JP2004353871A - Hydrodynamic type porous oil-impregnated bearing - Google Patents

Hydrodynamic type porous oil-impregnated bearing Download PDF

Info

Publication number
JP2004353871A
JP2004353871A JP2004213338A JP2004213338A JP2004353871A JP 2004353871 A JP2004353871 A JP 2004353871A JP 2004213338 A JP2004213338 A JP 2004213338A JP 2004213338 A JP2004213338 A JP 2004213338A JP 2004353871 A JP2004353871 A JP 2004353871A
Authority
JP
Japan
Prior art keywords
bearing
oil
dynamic pressure
shaft
impregnated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004213338A
Other languages
Japanese (ja)
Inventor
Natsuhiko Mori
夏比古 森
Yasuhiro Yamamoto
康裕 山本
Isao Komori
功 古森
Kazuo Okamura
一男 岡村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NTN Corp
Original Assignee
NTN Corp
NTN Toyo Bearing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NTN Corp, NTN Toyo Bearing Co Ltd filed Critical NTN Corp
Priority to JP2004213338A priority Critical patent/JP2004353871A/en
Publication of JP2004353871A publication Critical patent/JP2004353871A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/02Parts of sliding-contact bearings
    • F16C33/04Brasses; Bushes; Linings
    • F16C33/06Sliding surface mainly made of metal
    • F16C33/10Construction relative to lubrication
    • F16C33/102Construction relative to lubrication with grease as lubricant

Abstract

<P>PROBLEM TO BE SOLVED: To achieve a high rotational precision by reducing running-out of a shaft through suppressing unstable vibrations. <P>SOLUTION: A hydrodynamic type porous oil-impregnated bearing has been configured such that a bearing body made of a porous material has a bearing surface formed so as to face, through a bearing clearance, the sliding surface of a shaft to be supported, and is impregnated with lubricating oil or lubricating grease. The bearing body is mainly made of copper or iron or both of them, and is formed with sintered metal containing 20 to 95 wt.% copper, and has hydrodynamic grooves formed on the bearing surface of the bearing body, and has opening portions distributed thereon including the hydrodynamic grooves. The sliding surface of the shaft is floatingly supported by a hydrodynamic oil film located in the bearing clearance. At the same time, the lubricating oil is circulated through the bearing clearance inside the bearing body via the opening portions including the hydrodynamic grooves. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、多孔質体に潤滑油あるいは潤滑グリースを含浸させて自己潤滑機能を持たせると共に、軸受隙間に介在する油の動圧油膜によって軸の摺動面を浮上支持する動圧型多孔質含油軸受に関し、特にレーザビームプリンタのポリゴンミラーや磁気ディスクドライブ用のスピンドルモータなど、高速下で高回転精度が要求される機器の軸受として好適である。   The present invention provides a self-lubricating function by impregnating a porous body with a lubricating oil or a lubricating grease, and a hydrodynamic porous oil-impregnating device that floats and supports a sliding surface of a shaft by a hydrodynamic oil film of oil interposed in a bearing gap. The bearing is particularly suitable as a bearing for equipment requiring high rotational accuracy at high speed, such as a polygon mirror of a laser beam printer and a spindle motor for a magnetic disk drive.

一般に、多孔質含油軸受は、自己潤滑性を有する軸受として広く用いられているが、真円軸受の一種であるため、軸の偏心が小さいところでは、不安定振動が発生しやすく、回転速度の1/2の速度で振れ回るいわゆるホワールが発生しやすい欠点がある。この対策としては、軸受面にヘリングボーン型やスパイラル型などの動圧溝を設けることが挙げられる。多孔質含油軸受に動圧溝を形成し、その動圧作用によって軸を支持し、不安定振動を抑制しようとした従来例としては、下記の特許文献1、2に記載のものがある。   Generally, porous oil-impregnated bearings are widely used as self-lubricating bearings.However, since they are a type of perfect circular bearing, unstable vibration is likely to occur where the eccentricity of the shaft is small, and the rotational speed is reduced. There is a disadvantage that so-called whirling at half the speed is likely to occur. As a countermeasure, a dynamic pressure groove such as a herringbone type or a spiral type may be provided on the bearing surface. Conventional examples of forming a dynamic pressure groove in a porous oil-impregnated bearing, supporting the shaft by the dynamic pressure effect, and suppressing unstable vibration are described in Patent Documents 1 and 2 below.

特許文献1は、ヘリングボーン溝を有する多孔質含油部材を回転軸に嵌合し、円筒状のラジアル内周面を有するスリーブと組み合わせて軸受装置を構成したものである。一方、特許文献2は、多孔質含油軸受の軸受面に、表面目つぶし加工を施した動圧発生用の溝を設けたものである。
特公昭64-11844号公報 実公昭63-19627号公報
Patent Document 1 discloses a bearing device in which a porous oil-impregnated member having a herringbone groove is fitted to a rotating shaft and combined with a sleeve having a cylindrical radial inner peripheral surface. On the other hand, Patent Literature 2 discloses that a bearing surface of a porous oil-impregnated bearing is provided with a groove for generating a dynamic pressure that has been subjected to surface blanking.
Japanese Patent Publication No. 64-11844 Japanese Utility Model Publication No. 63-19627

特許文献1は、回転軸にヘリングボーン溝を有する多孔質含油部材を嵌合し、軸の回転に伴う遠心力によって油を軸受隙間に滲出させようとするものである。このような構造では、以下の欠点がある。   Patent Literature 1 discloses a method in which a porous oil-impregnated member having a herringbone groove is fitted to a rotating shaft, and the centrifugal force accompanying rotation of the shaft causes oil to seep into a bearing gap. Such a structure has the following disadvantages.

(1)軸受装置の部品点数が通常の回転軸と軸受の2点から、回転軸、多孔質含油部材及びスリーブ(軸受)の3点になり、組立が繁雑化する上、コストが高くなる。   (1) The number of parts of the bearing device is changed from two points of a normal rotating shaft and a bearing to three points of a rotating shaft, a porous oil-impregnated member, and a sleeve (bearing), which complicates assembly and increases costs.

(2)動圧型の軸受装置の場合、高い寸法精度が要求されるが、部品点数が3点もあり、それぞれの精度が組み合わせ後の精度に影響するため、部品点数が2点のものに比べて精度を出しにくい。   (2) In the case of a dynamic pressure type bearing device, high dimensional accuracy is required, but there are three parts, and each accuracy affects the accuracy after combination. It is difficult to obtain accuracy.

(3)回転中は、多孔質含油部材には遠心力が加わり続ける。従って、油も滲み出し続け、軸受隙間はいずれ油で飽和し、さらに回転が続けば油は軸受隙間外に漏れ出さざるを得なくなる。そのため、油の流失が避けられない。   (3) During rotation, the centrifugal force continues to be applied to the porous oil-impregnated member. Therefore, the oil continues to seep out, the bearing gap eventually becomes saturated with oil, and if the rotation continues, the oil will have to leak out of the bearing gap. Therefore, oil spills are inevitable.

次に、特許文献2号は、多孔質含油軸受の軸受面に、表面目つぶし加工を施した動圧発生用の溝を設けたものである。このような構造では、以下の欠点がある。   Next, Patent Literature 2 discloses that a groove for dynamic pressure generation is provided on a bearing surface of a porous oil-impregnated bearing, the surface of which is subjected to a blanking process. Such a structure has the following disadvantages.

(1)溝部が完全に封孔されているので、溝部では多孔質含油軸受の最大の特徴である油の循環が阻害される。従って、一旦軸受隙間に滲み出した油はへリングボーン溝の作用によって溝の屈曲部に押し込まれ、そこにとどまることになる。軸受隙間内では大きな剪断作用が働いているので、その剪断力と摩擦熱によって溝部にとどまった油は変性しやすく、また、温度上昇によって酸化劣化が早まる傾向にある。従って、軸受寿命が短くなる。これに対し、通常の多孔質含油軸受では、含浸された油は、軸の回転に伴って常に軸受隙間および軸受内部を循環するため、軸受隙間内で連続的に剪断力を受けることはなく、いったん暖められても軸受内部で冷やされるので、温度上昇による酸化劣化の影響は受けにくい。   (1) Since the groove is completely sealed, circulation of oil, which is the greatest feature of the porous oil-impregnated bearing, is impeded in the groove. Therefore, the oil that has once oozed into the bearing gap is pushed into the bent portion of the groove by the action of the herringbone groove and stays there. Since a large shearing action is exerted in the bearing gap, the oil remaining in the groove tends to be denatured by the shearing force and the frictional heat, and the oxidative deterioration tends to be accelerated by the temperature rise. Therefore, the bearing life is shortened. In contrast, in a normal porous oil-impregnated bearing, the impregnated oil always circulates in the bearing gap and inside the bearing with the rotation of the shaft, so that it does not receive a continuous shearing force in the bearing gap. Once heated, it is cooled inside the bearing, so it is less susceptible to oxidative degradation due to temperature rise.

(2)溝部を封孔処理することは極めて困難である。当該公報では塑性加工により封孔できるとしているが、通常、動圧溝の溝深さはμmオーダーのものであり、この程度の圧縮成形で表面の開孔部が封孔されることはない。また、塑性加工の他の手段としてコーティング等を挙げているが、コーティング被膜の厚さは溝深さよりも薄くする必要があり、数μmのコーティング被膜を傾斜した溝部のみに施すのは極めて困難である。   (2) It is extremely difficult to seal the groove. Although the publication states that the hole can be sealed by plastic working, the depth of the dynamic pressure groove is usually on the order of μm, and the opening on the surface is not sealed by compression molding of this degree. In addition, although coating is mentioned as another means of plastic working, it is necessary to make the thickness of the coating film thinner than the groove depth, and it is extremely difficult to apply a coating film of several μm only to the inclined groove portion. is there.

このような状況に鑑み、本発明の解決しようとする課題は次のとおりである。   In view of such circumstances, problems to be solved by the present invention are as follows.

軸受部の部品点数は2点とし、低コストなものとすると共に、精度が出しやすい、量産性に適したものとする。   The number of parts of the bearing portion is set to two, so that the cost is low, the accuracy is easily obtained, and the bearing is suitable for mass production.

通常の多孔質含油軸受のように含浸された油が軸受隙間と軸受内部を循環するようにし、それによって油が劣化しにくい構造とする。   As in a normal porous oil-impregnated bearing, the impregnated oil is circulated between the bearing gap and the inside of the bearing, so that the oil is hardly deteriorated.

ホワールなどの不安定振動を抑制し、軸振れを小さくして高い回転精度を達成する。   Suppresses unstable vibration such as whirl and reduces shaft runout to achieve high rotational accuracy.

上記課題を解決するため、本発明は、多孔質体からなる軸受本体に、支持すべき軸の摺動面と軸受隙間を介して対向する軸受面を形成すると共に、潤滑油又は潤滑グリースを含浸させた動圧型多孔質含油軸受において、軸受本体は、銅又は鉄、あるいはその両者を主成分とし、銅の含有量が20〜95wt%である焼結金属で形成されており、軸受本体の軸受面には動圧溝が形成されていると共に、該動圧溝を含めて開孔部が分布しており、軸受隙間に介在する油の動圧油膜によって軸の摺動面を浮上支持すると共に、動圧溝を含む軸受面の開孔部を介して、油を軸受本体の内部と軸受隙間との間で循環させる構成を提供する。   In order to solve the above problems, the present invention provides a bearing body made of a porous body, in which a bearing surface opposed to a sliding surface of a shaft to be supported via a bearing gap is impregnated with lubricating oil or lubricating grease. In the hydrodynamic porous oil-impregnated bearing, the bearing body is formed of a sintered metal containing copper or iron or both as a main component and having a copper content of 20 to 95 wt%. A dynamic pressure groove is formed on the surface, and apertures are distributed including the dynamic pressure groove. The sliding surface of the shaft is floated and supported by a dynamic pressure oil film of oil interposed in the bearing gap. The present invention provides a configuration in which oil is circulated between the inside of a bearing main body and a bearing gap through an opening in a bearing surface including a dynamic pressure groove.

本発明によれば、以下に示す効果が得られる。   According to the present invention, the following effects can be obtained.

油の流失、飛散、蒸発等による周囲の汚染を著しく軽減することができる。   Surrounding pollution due to oil spillage, scattering, evaporation and the like can be significantly reduced.

ホワールなどの不安定振動を抑制することができ、軸振れを小さくして高い回転精度を達成することができる。   Unstable vibrations such as whirl can be suppressed, and shaft rotation can be reduced to achieve high rotational accuracy.

常時、良好な動圧油膜形成を維持することができる。   A good dynamic pressure oil film can always be maintained.

耐久性を大幅に向上させることができる。   Durability can be greatly improved.

軸受本体(1)の軸受面に動圧溝(ヘリングボーン型やスパイラル型等の複数の傾斜した溝)を設けると、軸方向断面での油の流れは、例えば図2に示すようになる。油は、矢印で示すように軸受本体(1)の軸受面17(内周表面)の開孔部から回転軸(2)との間の軸受隙間(4)に出入りするが、油の循環を適性に保とうとすれば、動圧溝(5)、及び当該溝以外の「背」の部分(6)(何れも図7参照)で開孔部がほぼ均一に分布しているのが望ましい。表面における開孔部の割合が小さくなると、油は動きにくくなり、逆に大きくなると油は動きやすくなる。また、含浸油の粘度も油の動きやすさに関係し、粘度が低いと動きやすく、粘度が高いと動きにくくなる。尚、本明細書において、「開孔部」とは多孔質体である軸受本体の多孔組織をなす細孔が外表面に開口した部分をいう。   When a dynamic pressure groove (a plurality of inclined grooves such as a herringbone type or a spiral type) is provided on the bearing surface of the bearing body (1), an oil flow in an axial cross section is as shown in FIG. 2, for example. Oil flows into and out of the bearing gap (4) between the rotary shaft (2) and the opening through the opening in the bearing surface 17 (inner peripheral surface) of the bearing body (1) as shown by the arrows. In order to maintain the appropriateness, it is desirable that the apertures be distributed almost uniformly in the dynamic pressure groove (5) and the "back" portion (6) other than the groove (see FIG. 7). The oil becomes difficult to move when the ratio of the apertures on the surface is small, and when the ratio is large, the oil is easy to move. In addition, the viscosity of the impregnated oil is also related to the ease of movement of the oil. In addition, in this specification, the "opening portion" refers to a portion in which pores forming a porous structure of a bearing body which is a porous body are opened on the outer surface.

開孔率が大きく、粘度が低い場合には、油は極めて動きやすくなるが、動圧溝(5)の作用によって軸受隙間(4)に滲み出した油は簡単に軸受本体(1)の内部に戻されるため、動圧効果が小さくなり、高回転精度を維持できないばかりか、軸(2)と軸受本体(1)とが接触することにより、軸受本体(1)が摩耗して軸受機能が損なわれるおそれがある。逆に開孔率が小さく、粘度が高い場合は、油は極めて動きにくくなるので、発生圧力は大きくなるが、適切な循環が阻害され、またトルクも大きくなるため、軸受部分の昇温によって油の劣化が促進される。   When the porosity is large and the viscosity is low, the oil becomes extremely easy to move, but the oil that seeps into the bearing gap (4) by the action of the dynamic pressure groove (5) is easily removed from the inside of the bearing body (1). , The dynamic pressure effect is reduced and high rotational accuracy cannot be maintained. In addition, when the shaft (2) and the bearing body (1) come into contact with each other, the bearing body (1) is worn and the bearing function is reduced. It may be damaged. Conversely, when the porosity is small and the viscosity is high, the oil becomes extremely difficult to move, so the generated pressure increases, but proper circulation is hindered and the torque increases. Degradation is promoted.

従って、開孔率と油の粘度には、軸を浮上支持するために必要な油の動圧油膜形成を確保し、同時に、油の適切な循環を確保し得る最適な範囲が存在する。   Therefore, there is an optimum range of the porosity and the viscosity of the oil in which the formation of a dynamic pressure oil film of the oil necessary for supporting and supporting the shaft is secured, and at the same time, the proper circulation of the oil is secured.

この最適範囲を明らかにすべく、図3及び図4に示すLBP実機モータを用いて評価試験を行った。両図において、(7)はハウジングであり、(8)は、軸(2)に固定された、ハブ(ロータ)である。また、(9)は軸(2)の先端と接触してスラスト負荷を支持するためのスラスト受けである。評価試験に用いた実機モータは、軸径がφ4のもので、ミラーを実装した状態であり、また、回転数は10000rpm、雰囲気温度は40°Cとした。   In order to clarify this optimum range, an evaluation test was performed using the actual LBP motor shown in FIGS. In both figures, (7) is a housing, and (8) is a hub (rotor) fixed to the shaft (2). Further, (9) is a thrust receiver for supporting the thrust load by contacting the tip of the shaft (2). The actual motor used in the evaluation test had a shaft diameter of φ4, was in a state where a mirror was mounted, and had a rotation speed of 10,000 rpm and an ambient temperature of 40 ° C.

図5に評価試験の結果を示す。図5中、「○」は1000時間連続運転した耐久試験で問題のなかったことを示す。「△」は500〜1000時間の間で軸振れ上昇(5μm以上)、トルク上昇=回転数低下(10000rpmまで回転数が上がらない)、異音発生などのトラブルを発生し、正常な運転が不可能になったことを示す。「×」は500時間までに上記のようなトラブルが発生したことを示す。   FIG. 5 shows the results of the evaluation test. In FIG. 5, “示 す” indicates that there was no problem in the durability test after continuous operation for 1000 hours. "△" indicates troubles such as shaft run-out rise (5 μm or more), torque rise = rotation speed decrease (rotation speed does not increase up to 10,000 rpm), abnormal noise, etc. during 500 to 1000 hours, and abnormal operation Indicates that it is possible. “X” indicates that the above-mentioned trouble occurred by 500 hours.

以上の評価実験から、開孔率と油の粘度の最適範囲(「×」の存在しない範囲)は、図5に実線で区画する領域、すなわち、以下の条件を満たす場合であることが理解できる。
a:動圧溝を含む軸受面における開孔部の表面積比率が2%以上20%以下であり、
b:含浸される油の40°Cでの動粘度が2cSt以上であり、
c:軸受面における開孔部の表面積比率と油の40°Cでの動粘度が
(3/5)A−1≦ η ≦(40/6)A+(20/3)である。
ここで、A:開孔部の表面積率[%]、η:油の40°Cでの動粘度[cSt]
From the above evaluation experiments, it can be understood that the optimum range of the porosity and the viscosity of the oil (the range in which “x” does not exist) is a region defined by the solid line in FIG. 5, that is, a case where the following conditions are satisfied. .
a: The surface area ratio of the opening portion on the bearing surface including the dynamic pressure groove is 2% or more and 20% or less,
b: the kinematic viscosity at 40 ° C. of the impregnated oil is 2 cSt or more;
c: The kinematic viscosity at 40 ° C. of the surface area ratio of the opening portion on the bearing surface and the oil is (3/5) A−1 ≦ η ≦ (40/6) A + (20/3).
Here, A: surface area ratio [%] of the hole, η: kinematic viscosity of oil at 40 ° C. [cSt]

このような範囲で開孔率と油の粘度を選定することにより、軸を浮上支持するために充分な動圧油膜が形成されると同時に、油の適切な循環が確保されるので、高回転精度、長寿命を達成することができる。   By selecting the porosity and the viscosity of the oil in such a range, a dynamic oil film sufficient to support and float the shaft is formed, and at the same time, appropriate circulation of the oil is ensured. Accuracy and long life can be achieved.

なお、軸受面における開孔部の表面積比率は望ましくは2%以上、15%以下とするのが良い。   The surface area ratio of the opening on the bearing surface is desirably 2% or more and 15% or less.

動圧溝(5)の溝深さ(h:図7参照)と軸受隙間(半径隙間:c)との比には最適な範囲があり、この範囲外では充分な動圧効果が得られないと考えられる。この最適範囲を明らかにすべく、図6に示すように、図3に示すLBP実機モータの軸(2)を軸振れが測定できるように長いものに入れ替えて評価試験を行った。回転数は10000rpm、試験雰囲気は常温常湿であり、LBP実機モータはφ4でミラー未実装としている。なお、(10)は非接触型の変位計である。   There is an optimal range for the ratio between the groove depth (h: see FIG. 7) of the dynamic pressure groove (5) and the bearing clearance (radial clearance: c), and a sufficient dynamic pressure effect cannot be obtained outside this range. it is conceivable that. In order to clarify this optimum range, as shown in FIG. 6, an evaluation test was performed by replacing the shaft (2) of the actual LBP motor shown in FIG. 3 with a longer one so that the shaft runout could be measured. The rotation speed was 10000 rpm, the test atmosphere was room temperature and normal humidity, and the LBP actual motor was φ4 and no mirror was mounted. (10) is a non-contact type displacement meter.

以上の条件の下、c/h(c;半径隙間、h;溝深さ)に対する軸振れの値をそれぞれプロットしたところ、図8に示す結果を得た。図8より、c/hが0.5〜4.0の範囲内であれば、軸振れは5μm以下になるが、0.5未満、あるいは4.0より大きくなると5μm以上となる。従って、高精度を維持するためには、c/h=0.5〜4.0の範囲内とするのが望ましい。   Under the above conditions, the values of the shaft runout with respect to c / h (c: radial gap, h: groove depth) were plotted, and the results shown in FIG. 8 were obtained. According to FIG. 8, if c / h is in the range of 0.5 to 4.0, the shaft runout becomes 5 μm or less, but if it is less than 0.5 or larger than 4.0, it becomes 5 μm or more. Therefore, in order to maintain high accuracy, it is desirable that c / h be in the range of 0.5 to 4.0.

多孔質含油軸受は、通常無給油で使用されるが、油の飛散、蒸発などにより油が徐々に消耗、流出することが避けられない。その場合には、油膜形成範囲が収縮するため、軸振れなどの回転精度の悪化を招く。特に軸姿勢が縦型で使用される場合が多く、毎分1万回転以上の高速で使用されるレーザビームプリンタ(LBP)用モータ、あるいは磁気ディスクドライブ(HDD)用モータ等では、図12に示すように、遠心力の作用で油が流出し易く、油膜形成性等の潤滑性能の維持が難しかった。   The porous oil-impregnated bearing is usually used without lubrication, but it is inevitable that the oil is gradually consumed and flows out due to scattering and evaporation of the oil. In this case, since the oil film formation range is contracted, the rotation accuracy such as shaft runout is deteriorated. In particular, the shaft attitude is often used in a vertical type, and a motor for a laser beam printer (LBP) or a motor for a magnetic disk drive (HDD) used at a high speed of 10,000 rotations or more per minute is shown in FIG. As shown, the oil easily leaked out due to the effect of the centrifugal force, and it was difficult to maintain lubricating performance such as oil film forming properties.

LBPやHDDでは、油膜切れを生じることは、高精度の回転を維持する上で、致命的となる。特に軸受本体を単独とした場合には、高速で回転すると、油は周囲の空気も巻き込んで軸受内部を循環するため、軸受隙間に空気が混入することがある。空気の混入を防止するためには、軸受本体の内部に少しでも空孔ができたら油を補給する部材(補油部材)を配置するのが有効な対策となる。   In an LBP or HDD, the occurrence of oil film breakage is fatal in maintaining high-precision rotation. In particular, when the bearing body is used alone, when rotating at a high speed, the oil engulfs the surrounding air and circulates inside the bearing, so that air may enter the bearing gap. In order to prevent air from being mixed in, an effective measure is to arrange a member (oil replenishing member) for replenishing oil when a small amount of holes are formed inside the bearing body.

このような補油部材として、本実施形態では、図1に示すように、合成樹脂を基材とし、これに潤滑油又は潤滑グリースを配合あるいは含浸させ、少なくとも20°C以上の温度では、静置した状態でも含有した油が表面に滲み出すようにした固形状の潤滑組成物(3)を軸受本体(1)と接触させて配置している。かかる構成により、軸受本体(1)の油が流失しても、当該軸受本体(1)に接触させて配置した潤滑組成物(3)から新たな油が毛細管現象によって軸受本体(1)の内部に補給されるので、回転軸(2)との間に常時良好な動圧油膜を形成することが可能となる。   In this embodiment, as shown in FIG. 1, a synthetic resin is used as such a base material, and a lubricating oil or lubricating grease is blended or impregnated with the base material at a temperature of at least 20 ° C. The solid lubricating composition (3) in which the oil contained therein oozes out to the surface even when it is placed is placed in contact with the bearing body (1). With this configuration, even if the oil in the bearing body (1) runs off, new oil is generated from the lubricating composition (3) disposed in contact with the bearing body (1) by the capillary phenomenon inside the bearing body (1). , It is possible to always form a good dynamic pressure oil film with the rotating shaft (2).

具体的には、固形状の潤滑組成物(3)は、軸受本体が含有する潤滑油又は当該潤滑油を基油とする潤滑グリース5〜99wt%に、平均分子量が1×106 〜5×106 である超高分子量ポリオレフィンの粉末95〜1wt%を混合すると共に、超高分子量ポリオレフィン粉末のゲル化点以上、かつ、潤滑グリースを用いた場合はグリースの滴点以下の温度で分散保持させることにより、成形される。 Specifically, the solid lubricating composition (3) is prepared by adding lubricating oil contained in the bearing body or lubricating grease using the lubricating oil as a base oil to 5 to 99 wt% and an average molecular weight of 1 × 10 6 to 5 ×. 95 to 1 wt% of the ultrahigh molecular weight polyolefin powder of 10 6 is mixed and dispersed and maintained at a temperature not lower than the gel point of the ultrahigh molecular weight polyolefin powder and not higher than the drop point of the grease when lubricating grease is used. Thereby, it is molded.

このように、潤滑組成物を潤滑油あるいは潤滑グリースと超高分子量ポリオレフィン粉末との混合物で構成して固形状とすると、低コストで量産性に富み、取扱いが容易で組込み作業が簡単なものとなる。また、この固形状の潤滑組成物は、常温(20°C程度)以上の温度で内部に含有した油をごく僅かずつ滲出させるので、連続的に軸受へ油を補給し続けることができる。図9は本発明における固形状の潤滑組成物(3)を静置し、放置時間と油分離率を調べた結果である。雰囲気が20°Cでも1000時間にわたって僅かずつ油を分離し続けることが理解できる。雰囲気温度が上昇すれば、この分離量も増える。   As described above, when the lubricating composition is composed of a mixture of lubricating oil or lubricating grease and ultra-high molecular weight polyolefin powder to be solid, the lubricating composition is low in cost, rich in mass productivity, easy to handle, and easy to incorporate. Become. Further, since the solid lubricating composition oozes out the oil contained therein at a temperature not lower than room temperature (about 20 ° C.), the oil can be continuously supplied to the bearing continuously. FIG. 9 shows the results obtained by allowing the solid lubricating composition (3) of the present invention to stand still and examining the standing time and oil separation rate. It can be seen that the oil continues to be separated little by little over 1000 hours even at 20 ° C. As the ambient temperature increases, the amount of separation increases.

図10は、固形状の潤滑組成物を軸受に密着させた場合と、このような補油部材がなかった場合の比較であり、補油部材がない場合には(黒四角で示す)、当初含まれていた油が2000時間の運転で約30%流失してしまうが、補油部材がある場合には(黒丸で示す)、軸受本体から油が流失しても補油されるため、その損失量は僅か5%ほどに抑えられることが理解できる。   FIG. 10 shows a comparison between the case where the solid lubricating composition was brought into close contact with the bearing and the case where no such bunkering member was provided. Approximately 30% of the oil contained was washed away after 2,000 hours of operation. However, if there was a bunkering member (shown by a black circle), even if the oil flowed out of the bearing body, it was replaced with oil. It can be seen that the loss is reduced to only about 5%.

高温雰囲気下で使用される場合や、高速回転で使用され、摩擦による発熱が大きい場合には、固形状の潤滑組成物からの油の滲み出しが多すぎる場合が有るので、潤滑組成物の油滲出抑制剤として、固体ワックス、低分子量ポリエチレン、ポリアミド樹脂のうち1種以上を、1〜50wt%の割合で添加混合するのが好ましい。   When used in a high-temperature atmosphere or when used at high rotation speeds and generates a large amount of heat due to friction, oil may ooze out of the solid lubricating composition too much. It is preferable to add and mix one or more of solid wax, low molecular weight polyethylene, and polyamide resin at a ratio of 1 to 50 wt% as a bleeding inhibitor.

図1に示すように、軸受本体(1)(多孔質含油軸受A)の軸方向一方側又は両側に、軸受本体(1)と同等若しくはこれよりも僅かに大きい内径を有する円筒状の油漏れ防止部材(11)を配置し、この油漏れ防止部材(11)の内周面に、軸(2)との相対回転に際して軸(2)との間の隙間に軸受本体側へ向けて流れる気流を発生させる気流発生溝(12)を設けてもよい。この気流発生溝(12)は、例えば複数の傾斜溝を設けることによって形成できる。図面では、上下二段に軸受本体(1)を配置し、上段の軸受本体(1)の外側に油漏れ防止部材(11)を配置した場合を例示しているが、当該軸受本体(1)の内側にも油漏れ防止部材(11)を配置することが可能であり、さらに下段の軸受本体(1)の一方側又は両側に油漏れ防止部材(11)を配置することも可能である。   As shown in FIG. 1, a cylindrical oil leak having an inner diameter equal to or slightly larger than that of the bearing body (1) is provided on one or both sides in the axial direction of the bearing body (1) (porous oil-impregnated bearing A). An airflow that flows toward the bearing body side through a gap between the shaft and the shaft during relative rotation with the shaft on the inner peripheral surface of the oil leakage prevention member. May be provided. The airflow generating groove (12) can be formed by, for example, providing a plurality of inclined grooves. In the drawings, a case is shown in which the bearing body (1) is arranged in the upper and lower stages and the oil leakage prevention member (11) is arranged outside the upper stage bearing body (1). It is also possible to arrange an oil leakage prevention member (11) on the inside of the bearing, and it is also possible to arrange the oil leakage prevention member (11) on one or both sides of the lower bearing body (1).

この構成であれば、図11に示すように、回転軸(2)と油漏れ防止部材(12)の内周面との間の隙間(13)に、軸(2)の回転に伴って軸受本体(1)の方向(図面下方)へ流れる気流が発生するので、軸受部から油が漏れ出たとしても、軸(2)と油漏れ防止部材(11)との間の隙間(13)を通過できない。この作用によって油漏れが防止される。また、静止時には、当該隙間(13)の毛細管力で油を保持するので、回転が止まっても油が漏れ出ることはない。   With this configuration, as shown in FIG. 11, a bearing (13) is provided in the gap (13) between the rotating shaft (2) and the inner peripheral surface of the oil leakage preventing member (12) with the rotation of the shaft (2). Since an air current flows in the direction of the main body (1) (downward in the drawing), even if oil leaks from the bearing portion, the gap (13) between the shaft (2) and the oil leak prevention member (11) is removed. I can't pass. This action prevents oil leakage. In addition, at rest, the oil is held by the capillary force of the gap (13), so that the oil does not leak even if the rotation stops.

この場合、油漏れ防止部材(11)を多孔質体とし、且つ隣接する軸受本体(1)との間に空間(14)を設けるとよい。この構成であれば、漏れ出てきた油を多孔質体からなる油漏れ防止部材(11)に吸収することができる。また、静止時には油漏れ防止部材(11)と軸(2)との間の油も吸収できるので、大気にさらされる部分が減り、油の蒸発や発塵を減少させることができる。油漏れ防止部材(11)に吸収された油は、回転に伴って隙間(13)内に引き出され、気流発生溝(12)の作用で生じた気流により空間(14)を介して軸受本体(1)側に返される。   In this case, the oil leakage prevention member (11) is preferably made of a porous material, and a space (14) is preferably provided between the oil leakage prevention member (11) and the adjacent bearing body (1). With this configuration, the leaked oil can be absorbed by the oil leakage prevention member (11) made of a porous body. In addition, since the oil between the oil leakage prevention member (11) and the shaft (2) can be absorbed at rest, the portion exposed to the atmosphere is reduced, and the evaporation and dust generation of the oil can be reduced. The oil absorbed by the oil leakage prevention member (11) is drawn into the gap (13) with the rotation, and is caused to flow through the space (14) by the airflow generated by the action of the airflow generation groove (12). 1) Returned to the side.

図1に示すように、油漏れ防止部材(11)の、軸受本体(1)と反対側の端面(11a)及びチャンファ部(11b)に目潰し加工を施し、この部分の表面開孔率が面積比で5%以下、望ましくは完全に封孔すれば、油漏れ防止部材(11)に吸収された油の蒸発、発塵をさらに減少させることができる。   As shown in FIG. 1, the end face (11a) and the chamfer portion (11b) of the oil leak prevention member (11) on the side opposite to the bearing body (1) are crushed, and the surface porosity of this portion is reduced by the area. If the ratio is 5% or less, desirably completely sealed, the evaporation and dust generation of the oil absorbed by the oil leakage prevention member (11) can be further reduced.

図1に示すように、一端が開放され、他端が閉塞されている円筒状のハウジング(7)内に、軸受本体(1)を圧入固定すると共に、この軸受本体(1)に接触させて固形状の潤滑組成物(3)を収納し、かつ、軸受本体(1)の外側に油漏れ防止部材(11)を配置してハウジング(7)の開口部を閉塞する。この場合、上述のように、軸受に動圧作用があり、さらに潤滑組成物(3)から常時油が補給されるので、常に良好な動圧油膜形成を維持することができ、長期間にわたって高回転精度を維持することができる。また、軸受部からの油の漏洩は、油漏れ防止部材(11)によって補足され、流出することもない。   As shown in FIG. 1, a bearing body (1) is press-fitted and fixed in a cylindrical housing (7) having one end opened and the other end closed, and is brought into contact with the bearing body (1). The solid lubricating composition (3) is housed, and the oil leakage preventing member (11) is arranged outside the bearing body (1) to close the opening of the housing (7). In this case, as described above, the bearing has a dynamic pressure effect, and further, the oil is constantly replenished from the lubricating composition (3). Therefore, it is possible to always maintain a good dynamic pressure oil film formation, and to maintain the high dynamic pressure oil film for a long time. Rotational accuracy can be maintained. Further, oil leakage from the bearing portion is captured by the oil leakage prevention member (11) and does not flow out.

ハウジング(7)の底面(7a)と、これに対向する軸受本体(1)の内側端面(1a)との間に空間(15)を設け、この空間(15)とハウジング外部とが軸受隙間(4)以外の箇所で連通するように空気流通路(16)を設けると、この空気流路(16)は空気抜きとして機能する。これにより、組立時に軸(2)が挿入し易くなる。また、回転時には発熱によって内圧が高まり、軸(ロータ)が押し上げられて回転が不安定となる場合があるが、かかる事態も防止可能となる。   A space (15) is provided between the bottom surface (7a) of the housing (7) and the inner end surface (1a) of the bearing body (1) facing the housing (7). If the air flow path (16) is provided so as to communicate at a location other than 4), the air flow path (16) functions as an air vent. This facilitates insertion of the shaft (2) during assembly. Further, during rotation, the internal pressure may increase due to heat generation, and the shaft (rotor) may be pushed up to make rotation unstable, but such a situation can be prevented.

回転軸(2)に回転部材、例えばロータ(8)を取り付けると共に、このロータと対向する軸受本体(1)の端面にヘリングボーン型、あるいはスパイラル型等の動圧溝を設け、回転軸(2)の回転時にこの動圧溝で生じる動圧によりスラスト負荷を支持するようにすれば、ラジアル負荷のみならずスラスト負荷も支持できるようになり、スラスト受け(9)が不要となる。   A rotating member, for example, a rotor (8) is attached to the rotating shaft (2), and a dynamic pressure groove of a herringbone type or a spiral type is provided on an end surface of the bearing body (1) opposed to the rotor. If the thrust load is supported by the dynamic pressure generated in this dynamic pressure groove during the rotation of ()), not only the radial load but also the thrust load can be supported, and the thrust receiver (9) becomes unnecessary.

この場合、動圧溝を設けた軸受本体(1)の端面における開孔部の表面積比率は、2%以上で20%以下とするのが好ましい。   In this case, it is preferable that the surface area ratio of the opening on the end face of the bearing body (1) provided with the dynamic pressure groove is 2% or more and 20% or less.

以下、本発明の一実施形態についてさらに詳細に説明する。   Hereinafter, one embodiment of the present invention will be described in more detail.

図1は、本発明にかかる動圧型多孔質含油軸受装置の一例を示すもので、一端が開放され、他端が閉塞されているハウジング(7)内に、軸受面(17)を有する2つの軸受本体(1)を圧入固定し、この軸受本体(1)の内周部に軸(2)(回転軸)を挿入して軸方向に離隔する2つの多孔質含油軸受(A)を構成したものである。軸受本体(1)の材質は特に限定されるものではなく、粉末冶金により、あるいは、鋳鉄、セラミックなどを焼結又は発泡成形することにより、多数の気孔を有する周知の多孔質体状に形成されたものであれば良いが、望ましくは、銅又は鉄、あるいはその両者を主成分とする焼結金属、さらに望ましくは銅を20〜95wt%含有する焼結金属で形成するのが良い。   FIG. 1 shows an example of a hydrodynamic porous oil-impregnated bearing device according to the present invention, in which a housing (7) having one end open and the other end closed is provided with two bearing surfaces (17). The bearing body (1) is press-fitted and fixed, and a shaft (2) (rotating shaft) is inserted into the inner peripheral portion of the bearing body (1) to form two porous oil-impregnated bearings (A) which are separated in the axial direction. Things. The material of the bearing body (1) is not particularly limited, and is formed into a well-known porous body having a large number of pores by powder metallurgy or by sintering or foaming cast iron, ceramic, or the like. Preferably, it is formed of a sintered metal containing copper or iron or both of them as a main component, more preferably a sintered metal containing 20 to 95 wt% of copper.

両軸受本体(1)の間には、合成樹脂を基材とし、これに潤滑油又は潤滑グリースを配合した固形状の潤滑組成物(3)が配置され、かつ、開放側(上段)の軸受本体(1)の上方には油漏れ防止部材(11)が配置されていてハウジング(7)の上端開口部を閉塞している。油漏れ防止部材(11)の上側端面(11a)及び上側のチャンファ部(11b)は、封孔処理がなされている。また、閉塞側(下段)の軸受本体(1)の端面(1a)と、ハウジング(7)の底面(7a)との間に空間(15)が設けられ、この空間(15)と外部とが連通するように空気の流通路(16)が設けられている。この空気流通路(16)は、例えば軸受本体(1)、潤滑組成物(3)、及び油漏れ防止部材(11)の外形面の一部に軸方向の切欠きを設けることにより形成される。軸受本体(1)及び油漏れ防止部材(11)の内周面には、複数の傾斜した溝(動圧溝5及び気流発生溝12)が設けられる。油漏れ防止部材(11)は多孔質体で形成されており、潤滑油などは含浸されていない。油漏れ防止部材(11)の材質は、特に限定されるものではなく、粉末冶金により、あるいは、鋳鉄、合成樹脂、セラミックなどを焼結または発泡成形することにより、多数の気孔を有する周知の多孔質体状に成形される。   Between the two bearing bodies (1), a solid lubricating composition (3) comprising a synthetic resin as a base material and a lubricating oil or lubricating grease is arranged, and the open-side (upper-stage) bearing is provided. An oil leakage prevention member (11) is disposed above the main body (1) and closes an upper end opening of the housing (7). The upper end surface (11a) and the upper chamfer portion (11b) of the oil leakage prevention member (11) are sealed. A space (15) is provided between the end surface (1a) of the bearing body (1) on the closing side (lower stage) and the bottom surface (7a) of the housing (7). An air flow passage (16) is provided for communication. The air flow passage (16) is formed by, for example, providing an axial cutout in a part of the outer surface of the bearing body (1), the lubricating composition (3), and the oil leakage preventing member (11). . A plurality of inclined grooves (dynamic pressure grooves 5 and airflow generating grooves 12) are provided on the inner peripheral surfaces of the bearing body (1) and the oil leakage prevention member (11). The oil leakage prevention member (11) is formed of a porous body, and is not impregnated with a lubricating oil or the like. The material of the oil leakage prevention member (11) is not particularly limited, and is a well-known porous material having a large number of pores by powder metallurgy, or by sintering or foaming cast iron, synthetic resin, ceramic, or the like. It is formed into a solid body.

図1に示すように、軸受本体(1)の軸受面(17)に例えばへリングボーン型の動圧溝(5)を設けることによって、回転軸(2)との相対回転時に軸受隙間(4)に動圧油膜が形成され、ホワールなどの不安定振動を効果的に抑制することができる。尚、図1に示す軸受面(17)(図4に示す軸受面も同じ)においては、溝領域5(黒く塗りつぶした部分)が軸方向両側に向かって相反した向きに傾斜し、かつ、相反した向きに傾斜した溝領域5間に環状の背6(白い部分)が設けられている(同図では、環状の背6は軸受面の軸方向中央に位置している。)。軸受隙間(4)の幅(c)は、軸(2)の半径をRとした場合に、c/R=1/2000〜1/400とするのが望ましい。また、溝深さをhとした場合、c/h=0.5〜4.0とするのが良いが、さらに望ましくは、c/h=0.5〜3.0とするのが良い。   As shown in FIG. 1, for example, by providing a herringbone type dynamic pressure groove (5) on the bearing surface (17) of the bearing body (1), the bearing gap (4) can be formed during relative rotation with the rotating shaft (2). ), A dynamic oil film is formed, and unstable vibration such as whirl can be effectively suppressed. In the bearing surface (17) shown in FIG. 1 (the same applies to the bearing surface shown in FIG. 4), the groove region 5 (the black portion) is inclined in opposite directions toward both sides in the axial direction. An annular back 6 (white portion) is provided between the groove regions 5 inclined in the inclined direction (in the figure, the annular back 6 is located at the axial center of the bearing surface). The width (c) of the bearing gap (4) is desirably c / R = 1/2000 to 1/400, where R is the radius of the shaft (2). When the groove depth is h, c / h is preferably set to 0.5 to 4.0, and more preferably, c / h is set to 0.5 to 3.0.

また、軸受本体(1)の軸受面の開孔率は、表面積比で、2〜20%とするのが望ましい。2%以下では油の循環が阻害され、20%以上では動圧効果が発揮されず、満足な動圧油膜が形成されないためである。この表面開孔率に応じて油の粘度が選択される。   The porosity of the bearing surface of the bearing body (1) is desirably 2 to 20% in terms of surface area ratio. If it is less than 2%, the circulation of oil is hindered, and if it is more than 20%, the dynamic pressure effect is not exhibited, and a satisfactory dynamic pressure oil film is not formed. The viscosity of the oil is selected according to the surface porosity.

軸受本体(1)に接触させて配置される補油部材(3)は、金属や樹脂などの多孔質体、あるいはフェルトなどの繊維物質に油を含ませた周知のものでもよいが、固形状であり、少なくとも20℃以上の温度で含有する油を表面に滲み出し続ける固形状の潤滑組成物を用いるのが好ましい。この潤滑組成物は、ごく簡単な方法で製作することができる。例えば、所定量の潤滑グリースあるいは潤滑油と、所定量の超高分子量オレフィン粉末とを均一に混合し、所定形状の型に流し込んで、超高分子量ポリオレフィン粉末のゲル化点以上の温度で、さらに潤滑グリースを用いる場合はその滴点以下の温度で分散保持させ、常温で冷却することによって得られる。この発明における超高分子量ポリオレフィン粉末は、ポリエチレン、ポリプロピレン、ポリブデン若しくはこれらの共重合体からなる粉末、またはそれぞれ単独の粉末を配合した混合粉末であり、各粉末の分子量は、粘度法により測定される平均分子量が1×106 〜5×106 になるように選択される。このような平均分子量の範囲にあるポリオレフィンは、剛性及び保油性において低分子量のポリオレフィンよりも優れ、高温に加熱してもほとんど流動することがない。このような超高分子量ポリオレフィンの潤滑組成物中の配合割合は、95〜1wt%とする。なお、その量は組成物に要求される離油度、粘り強さ及び硬さに左右される。超高分子量ポリオレフィンの量が多いほど、所定の温度で分散保持させた後のゲルの硬さが大きくなる。 The refueling member (3) arranged in contact with the bearing body (1) may be a porous material such as metal or resin, or a known material in which oil is contained in a fibrous material such as felt, but may be a solid material. It is preferable to use a solid lubricating composition that continuously oozes the oil contained at a temperature of at least 20 ° C. or more to the surface. This lubricating composition can be manufactured in a very simple way. For example, a predetermined amount of lubricating grease or lubricating oil and a predetermined amount of ultrahigh molecular weight olefin powder are uniformly mixed and poured into a mold having a predetermined shape, and at a temperature equal to or higher than the gel point of the ultrahigh molecular weight polyolefin powder, When a lubricating grease is used, it is obtained by dispersing and maintaining the lubricating grease at a temperature equal to or lower than its dropping point and cooling it at room temperature. The ultra-high molecular weight polyolefin powder in the present invention is a powder composed of polyethylene, polypropylene, polybutene or a copolymer thereof, or a mixed powder containing a single powder, and the molecular weight of each powder is measured by a viscosity method. The average molecular weight is selected to be 1 × 10 6 to 5 × 10 6 . Polyolefins having such an average molecular weight range are superior in rigidity and oil retaining property to low molecular weight polyolefins, and hardly flow even when heated to a high temperature. The blending ratio of such an ultrahigh molecular weight polyolefin in the lubricating composition is 95 to 1 wt%. The amount depends on the degree of oil release, toughness and hardness required for the composition. The greater the amount of ultrahigh molecular weight polyolefin, the greater the hardness of the gel after being dispersed and maintained at a predetermined temperature.

また、この発明に用いる潤滑グリースは、特に限定されるものではなく、石鹸または非石鹸で増ちょうした潤滑グリースとして、リチウム石鹸−ジエステル系、リチウム石鹸−鉱油系、ナトリウム石鹸−鉱油系、アルミニウム石鹸−鉱油系、リチウム石鹸ージエステル鉱油系、非石鹸−ジエステル系、非石鹸−鉱油系、非石鹸−ポリオールエステル系、リチウム石鹸−ポリオールエステル系などのグリースが挙げられる。同じく潤滑油も特に限定されるものではなく、ジエステル系、鉱油系、ジエステル鉱油系、ポリオールエステル系などの潤滑油を挙げることができる。なお、潤滑グリースの基油あるいは潤滑油は、当初軸受本体(1)に含浸される潤滑油と同じものであることが望ましいが、潤滑特性を損なわない限りにおいて多少異なるものであってもよい。   The lubricating grease used in the present invention is not particularly limited, and as a lubricating grease added with soap or non-soap, lithium soap-diester type, lithium soap-mineral oil type, sodium soap-mineral oil type, aluminum soap, aluminum soap -Mineral oil type, lithium soap diester mineral oil type, non-soap-diester type, non-soap-mineral oil type, non-soap-polyol ester type, lithium soap-polyol ester type grease, and the like. Similarly, the lubricating oil is not particularly limited, and examples thereof include diester-based, mineral oil-based, diester mineral oil-based, and polyol ester-based lubricating oils. The base oil or lubricating oil of the lubricating grease is preferably the same as the lubricating oil initially impregnated in the bearing body (1), but may be slightly different as long as the lubricating characteristics are not impaired.

上記した超高分子量ポリオレフィンの融点は、その平均分子量に対応して変化するために一定ではないが、例えば粘度法による平均分子量が2×106 のものの融点は136°Cである。同平均分子量の市販品としては、三井石油化学工業株式会社製の「ミペロン(登録商標)XM−220」などがある。従って、潤滑グリースあるいは潤滑油に超高分子量ポリオレフィンを分散保持させるには、上記した材料を混合した後、超高分子量ポリオレフィンがゲル化を起こす温度以上で、且つ潤滑グリースを用いた場合はその滴点未満の温度、例えば150〜200°Cに加熱する。 The melting point of the ultrahigh molecular weight polyolefin is not constant because it varies according to the average molecular weight. For example, the melting point of an average molecular weight of 2 × 10 6 determined by a viscosity method is 136 ° C. Commercial products having the same average molecular weight include "Miperon (registered trademark) XM-220" manufactured by Mitsui Petrochemical Industries, Ltd. Therefore, in order to disperse and maintain the ultra-high molecular weight polyolefin in the lubricating grease or lubricating oil, after mixing the above-mentioned materials, if the ultra-high molecular weight polyolefin is at a temperature higher than the temperature at which the polyolefin gels and the lubricating grease is used, the droplets are dropped. Heat to a temperature below the point, for example 150-200 ° C.

このような軸受装置は、レーザビームプリンタのポリゴンミラーモータや磁気ディスクドライブ用のスピンドルモータなどの他、軸流ファンや換気扇、扇風機などの電気製品、自動車用電装品など、各種のモータに広範囲に利用することができ、軸受部周辺を油で汚染させることなく、特にその耐久性を著しく向上させることができる。すなわち、当初多孔質含油軸受内に保持されていた油が流失しても、油漏れ防止部材(11)があるため軸受部の外には流出せず、また、軸受には固形状の潤滑組成物(3)から油が補給されるので、油膜が常に維持され、軸受本体(1)の軸受面に設けた動圧溝(5)の動圧効果によって高い回転精度を常に維持することができる。さらに、起動時の油切れによる摩耗などを防止し、耐久寿命を大幅に向上させることができるのである。この固形状の潤滑組成物は、フェルトと違って繊維状のものを含まないので、軸受隙間内に繊維等のごみが入り込むことがない。さらにグリースと違って固形状であるため、回転する軸(2)にまとわりついたりすることがなく、回転変動の原因とならない。そして、固形状であるため取扱いが極めて容易で組立時の効率が良い。   Such bearing devices are widely used in various motors, such as polygon mirror motors for laser beam printers, spindle motors for magnetic disk drives, electric products such as axial fans, ventilation fans, and electric fans, and electrical components for automobiles. It can be used, and the durability of the bearing can be significantly improved without contaminating the periphery of the bearing with oil. In other words, even if the oil initially held in the porous oil-impregnated bearing spills out, it does not flow out of the bearing due to the oil leakage prevention member (11). Since oil is supplied from the object (3), the oil film is always maintained, and high rotational accuracy can be always maintained by the dynamic pressure effect of the dynamic pressure groove (5) provided on the bearing surface of the bearing body (1). . Further, wear due to running out of oil at the time of starting can be prevented, and the durable life can be greatly improved. Since this solid lubricating composition does not contain a fibrous material unlike felt, dust such as fibers does not enter the bearing gap. Furthermore, unlike grease, since it is solid, it does not cling to the rotating shaft (2) and does not cause rotation fluctuation. And since it is solid, it is very easy to handle and the efficiency at the time of assembly is good.

また、磁性流体シールで密封するような構造ではないため、油漏れ防止部材(11)、軸受本体(1)、補油部材(潤滑組成物3)をそれぞれハウジング(7)に圧入等の手段によって固定するだけでよいから、組立時の効率が良く、コストが安い利点がある。   In addition, since the structure is not sealed with a magnetic fluid seal, the oil leakage prevention member (11), the bearing body (1), and the oil replenishment member (lubricating composition 3) are respectively press-fitted into the housing (7) by means such as press fitting. Since it is only necessary to fix, there is an advantage that the efficiency at the time of assembly is good and the cost is low.

本発明の一実施形態を示す軸方向断面図である。It is an axial sectional view showing one embodiment of the present invention. ヘリングボーン型動圧溝を設けた多孔質含油軸受における油の動きを示す軸方向断面図である。It is an axial sectional view showing movement of oil in a porous oil-impregnated bearing provided with a herringbone type dynamic pressure groove. LBP用のスピンドルモータを概念的に示す軸方向部分断面図である。FIG. 3 is an axial partial cross-sectional view conceptually showing an LBP spindle motor. 評価試験用の多孔質含油軸受の軸方向断面図である。It is an axial sectional view of the porous oil-impregnated bearing for evaluation tests. 評価試験の結果を示す図である。It is a figure showing a result of an evaluation test. LBP用のスピンドルモータを概念的に示す軸方向部分断面図である。FIG. 3 is an axial partial cross-sectional view conceptually showing an LBP spindle motor. 多孔質含油軸受の半径方向断面図である。It is a radial cross section of a porous oil-impregnated bearing. c/hと軸振れとの関係を求める評価試験の結果を示す図である。It is a figure showing the result of an evaluation test which asks for relation between c / h and axis run-out. 固形状潤滑組成物の油分離率の経時変化を示す図である。It is a figure which shows the time-dependent change of the oil separation rate of a solid lubricating composition. 固形状潤滑組成物の有無による比較試験の結果を示す図である。It is a figure which shows the result of the comparative test by the presence or absence of a solid lubricating composition. 油漏れ防止部材を有する多孔質含油軸受における油の動きを示す軸方向断面図である。It is an axial sectional view showing movement of oil in a porous oil-impregnated bearing which has an oil leak prevention member. 一般的な多孔質含油軸受の軸方向断面図である。It is an axial sectional view of a general porous oil-impregnated bearing.

符号の説明Explanation of reference numerals

1 軸受本体
2 回転軸
4 軸受隙間
5 動圧溝
8 ロータ(ハブ)
17 軸受面
A 多孔質含油軸受

DESCRIPTION OF SYMBOLS 1 Bearing main body 2 Rotating shaft 4 Bearing clearance 5 Dynamic pressure groove 8 Rotor (hub)
17 Bearing surface A Porous oil-impregnated bearing

Claims (1)

多孔質体からなる軸受本体に、支持すべき軸の摺動面と軸受隙間を介して対向する軸受面を形成すると共に、潤滑油又は潤滑グリースを含浸させた動圧型多孔質含油軸受において、
前記軸受本体は、銅又は鉄、あるいはその両者を主成分とし、銅の含有量が20〜95wt%である焼結金属で形成されており、
前記軸受本体の軸受面には動圧溝が形成されていると共に、該動圧溝を含めて開孔部が分布しており、
前記軸受隙間に介在する油の動圧油膜によって前記軸の摺動面を浮上支持すると共に、前記動圧溝を含む軸受面の開孔部を介して、油を前記軸受本体の内部と軸受隙間との間で循環させることを特徴とする動圧型多孔質含油軸受。
In a bearing body made of a porous body, a bearing surface opposed to a sliding surface of a shaft to be supported via a bearing gap is formed, and in a dynamic pressure type porous oil-impregnated bearing impregnated with lubricating oil or lubricating grease,
The bearing body is formed of a sintered metal having copper or iron, or both as main components, and a copper content of 20 to 95 wt%.
A dynamic pressure groove is formed on the bearing surface of the bearing body, and apertures are distributed including the dynamic pressure groove,
The sliding surface of the shaft is floated and supported by a dynamic pressure oil film of oil interposed in the bearing gap, and oil is transferred between the inside of the bearing main body and the bearing gap through an opening in the bearing surface including the dynamic pressure groove. A dynamic pressure-type porous oil-impregnated bearing characterized by being circulated between the bearing.
JP2004213338A 1996-12-25 2004-07-21 Hydrodynamic type porous oil-impregnated bearing Pending JP2004353871A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004213338A JP2004353871A (en) 1996-12-25 2004-07-21 Hydrodynamic type porous oil-impregnated bearing

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP34578696 1996-12-25
JP7800197 1997-03-28
JP2004213338A JP2004353871A (en) 1996-12-25 2004-07-21 Hydrodynamic type porous oil-impregnated bearing

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP35553097A Division JP3607480B2 (en) 1996-12-25 1997-12-24 Dynamic pressure type porous oil-impregnated bearing and bearing device

Publications (1)

Publication Number Publication Date
JP2004353871A true JP2004353871A (en) 2004-12-16

Family

ID=34068795

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004213338A Pending JP2004353871A (en) 1996-12-25 2004-07-21 Hydrodynamic type porous oil-impregnated bearing

Country Status (1)

Country Link
JP (1) JP2004353871A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007250095A (en) * 2006-03-16 2007-09-27 Ntn Corp Dynamic pressure bearing arrangement
WO2011122556A1 (en) * 2010-03-29 2011-10-06 Ntn株式会社 Fluid dynamic bearing unit and assembly method for same
JP2011226637A (en) * 2010-04-15 2011-11-10 Samsung Electro-Mechanics Co Ltd Fluid dynamic pressure bearing assembly, motor including the fluid dynamic pressure bearing assembly, and recording disk driving apparatus mounted with the motor
JP2011231874A (en) * 2010-04-28 2011-11-17 Ntn Corp Fluid dynamic bearing unit and assembly method for the same

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007250095A (en) * 2006-03-16 2007-09-27 Ntn Corp Dynamic pressure bearing arrangement
JP4579177B2 (en) * 2006-03-16 2010-11-10 Ntn株式会社 Hydrodynamic bearing device
WO2011122556A1 (en) * 2010-03-29 2011-10-06 Ntn株式会社 Fluid dynamic bearing unit and assembly method for same
CN102844576A (en) * 2010-03-29 2012-12-26 Ntn株式会社 Fluid dynamic bearing device and assembly method for same
US9154012B2 (en) 2010-03-29 2015-10-06 Ntn Corporation Fluid dynamic bearing device and assembly method for same
CN102844576B (en) * 2010-03-29 2015-12-02 Ntn株式会社 Fluid dynamic-pressure bearing device and assembling method thereof
JP2011226637A (en) * 2010-04-15 2011-11-10 Samsung Electro-Mechanics Co Ltd Fluid dynamic pressure bearing assembly, motor including the fluid dynamic pressure bearing assembly, and recording disk driving apparatus mounted with the motor
JP2011231874A (en) * 2010-04-28 2011-11-17 Ntn Corp Fluid dynamic bearing unit and assembly method for the same

Similar Documents

Publication Publication Date Title
US5941646A (en) Hydrodynamic type porous oil-impregnated bearing and bearing device
KR100549102B1 (en) Spindle motor and rotating shaft supporting device of information equipment
US7147376B2 (en) Dynamic bearing device
US5834870A (en) Oil impregnated porous bearing units and motors provided with same
JP4481475B2 (en) Hydrodynamic bearing unit
JP2014181750A (en) Fluid dynamic pressure bearing device and motor including the same
JP4865015B2 (en) Hydrodynamic bearing device
JP3607480B2 (en) Dynamic pressure type porous oil-impregnated bearing and bearing device
JP2004353871A (en) Hydrodynamic type porous oil-impregnated bearing
US7144161B2 (en) Hydrodynamic bearing system for a rotary bearing of spindle motors
JP4263144B2 (en) Spindle motor
JP3782890B2 (en) Dynamic pressure type sintered grease bearing
JP3665606B2 (en) Dynamic pressure type porous oil-impregnated bearing
JP2004353870A (en) Hydrodynamic type bearing device
JP3799176B2 (en) Hydrodynamic sintered oil-impregnated bearing unit
JPH11336760A (en) Dynamic pressure type sintered oil-impregnated bearing
JPH11182533A (en) Dynamic pressure type porous oil impregnated bearing unit
JP3908834B2 (en) Support device for spindle motor of information equipment
JPH11182551A (en) Manufacture of hydrodynamic porous oil retaining bearing
JP3602325B2 (en) Dynamic pressure type porous oil-impregnated bearing
JP2005195180A (en) Dynamic oil-impregnated sintered bearing unit
JPH11191944A (en) Spindle motor and rotary shaft supporting device of laser beam printer
JPH10274241A (en) Porous oilless bearing
JP2001099166A (en) Lubricating device for bearing and bearing
JPH11191945A (en) Spindle motor and rotary shaft support device of hard disc drive

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041124

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071228

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080225

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080821

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090123