1997-12-18 2004-12-15 Ntn株式会社 Dynamic pressure type porous oil-impregnated bearing unit
EP1353092B1 (en) * 2002-04-11 2009-06-17 NSK Ltd., Linear motion device
CN100417825C (en) * 2003-02-14 2008-09-10 日立粉末冶金株式会社 Oil impregnated sintered bearing
JP2004256588A (en) * 2003-02-24 2004-09-16 Nsk Ltd Lubricating oil composition for traction and traction drive
JP2004352953A (en) * 2003-05-30 2004-12-16 Nsk Ltd Grease composition and rolling device
CN100558867C (en) * 2004-02-09 2009-11-11 Ntn株式会社 Lubricating grease, rolling bearing, velocity joint and rotatable parts
JP2005248034A (en) * 2004-03-04 2005-09-15 Ntn Corp Grease composition, its preparation method, and antifriction bearing filled with the grease composition
JP4451276B2 (en) * 2004-10-29 2010-04-14 日立建機株式会社 Grease for slide bearing
JP4843345B2 (en) * 2006-03-28 2011-12-21 Ntn株式会社 Sintered machine parts
JP5224571B2 (en) * 2006-10-26 2013-07-03 協同油脂株式会社 Grease composition and bearing
JP5346491B2 (en) * 2008-05-16 2013-11-20 Ntn株式会社 Grease for high speed bearings

Also Published As

Publication number Publication date
JP2012013167A (en) 2012-01-19
TWI497000B (en) 2015-08-21
TW201224312A (en) 2012-06-16
CN102312922A (en) 2012-01-11

Similar Documents

Publication Publication Date Title
JP5523223B2 (en) Sintered oil-impregnated bearing
JP5875612B2 (en) Resin gear device coated with grease composition for resin lubrication
JP6401063B2 (en) Grease filled bearing for motor
JP2006266429A (en) Bearing and combination of bearing and shaft
CN1357693A (en) Rolling bearing
JP4409474B2 (en) Sintered oil-impregnated bearing
JP2007332240A (en) Grease composition and rolling bearing
JP2006249368A (en) Grease composition
JP2008255273A (en) Lubricating oil composition
JP2010175002A (en) Oil-impregnated sintered bearing
JP2008120926A (en) Fluorine-containing grease composition and rolling apparatus
JP4213714B2 (en) Sintered oil-impregnated bearing
JP2003201492A (en) Grease composition and rolling unit
JP6193619B2 (en) Rolling bearing
JP2522874B2 (en) Porous plain bearing
JP5560025B2 (en) Grease composition and grease-filled bearing
JP2010043686A (en) Sintered oil-impregnated bearing
JP3911133B2 (en) Sintered oil-impregnated bearing
JP6785628B2 (en) Grease composition for resin lubrication, resin gear device and actuator of in-vehicle air conditioning treatment system
JP2001152174A (en) Sintered oilless bearing
JP2015021566A (en) Rolling bearing
JP2003343581A (en) Roller bearing
JP2010184954A (en) Sintered oilless bearing
JP2013067742A (en) Lubricant composition and lubricant composition-filled bearing
JP5318018B2 (en) Sintered oil-impregnated bearing

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130606

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20130712

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20130712

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130813

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131030

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131031

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131218

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140310

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140408

R150 Certificate of patent or registration of utility model

Ref document number: 5523223

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350