JPH11191944A - Spindle motor and rotary shaft supporting device of laser beam printer - Google Patents
Spindle motor and rotary shaft supporting device of laser beam printerInfo
- Publication number
- JPH11191944A JPH11191944A JP9357944A JP35794497A JPH11191944A JP H11191944 A JPH11191944 A JP H11191944A JP 9357944 A JP9357944 A JP 9357944A JP 35794497 A JP35794497 A JP 35794497A JP H11191944 A JPH11191944 A JP H11191944A
- Authority
- JP
- Japan
- Prior art keywords
- bearing
- spindle motor
- rotating shaft
- laser beam
- beam printer
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000004519 grease Substances 0.000 claims abstract description 18
- 239000003921 oil Substances 0.000 claims description 38
- 239000010687 lubricating oil Substances 0.000 claims description 17
- 230000001050 lubricating effect Effects 0.000 claims description 14
- 239000002184 metal Substances 0.000 claims description 14
- 229910052751 metal Inorganic materials 0.000 claims description 14
- 230000002093 peripheral effect Effects 0.000 claims description 8
- 239000002199 base oil Substances 0.000 claims description 6
- 238000009423 ventilation Methods 0.000 claims description 6
- 238000005461 lubrication Methods 0.000 abstract 3
- 230000005284 excitation Effects 0.000 abstract 1
- 230000001629 suppression Effects 0.000 abstract 1
- 230000000694 effects Effects 0.000 description 6
- 239000000314 lubricant Substances 0.000 description 6
- 238000004513 sizing Methods 0.000 description 6
- 239000002562 thickening agent Substances 0.000 description 4
- 230000015572 biosynthetic process Effects 0.000 description 3
- 238000003825 pressing Methods 0.000 description 3
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 2
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- 230000002411 adverse Effects 0.000 description 2
- 229910052802 copper Inorganic materials 0.000 description 2
- 239000010949 copper Substances 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 238000003780 insertion Methods 0.000 description 2
- 230000037431 insertion Effects 0.000 description 2
- 239000011148 porous material Substances 0.000 description 2
- 238000007789 sealing Methods 0.000 description 2
- 238000004381 surface treatment Methods 0.000 description 2
- 229910001018 Cast iron Inorganic materials 0.000 description 1
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 238000000748 compression moulding Methods 0.000 description 1
- 150000005690 diesters Chemical class 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 150000002148 esters Chemical class 0.000 description 1
- 230000002349 favourable effect Effects 0.000 description 1
- 238000005187 foaming Methods 0.000 description 1
- 230000001771 impaired effect Effects 0.000 description 1
- 238000005470 impregnation Methods 0.000 description 1
- 238000010348 incorporation Methods 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 230000001788 irregular Effects 0.000 description 1
- 229910052744 lithium Inorganic materials 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 229920013639 polyalphaolefin Polymers 0.000 description 1
- 229920005862 polyol Polymers 0.000 description 1
- -1 polyol ester Chemical class 0.000 description 1
- 230000036316 preload Effects 0.000 description 1
- 238000005096 rolling process Methods 0.000 description 1
- 238000010008 shearing Methods 0.000 description 1
- 238000005245 sintering Methods 0.000 description 1
- 229920003002 synthetic resin Polymers 0.000 description 1
- 239000000057 synthetic resin Substances 0.000 description 1
Landscapes
- Motor Or Generator Frames (AREA)
- Connection Of Motors, Electrical Generators, Mechanical Devices, And The Like (AREA)
- Mechanical Optical Scanning Systems (AREA)
- Sliding-Contact Bearings (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、レーザビームプリ
ンタ(LBP)のスピンドルモータ、および当該モータ
に装備される回転軸支持装置に関する。[0001] 1. Field of the Invention [0002] The present invention relates to a spindle motor of a laser beam printer (LBP) and a rotating shaft supporting device provided on the motor.
【0002】[0002]
【従来の技術】LBPのスピンドルモータには、高回転
精度の他、高速化、低コスト化、低騒音化などが求めら
れている。これらの要求性能を決定付ける構成要素の一
つに当該モータのスピンドルを支持する支持装置があ
り、従来では、当該支持装置としてボールベアリングか
焼結含油軸受を用いた支持装置が用いられている。2. Description of the Related Art LBP spindle motors are required to have high rotational accuracy, high speed, low cost, low noise, and the like. One of the components that determine these required performances is a support device that supports the spindle of the motor. Conventionally, a support device using a ball bearing or a sintered oil-impregnated bearing is used as the support device.
【0003】[0003]
【発明が解決しようとする課題】しかし、ボールベアリ
ングを用いた場合には、以下の不具合がある。However, the use of ball bearings has the following disadvantages.
【0004】LBPのスピンドルモータは1万〜3万r
pm程度の高速で使用される場合が多い。ボールベアリ
ングには特有のレース音(ボールが軌道輪を転がる音)
や、保持器の自励振動による騒音発生があり、高速で使
用すると騒音レベルが大きく、低騒音化は限界にきてい
る。また、ボールベアリングは、外輪、内輪、ボール、
保持器、シール、グリース等の多くの構成部品からなる
ため、低コスト化や高精度化には限界がある。The spindle motor of LBP is 10,000 to 30,000 r
It is often used at a high speed of about pm. Race sound peculiar to ball bearings (the sound of a ball rolling on a raceway)
Also, noise is generated due to self-excited vibration of the cage, and when used at high speed, the noise level is large, and noise reduction has reached its limit. In addition, ball bearings, outer ring, inner ring, ball,
Since it is made up of many components such as a cage, a seal, and grease, there is a limit to cost reduction and high accuracy.
【0005】一方、焼結含油軸受の場合は、性能的には
低騒音であること、部品点数が少なく精度を管理しやす
いことなどの点ではボールベアリングよりは優れてい
る。しかし、油膜の剛性が低く、また、真円軸受特有の
ホワールと呼ばれる不安定振動が発生するため、近年の
LBPの高速化・高性能化に伴って要求されるジッタ
0.02%以下−ジッタとは、ポリゴンミラーからの
反射光のパルス列におけるパルスの振幅や時間軸上のパ
ラメータの不規則な変動、またはその変動の値をいう
−を達成することが困難であり、さらなる改良が望ま
れる。また、焼結含油軸受では回転に伴って空気も巻き
込まれるが、高速回転下では空気の巻き込み量が多くな
り、油膜の形成が阻害される。油膜形成が不十分である
と、軸と軸受との間に金属接触が発生して摩耗が進行
し、耐久性の点で問題を生じる。On the other hand, a sintered oil-impregnated bearing is superior to a ball bearing in terms of performance such as low noise, small number of parts and easy control of accuracy. However, since the rigidity of the oil film is low, and unstable vibration called “whirl” peculiar to a perfect circular bearing is generated, the jitter required to accompany the recent high speed and high performance of the LBP is 0.02% or less. It means that it is difficult to achieve an irregular variation of a pulse amplitude or a parameter on a time axis in a pulse train of a reflected light from a polygon mirror or a value of the variation, and further improvement is desired. In the case of a sintered oil-impregnated bearing, air is also entrained with the rotation. However, under high-speed rotation, the entrained amount of air is increased, and the formation of an oil film is hindered. If the oil film formation is insufficient, metal contact occurs between the shaft and the bearing, and wear proceeds, which causes a problem in durability.
【0006】そこで、本発明はボールベアリングや焼結
含油軸受が抱える前記問題点を解決した、LBPのスピ
ンドルモータ、およびその回転軸支持装置を提供するこ
とを目的とする。Accordingly, an object of the present invention is to provide an LBP spindle motor and a rotating shaft supporting device thereof, which solve the above-mentioned problems of ball bearings and sintered oil-impregnated bearings.
【0007】[0007]
【課題を解決するための手段】上記目的を達成するた
め、本発明にかかるスピンドルモータは、ポリゴンミラ
ーが装着された回転軸と、この回転軸を回転自在に支持
する軸受と、前記回転軸または前記回転軸と共に回転す
る回転部材に設けられたロータと、静止部材に設けられ
たステータとを有するものにおいて、前記回転軸の直径
が5mm以下であり、前記軸受が、回転軸の外周面と軸受
隙間を介して対向する軸受面を有する多孔質の焼結金属
からなる軸受本体と、軸受本体に含浸された潤滑油また
は潤滑グリースと、軸受本体の軸受面に軸方向に対して
傾斜させて設けられた動圧溝とを備え、軸受隙間に形成
された潤滑油の動圧油膜によって回転軸を非接触支持す
ると共に、軸受本体表面の開孔部を介して油を軸受本体
の内部と軸受隙間との間で循環させるものである(請求
項1)。In order to achieve the above object, a spindle motor according to the present invention comprises a rotating shaft on which a polygon mirror is mounted, a bearing for rotatably supporting the rotating shaft, A rotor having a rotor provided on a rotating member that rotates together with the rotating shaft, and a stator provided on a stationary member, wherein the rotating shaft has a diameter of 5 mm or less, and the bearing comprises an outer peripheral surface of the rotating shaft and a bearing. A bearing body made of a porous sintered metal having a bearing surface opposed via a gap, lubricating oil or lubricating grease impregnated in the bearing body, and provided on the bearing surface of the bearing body so as to be inclined with respect to the axial direction. The rotating shaft is provided in a non-contact manner by a dynamic pressure oil film of lubricating oil formed in the bearing gap, and the oil is supplied to the inside of the bearing body and the bearing gap through an opening in the surface of the bearing body. When It is intended to circulate between (claim 1).
【0008】また、本発明にかかるLBPのスピンドル
モータの回転軸支持装置は、ポリゴンミラーが装着さ
れ、ロータとステータとの間に生じる励磁力で回転駆動
されてポリゴンミラーを回転させる回転軸と、この回転
軸を回転自在に支持する軸受とを有するものにおいて、
前記回転軸の直径が5mm以下であり、前記軸受が、回転
軸の外周面と軸受隙間を介して対向する軸受面を有する
多孔質の焼結金属からなる軸受本体と、軸受本体に含浸
された潤滑油または潤滑グリースと、軸受本体の軸受面
に軸方向に対して傾斜させて設けられた動圧溝とを備
え、軸受隙間に形成された潤滑油の動圧油膜によって回
転軸を非接触支持すると共に、軸受本体表面の開孔部を
介して油を軸受本体の内部と軸受隙間との間で循環させ
るものである(請求項8)。[0008] In addition, a rotation shaft supporting device for an LBP spindle motor according to the present invention is provided with a rotation shaft on which a polygon mirror is mounted and which is rotated by an exciting force generated between the rotor and the stator to rotate the polygon mirror. And a bearing that rotatably supports the rotating shaft,
A bearing body made of a porous sintered metal having a diameter of the rotating shaft of 5 mm or less, the bearing having a bearing surface opposed to an outer peripheral surface of the rotating shaft via a bearing gap, and a bearing body impregnated with the bearing body. Equipped with lubricating oil or lubricating grease, and a dynamic pressure groove provided on the bearing surface of the bearing body at an angle to the axial direction. The rotating shaft is supported in a non-contact manner by a lubricating oil film formed in the bearing gap. At the same time, the oil is circulated between the inside of the bearing body and the bearing gap through an opening in the surface of the bearing body (claim 8).
【0009】前記軸受(多孔質含油軸受)では、回転軸
の回転に伴って軸受本体の内部の潤滑剤(潤滑油または
潤滑グリースの基油)が軸受本体の内周面(内径チャン
ファ部も含む)からにじみ出し、軸受隙間に引き込まれ
る。軸受隙間に引き込まれた油は潤滑油膜を形成して回
転軸を非接触支持する。この際、軸受面に、軸方向に対
して傾斜させた複数の動圧溝(例えばへリングボーン型
やスパイラル型とする)を設けると、その動圧作用によ
ってさらに軸受本体内部の潤滑剤を軸受隙間に引き込む
と共に、軸受面に潤滑剤を押し込み続けるので、油膜力
が高まり、軸受の剛性を向上させることができる。ま
た、真円軸受のようなホワールと呼ばれる不安定振動が
発生しなくなる。In the bearing (porous oil-impregnated bearing), the lubricant (lubricating oil or lubricating grease base oil) inside the bearing body is rotated by the rotation of the rotating shaft, and the inner peripheral surface of the bearing body (including the inner diameter chamfer portion). ) And is drawn into the bearing gap. The oil drawn into the bearing gap forms a lubricating oil film and supports the rotating shaft in a non-contact manner. At this time, if a plurality of dynamic pressure grooves (for example, a herringbone type or a spiral type) are provided on the bearing surface inclined with respect to the axial direction, the lubricant inside the bearing main body can be further increased by the dynamic pressure action. Since the lubricant is continuously pushed into the bearing surface while being drawn into the gap, the oil film strength is increased, and the rigidity of the bearing can be improved. In addition, unstable vibration called whirl such as a perfect circular bearing does not occur.
【0010】軸受隙間に正圧が発生すると、軸受面の表
面に孔(開孔部:多孔質体組織の細孔が外表面に開口し
た部分をいう)があるため、潤滑剤は軸受本体の内部に
還流するが、次々と新たな潤滑剤が軸受隙間に押し込ま
れ続けるので油膜力および剛性は高い状態で維持され
る。したがって高回転精度が得られ、近時のLBPに要
求されるジッタ0.02%以下を達成することができ
る。また、軸と軸受本体が非接触で回転するために低騒
音であり、しかも低コストである。さらに、多孔質体で
ない通常の動圧すべり軸受と異なり、油膜内に気泡が発
生したり巻き込まれた場合でも、油が循環しているため
に気泡が軸受本体の内部に吸収され、軸受機能が不安定
化することもない。When a positive pressure is generated in the bearing gap, there is a hole in the surface of the bearing surface (opening portion: a portion in which pores of the porous body structure are opened on the outer surface). Although the oil returns to the inside, new lubricant continues to be pushed into the bearing gap one after another, so that the oil film force and the rigidity are maintained in a high state. Accordingly, high rotational accuracy can be obtained, and a jitter of 0.02% or less required for recent LBP can be achieved. Further, since the shaft and the bearing main body rotate in a non-contact manner, low noise and low cost are obtained. Furthermore, unlike ordinary hydrodynamic plain bearings that are not porous, even when bubbles are generated or entrained in the oil film, the oil is circulated, so the bubbles are absorbed inside the bearing body and the bearing function is improved. There is no instability.
【0011】動圧溝の溝深さhと軸受隙間cとの比を、
c/h=0.5〜2.0に設定すれば(請求項2、
9)、ジッタ等をさらに抑制して印字精度の向上を図る
ことができる。The ratio between the groove depth h of the dynamic pressure groove and the bearing clearance c is expressed by
If c / h is set to 0.5 to 2.0 (claim 2,
9) The printing accuracy can be improved by further suppressing jitter and the like.
【0012】軸受本体に含浸する潤滑油または潤滑グリ
ースの基油の動粘度は、40℃で5cSt以上、20c
St以下とするのがよい(請求項3、10)。The kinematic viscosity of the lubricating oil or lubricating grease base oil impregnated in the bearing body is at least 5 cSt at 40 ° C.
St or less is preferable (claims 3 and 10).
【0013】軸受面の表面開孔率を2%以上12%以下
とすれば(請求項4、11)、軸受本体内部への油の還
流量と油の滲み出し量とをバランスさせ、実用上好まし
い油膜力(軸受剛性)を確保することができる。[0013] When the surface porosity of the bearing surface is set to 2% or more and 12% or less (claims 4 and 11), the amount of oil recirculation into the inside of the bearing body and the amount of oil seeping out are balanced, and practically A favorable oil film strength (bearing rigidity) can be secured.
【0014】軸受面は、軸方向に対して一方に傾斜した
複数の動圧溝を円周方向に配列した第1の溝領域と、第
1の溝領域から軸方向に離隔し、軸方向に対して他方に
傾斜した複数の動圧溝を円周方向に配列した第2の溝領
域と、第1および第2の溝領域の間に位置する平滑部と
を有するものとする(請求項5、12)。この構成によ
れば、両領域に互いに逆向きに形成された動圧溝によっ
て、油が平滑部を中心として集められるため、この部分
での油膜圧力が高まる。また、平滑部には動圧溝がない
ため、動圧溝が軸方向に連続している連続型の軸受に比
べて軸受剛性を高めることができ、軸振れをさらに低減
させることができる。The bearing surface has a first groove region in which a plurality of dynamic pressure grooves inclined to one side with respect to the axial direction are arranged in the circumferential direction, and is axially separated from the first groove region, and is axially separated from the first groove region. On the other hand, it has a second groove region in which a plurality of dynamic pressure grooves inclined in the other direction are arranged in the circumferential direction, and a smooth portion located between the first and second groove regions. , 12). According to this configuration, the dynamic pressure grooves formed in the two regions in opposite directions collect the oil around the smooth portion, so that the oil film pressure in this portion increases. Further, since there is no dynamic pressure groove in the smooth portion, the bearing rigidity can be increased as compared with a continuous bearing in which the dynamic pressure groove is continuous in the axial direction, and the shaft runout can be further reduced.
【0015】軸受本体の内径面に複数の軸受面を軸方向
に離隔形成すれば(請求項6)、複数個の軸受を別体に
配置した場合に問題となる精度不良等の弊害を回避する
ことができる。By forming a plurality of bearing surfaces spaced apart from each other in the axial direction on the inner diameter surface of the bearing body (claim 6), it is possible to avoid adverse effects such as poor accuracy which may be a problem when a plurality of bearings are arranged separately. be able to.
【0016】軸受本体をハウジングの内径部に固定し、
軸受本体の外径面とハウジングの内径面との間に、軸受
本体の軸方向の両端部に開口する通気路を設ければ(請
求項7)、軸受に対する軸の組込み性が改善される。The bearing body is fixed to the inner diameter of the housing,
By providing a ventilation path open at both axial ends of the bearing body between the outer diameter surface of the bearing body and the inner diameter surface of the housing (claim 7), the incorporation of the shaft into the bearing is improved.
【0017】[0017]
【発明の実施の形態】以下、本発明の実施形態を図1乃
至図3に基いて説明する。DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below with reference to FIGS.
【0018】図1は、レーザビームプリンタに装備され
るスピンドルモータ(一般にはポリゴンミラーモータま
たはスキャナーモータと呼ばれる)の断面図である。こ
のスピンドルモータは、回転軸3および回転軸3を回転
自在に支持する軸受1を有する回転軸支持装置10と、回
転軸3の上端に取り付けられたポリゴンミラー11と、軸
方向のギャップを介して対向させたステータ13およびロ
ータ14を主体とするモータ部15とで構成される。軸受1
はベース16に固定されたハウジング2(静止部材)の内
径部に固定される。17はポリゴンミラー11をロータハブ
18(回転部材)に弾性的に押付けるための予圧ばねであ
る。ステータ13に通電すると、ハウジング2の外周部に
固定配置されたステータ13と、ロータハブ18に設けられ
たロータ14との間の励磁力でロータ14が回転し、この回
転に伴ってポリゴンミラー11が回転する。レーザー光源
から所定の光学系を経てポリゴンミラー11に入射したレ
ーザ光は、ポリゴンミラー11により反射されて感光ドラ
ム面を走査する。FIG. 1 is a sectional view of a spindle motor (generally called a polygon mirror motor or a scanner motor) provided in a laser beam printer. The spindle motor includes a rotating shaft 3 and a rotating shaft supporting device 10 having a bearing 1 for rotatably supporting the rotating shaft 3, a polygon mirror 11 mounted on an upper end of the rotating shaft 3, and an axial gap. The motor unit 15 mainly includes a stator 13 and a rotor 14 which are opposed to each other. Bearing 1
Is fixed to the inner diameter of the housing 2 (stationary member) fixed to the base 16. 17 is the polygon mirror 11 rotor hub
It is a preload spring for elastically pressing against the 18 (rotating member). When the stator 13 is energized, the rotor 14 is rotated by the exciting force between the stator 13 fixedly arranged on the outer peripheral portion of the housing 2 and the rotor 14 provided on the rotor hub 18, and the polygon mirror 11 is rotated with this rotation. Rotate. Laser light that has entered the polygon mirror 11 from a laser light source via a predetermined optical system is reflected by the polygon mirror 11 and scans the photosensitive drum surface.
【0019】上記支持装置10を構成する回転軸3として
は、直径が5mm以下のものを使用する。回転軸3の直径
の下限値は任意であるが、軸剛性、製作コスト等の諸事
情から2mm以上とするのが好ましい。The rotating shaft 3 constituting the supporting device 10 has a diameter of 5 mm or less. The lower limit value of the diameter of the rotating shaft 3 is arbitrary, but is preferably 2 mm or more in consideration of various factors such as shaft rigidity and manufacturing cost.
【0020】軸受1はハウジング2の内径部に圧入ある
いは接着して固定される。この軸受1は、図2および図
3に示すように、回転軸3の外径面と軸受隙間4を介し
て対向する軸受面1bを有する多孔質の焼結金属からなる
円筒状の軸受本体1aに、潤滑油あるいは潤滑グリースを
含浸させて構成される。焼結金属からなる軸受本体1a
は、銅系あるいは鉄系、またはその双方を主成分とする
焼結金属で形成され、望ましくは銅を20〜95wt%使
用し、密度が6.4〜7.2g/cm3 となるように成形
される。焼結金属の他、鋳鉄、合成樹脂、セラミックス
などを焼結または発泡成形等することにより得た、多数
の細孔を有する厚肉円筒状の多孔質体を用いてもよい。The bearing 1 is fixed to the inner diameter of the housing 2 by press-fitting or bonding. As shown in FIGS. 2 and 3, this bearing 1 has a cylindrical bearing body 1a made of a porous sintered metal having a bearing surface 1b opposed to an outer diameter surface of a rotating shaft 3 via a bearing gap 4. Is impregnated with lubricating oil or lubricating grease. Bearing body 1a made of sintered metal
Is formed of a sintered metal containing copper or iron, or both as a main component, and desirably uses copper in an amount of 20 to 95% by weight and has a density of 6.4 to 7.2 g / cm 3. Molded. In addition to the sintered metal, a thick cylindrical porous body having a large number of pores obtained by sintering, foaming, or the like of cast iron, synthetic resin, ceramic, or the like may be used.
【0021】潤滑油、あるいは潤滑グリースの基油とし
ては、40℃での動粘度が5〜20cStに設定された
ものを使用する。40℃での動粘度を20cStより大
きくすると、トルクの増大により、高速での駆動に支障
を来して印字精度等の低下を招いたり、あるいは起動ト
ルクの早期安定化が難しくなる。逆に5cStより小さ
くすると、動粘度が小さすぎて油が飛散しやすく、耐久
性に問題を生じる。潤滑剤を潤滑グリースとすると、剪
断力を受ける軸受隙間4以外では見かけの粘度が油に比
べて著しく大きくなり、周囲へ流出しにくくなる。しか
し、油に混合分散させる増稠剤の量を5wt%より大きく
すると見かけの粘度が高すぎて軸受本体に含浸しにくく
なり、また含浸後に表面に付着した過剰なグリースの除
去作業が煩雑なものとなる。一方、増稠剤量を0.5wt
%より小さくすると、グリースとした効果が少なく、流
出度合いが油を使用する場合と変わらなくなる。したが
って、潤滑グリースの増稠剤濃度は0.5〜5.0wt%
に設定されたものを使用する。潤滑油あるいは潤滑グリ
ース基油の種類は特に限定されるものではないが、ポリ
αオレフィン系、エステル系合成油(ジエステル、ポリ
オールエステル系合成油)、あるいはその両者の混合油
が適している。また、潤滑グリースの増稠剤としては、
取り扱いが簡便で生産性に優れるリチウム系増稠剤が適
している。As the lubricating oil or the base oil of the lubricating grease, one having a kinematic viscosity at 40 ° C. of 5 to 20 cSt is used. If the kinematic viscosity at 40 ° C. is larger than 20 cSt, an increase in torque will hinder high-speed driving, resulting in a decrease in printing accuracy or the like, or it will be difficult to stabilize the starting torque early. Conversely, if it is smaller than 5 cSt, the kinematic viscosity is too small, and the oil is liable to be scattered, causing a problem in durability. When lubricating grease is used as the lubricant, the apparent viscosity of the lubricant other than the bearing gap 4 that receives shearing force is significantly larger than that of oil, and it is difficult to flow out to the surroundings. However, if the amount of the thickener mixed and dispersed in the oil is more than 5% by weight, the apparent viscosity is too high to impregnate the bearing body, and the work of removing excess grease adhering to the surface after the impregnation is complicated. Becomes On the other hand, 0.5 wt
If it is less than%, the effect of grease is small, and the degree of outflow is not different from that in the case of using oil. Therefore, the thickener concentration of the lubricating grease is 0.5 to 5.0 wt%.
Use the one set in. The type of the lubricating oil or the lubricating grease base oil is not particularly limited, but a poly-α-olefin type, an ester type synthetic oil (a diester, a polyol ester type synthetic oil), or a mixed oil of both is suitable. In addition, as a thickener for lubricating grease,
A lithium thickener which is easy to handle and has excellent productivity is suitable.
【0022】軸受本体1aの内周には、軸方向に離隔する
2つの軸受面1bが形成され、2つの軸受面1bの双方に、
それぞれ軸方向に対して傾斜させた複数の動圧溝1c(へ
リングボーン型)が円周方向に配列形成される。動圧溝
1cは軸方向に対して傾斜して形成されていれば足り、こ
の条件を満たす限りへリングボーン型以外の他の形状、
例えばスパイラル型とすることもできる。動圧溝1cの傾
斜角度は、基本的には任意の角度に設定されるが、望ま
しくは軸方向と直交する方向の角度が15〜40°(より望
ましくは15〜25°)になるよう設定される。また、動圧
溝1cと、動圧溝1c間の背の部分1eの幅比は、0.8〜
1.5の間、望ましくは1.0〜1.2の間に設定する
のがよい。On the inner periphery of the bearing body 1a, two bearing surfaces 1b which are separated in the axial direction are formed, and both of the two bearing surfaces 1b
A plurality of dynamic pressure grooves 1c (herringbone type) each inclined with respect to the axial direction are arranged and formed in the circumferential direction. Dynamic pressure groove
It is sufficient that 1c is formed to be inclined with respect to the axial direction, as long as this condition is satisfied, other shapes other than the herringbone type,
For example, it may be a spiral type. The inclination angle of the dynamic pressure groove 1c is basically set to an arbitrary angle, but is preferably set such that the angle in a direction orthogonal to the axial direction is 15 to 40 ° (more preferably 15 to 25 °). Is done. The width ratio of the dynamic pressure groove 1c and the width of the back portion 1e between the dynamic pressure grooves 1c is 0.8 to
It is good to set it between 1.5 and desirably between 1.0 and 1.2.
【0023】本発明では、軸受本体を1個とし、その内
径面の複数箇所(本実施形態では2箇所)に動圧軸受面
1bを設けているが、これは複数個の軸受1を別体に配置
した場合に問題となる精度不良等の弊害を回避するため
である。すなわち、仮にハウジング2に複数個の軸受1
を収納すると、各軸受の同軸度、円筒度などの精度が問
題となり、精度が悪い場合、回転軸3と軸受1が線接触
したり、最悪の場合には回転軸3が2個の軸受を貫通し
ない場合も起こり得る。これに対し、本発明のように軸
受本体1aに複数の軸受面1bを形成しておけば、この種の
問題を回避することができる。In the present invention, a single bearing body is provided, and a plurality of (two in this embodiment) hydrodynamic bearing surfaces are provided on the inner surface of the bearing body.
1b is provided in order to avoid adverse effects such as poor accuracy, which would be a problem when a plurality of bearings 1 are arranged separately. That is, if a plurality of bearings 1 are temporarily
, The accuracy of each bearing, such as the coaxiality and cylindricity, becomes a problem. If the accuracy is poor, the rotating shaft 3 and the bearing 1 come into line contact. In the worst case, the rotating shaft 3 has two bearings. It may also happen that it does not penetrate. On the other hand, if a plurality of bearing surfaces 1b are formed on the bearing main body 1a as in the present invention, this kind of problem can be avoided.
【0024】両軸受面1bは、一方に傾斜する動圧溝1cが
配列された第1の溝領域m1と、第1の溝領域m1から軸方
向に離隔し、他方に傾斜する動圧溝1cが配列された第2
の溝領域m2と、2つの溝領域m1、m2の間に位置する環状
の平滑部nとを備えており、2つの溝領域m1、m2の動圧
溝1cは平滑部nで区画されて非連続になっている。平滑
部nと動圧溝1c間の背の部分1eは同一レベルにある。こ
の種の非連続型の動圧溝1cは、連続型、すなわち平滑部
nを省略し、動圧溝1cを両溝領域m1、m2間で互いに連続
するV字状に形成した場合に比べ、平滑部nを中心に油
が集められるために油膜圧力が高く、また溝のない平滑
部nを有するので軸受剛性も高いという利点を有する。The two bearing surfaces 1b are provided with a first groove region m1 in which the inclined hydrodynamic grooves 1c are arranged on one side, and a hydrodynamic groove 1c axially separated from the first groove region m1 and inclined on the other side. The second array of
Groove region m2 and an annular smooth portion n located between the two groove regions m1 and m2. The dynamic pressure groove 1c of the two groove regions m1 and m2 is partitioned by the smooth portion n and is It is continuous. The back portion 1e between the smooth portion n and the dynamic pressure groove 1c is at the same level. This type of non-continuous type dynamic pressure groove 1c is a continuous type, that is, compared with a case where the smooth portion n is omitted and the dynamic pressure groove 1c is formed in a V-shape that is continuous with each other between both groove regions m1 and m2. There is an advantage that the oil film pressure is high because oil is collected around the smooth portion n, and the bearing rigidity is high because the smooth portion n has no groove.
【0025】一般にへリングボーン型の動圧溝では、連
続型の方が軸受内に負圧を生じる部分がなく、したがっ
て気泡が発生せず、油のシール性に優れるといわれてい
るが、本発明のように軸受本体1aが多孔質体の場合に
は、油が軸受隙間4と軸受内部との間で循環するため、
気泡が発生しても軸受内部には吸収されず、したがっ
て、油が気泡によって軸受隙間4から押し出され、シー
ル性を損なうという不具合は生じないと考えられる。In general, it is said that the herringbone type dynamic pressure groove has no negative pressure inside the bearing in the continuous type, so that no bubbles are generated and the oil sealing property is excellent. When the bearing body 1a is a porous body as in the invention, since oil circulates between the bearing gap 4 and the inside of the bearing,
Even if bubbles are generated, they are not absorbed into the inside of the bearing. Therefore, it is considered that there is no problem that the oil is pushed out of the bearing gap 4 by the bubbles and the sealing property is impaired.
【0026】なお、使用条件等によっては連続型の動圧
溝の方がむしろ好ましい場合もあるので、上記非連続型
の動圧溝は特に必須ではない(連続型の動圧溝でもよ
い)。It should be noted that the continuous type dynamic pressure groove is not particularly essential (a continuous type dynamic pressure groove may be used) since a continuous type dynamic pressure groove may be rather preferable depending on the use conditions and the like.
【0027】平滑部nの軸受幅方向の比率Rは、個々の
軸受面1bの軸方向幅を1とした場合、R=0.1〜0.
6の範囲、望ましくは、R=0.2〜0.4の範囲に設
定するのが良い。軸受面幅1に対して0.1未満では、
平滑部nを設けたことによる効果(動圧の増加、軸受剛
性の増加)が顕著に現れず、連続した溝の場合と変わら
ない。また、軸受幅1に対してRを0.6より大きくす
ると、動圧溝が少なくなり、油を軸方向中央部に押し込
む力が弱くなって動圧効果が有効に発揮されない。Assuming that the axial width of each bearing surface 1b is 1, the ratio R of the smooth portion n in the bearing width direction is R = 0.1-0.
6 is preferable, and R is preferably set in the range of 0.2 to 0.4. If the bearing surface width 1 is less than 0.1,
The effects (increase in dynamic pressure and increase in bearing rigidity) due to the provision of the smooth portion n do not appear remarkably, and are the same as in the case of continuous grooves. Further, when R is larger than 0.6 with respect to the bearing width 1, the dynamic pressure groove is reduced, and the force for pushing the oil into the axial center becomes weak, so that the dynamic pressure effect is not effectively exhibited.
【0028】動圧溝1cの溝深さ(h:図3参照)と、軸
受半径隙間c(軸受本体の内径面の半径と回転軸の外径
面の半径との差)との比には最適な範囲があり、この範
囲外では充分な動圧効果が得られないと考えられる。こ
の最適範囲を明らかにすべく、LBP実機モータを用い
てジッタを測定した結果、c/hが0.5〜2.0の範
囲内であればジッタを実用上十分なレベルに抑えられる
ことが判明した。例えば、溝深さhが2〜4μmであれ
ば、軸受半径隙間cは2〜4μmの範囲に設定するとよ
い。The ratio between the groove depth of the dynamic pressure groove 1c (h: see FIG. 3) and the bearing radial gap c (difference between the radius of the inner diameter surface of the bearing body and the radius of the outer diameter surface of the rotating shaft) is given by There is an optimum range, and it is considered that a sufficient dynamic pressure effect cannot be obtained outside this range. In order to clarify this optimum range, the jitter was measured using an actual LBP motor. As a result, if the c / h was in the range of 0.5 to 2.0, the jitter could be suppressed to a practically sufficient level. found. For example, if the groove depth h is 2 to 4 μm, the bearing radial gap c may be set in the range of 2 to 4 μm.
【0029】以上説明した動圧溝1cは、例えば圧縮成形
により形成することができる。すなわち、コアロッド
(例えばサイジングピン)の外周面に動圧溝1c形状に対
応した凹凸形状の溝型を形成し、コアロッドの外周面に
軸受本体1aの素材である焼結金属を供給し、焼結金属に
圧迫力を加えてその内径部をコアロッドの溝型に加圧
し、当該内径部に溝型の形状に対応した動圧溝1cを転写
する。この時、背の部分1eを動圧溝1cとを同時成形する
ことができる。動圧溝の形成後は、圧迫力を除去するこ
とによる焼結金属のスプリングバックを利用すれば、動
圧溝1cを崩すことなくコアロッドを焼結金属の内径部か
ら離型することができる。The dynamic pressure groove 1c described above can be formed, for example, by compression molding. That is, a concave / convex groove shape corresponding to the shape of the dynamic pressure groove 1c is formed on the outer peripheral surface of a core rod (for example, a sizing pin), and the sintered metal that is the material of the bearing body 1a is supplied to the outer peripheral surface of the core rod. A pressing force is applied to the metal to press the inner diameter portion thereof into the groove of the core rod, and the dynamic pressure groove 1c corresponding to the shape of the groove is transferred to the inner diameter portion. At this time, the back portion 1e and the dynamic pressure groove 1c can be formed simultaneously. After the formation of the dynamic pressure grooves, the core rod can be released from the inner diameter of the sintered metal without breaking the dynamic pressure grooves 1c by utilizing the springback of the sintered metal by removing the pressing force.
【0030】この場合、動圧溝1cを転写するサイジング
ピンを精度良く仕上げておけば、軸受の精度も良くな
る。サイジングピンの精度を必要とされる精度、例えば
真円度1μm以内、円筒度2μm以内などに仕上げるこ
とはさほど難しくなく、容易に達成できる。In this case, if the sizing pin for transferring the dynamic pressure groove 1c is finished with high accuracy, the accuracy of the bearing is also improved. It is not so difficult to finish the sizing pin with required precision, for example, within a circularity of 1 μm or less and a cylindricity of 2 μm or less, and it can be easily achieved.
【0031】以上の動圧溝サイジングを行なう前に、焼
結金属の内径部に回転サイジングを施し、当該内径面の
開孔部の分布を予め均一化させておくのが望ましい。こ
の時の軸受面1bの表面開孔率は2%以上で12%以下、
望ましくは5%前後に設定し、動圧溝のない一般的な焼
結含油軸受の表面開孔率(通常20〜30%程度)より
も小さくするのがよい。これは、表面開孔率が大きすぎ
ると、軸受隙間4の油が軸受内部に逃げやすくなり、動
圧が低下するからである。なお、表面開孔率の設定は、
上述のように回転サイジング等の表面処理によって行な
う他、軸受本体1aの密度を予め設定することにより、あ
るいは表面処理と密度の設定とを併用することによって
行なうことができる。Before performing the above-described dynamic pressure groove sizing, it is preferable to perform rotational sizing on the inner diameter portion of the sintered metal so that the distribution of apertures on the inner diameter surface is made uniform in advance. At this time, the surface porosity of the bearing surface 1b is 2% or more and 12% or less,
Desirably, it is set to about 5%, which is smaller than the surface porosity of a general sintered oil-impregnated bearing without dynamic pressure grooves (usually about 20 to 30%). This is because, if the surface porosity is too large, the oil in the bearing gap 4 tends to escape into the bearing and the dynamic pressure decreases. The setting of the surface porosity is
In addition to performing the surface treatment such as rotational sizing as described above, it can be performed by setting the density of the bearing main body 1a in advance, or by using both the surface treatment and the setting of the density.
【0032】ところで、通常、回転軸3は、ハウジング
2に当該回転軸3の下端を支持するためのスラスト板7
を装着した状態で軸受1の内径部に挿入される。この挿
入時には、空気は軸受1と回転軸3の間の軸受隙間4か
ら逃げることになるが、軸受隙間4は数μm程度しかな
いため、空気がハウジング2の下方空間に閉じ込めら
れ、回転軸3の挿入が難しくなる。また、モータを駆動
すると発熱するが、この発熱によって閉じ込められた空
気が膨張し、回転軸3を押し上げて軸受性能を不安定化
させるおそれもある。Normally, the rotating shaft 3 is provided on the housing 2 with a thrust plate 7 for supporting the lower end of the rotating shaft 3.
Is inserted into the inner diameter of the bearing 1. At the time of this insertion, air escapes from the bearing gap 4 between the bearing 1 and the rotating shaft 3, but since the bearing gap 4 is only about several μm, air is trapped in the space below the housing 2 and the rotating shaft 3 Insertion becomes difficult. In addition, when the motor is driven, heat is generated. However, the heat may cause the trapped air to expand and push up the rotating shaft 3 to destabilize the bearing performance.
【0033】この場合には、図1および2に示すよう
に、軸受本体1aの外径面とハウジング2の内径面2aとの
間に、軸受本体1aの軸方向両端に開口する通気路8を設
け、この通気路8を通して空気を逃がすようにすればよ
い。通気路8は、軸受本体1aの外径面に軸方向の溝を設
けることによって形成することができるが、ハウジング
内径面に設けてもよい。また、溝は、軸受本体1aの外径
面の1箇所だけでなく、円周方向の複数箇所に設けるこ
ともできる。In this case, as shown in FIGS. 1 and 2, between the outer diameter surface of the bearing main body 1a and the inner diameter surface 2a of the housing 2, a ventilation path 8 opening at both axial ends of the bearing main body 1a is formed. It is sufficient if air is released through the ventilation path 8. The air passage 8 can be formed by providing an axial groove on the outer diameter surface of the bearing main body 1a, but may be provided on the inner diameter surface of the housing. The grooves may be provided not only at one place on the outer diameter surface of the bearing body 1a but also at a plurality of places in the circumferential direction.
【0034】[0034]
【発明の効果】以上のように、本発明にかかる回転軸支
持装置によれば、軸受隙間に形成された潤滑油の動圧油
膜によって回転軸を非接触支持すると共に、軸受本体表
面の開孔部を介して油を軸受本体の内部と軸受隙間との
間で循環させるものであるから、ボールベアリングを使
用した回転軸支持装置に比べて低騒音化および低コスト
化を図ることができる。また、動圧溝のない焼結含油軸
受を使用した場合と比べても、動圧溝の動圧作用によっ
て軸受剛性を高くすると共に、回転精度を向上させるこ
とができ、LBPのスピンドルモータを評価する代表的
特性の一つであるジッタの低減を図ることができる。ま
た、軸受面には良好な油膜が常時形成されるので、耐久
寿命を大幅に向上させることができる。As described above, according to the rotating shaft supporting apparatus of the present invention, the rotating shaft is supported in a non-contact manner by the hydrodynamic oil film of the lubricating oil formed in the bearing gap, and the opening in the surface of the bearing main body. Since oil is circulated between the inside of the bearing main body and the bearing gap through the portion, noise and cost can be reduced as compared with a rotating shaft supporting device using a ball bearing. In addition, compared to the case of using a sintered oil-impregnated bearing without a dynamic pressure groove, the dynamic pressure action of the dynamic pressure groove can increase the bearing rigidity and improve the rotational accuracy, and the LBP spindle motor is evaluated. Jitter, which is one of the typical characteristics, can be reduced. Further, since a good oil film is always formed on the bearing surface, the durable life can be greatly improved.
【0035】本発明にかかるスピンドルモータによれ
ば、低騒音化および低コスト化を図ることができ、しか
もLBPの印字精度を向上させることができるAccording to the spindle motor of the present invention, noise and cost can be reduced, and the LBP printing accuracy can be improved.
【図1】レーザビームプリンタに装備されるスピンドル
モータの断面図である。FIG. 1 is a sectional view of a spindle motor provided in a laser beam printer.
【図2】上記スピンドルモータの支持装置の断面図であ
る。FIG. 2 is a cross-sectional view of the spindle motor support device.
【図3】上記支持装置の半径方向の断面図である。FIG. 3 is a radial cross-sectional view of the support device.
【符号の説明】 1 軸受 1a 軸受本体 1b 軸受面 1c 動圧溝 2 ハウジング 3 回転軸 4 軸受隙間 8 通気路 10 回転軸支持装置 11 ポリゴンミラー 13 ステータ 14 ロータ m1 第1の溝領域 m2 第2の溝領域 n 平滑部[Description of Signs] 1 Bearing 1a Bearing body 1b Bearing surface 1c Dynamic pressure groove 2 Housing 3 Rotary shaft 4 Bearing gap 8 Ventilation path 10 Rotary shaft support device 11 Polygon mirror 13 Stator 14 Rotor m1 First groove area m2 Second Groove area n Smooth part
Claims (14)
この回転軸を回転自在に支持する軸受と、前記回転軸ま
たは前記回転軸と共に回転する回転部材に設けられたロ
ータと、静止部材に設けられたステータとを有するもの
において、 前記回転軸の直径が5mm以下であり、 前記軸受が、回転軸の外周面と軸受隙間を介して対向す
る軸受面を有する多孔質の焼結金属からなる軸受本体
と、軸受本体に含浸された潤滑油または潤滑グリース
と、軸受本体の軸受面に軸方向に対して傾斜させて設け
られた動圧溝とを備え、軸受隙間に形成された潤滑油の
動圧油膜によって回転軸を非接触支持すると共に、軸受
本体表面の開孔部を介して油を軸受本体の内部と軸受隙
間との間で循環させるものであるレーザビームプリンタ
のスピンドルモータ。A rotating shaft on which a polygon mirror is mounted;
A bearing that rotatably supports the rotating shaft, a rotor provided on the rotating shaft or a rotating member that rotates with the rotating shaft, and a stator provided on a stationary member, wherein the diameter of the rotating shaft is 5 mm or less, wherein the bearing is made of a porous sintered metal having a bearing surface opposed to an outer peripheral surface of a rotating shaft via a bearing gap, and a lubricating oil or lubricating grease impregnated in the bearing body. A dynamic pressure groove provided on the bearing surface of the bearing body so as to be inclined with respect to the axial direction. The dynamic pressure oil film of the lubricating oil formed in the bearing gap supports the rotating shaft in a non-contact manner, and the surface of the bearing body. A spindle motor for a laser beam printer, wherein oil is circulated between the inside of a bearing body and a bearing gap through an opening of the laser beam printer.
比が、 c/h=0.5〜2.0 であることを特徴とする請求項1記載のレーザビームプ
リンタのスピンドルモータ。2. The laser beam printer according to claim 1, wherein a ratio of a groove depth h of the dynamic pressure groove to a bearing radial gap c is c / h = 0.5 to 2.0. Spindle motor.
グリースの基油の40℃での動粘度が、5cSt以上、
20cSt以下である請求項1または2記載のレーザビ
ームプリンタのスピンドルモータ。3. The kinematic viscosity at 40 ° C. of a lubricating oil or a lubricating grease base oil impregnated in a bearing body is 5 cSt or more.
3. The spindle motor for a laser beam printer according to claim 1, wherein the spindle motor is 20 cSt or less.
下である請求項1乃至3何れか記載のレーザビームプリ
ンタのスピンドルモータ。4. The spindle motor for a laser beam printer according to claim 1, wherein the surface porosity of the bearing surface is 2% or more and 12% or less.
た複数の動圧溝を円周方向に配列した第1の溝領域と、
第1の溝領域から軸方向に離隔し、軸方向に対して他方
に傾斜した複数の動圧溝を円周方向に配列した第2の溝
領域と、第1および第2の溝領域の間に位置する平滑部
とを有する請求項1乃至4何れか記載のレーザビームプ
リンタのスピンドルモータ。5. A first groove region in which a plurality of dynamic pressure grooves whose bearing surfaces are inclined in one direction with respect to the axial direction are arranged in a circumferential direction,
A second groove region in which a plurality of hydrodynamic grooves which are axially separated from the first groove region and inclined to the other with respect to the axial direction are arranged in a circumferential direction, and between the first and second groove regions. 5. The spindle motor for a laser beam printer according to claim 1, further comprising:
向に離隔形成した請求項1乃至5何れか記載のレーザビ
ームプリンタのスピンドルモータ。6. A spindle motor for a laser beam printer according to claim 1, wherein a plurality of bearing surfaces are formed on an inner diameter surface of the bearing body so as to be spaced apart in an axial direction.
し、軸受本体の外径面とハウジングの内径面との間に、
軸受本体の軸方向の両端部に開口する通気路を設けた請
求項1乃至6記載のレーザビームプリンタのスピンドル
モータ。7. A bearing body is fixed to an inner diameter portion of a housing, and between an outer diameter surface of the bearing body and an inner diameter surface of the housing.
7. The spindle motor for a laser beam printer according to claim 1, wherein ventilation passages are provided at both ends in the axial direction of the bearing body.
テータとの間に生じる励磁力で回転駆動されてポリゴン
ミラーを回転させる回転軸と、この回転軸を回転自在に
支持する軸受とを有するものにおいて、 前記回転軸の直径が5mm以下であり、 前記軸受が、回転軸の外周面と軸受隙間を介して対向す
る軸受面を有する多孔質の焼結金属からなる軸受本体
と、軸受本体に含浸された潤滑油または潤滑グリース
と、軸受本体の軸受面に軸方向に対して傾斜させて設け
られた動圧溝とを備え、軸受隙間に形成された潤滑油の
動圧油膜によって回転軸を非接触支持すると共に、軸受
本体表面の開孔部を介して油を軸受本体の内部と軸受隙
間との間で循環させるものであるレーザビームプリンタ
のスピンドルモータの回転軸支持装置。8. A motor having a polygon mirror mounted thereon and having a rotating shaft that is driven to rotate by an exciting force generated between a rotor and a stator to rotate the polygon mirror, and a bearing that rotatably supports the rotating shaft. Wherein the diameter of the rotating shaft is 5 mm or less, the bearing is made of a porous sintered metal having a bearing surface opposed to an outer peripheral surface of the rotating shaft via a bearing gap, and the bearing body is impregnated with the bearing body. Lubricating oil or lubricating grease, and a dynamic pressure groove provided on the bearing surface of the bearing body so as to be inclined with respect to the axial direction, and the rotating shaft is not in contact with the dynamic pressure oil film of the lubricating oil formed in the bearing gap A rotary shaft support device for a spindle motor of a laser beam printer, which supports and circulates oil between the inside of the bearing body and the bearing gap through an opening in the surface of the bearing body.
比が、 c/h=0.5〜2.0 であることを特徴とする請求項8記載のレーザビームプ
リンタのスピンドルモータの回転軸支持装置。9. The laser beam printer according to claim 8, wherein the ratio of the groove depth h of the dynamic pressure groove to the bearing radial gap c is c / h = 0.5 to 2.0. Spindle motor rotation shaft support device.
滑グリースの基油の40℃での動粘度が、5cSt以
上、20cSt以下である請求項8または9記載のレー
ザビームプリンタのスピンドルモータの回転軸支持装
置。10. The rotation of a spindle motor of a laser beam printer according to claim 8, wherein the kinematic viscosity at 40 ° C. of the lubricating oil or lubricating grease base oil impregnated in the bearing body is 5 cSt or more and 20 cSt or less. Shaft support device.
以下である請求項8乃至10何れか記載のレーザビーム
プリンタのスピンドルモータの回転軸支持装置。11. The surface porosity of the bearing surface is 2% or more and 12% or more.
The rotating shaft support device for a spindle motor of a laser beam printer according to any one of claims 8 to 10, wherein:
した複数の動圧溝を円周方向に配列した第1の溝領域
と、第1の溝領域から軸方向に離隔し、軸方向に対して
他方に傾斜した複数の動圧溝を円周方向に配列した第2
の溝領域と、第1および第2の溝領域の間に位置する平
滑部とを有する請求項8乃至11何れか記載のレーザビ
ームプリンタのスピンドルモータの回転軸支持装置。12. A first groove region in which a plurality of dynamic pressure grooves inclined in one direction with respect to the axial direction are arranged in a circumferential direction, a bearing surface is axially separated from the first groove region, and the bearing surface is axially separated from the first groove region. A plurality of dynamic pressure grooves inclined in the other direction with respect to the direction are arranged in the circumferential direction.
The rotary shaft support device for a spindle motor of a laser beam printer according to any one of claims 8 to 11, further comprising: a groove region; and a smooth portion located between the first and second groove regions.
方向に離隔形成した請求項8乃至12何れか記載のレー
ザビームプリンタのスピンドルモータの回転軸支持装
置。13. A rotary shaft supporting device for a spindle motor of a laser beam printer according to claim 8, wherein a plurality of bearing surfaces are formed on an inner diameter surface of the bearing body so as to be spaced apart in an axial direction.
し、軸受本体の外径面とハウジングの内径面との間に、
軸受本体の軸方向の両端部に開口する通気路を設けた請
求項8乃至13記載のレーザビームプリンタのスピンド
ルモータの回転軸支持装置。14. A bearing body is fixed to an inner diameter portion of a housing, and between an outer diameter surface of the bearing body and an inner diameter surface of the housing.
14. The rotating shaft support device for a spindle motor of a laser beam printer according to claim 8, wherein ventilation passages are provided at both ends in the axial direction of the bearing body.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP9357944A JPH11191944A (en) | 1997-12-25 | 1997-12-25 | Spindle motor and rotary shaft supporting device of laser beam printer |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP9357944A JPH11191944A (en) | 1997-12-25 | 1997-12-25 | Spindle motor and rotary shaft supporting device of laser beam printer |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH11191944A true JPH11191944A (en) | 1999-07-13 |
Family
ID=18456749
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP9357944A Pending JPH11191944A (en) | 1997-12-25 | 1997-12-25 | Spindle motor and rotary shaft supporting device of laser beam printer |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH11191944A (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009223180A (en) * | 2008-03-18 | 2009-10-01 | Ricoh Co Ltd | Dynamic bearing unit, light deflector, light scanning device and image forming device |
KR100930644B1 (en) | 2008-01-18 | 2009-12-09 | 삼성전기주식회사 | motor |
WO2014115361A1 (en) * | 2013-01-25 | 2014-07-31 | 並木精密宝石株式会社 | Probe for optical imaging |
CN105007796A (en) * | 2013-01-25 | 2015-10-28 | 并木精密宝石株式会社 | Probe for optical imaging |
-
1997
- 1997-12-25 JP JP9357944A patent/JPH11191944A/en active Pending
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100930644B1 (en) | 2008-01-18 | 2009-12-09 | 삼성전기주식회사 | motor |
JP2009223180A (en) * | 2008-03-18 | 2009-10-01 | Ricoh Co Ltd | Dynamic bearing unit, light deflector, light scanning device and image forming device |
WO2014115361A1 (en) * | 2013-01-25 | 2014-07-31 | 並木精密宝石株式会社 | Probe for optical imaging |
CN104955372A (en) * | 2013-01-25 | 2015-09-30 | 并木精密宝石株式会社 | Probe for optical imaging |
CN105007796A (en) * | 2013-01-25 | 2015-10-28 | 并木精密宝石株式会社 | Probe for optical imaging |
JPWO2014115361A1 (en) * | 2013-01-25 | 2017-01-26 | 並木精密宝石株式会社 | Optical imaging probe |
US9706930B2 (en) | 2013-01-25 | 2017-07-18 | Namiki Seimitsu Houseki Kabushiki Kaisha | Optical imaging probe |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR100549102B1 (en) | Spindle motor and rotating shaft supporting device of information equipment | |
CN1260485C (en) | Dyamic bearing device and motor with the dynamic bearing device | |
US5704718A (en) | Sintered oil-impregnated bearing and method for manufacturing same | |
KR102020251B1 (en) | Fluid dynamic bearing device and motor with same | |
JP2000240653A (en) | Oil-impregnated sintered bearing, manufacture therefor, and spindle motor for information apparatus | |
JP3774080B2 (en) | Hydrodynamic bearing unit | |
JP3607492B2 (en) | Dynamic pressure type porous oil-impregnated bearing and manufacturing method thereof | |
JP3602317B2 (en) | Dynamic pressure type porous oil-impregnated bearing unit | |
JPH11191944A (en) | Spindle motor and rotary shaft supporting device of laser beam printer | |
JP3607661B2 (en) | Hydrodynamic porous oil-impregnated bearing and method for producing the same | |
JP3607478B2 (en) | Dynamic pressure type porous oil-impregnated bearing | |
JPH11191943A (en) | Spindle motor and rotary shaft supporting device of optical disc device | |
JPH11191945A (en) | Spindle motor and rotary shaft support device of hard disc drive | |
JP3908834B2 (en) | Support device for spindle motor of information equipment | |
JP3602325B2 (en) | Dynamic pressure type porous oil-impregnated bearing | |
JP2020165533A (en) | Fluid dynamic pressure bearing device | |
JP3784690B2 (en) | Dynamic pressure type porous oil-impregnated bearing and manufacturing method thereof | |
JPH10325416A (en) | Dynamic pressure type porous oil retaining bearing and bearing device | |
US11959513B2 (en) | Fluid dynamic bearing device | |
JP2004353871A (en) | Hydrodynamic type porous oil-impregnated bearing | |
JP2004316924A (en) | Dynamic pressure-type oil-impregnated sintered bearing unit | |
JP2001124057A (en) | Dynamic pressure bearing | |
JPH10274241A (en) | Porous oilless bearing | |
JP2024053879A (en) | Dynamic pressure bearing and fluid dynamic pressure bearing device including the same | |
JPH0366915A (en) | Dynamic pressure bearing device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20031128 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20031226 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20040225 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20040223 |
|
A911 | Transfer to examiner for re-examination before appeal (zenchi) |
Free format text: JAPANESE INTERMEDIATE CODE: A911 Effective date: 20040326 |
|
A912 | Re-examination (zenchi) completed and case transferred to appeal board |
Free format text: JAPANESE INTERMEDIATE CODE: A912 Effective date: 20040423 |