JP3782890B2 - Dynamic pressure type sintered grease bearing - Google Patents

Dynamic pressure type sintered grease bearing Download PDF

Info

Publication number
JP3782890B2
JP3782890B2 JP14783898A JP14783898A JP3782890B2 JP 3782890 B2 JP3782890 B2 JP 3782890B2 JP 14783898 A JP14783898 A JP 14783898A JP 14783898 A JP14783898 A JP 14783898A JP 3782890 B2 JP3782890 B2 JP 3782890B2
Authority
JP
Japan
Prior art keywords
bearing
dynamic pressure
grease
oil
sintered
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP14783898A
Other languages
Japanese (ja)
Other versions
JPH11336761A (en
Inventor
夏比古 森
克巳 長野
義彦 大條
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NTN Corp
Nippon Steel Chemical and Materials Co Ltd
Original Assignee
NTN Corp
Nippon Steel Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NTN Corp, Nippon Steel Chemical Co Ltd filed Critical NTN Corp
Priority to JP14783898A priority Critical patent/JP3782890B2/en
Priority to NL1012170A priority patent/NL1012170C2/en
Publication of JPH11336761A publication Critical patent/JPH11336761A/en
Application granted granted Critical
Publication of JP3782890B2 publication Critical patent/JP3782890B2/en
Priority to US12/944,471 priority patent/US8132965B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/02Parts of sliding-contact bearings
    • F16C33/04Brasses; Bushes; Linings
    • F16C33/06Sliding surface mainly made of metal
    • F16C33/10Construction relative to lubrication
    • F16C33/102Construction relative to lubrication with grease as lubricant
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C17/00Sliding-contact bearings for exclusively rotary movement
    • F16C17/02Sliding-contact bearings for exclusively rotary movement for radial load only
    • F16C17/026Sliding-contact bearings for exclusively rotary movement for radial load only with helical grooves in the bearing surface to generate hydrodynamic pressure, e.g. herringbone grooves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/02Parts of sliding-contact bearings
    • F16C33/04Brasses; Bushes; Linings
    • F16C33/06Sliding surface mainly made of metal
    • F16C33/10Construction relative to lubrication
    • F16C33/1025Construction relative to lubrication with liquid, e.g. oil, as lubricant
    • F16C33/106Details of distribution or circulation inside the bearings, e.g. details of the bearing surfaces to affect flow or pressure of the liquid
    • F16C33/107Grooves for generating pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2370/00Apparatus relating to physics, e.g. instruments
    • F16C2370/12Hard disk drives or the like

Description

【0001】
【発明の属する技術分野】
本発明は、焼結金属からなる多孔質の軸受本体に潤滑グリースを含浸させて自己潤滑機能を持たせると共に、軸受面の動圧溝の動圧効果により軸受隙間内に潤滑油膜を形成し、その潤滑油膜によって回転軸の摺動面を非接触支持する動圧型焼結含グリース軸受に関し、特にレーザビームプリンタ(LBP)のポリゴンミラー用や磁気ディスクドライブ(HDD等)用のスピンドルモータなど、高速下で高回転精度が要求される機器や、DVD−ROM、DVD−RAM等の光ディスク装置用やMO等の光磁気ディスク装置用のスピンドルモータように、ディスクが載ることによって大きなアンバランス荷重が加わる条件下で高速で駆動する機器などに好適である。
【0002】
【従来の技術】
情報機器は、大別して、データ処理及び記憶を行う主記憶装置と、記憶のみを行う補助記憶装置の2つに分けることができる。記憶部分にはディスクやテープを使用するものと、全て電子部品からなる半導体を使用するものとがあり、現在では、コストの点からディスクやテープが広く使用されている。ディスクやテープを使用する補助記憶装置としては、磁気ディスク装置(HDD、FDD)、光ディスク装置(CD、DVD)、光磁気ディスク装置(MO、ODD)、ディジタルオーディオテープレコーダ(DAT)等がある。さらに、情報機器にはレーザビームプリンタ(LBP)、ディジタルFAX、ディジタルPPC等も含まれる。
【0003】
上記のような情報機器関連の小型スピンドルモータでは、回転性能のより一層の向上と低コスト化が求められており、そのための手段として、スピンドルの軸受部を転がり軸受から焼結含油軸受に置き換えることが検討されている。しかし、通常の焼結含油軸受は真円軸受の一種であるため、軸の偏心が小さいところでは、不安定振動が発生しやすく、回転速度の1/2の速度で振れ回るいわゆるホワールが発生しやすい欠点がある(ホワール等の不安定振動が発生すると回転精度が劣化する。)。そこで、軸受面にヘリングボーン形やスパイラル形などの動圧溝を設け、軸の回転に伴う動圧溝の動圧効果によってラジアル剛性等の軸受機能を高めて、不安定振動による軸振れを解消しようとする試みが従来よりなされている(動圧型焼結含油軸受)。
【0004】
一方、この種の動圧型焼結含油軸受は、軸振れの抑制に高い効果を有する反面、軸受隙間内の油が軸受面の表面開孔を介して軸受内部に逃げてしまうことによる、動圧効果の低減現象(圧力降下)があり、期待する動圧効果が得られにくいという問題がある。従来、この圧力降下の問題を解消する手段として、軸受面における動圧溝に表面目つぶし加工を施して、動圧溝の形成領域を封孔した構成が知られている(実開昭63−19627号)。
【0005】
【発明が解決しようとする課題】
動圧溝の形成領域を封孔した構成では、以下の問題点が生じる。
【0006】
▲1▼ 動圧溝の形成領域が完全に封孔されているので、その領域では焼結含グリース軸受の最大の特徴である油の循環が阻害される。従って、一旦軸受隙間に滲み出した油は動圧溝の作用によって軸受面の軸方向中央部に押し込まれ、軸受隙間内にとどまることになる。軸受隙間内では大きなせん断作用が働いているので、そのせん断力と摩擦熱によって軸受隙間内にとどまった油は変性しやすく、また、温度上昇によって酸化劣化が早まる傾向にある。従って、軸受寿命が短くなる。
【0007】
▲2▼ 表面目つぶし加工を施す他の手段としてコーティング等を挙げているが、コーティング被膜の厚さは溝深さよりも薄くする必要があり、数μmのコーティング被膜を動圧溝の形成領域にのみ施すのは極めて困難である。
【0008】
また、焼結体に潤滑グリースを含浸した技術(焼結含グリース軸受)が、特開昭63−195416号公報、特開平7−42740号公報に記載されているものの、これらの技術は軸受面に動圧溝を有しない真円軸受を対象としたものであり、偏心率が小さい領域でのラジアル剛性が小さく、ホワール等の不安定振動を効果的に抑制することができない。
【0009】
そこで、本発明は、この種の軸受において、軸受本体の内部と軸受隙間との間の油の適切な循環を確保しつつ、軸受隙間内における圧力降下の問題を解消し、動圧溝の動圧効果を高めることにより、軸受機能、特に軸受剛性(軸受負荷容量)および軸受寿命のより一層の向上を図ることを主目的とするものである。
【0010】
【課題を解決するための手段】
図3は、本発明の傾斜状の動圧溝2cが形成された軸受面2bを有する動圧型焼結含グリース軸受2で回転軸4を支持する際における、軸方向断面での油の流れを示している。回転軸4の回転に伴い、軸受本体2aの内部の細孔内(本明細書において「細孔」とは、多孔質体が組織として有する孔をいう。)に保有された油(潤滑グリースの基油)が軸受面2bの軸方向両側(及びチャンファー部周辺)から軸受隙間に滲み出し、さらに動圧溝2cによって軸受隙間の軸方向中央に向けて引き込まれる。その油の引き込み作用(動圧作用)によって軸受隙間に介在する油の圧力が高められ、潤滑油膜が形成される。この軸受隙間に形成される潤滑油膜によって、回転軸4はホワール等の不安定振動を生じることなく、軸受面2bに対して非接触支持される。軸受隙間に滲み出した油は、回転軸4の回転に伴う発生圧力により、軸受面2bの表面開孔(本明細書において「表面開孔」とは、多孔質体組織の細孔が外表面に開口した部分をいう。)から軸受本体2aの内部に戻り、軸受本体2aの内部を循環して、再び軸受面2b(及びチャンファー部周辺)から軸受隙間に滲み出す。
【0011】
上記のように、この種の動圧型軸受は、軸受本体の内部の細孔内に保有した油を軸受本体と軸受隙間との間で循環させながら、動圧溝の作用によって軸受隙間内に潤滑油膜を形成し、その潤滑油膜によって回転軸を継続して非接触支持する点に特徴を有するものであり、そのような安定した軸受機能を発揮させるためには、油の適切な循環と、軸支持に必要な潤滑油膜の形成を確保する必要がある。特に、油の循環は、油の劣化を抑制して軸受寿命を高める働きをもつ他、潤滑油膜の形成に対して相互補完的に働き、また相反的にも働くので、油の循環を如何に適切ならしめるかは、この種の動圧型軸受における極めて重要な課題である。すなわち、軸受隙間内に充分な圧力と油膜厚さをもった潤滑油膜を常時形成するためには、新鮮な適量の油が軸受本体から軸受隙間へ常時滲み出して潤滑油膜を形成し、さらに軸受隙間から軸受本体へ戻るという油の循環サイクルが適切に働くことが不可欠である。油の循環量が過小であると、軸受隙間への油の滲み出しが不足して、潤滑油膜の形成が不充分になると同時に、軸受隙間内に油が滞留し、温度上昇により酸化劣化をきたす。一方、油の循環量が過大であると、軸受隙間から軸受本体への油の戻りが過度となり、前述したような圧力降下の問題が起こる。
【0012】
油の循環量を制御するための手段として、表面開孔率(単位面積内に占める表面開孔の面積割合)の調整、油の動粘度の調整が挙げられる。しかし、表面開孔率の調整だけでは、表面開孔や細孔の個々の大きさまでは管理できないので、軸受面に大きな表面開孔があった場合や、軸受面から所定深さの表層部分に大きな孔があった場合、局部的な圧力低下が生じることが避けられない。また、油の動粘度の調整を過度に行うと、トルク上昇の要因となる。従って、これらの手段では限界があり、近時のスピンドルモータの一層の高速回転化、高性能化の傾向を考えると、充分な軸受機能を得ることができない場合が多い。
【0013】
そこで、本発明では、多孔質の軸受本体の軸受面に軸方向に対して傾斜した動圧溝を設けると共に、軸受本体に含浸する潤滑剤を、基油の40°Cでの動粘度が5〜60cSt、増稠剤の配合割合が0.1〜5.0重量%である潤滑グリースとし、かつ、軸受本体の軸受面の表面開孔率を3〜15%とした。
【0014】
軸受本体に含浸する潤滑剤を潤滑グリースとすることにより、潤滑グリース中に含まれる増稠剤がごく微少な細孔には入らず、比較的大きな孔に選択的に埋設される。そのため、軸受面の表面開孔の一つ一つの面積が平均化され、また軸受面から所定深さの表層部分の一つ一つの細孔の断面積が平均化され、局部的な圧力降下が発生しにくくなると共に、軸受本体から軸受隙間への油の滲み出し、軸受隙間から軸受本体への油の戻りが適切量に調整される。そのため、動圧溝による潤滑油膜の形成効果が高められ、軸受剛性(軸受負荷容量)が向上すると同時に、油の適切な循環が確保され、軸受寿命が向上する。尚、ここでの「油」は軸受本体に含浸された潤滑グリースの基油であり、通常はごく微小な増稠剤成分を含みながら軸受本体と軸受隙間との間を循環する。
【0015】
増稠剤の配合割合が0.1重量%未満であると、上記のような効果が顕著に現れず、逆に5.0重量%を超えると、潤滑グリースの稠度が高くなりすぎ、含浸工程での作業が複雑になる。すなわち、軸受が瞬時にグリース中に沈まなかったり、また、含浸後、軸受表面に付着したグリースの除去作業に手間取る。
【0016】
上記のような傾斜状の動圧溝を備えた軸受面は、軸受面に対応した形状の成形型によって、動圧溝の形成領域とそれ以外の領域とを同時成形することによって形成することができる。そのための手段として、例えば、軸受面の形状に対応した凹凸状の成形型をコアロッドの外周面に形成し、このコアロッドの成形型に多孔質体素材を供給して圧迫力を加え、多孔質体素材の内周面をコアロッドの成形型に加圧して塑性変形させる手段を採用することができる。軸受面の成形後、圧迫力を解除することによる多孔質体素材のスプリングバックを利用して、コアロッドの成形型を多孔質体素材から離型することができる。
【0017】
軸受本体の材質としては、銅、鉄、及びアルミニウムの中から選択される1種以上の金属粉末を主原料とし、必要に応じて、すず、亜鉛、鉛、黒鉛の粉末又はこれらの合金粉末を混合し、焼結して得られた焼結金属とすることができる。軸受本体の材質としてこのような焼結金属を用いると、上記のような圧縮成形法により、高精度かつ安価に軸受本体を製造することができる。
【0018】
軸受面の数は1個の軸受に対して単数、複数を問わないが、軸受本体の内周面に複数の軸受面を軸方向に相互に離隔して形成すると共に、軸受面間の領域の内径寸法を、軸受面の動圧溝以外の領域の内径寸法よりも大きくした構成とすることができる。1個の軸受に複数の軸受面を形成することにより、複数個の軸受を組み込む場合における軸受面相互間の同軸度の問題を解消することができる。軸の回転精度を確保するため、通常、軸受は複数個、例えば2個を組合わせて使用される。また、軸受はハウジングに圧入して使用される場合が多い。そのため、従来は、2個の軸受の同軸度を確保するために、矯正ピンをハウジングに挿入した後、2個の軸受を同時に圧入する方法を採用していた。しかしながら、軸受面に傾斜状の動圧溝を設けた本発明の構成では、矯正ピンを用いて強制的に矯正すると、矯正ピンの食い付きによって軸受面の動圧溝が潰れてしまい、安定した動圧効果が得られなくなる。この場合、上記のように1個の軸受に複数の軸受面を形成することで、軸受面相互間の同軸度の問題を解消することができ、従来のように矯正ピンで同軸度を確保する必要がなくなる。従って、軸受面の動圧溝が潰れてしまうという不都合も発生しなくなる。また、複数個の軸受を配置する場合に比べ、部品点数、組立工数の削減になる。さらに、軸受面間の領域の内径寸法を、軸受面の動圧溝以外の領域の内径寸法よりも大きくすることにより、トルク上昇を抑えることができる。
【0019】
本発明に用いる潤滑グリースの増稠剤は、石けん系、非石けん系のいずれでも良いが、中でも、ウレア化合物を増稠剤として用いるのが好ましい。ウレア化合物は分子間の相互作用力が強いため、せん断安定性に優れ、金属表面に吸着しやすく、潤滑効果を高める効果がある。ウレア化合物は、その化学構造式中に
−NHCONH−を有するものであり、例えばモノウレア、ジウレア、トリウレア等がある。モノウレアはモノアミンとモノイソシアネートの反応から、ジウレアはモノアミンとジイソシアネートの反応から、トリウレアはモノアミンとトリレンジイソシアネートと水の反応によってそれぞれ得られる。ウレア化合物の中でも原料の入手性及び製造性の面からジウレアが好適である。
【0020】
また、一般式(1):R1−NHCONH−R2−NHCONH−R3
{R2は炭素原子数6〜15の芳香族炭化水素基を示し、
R1及びR3は炭素原子数6〜12の芳香族炭化水素基、又は、炭素原子数8〜20のアルキル基を示し、R1及びR3中に占める芳香族炭化水素基の割合は0〜100モル%である。}
で表されるウレア化合物のR1及びR3中に占める芳香族炭化水素基の割合を0〜100モル%の範囲内で調整することで、ミセルの構造を自由に変化させることができる。尚、上記一般式(1)に包含されるウレア化合物群のうち、1種類のジウレアのみではモル比の細かな調整をすることはできないが、R1およびR3を与えるアミンの種類を2種類以上とし、その割合を変化させることにより、調整可能となる。動圧型焼結含グリース軸受の場合、表面開孔率等を調整することで、ある程度圧力降下や発熱を抑制することが可能ではあるが、潤滑グリースのミセル構造を調整することにより、より高性能で耐久性に優れた動圧型焼結含グリース軸受を得ることができる。
【0021】
軸振れや油漏れを抑制するためには、上記一般式(1)のR1及びR3中に占める芳香族炭化水素基の割合を多くすることで対応できる。芳香族炭化水素基の割合が多いほど、ウレアのミセルは太くて短くなる。そのため、同一粘性を持つ他の増稠剤と比べて、増稠剤量が多くなり、軸振れの抑制や耐久性の向上に有効である。一方、低電流性能を要求された場合、短繊維・極太系のミセルは逆効果となり、発熱の原因となる場合がある。その場合、上記R1及びR3中の芳香族炭化水素基のモル%を低減することで増稠剤量を少なくできるため、低電流値化に対応可能となる。従って、ウレア化合物を動圧型焼結含グリース軸受に含浸する潤滑グリースの増稠剤として用いることにより、広範囲の要求特性を満足させることが可能となるため、スピンドルモータ用軸受として極めて有利である。尚、上記R1及びR3中に含まれる芳香族炭化水素基を動圧型焼結含グリース軸受が使用される用途、使用条件に合わせて調整することができることは言うまでもない。
【0022】
ウレア化合物は、イソシアネートとモノアミンの反応によって得られるが、使用されるイソシアネートとしては、2,4−トリレンジイソシアネート、2,6−トリレンジイソシアネート、ジフェニルメタレン−4,4’−ジイソシアネート、ナフチレン−1,5−ジイソシアネート等の芳香族ジイソシアネートやトリレンジイソシアネート、トリアジン誘導基及びこれらの混合物が挙げられる。また、モノアミンとしては、アニリン、ベンジルアミン、トルイジン、クロロアニリン等の芳香族アミン及びオクチルアミン、ノニルアミン、デシルアミン、ウンデシルアミン、ドデシルアミン、トリデシルアミン、テトラデシルアミン、ペンタデシルアミン、ヘキサデシルアミン、ヘプタデシルアミン、オクタデシルアミン、ノナデシルアミン、エイコデシルアミン等の脂肪族アミンやシクロヘキシルアミンが挙げられる。
【0023】
本発明に用いる潤滑グリースの基油は、特に限定されるものではないが、鉱油であるパラフィン系鉱油、水添仕上げパラフィン鉱油、水素化改質パラフィン鉱油、精製ナフテン系鉱油、高粘度指数パラフィン鉱油、及び合成潤滑油であるポリαオレフィン系、エステル系、エーテル系、ポリグリコール系、芳香族系炭化水素油、フッ素系潤滑油、及びこれらの混合油が好ましい。
【0024】
上記基油には、耐摩耗性、熱安定性等を改善するため種々の添加剤を配合することができるが、下記一般式(2)で表されるリン酸エステルを配合することが好適である。このリン酸エステルとしては、例えばリン酸トリオクチルやリン酸トリクレジル等のリン酸トリエステルやリン酸モノオクチルエステル、リン酸ジオクチルエステル等の酸性リン酸エステルやアルキルリン酸エステルアミン塩(一部アミン基)などを挙げることができるが、その中でもリン酸トリエステルが好ましい。リン酸エステルを使用することで、油膜形成力を増大させることができる。
【0025】
【化1】

Figure 0003782890
【0026】
上記式中、Rはそれぞれ独立に水素又は炭化水素基又はアルコキシ基を示し、少なくとも1つは炭化水素基又はアルコキシ基である。
【0027】
このリン酸エステルの基油に対する配合割合は、0.1〜10重量%、好ましくは0.5〜3重量%とするのが良い。リン酸エステルの配合割合が0.1重量%未満であると耐摩耗性を改善することができず、10重量%を超えて添加しても大幅な耐摩耗性の向上が認められない。
【0028】
また、上記基油に粘度指数向上剤及び構造安定剤として、エチレン−α−オレフィン共重合体もしくはその水素化物、または、ポリメタクリレート系のものや、ポリブテン(ポリイソブチレン)系のものなどを添加しても良い。エチレン−α−オレフィン共重合体もしくはその水素化物は、例えばエチレンと1−デセン、イソブテン等をルイス酸等の触媒で重合させて得られた重合物を水素化することにより得られる。これらは、数平均分子量が200〜4000程度のものがあり、数平均分子量1450のものが好ましい。ポリメタクリレート系の平均分子量は20000〜1500000程度である。せん断安定性との関係から平均分子量は20000〜50000が好ましい。また、ポリブテン系の平均分子量は5000〜300000程度が良い。粘度指数向上剤及び構造安定剤の配合割合は、基油に対して1〜30重量%、このましくは1〜5重量%の範囲が良い。
【0029】
さらに、上記基油に酸化防止剤を配合することができる。酸化防止剤としては、遊離基連鎖反応停止剤として働くフェノール系、アミン系、及び過酸化物分解剤として働く硫黄系酸化防止剤からなる群から選択される1種以上の酸化防止剤を単独で又は混合して用いることができるが、アミン系とフェノール系を混合して用いることが好ましい。フェノール系酸化防止剤としては、例えば2,6−ジ−t−ブチルフェノール、4,4’−メチレンビス(2,6−ジ−t−ブチルフェノール)、2,6−ジ−t−ブチル−4−エチルフェノール、2,6−ジ−t−4−n−ブチルフェノールが挙げられる。蒸発特性及び基油との相溶性の点からは、4,4’−メチレンビス(2,6−ジ−t−ブチルフェノール)が好適である。また、アミン系酸化防止剤としては、ジオクチルジフェニールアミンやフェニル−α−ナフチルアミンが挙げられる。蒸発特性及び基油との相溶性の点からは、ジオクチルジフェニールアミンが好適である。その配合量は、基油に対しての溶解性を考慮して、基油に対して、アミン系酸化防止剤0.1〜10重量%、フェノール系酸化防止剤0.1〜10重量%が好ましい。単独使用の場合は、アミン系酸化防止剤0.1〜10重量%が好適である。フェノール系酸化防止剤は併用の場合に効果がある。
【0030】
さらに、本発明の基油には、本発明の目的・効果が損なわれない範囲で、必要に応じて、防錆剤、流動点降下剤、無灰系分散在、金属不活性剤、金属系洗浄剤、油性剤、界面活性剤、消泡剤、摩擦調整剤などを配合することができる。
【0031】
【発明の実施の形態】
以下、本発明の実施形態について説明する。
【0032】
図1は、情報機器の一種であるDVD−ROM/RAM装置のスピンドルモータを例示している。このスピンドルモータは、鉛直配置された回転軸4を回転自在に支持する軸受ユニットAと、回転軸4の上端に装着されたDVD−ROMなどの光ディスク5を支持固定するターンテーブル6およびクランパー7と、例えばラジアルギャップを介して対向させたステータ8及びロータマグネット9を有するモータ部Bとを主要な構成要素とする。ステータ8は、軸受ユニットAを構成するハウジング1の外周面に固定され、ロータマグネット9は、ターンテーブル6に装着されたロータケース10の内周面に固定される。ステータ8に通電すると、ロータマグネット9と一体になったロータケース10、ターンテーブル6、光ディスク5、クランパー7、及び回転軸4が回転する。
【0033】
軸受ユニットAは、筒状のハウジング1と、ハウジング1の内周面に固定され、回転軸4の外周面をラジアル方向に支持する動圧型焼結含グリース軸受2と、ハウジング1の下端開口部に固定され、回転軸4の下軸端面をスラスト方向に支持するスラスト軸受3とで構成される。この実施形態において、スラスト軸受3は、円板状の樹脂製スラストワッシャ3aとこれを支持する裏金3bとからなり、樹脂スラストワッシャ3aの上面で回転軸4の凸球状になった下軸端面をスラスト方向に接触支持する構成になっている。尚、樹脂製スラストワッシャ3aは、回転軸4の下軸端面と接触するように、裏金3bの中心部分に埋設しても良い。
【0034】
図2に示すように、動圧型焼結含グリース軸受2は、焼結金属からなる多孔質の軸受本体2aに、潤滑剤として潤滑グリースを含浸させて自己潤滑機能を持たせたものである。軸受本体2aは、銅、鉄、およびアルミニウの中から選択される1種以上の金属粉末を主原料とし、必要に応じてニッケル、すず、亜鉛、鉛、黒鉛の粉末又はこれらの合金粉末を混合し、焼結して得られた焼結金属で形成され、望ましくは銅を20〜97重量%配合し、密度が6.4〜7.2g/cm3 となるように成形される。
【0035】
この実施形態において、軸受本体2aの内周面には、軸方向に離隔した2つの軸受面2bが形成され、2つの軸受面2bの双方にそれぞれ、軸方向に対して傾斜した複数の動圧溝2cが形成される。各軸受面2bは、軸方向に対して一方に傾斜した複数の動圧溝2cを円周方向に配列形成した第1領域m1と、第1領域m1から軸方向に離隔し、軸方向に対して他方に傾斜した複数の動圧溝2cを円周方向に配列形成した第2領域m2と、第1領域m1と第2領域m2との間に位置する環状の平滑領域nとを備えている。第1領域m1の動圧溝2cと第2領域m2の動圧溝2cは、平滑領域nで区画されて相互に非連続になっている。第1領域m1の背2d(動圧溝2c間の領域)と第2領域m2の背2d(動圧溝2c間の領域)は、平滑領域nと同一レベルにある。軸受面2bには、動圧溝2cの形成領域を含む全領域にわたって表面開孔がほぼ均一に分布している。
【0036】
軸受本体2aと軸4との間に相対回転が生じると、第1領域m1と第2領域m2にそれぞれ逆向きに傾斜形成された動圧溝2cによって、軸受隙間内の油が平滑領域nに向けて引き込まれ、油が平滑領域nに集められるため、平滑領域nにおける油膜圧力が高められる。そのため、高い軸受剛性が得られる。
【0037】
動圧溝2cの傾斜角度は、任意の角度に設定すれば良いが、好ましくは軸方向と直交する方向との角度βが15〜40°、より好ましくは15〜25°になるように設定するのが良い。また、動圧溝2cと背2dとの幅比は0.8〜1.5、好ましくは1.0〜1.2の範囲内に設定するのが良い。さらに、平滑領域nの軸方向幅の比率Rは、各軸受面2bの軸方向幅を1として、R=0.1〜0.6、好ましくはR=0.2〜0.4の範囲内に設定するのが良い。Rが0.1未満では、平滑領域nを設けたことによる軸受剛性の増加効果が顕著に表れず、逆にRが0.6を超えると、第1領域m1および第2領域m2の軸方向幅が小さくなり、動圧溝2cによる動圧効果が有効に発揮されない。
【0038】
動圧溝2cの溝深さh(図4参照)と軸受半径すきまc(軸受面2bの背2dの部分の半径と回転軸4の外周面の半径との差)との比には最適な範囲があり、この範囲外では充分な動圧効果が得られない。この最適範囲を明らかにすべく、DVD−ROM/RAM用スピンドルモータを用いて軸振れを測定したところ、c/hが0.5〜2.0の範囲内であれば軸振れを実用上充分なレベルに抑制できることが確認された。例えば、溝深さhが2〜4μmの場合は、軸受半径すきまcは2〜4μmの範囲内に設定すると良い。
【0039】
また、軸受本体2aにおける軸受面2b間の領域の内径寸法は、軸受面2bの背2dの部分の内径寸法よりも大きく設定される。
【0040】
尚、各軸受面2bの形状は図2(a)に示すものに限定されず、例えば、軸方向に対して一方に傾斜した動圧溝と他方に傾斜した動圧溝とを対にして軸方向にV字状に連続させたものでも良い(この場合、環状の平滑領域nは存在しない。)。回転体に殆どアンバランスがなく、軸受剛性が重要な要素とならないような使用条件等では、動圧溝が軸方向に連続した形状の軸受面の方が負圧が発生しにくく、むしろ好ましい場合もある。さらに、軸受面の動圧溝は軸方向に対して傾斜した形状であれば足り、この条件を満たす限り、任意の形状とすることができる。例えば、動圧溝はスパイラル状であっても良い。
【0041】
軸受本体2aに含浸する潤滑グリースの基油としては、40°Cでの動粘度が5〜60cStに設定されたものを使用することができる。特に、DVD−ROM/RAMのように、ディスクが載ることによるアンバランス荷重に対するラジアル剛性が求められる機器では、10〜50cStのものが好ましい。この実施形態では、40°Cでの動粘度が40cStで、主成分をポリオールエステル油とし、粘度指数向上剤としてポリメタクリレート、酸化防止剤としてフェニル−α−ナフチルアミン、金属不活性剤としてベンゾトリアゾールの誘導体、耐摩耗剤としてりん酸トリオクチルを添加した潤滑油を基油として用いた。
【0042】
上記潤滑グリースの増稠剤としては、リチウム石けん及びウレア化合物を用いた。
【0043】
増稠剤のリチウム石けんは、ステアリン酸とLiOH・H2 Oを反応させてグリース化する。まず、反応容器に基油1/3量とステアリン酸を入れ、80°Cに加熱する。溶媒がクリアーになったら、水とLiOH・H2 Oをよく混ぜて反応容器に投入する。その後約1時間かけて脱水を行う。脱水終了後、残りの基油を少しずつ温度が下がらないように投入し、185°Cに達した時点で反応終了とした。
【0044】
増稠剤のモノウレアは、原料アミンとしてオクタデシルアミンを使用し、モノイソシアネートとしてはオクタデシルイソシアネートを使用した。ジウレアで示されるものは、末端基が芳香族基となる原料アミンとしてp−トルイジンを使用し、脂環族基となる原料アミンとしてn−オクチルアミンを使用し、脂肪族基となる原料アミンとしてシクロヘキシルアミンを使用した。また、ジイソシアネートは、ジフェニルメタン−4,4’−ジイソシアネートを使用した。トリウレアは、原料アミンにオクタデシルアミンを使用し、イソシアネートにトリレンジイソシアネートと水を使用した。ジウレアを例にとって具体的に説明すると、反応容器に基油半量と表1に示されるモノアミン全量を入れ、70〜80°Cに加熱した。別容器に基油の残りの半量とジフェニルメタン−4,4’−ジイソシアネートを入れ、70〜80°Cに加熱し、これを上記反応容器に加え攪拌した。約30分間この状態で攪拌を続け、反応を充分に行った後、170〜180°Cまで昇温し、この温度に30分間保持した。これを冷却したものを基グリースとした。
【0045】
回転軸4を動圧型焼結含グリース軸受2の内周面に挿入してスピンドルモータを組立てる際、軸受本体2aに含浸された潤滑グリースと同じ(あるいは同種の)潤滑グリース又はその基油を、含浸グリースとは別に、スラスト軸受3の軸受面が潤滑グリース又はその基油で濡れ、かつ、動圧型焼結含グリース軸受2の軸受隙間が潤滑グリース又はその基油で満たされてるように注油すると良い。この動圧型焼結含グリース軸受2では、回転軸4の回転に伴う発生圧力と温度上昇による油の熱膨張によって、軸受本体2aの内部に含浸された潤滑グリースの基油が、ごく微小な増稠剤成分を含みながら軸受本体2aの表面から滲み出し、動圧溝2cの作用によって軸受隙間内に引き込まれる。駆動初期に動圧型焼結含グリース軸受2の軸受隙間内が油で満たされていると、空気の巻き込みがなく、良好な潤滑油膜が形成され、安定した軸受機能が得られる。また、スラスト軸受3の軸受面が駆動初期時から油で濡れ、良好な潤滑状態になる。
【0046】
また、通常、回転軸4はハウジング1の下端開口部にスラスト軸受3を装着した状態で、動圧型多孔質含グリース軸受2の内周面に挿入される。この挿入時には、軸受2と回転軸4との間の軸受隙間から空気が外部に逃げることになるが、軸受隙間は数μm程度しかないため、空気がハウジング1の下方空間に閉じ込められ、回転軸4の挿入作業が難しくなる場合がある。また、モータ回転時の発熱によって、ハウジング1の下方空間に閉じ込められた空気が膨張し、回転軸4を押し上げて軸受機能を不安定化させる可能性もある。この場合、図1及び図2に示すように、軸受2の外周面とハウジング1の内周面との間に、軸受本体2aの軸方向両端に開口する空気通路Sを設けることにより、この空気通路Sを介して、ハウジング1の下方空間の空気を外部に逃がすようにすると良い。尚、この実施形態では、空気通路Sを軸受本体2aの外周面に形成しているが、空気通路Sはハウジング1の内周面に形成しても良い。また、空気通路Sは1本でも良いし、円周方向に複数本形成しても良い。
【0047】
動圧型焼結含グリース軸受2の軸受隙間内に正圧が発生すると、軸受面2bに表面開孔があるので、油は軸受面2bの表面開孔を介して軸受本体2aの内部に還流する。その際、軸受面2bの表面開孔や、軸受面2bから所定深さの表層部分の細孔の大きさに大小があると、軸受隙間内の油が大きな孔を通って軸受本体2aの内部に還流しやすくなる。そのため、軸受隙間内の圧力分布が不均一になり(局部的な圧力降下が生じる。)、回転精度に影響を及ぼす。この実施形態では、潤滑グリースの増稠剤が軸受本体2aの大きな細孔に選択的に埋設され、表面開孔や細孔の大きさが見かけ上平均化されるので、軸受本体2aの内部と軸受隙間との間の油の適切な循環が確保される。これにより、上記のような圧力分布の不均一化(局部的な圧力降下)の問題が解消され、また、動圧溝2cの動圧作用で次々と新たな油が軸受隙間に押し込まれつ続けるため、潤滑油膜の油膜力およびラジアル剛性が高い状態で維持される。この結果、回転軸4がホワール等の不安定振動を生じることなく動圧型焼結含グリース軸受2によって継続して非接触支持され、軸振れやNRRO、ジッタなどが低減される。また、回転軸4と軸受本体2aとが非接触で回転するため低騒音であり、しかも低コストである。
【0048】
上記のような傾斜状の動圧溝2cを有する軸受面2bは、圧縮成形により形成することができる。例えば、焼結含グリース軸受の加工に用いられるサイジングピンなどのコアロッドの外周面に軸受面2bの形状に対応した成形型を形成し、コアロッドの外周面に軸受本体2aの素材である円筒状の焼結金属素材を供給し、焼結金属素材に圧迫力を加えてその内周面をコアロッドの成形型に加圧し、成形型の形状を焼結金属素材の内周面に転写する。この時、軸受面2bにおける動圧溝2cの形成領域と、それ以外の領域(背2dおよび平滑領域n)とを同時成形することができる。この場合、コアロッドの成形型を精度良く仕上ておけば、軸受面2bの成形精度も良くなる。コアロッドの成形型を必要とされる精度、例えば真円度1μm、円筒度2μm以内に仕上ることは比較的容易である。軸受面2bの成形後は、焼結金属素材のスプリングバックを利用して、さらには加熱によるコアロッドと焼結金属素材との熱膨張差をスプリングバックに付加して、動圧溝2cの形状を崩すことなく、コアロッドを焼結金属素材の内周面から離型することができる。
【0049】
以上の軸受面成形を行う前に、焼結金属素材の内周面に回転サイジングを施し、内周面の表面開孔率を予め調整しておくのが好ましい。完成品としての軸受本体2aの軸受面2bの表面開孔率は、動圧溝を有しない一般的な焼結含油軸受の軸受面の表面開孔率(通常20〜30%程度)よりも小さくするのが良い。例えば、軸受面2bの表面開孔率を3〜15%に設定すると、グリース含浸による効果と相俟って、充分な油膜形成を維持しつつ、適切な油の循環を確保する上で有利である。尚、表面開孔率の調整は上記のような回転サイジングによる他、軸受本体2aの密度設定により、あるいは表面処理と密度設定とを併用することにより行うこともできる。
【0050】
【実施例】
図1に示すDVD−ROM/RAM用スピンドルモータを用いて回転軸4の軸振れの比較試験を行った。試験で用いた動圧型焼結含グリース/含油軸受には表1に示される潤滑剤を含浸させた。実施例1〜実施例7は潤滑グリースを含浸させたもの、比較例1は潤滑油を含浸させたものである。また、軸振れの測定は、図1に示す回転軸4を上端から突出する長いものに替え、非接触変位計でその挙動を測定することにより行った。
【0051】
【表1】
Figure 0003782890
【0052】
試験は、回転数1000〜8000rpm、回転体のアンバランス荷重1g・cm、常温常湿環境下で実施した。軸受および軸受面の仕様は下記の通りである。
【0053】
[軸受仕様]
軸径:φ3mm
軸受寸法:内径φ3×外径φ6×幅8.7mm
軸受面の数:上下に2個所
軸受面の軸方向幅:2.4mm
軸受隙間(直径):4μm
「動圧溝仕様」(図2に示す形状)
溝深さ:3μm
溝角度β:20°
溝本数:8本
比較試験の結果を図5にまとめて示す。図5に示すように、潤滑グリースを含浸した実施例1〜7では、いずれも比較例1に比べて軸振れが低減することが認められ、特に、増稠剤をウレアとした実施例4でその傾向が顕著であった。この試験結果から、この種の動圧型軸受において、潤滑油を含浸した構成に比べ、潤滑グリースを含浸した構成の方がより軸受剛性が向上し、軸振れの抑制に対して効果的であることが確認された。
【0054】
【発明の効果】
本発明は以下の効果を有する。
【0055】
(1)軸受面に設けた傾斜状の動圧溝の動圧効果により軸受隙間内に潤滑油膜を形成し、その潤滑油膜によって回転軸の摺動面を非接触支持するので、ホワール等の不安定振動が発生しにくく、高い回転精度が得られる。また、軸受本体の内部の細孔内に保有した油を軸受本体と軸受隙間との間で循環させながら潤滑作用を行うので、油の酸化劣化が生じにくく、高い軸受寿命が得られる。
【0056】
(2)軸受本体に含浸する潤滑剤を潤滑グリースとすることにより、軸受面の表面開孔の一つ一つの面積が平均化され、また軸受面から所定深さの表層部分の一つ一つの細孔の断面積が平均化されるので、局部的な圧力降下が発生しにくくなると共に、軸受本体から軸受隙間への油の滲み出し、軸受隙間から軸受本体への油の戻りが適切量に調整される。そのため、動圧溝による潤滑油膜の形成効果が高められ、軸受剛性(軸受負荷容量)が向上すると同時に、油の適切な循環が確保され、軸受寿命が向上する。
【0057】
(3)ウレア化合物は分子間の相互作用力が強いため、せん断安定性に優れ、金属表面に吸着しやすいという性質を有するため、これを潤滑グリースの増稠剤として用いることにより、潤滑効果をより一層高めることができる。
【0058】
(4)軸受本体の内周面に複数の軸受面を軸方向に離隔形成することにより、軸受面相互間の同軸度を精度良く確保することができる。また、複数の軸受を配置する場合に比べ、部品点数、組立工数を減少することができる。
【0059】
(5)上記のような動圧型焼結含グリース軸受で回転軸を非接触支持する本発明の情報機器のスピンドルモータは、軸振れ、NRRO、ジッタ等、搭載装置の高速・高性能化に伴って厳しさが増す諸要求特性を満足でき、情報機器の機能向上、高寿命化に寄与する。
【図面の簡単な説明】
【図1】実施形態に係わるDVD−ROM/RAM装置のスピンドルモータを示す断面図である。
【図2】動圧型焼結含グリース軸受の断面図(図a)、正面図(図b:図aにおけるb方向矢視図)である。
【図3】動圧型焼結含グリース軸受で軸を非接触支持する際の、軸方向断面での油の流れを模式的に示す図である。
【図4】動圧型焼結含グリース軸受における軸受面の動圧溝の深さhと軸受隙間cとの関係を模式的に示す断面図である。
【図5】軸振れの比較試験の結果を示す図である。
【符号の説明】
2 動圧型焼結含グリース軸受
2a 軸受本体
2b 軸受面
2c 動圧溝
4 回転軸[0001]
BACKGROUND OF THE INVENTION
In the present invention, a porous bearing body made of sintered metal is impregnated with lubricating grease to have a self-lubricating function, and a lubricating oil film is formed in the bearing gap due to the dynamic pressure effect of the dynamic pressure groove on the bearing surface. The hydrodynamic sintered grease-containing bearing that supports the sliding surface of the rotating shaft in a non-contact manner by the lubricating oil film, especially for spindle motors for polygon mirrors of laser beam printers (LBP) and magnetic disk drives (HDD, etc.) A large unbalanced load is applied when a disk is mounted, such as a spindle motor for a device requiring high rotational accuracy, an optical disk device such as DVD-ROM or DVD-RAM, or a magneto-optical disk device such as MO. It is suitable for devices that drive at high speed under conditions.
[0002]
[Prior art]
Information devices can be broadly divided into two types: a main storage device that performs data processing and storage, and an auxiliary storage device that performs only storage. There are a memory part using a disk and a tape and a memory part using a semiconductor made of all electronic components. At present, the disk and tape are widely used from the viewpoint of cost. Examples of auxiliary storage devices that use disks and tapes include magnetic disk devices (HDD, FDD), optical disk devices (CD, DVD), magneto-optical disk devices (MO, ODD), and digital audio tape recorders (DAT). Furthermore, the information equipment includes a laser beam printer (LBP), digital FAX, digital PPC, and the like.
[0003]
The above-mentioned small spindle motors related to information equipment are required to further improve the rotational performance and reduce the cost. As a means for that purpose, the spindle bearing is replaced from a rolling bearing to a sintered oil-impregnated bearing. Is being considered. However, since ordinary sintered oil-impregnated bearings are a kind of perfect circular bearings, unstable vibrations are likely to occur where the shaft eccentricity is small, and so-called whirling occurs at about half the rotational speed. There is an easy defect (rotational accuracy deteriorates when unstable vibration such as whirl occurs). Therefore, a dynamic pressure groove such as a herringbone or spiral shape is provided on the bearing surface, and the dynamic pressure effect of the dynamic pressure groove along with the rotation of the shaft enhances the bearing function such as radial rigidity and eliminates shaft runout due to unstable vibration. Attempts have been made in the past (dynamic pressure type sintered oil-impregnated bearings).
[0004]
On the other hand, this type of hydrodynamic sintered oil-impregnated bearing has a high effect on suppressing shaft runout, but on the other hand, the oil in the bearing clearance escapes into the bearing through the surface opening of the bearing surface. There is a problem that there is a phenomenon of reducing the effect (pressure drop), and it is difficult to obtain the expected dynamic pressure effect. Conventionally, as a means for solving the problem of the pressure drop, a configuration is known in which the dynamic pressure groove on the bearing surface is subjected to surface crushing to seal the formation region of the dynamic pressure groove (Japanese Utility Model Publication No. 63-19627). issue).
[0005]
[Problems to be solved by the invention]
In the configuration in which the formation region of the dynamic pressure groove is sealed, the following problems occur.
[0006]
(1) Since the formation area of the dynamic pressure groove is completely sealed, the circulation of oil, which is the greatest feature of the sintered grease-containing bearing, is inhibited in that area. Therefore, the oil that has once oozed into the bearing gap is pushed into the axial center of the bearing surface by the action of the dynamic pressure groove, and remains in the bearing gap. Since a large shearing action is acting in the bearing gap, the oil remaining in the bearing gap is easily denatured by the shearing force and frictional heat, and oxidation deterioration tends to be accelerated due to temperature rise. Therefore, the bearing life is shortened.
[0007]
(2) As other means for crushing the surface, coating etc. are mentioned, but the thickness of the coating film needs to be thinner than the groove depth, and a coating film of several μm is applied only to the formation area of the dynamic pressure groove It is extremely difficult to apply.
[0008]
Further, techniques (sintered grease bearings) in which a sintered body is impregnated with lubricating grease are described in JP-A-63-195416 and JP-A-7-42740. It is intended for a perfect circular bearing having no dynamic pressure groove, and has a low radial rigidity in a region where the eccentricity is small, so that unstable vibration such as whirl cannot be effectively suppressed.
[0009]
Therefore, the present invention eliminates the problem of pressure drop in the bearing gap while ensuring proper circulation of oil between the inside of the bearing body and the bearing gap in this type of bearing, The main purpose is to further improve the bearing function, particularly the bearing rigidity (bearing load capacity) and the bearing life by increasing the pressure effect.
[0010]
[Means for Solving the Problems]
FIG. 3 shows the flow of oil in the axial section when the rotary shaft 4 is supported by the hydrodynamic sintered grease-containing bearing 2 having the bearing surface 2b in which the inclined dynamic pressure groove 2c of the present invention is formed. Show. With the rotation of the rotating shaft 4, oil (in the present specification, "pores" refers to pores that the porous body has as a structure) within the bearing body 2a (rotation of the lubricating grease). Base oil) oozes out from the both sides in the axial direction of the bearing surface 2b (and around the chamfer portion) into the bearing gap, and is further drawn toward the axial center of the bearing gap by the dynamic pressure groove 2c. The oil pulling action (dynamic pressure action) increases the pressure of the oil interposed in the bearing gap, thereby forming a lubricating oil film. Due to the lubricating oil film formed in the bearing gap, the rotating shaft 4 is supported in a non-contact manner on the bearing surface 2b without causing unstable vibration such as whirl. The oil that has oozed into the bearing gap is caused by the surface opening of the bearing surface 2b due to the pressure generated by the rotation of the rotating shaft 4 (in this specification, “surface opening” means that the pores of the porous body tissue are the outer surface From the bearing surface 2b (and around the chamfer portion) again to the bearing gap.
[0011]
As described above, this type of hydrodynamic bearing is lubricated in the bearing gap by the action of the hydrodynamic groove while circulating the oil retained in the pores inside the bearing body between the bearing body and the bearing gap. The oil film is formed and the rotating oil shaft is continuously supported by the lubricating oil film in a non-contact manner. In order to exert such a stable bearing function, proper circulation of the oil, shaft It is necessary to ensure the formation of a lubricating oil film necessary for support. In particular, the oil circulation has the effect of suppressing the deterioration of the oil and extending the bearing life, and also works complementarily and reciprocally with respect to the formation of the lubricating oil film. Whether to make it suitable is a very important issue in this type of hydrodynamic bearing. In other words, in order to always form a lubricating oil film having sufficient pressure and oil film thickness in the bearing gap, a fresh and appropriate amount of oil constantly oozes out from the bearing body into the bearing gap to form a lubricating oil film. It is essential that the oil circulation cycle of returning from the gap to the bearing body works properly. If the amount of circulating oil is too small, oil oozes out into the bearing gap and the formation of the lubricating oil film becomes insufficient. At the same time, the oil stays in the bearing gap, causing oxidative degradation due to temperature rise. . On the other hand, if the amount of oil circulation is excessive, the return of oil from the bearing gap to the bearing body becomes excessive, and the above-described pressure drop problem occurs.
[0012]
Examples of means for controlling the amount of oil circulation include adjustment of the surface opening ratio (area ratio of surface opening in a unit area) and adjustment of oil kinematic viscosity. However, adjustment of surface area ratio Only However, since it is not possible to control the size of the surface openings and pores, if there is a large surface opening on the bearing surface, or if there is a large hole in the surface layer at a predetermined depth from the bearing surface, Inevitable pressure drop occurs. Moreover, excessive adjustment of the kinematic viscosity of the oil causes a torque increase. Therefore, these means have limitations, and in consideration of the recent trend of higher-speed rotation and higher performance of the spindle motor, it is often impossible to obtain a sufficient bearing function.
[0013]
Therefore, in the present invention, a dynamic pressure groove inclined with respect to the axial direction is provided on the bearing surface of the porous bearing body, and a lubricant impregnated in the bearing body is provided. The kinematic viscosity of the base oil at 40 ° C. is 5 to 60 cSt, Lubricating grease in which the blending ratio of the thickener is 0.1 to 5.0% by weight And the surface area of the bearing surface of the bearing body is 3 to 15%. It was.
[0014]
By using the lubricating grease impregnated in the bearing body as the lubricating grease, the thickener contained in the lubricating grease does not enter the very small pores but is selectively embedded in the relatively large pores. Therefore, the area of each surface opening on the bearing surface is averaged, and the cross-sectional area of each pore in the surface layer portion of a predetermined depth from the bearing surface is averaged, so that a local pressure drop is generated. In addition to being less likely to occur, oil oozes from the bearing body into the bearing gap, and the return of oil from the bearing gap to the bearing body is adjusted to an appropriate amount. Therefore, the formation effect of the lubricating oil film by the dynamic pressure grooves is enhanced, the bearing rigidity (bearing load capacity) is improved, and at the same time, proper circulation of the oil is ensured, and the bearing life is improved. Here, “oil” is a base oil of lubricating grease impregnated in the bearing body, and normally circulates between the bearing body and the bearing gap while containing a very small thickener component.
[0015]
If the blending ratio of the thickener is less than 0.1% by weight, the above-mentioned effect does not appear remarkably. Conversely, if it exceeds 5.0% by weight, the consistency of the lubricating grease becomes too high, and the impregnation step. Work in is complicated. That is, the bearing does not sink into the grease instantaneously, and after impregnation, it takes time to remove the grease adhering to the bearing surface.
[0016]
The bearing surface provided with the inclined dynamic pressure groove as described above can be formed by simultaneously molding the formation region of the dynamic pressure groove and the other region by a molding die having a shape corresponding to the bearing surface. it can. As a means for that purpose, for example, a concave and convex mold corresponding to the shape of the bearing surface is formed on the outer peripheral surface of the core rod, and a porous material is supplied to the mold for forming the core rod to apply a compression force. It is possible to employ a means for pressurizing the inner peripheral surface of the material to the core rod mold and plastically deforming it. After forming the bearing surface, the core rod forming die can be released from the porous material by utilizing the spring back of the porous material by releasing the compression force.
[0017]
As the material of the bearing body, one or more kinds of metal powder selected from copper, iron and aluminum are used as the main raw material, and tin, zinc, lead, graphite powder or alloy powder thereof is used as required. It can be a sintered metal obtained by mixing and sintering. When such a sintered metal is used as the material of the bearing body, the bearing body can be manufactured with high accuracy and low cost by the compression molding method as described above.
[0018]
The number of bearing surfaces may be one or more for one bearing, but a plurality of bearing surfaces are formed on the inner peripheral surface of the bearing body so as to be separated from each other in the axial direction, and the region between the bearing surfaces It can be set as the structure which made the internal diameter dimension larger than the internal diameter dimension of area | regions other than the dynamic pressure groove of a bearing surface. By forming a plurality of bearing surfaces on one bearing, it is possible to solve the problem of the coaxiality between the bearing surfaces when incorporating a plurality of bearings. In order to ensure the rotational accuracy of the shaft, a plurality of, for example, two bearings are usually used in combination. Further, the bearing is often used by being press-fitted into the housing. Therefore, conventionally, in order to ensure the coaxiality of the two bearings, a method of simultaneously press-fitting the two bearings after inserting the correction pins into the housing has been adopted. However, in the configuration of the present invention in which the inclined dynamic pressure groove is provided on the bearing surface, if the correction pin is forcibly corrected, the dynamic pressure groove on the bearing surface is crushed due to the biting of the correction pin, and stable. The dynamic pressure effect cannot be obtained. In this case, by forming a plurality of bearing surfaces on one bearing as described above, the problem of the coaxiality between the bearing surfaces can be solved, and the coaxiality is ensured with a correction pin as in the prior art. There is no need. Accordingly, there is no inconvenience that the dynamic pressure grooves on the bearing surface are crushed. In addition, the number of parts and the number of assembling steps are reduced as compared with the case where a plurality of bearings are arranged. Furthermore, an increase in torque can be suppressed by making the inner diameter dimension of the area between the bearing surfaces larger than the inner diameter dimension of the area other than the dynamic pressure groove on the bearing surface.
[0019]
The thickener for the lubricating grease used in the present invention may be either soap-based or non-soap-based, but it is preferable to use a urea compound as the thickener. Since the urea compound has a strong intermolecular interaction force, it has excellent shear stability, is easily adsorbed on the metal surface, and has an effect of enhancing the lubricating effect. Urea compounds have chemical structural formulas
-NHCONH-, for example, monourea, diurea, triurea and the like. Monourea is obtained from the reaction of monoamine and monoisocyanate, diurea is obtained from the reaction of monoamine and diisocyanate, and triurea is obtained from the reaction of monoamine, tolylene diisocyanate, and water. Among urea compounds, diurea is preferable from the viewpoint of availability of raw materials and manufacturability.
[0020]
In addition, general formula (1): R1-NHCONH-R2-NHCONH-R3
{R2 represents an aromatic hydrocarbon group having 6 to 15 carbon atoms;
R1 and R3 represent an aromatic hydrocarbon group having 6 to 12 carbon atoms or an alkyl group having 8 to 20 carbon atoms, and the proportion of the aromatic hydrocarbon group in R1 and R3 is 0 to 100 mol%. It is. }
The structure of the micelle can be freely changed by adjusting the ratio of the aromatic hydrocarbon group in R1 and R3 of the urea compound represented by the formula 0 to 100 mol%. In the urea compound group included in the general formula (1), it is impossible to finely adjust the molar ratio with only one kind of diurea, but two or more kinds of amines giving R1 and R3 are used. By adjusting the ratio, adjustment becomes possible. In the case of hydrodynamic sintered grease-containing bearings, it is possible to suppress pressure drop and heat generation to some extent by adjusting the surface opening ratio, etc., but higher performance can be achieved by adjusting the lubricating grease micelle structure. Thus, a hydrodynamic sintered grease-containing bearing having excellent durability can be obtained.
[0021]
In order to suppress shaft runout and oil leakage, it can be dealt with by increasing the proportion of aromatic hydrocarbon groups in R1 and R3 of the above general formula (1). The greater the proportion of aromatic hydrocarbon groups, the thicker and shorter the urea micelles. Therefore, compared with other thickeners having the same viscosity, the amount of thickener is increased, which is effective in suppressing axial runout and improving durability. On the other hand, when low current performance is required, the short fiber / thick micelle has an adverse effect and may cause heat generation. In that case, since the amount of the thickener can be reduced by reducing the mol% of the aromatic hydrocarbon group in R1 and R3, it is possible to cope with a reduction in current value. Therefore, by using a urea compound as a thickener for lubricating grease impregnated in a hydrodynamic sintered grease-containing bearing, it is possible to satisfy a wide range of required characteristics, which is extremely advantageous as a spindle motor bearing. Needless to say, the aromatic hydrocarbon group contained in R1 and R3 can be adjusted according to the application and use conditions in which the hydrodynamic sintered grease-containing bearing is used.
[0022]
The urea compound is obtained by the reaction of an isocyanate and a monoamine. Examples of the isocyanate used include 2,4-tolylene diisocyanate, 2,6-tolylene diisocyanate, diphenylmetallene-4,4′-diisocyanate, and naphthylene- Aromatic diisocyanates such as 1,5-diisocyanate, tolylene diisocyanate, triazine-derived groups and mixtures thereof may be mentioned. Monoamines include aromatic amines such as aniline, benzylamine, toluidine, chloroaniline and octylamine, nonylamine, decylamine, undecylamine, dodecylamine, tridecylamine, tetradecylamine, pentadecylamine, hexadecylamine. And aliphatic amines such as heptadecylamine, octadecylamine, nonadecylamine, eicodecylamine, and cyclohexylamine.
[0023]
Although the base oil of the lubricating grease used in the present invention is not particularly limited, it is a mineral oil, paraffinic mineral oil, hydrogenated paraffin mineral oil, hydrogenated paraffin mineral oil, refined naphthenic mineral oil, high viscosity index paraffin mineral oil And polyalphaolefin-based, ester-based, ether-based, polyglycol-based, aromatic hydrocarbon oil, fluorine-based lubricating oil, and mixed oils thereof, which are synthetic lubricating oils, are preferable.
[0024]
Various additives can be added to the base oil to improve wear resistance, thermal stability, etc., but it is preferable to add a phosphate ester represented by the following general formula (2). is there. Examples of the phosphoric acid ester include phosphoric acid triesters such as trioctyl phosphate and tricresyl phosphate, acidic phosphoric acid esters such as monooctyl phosphate, and dioctyl phosphate, and alkyl phosphate amine salts (some amine groups). Among them, phosphoric acid triesters are preferable. By using phosphate ester, the oil film forming ability can be increased.
[0025]
[Chemical 1]
Figure 0003782890
[0026]
In the above formula, each R independently represents hydrogen, a hydrocarbon group or an alkoxy group, and at least one is a hydrocarbon group or an alkoxy group.
[0027]
The blending ratio of the phosphate ester to the base oil is 0.1 to 10% by weight, preferably 0.5 to 3% by weight. When the blending ratio of the phosphoric ester is less than 0.1% by weight, the wear resistance cannot be improved, and even when the content exceeds 10% by weight, no significant improvement in wear resistance is observed.
[0028]
In addition, as a viscosity index improver and a structural stabilizer, an ethylene-α-olefin copolymer or a hydride thereof, a polymethacrylate type, or a polybutene (polyisobutylene) type is added to the base oil. May be. The ethylene-α-olefin copolymer or a hydride thereof can be obtained, for example, by hydrogenating a polymer obtained by polymerizing ethylene and 1-decene, isobutene or the like with a catalyst such as a Lewis acid. These have a number average molecular weight of about 200 to 4000, and preferably have a number average molecular weight of 1450. The average molecular weight of the polymethacrylate series is about 20000 to 1500,000. The average molecular weight is preferably 20000 to 50000 in relation to shear stability. The average molecular weight of the polybutene system is preferably about 5000 to 300000. The blending ratio of the viscosity index improver and the structure stabilizer is 1 to 30% by weight, preferably 1 to 5% by weight, based on the base oil.
[0029]
Furthermore, antioxidant can be mix | blended with the said base oil. As the antioxidant, one or more antioxidants selected from the group consisting of phenolic, amine-based, which functions as a free radical chain terminator, and sulfur-based antioxidant, which functions as a peroxide decomposer, are used alone. Alternatively, a mixture of an amine and a phenol can be used. Examples of phenolic antioxidants include 2,6-di-t-butylphenol, 4,4′-methylenebis (2,6-di-t-butylphenol), and 2,6-di-t-butyl-4-ethyl. Examples include phenol and 2,6-di-t-4-n-butylphenol. From the viewpoint of evaporation characteristics and compatibility with the base oil, 4,4′-methylenebis (2,6-di-t-butylphenol) is preferable. Examples of amine-based antioxidants include dioctyl diphenylamine and phenyl-α-naphthylamine. Dioctyl diphenylamine is preferred from the viewpoint of evaporation characteristics and compatibility with the base oil. The blending amount is 0.1 to 10% by weight of amine-based antioxidant and 0.1 to 10% by weight of phenol-based antioxidant in consideration of solubility in base oil. preferable. When used alone, 0.1 to 10% by weight of an amine-based antioxidant is suitable. Phenolic antioxidants are effective when used in combination.
[0030]
Furthermore, the base oil of the present invention includes a rust inhibitor, a pour point depressant, an ashless dispersion, a metal deactivator, a metal system, as long as the purpose and effect of the present invention are not impaired. A cleaning agent, an oily agent, a surfactant, an antifoaming agent, a friction modifier, and the like can be blended.
[0031]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described.
[0032]
FIG. 1 illustrates a spindle motor of a DVD-ROM / RAM device which is a kind of information equipment. This spindle motor includes a bearing unit A that rotatably supports a rotary shaft 4 arranged vertically, a turntable 6 that supports and fixes an optical disk 5 such as a DVD-ROM mounted on the upper end of the rotary shaft 4, and a clamper 7. For example, a motor part B having a stator 8 and a rotor magnet 9 opposed to each other through a radial gap is a main component. The stator 8 is fixed to the outer peripheral surface of the housing 1 constituting the bearing unit A, and the rotor magnet 9 is fixed to the inner peripheral surface of the rotor case 10 mounted on the turntable 6. When the stator 8 is energized, the rotor case 10, the turntable 6, the optical disk 5, the clamper 7, and the rotating shaft 4 integrated with the rotor magnet 9 rotate.
[0033]
The bearing unit A includes a cylindrical housing 1, a hydrodynamic sintered grease-containing bearing 2 that is fixed to the inner peripheral surface of the housing 1 and supports the outer peripheral surface of the rotating shaft 4 in the radial direction, and a lower end opening of the housing 1. And a thrust bearing 3 that supports the lower shaft end surface of the rotary shaft 4 in the thrust direction. In this embodiment, the thrust bearing 3 includes a disc-shaped resin thrust washer 3a and a back metal 3b that supports the disk-shaped resin thrust washer 3a. The lower shaft end surface of the upper surface of the resin thrust washer 3a is a convex spherical shape of the rotary shaft 4. It is configured to contact and support in the thrust direction. The resin thrust washer 3a may be embedded in the center portion of the back metal 3b so as to come into contact with the lower shaft end surface of the rotary shaft 4.
[0034]
As shown in FIG. 2, the hydrodynamic sintered grease-containing bearing 2 is obtained by impregnating a porous bearing body 2a made of sintered metal with a lubricating grease as a lubricant to have a self-lubricating function. The bearing body 2a is made of one or more kinds of metal powder selected from copper, iron, and aluminum as a main raw material, and optionally mixed with nickel, tin, zinc, lead, graphite powder or alloy powder thereof. And sintered metal obtained by sintering, preferably 20 to 97% by weight of copper, and a density of 6.4 to 7.2 g / cm. Three It is shape | molded so that it may become.
[0035]
In this embodiment, two bearing surfaces 2b spaced apart in the axial direction are formed on the inner peripheral surface of the bearing body 2a, and a plurality of dynamic pressures inclined with respect to the axial direction are provided on both of the two bearing surfaces 2b. A groove 2c is formed. Each bearing surface 2b is separated from the first region m1 in the axial direction by a first region m1 in which a plurality of dynamic pressure grooves 2c inclined in one direction with respect to the axial direction are arranged in the circumferential direction. A second region m2 in which a plurality of hydrodynamic grooves 2c inclined to the other side are arranged in the circumferential direction, and an annular smooth region n positioned between the first region m1 and the second region m2. . The dynamic pressure groove 2c in the first region m1 and the dynamic pressure groove 2c in the second region m2 are partitioned by the smooth region n and are discontinuous with each other. The back 2d of the first region m1 (region between the dynamic pressure grooves 2c) and the back 2d of the second region m2 (region between the dynamic pressure grooves 2c) are at the same level as the smooth region n. On the bearing surface 2b, the surface openings are distributed almost uniformly over the entire region including the region where the dynamic pressure groove 2c is formed.
[0036]
When relative rotation occurs between the bearing main body 2a and the shaft 4, the oil in the bearing gap is transferred to the smooth region n by the dynamic pressure grooves 2c formed in the first region m1 and the second region m2 so as to incline in opposite directions. Since the oil is drawn toward and collected in the smooth region n, the oil film pressure in the smooth region n is increased. Therefore, high bearing rigidity can be obtained.
[0037]
The inclination angle of the dynamic pressure groove 2c may be set to an arbitrary angle, but is preferably set so that the angle β with the direction orthogonal to the axial direction is 15 to 40 °, more preferably 15 to 25 °. Is good. Further, the width ratio between the dynamic pressure groove 2c and the spine 2d is set within the range of 0.8 to 1.5, preferably 1.0 to 1.2. Furthermore, the ratio R of the axial width of the smooth region n is within the range of R = 0.1 to 0.6, preferably R = 0.2 to 0.4, where the axial width of each bearing surface 2b is 1. It is good to set to. If R is less than 0.1, the effect of increasing the bearing rigidity due to the provision of the smooth region n does not appear remarkably. Conversely, if R exceeds 0.6, the axial direction of the first region m1 and the second region m2 The width is reduced, and the dynamic pressure effect by the dynamic pressure groove 2c is not effectively exhibited.
[0038]
Optimal for the ratio between the groove depth h of the dynamic pressure groove 2c (see FIG. 4) and the bearing radius clearance c (the difference between the radius of the back 2d portion of the bearing surface 2b and the radius of the outer peripheral surface of the rotary shaft 4). There is a range, and outside this range, a sufficient dynamic pressure effect cannot be obtained. In order to clarify this optimum range, the shaft runout was measured using a spindle motor for DVD-ROM / RAM. When c / h was in the range of 0.5 to 2.0, the runout was practically sufficient. It was confirmed that it can be controlled to a certain level. For example, when the groove depth h is 2 to 4 μm, the bearing radius clearance c is preferably set within a range of 2 to 4 μm.
[0039]
Further, the inner diameter dimension of the region between the bearing surfaces 2b in the bearing body 2a is set larger than the inner diameter dimension of the back 2d portion of the bearing surface 2b.
[0040]
The shape of each bearing surface 2b is not limited to that shown in FIG. 2 (a). For example, a pair of a dynamic pressure groove inclined to one side and a dynamic pressure groove inclined to the other side in the axial direction is used as a shaft. It may be continuous in a V shape in the direction (in this case, there is no annular smooth region n). Under operating conditions where there is almost no unbalance in the rotating body and bearing rigidity is not an important factor, the bearing surface with a dynamic pressure groove continuous in the axial direction is less likely to generate negative pressure. There is also. Furthermore, the dynamic pressure groove on the bearing surface only needs to be inclined with respect to the axial direction, and can have any shape as long as this condition is satisfied. For example, the dynamic pressure groove may be spiral.
[0041]
As the base oil of the lubricating grease impregnated in the bearing body 2a, one having a kinematic viscosity at 40 ° C. set to 5 to 60 cSt can be used. In particular, in a device such as a DVD-ROM / RAM that requires radial rigidity against an unbalanced load due to the loading of a disk, a device having 10 to 50 cSt is preferable. In this embodiment, the kinematic viscosity at 40 ° C. is 40 cSt, the main component is polyol ester oil, the viscosity index improver is polymethacrylate, the antioxidant is phenyl-α-naphthylamine, and the metal deactivator is benzotriazole. A lubricating oil to which trioctyl phosphate was added as a derivative and an antiwear agent was used as a base oil.
[0042]
Lithium soap and urea compounds were used as thickeners for the lubricating grease.
[0043]
Thickener lithium soap is stearic acid and LiOH.H. 2 React with O to make grease. First, 1/3 of the base oil and stearic acid are placed in a reaction vessel and heated to 80 ° C. When the solvent is clear, water and LiOH · H 2 Mix O well into the reaction vessel. Thereafter, dehydration is performed for about 1 hour. After the dehydration was completed, the remaining base oil was added gradually so that the temperature did not decrease, and the reaction was terminated when the temperature reached 185 ° C.
[0044]
As the thickener monourea, octadecylamine was used as a raw material amine, and octadecyl isocyanate was used as a monoisocyanate. What is shown by diurea uses p-toluidine as a raw material amine whose end group becomes an aromatic group, uses n-octylamine as a raw material amine that becomes an alicyclic group, and as a raw material amine that becomes an aliphatic group Cyclohexylamine was used. Further, diphenylmethane-4,4′-diisocyanate was used as the diisocyanate. Triurea used octadecylamine as a raw material amine and tolylene diisocyanate and water as isocyanate. Specifically, diurea will be described as an example. A reaction vessel was charged with half of the base oil and all of the monoamine shown in Table 1, and heated to 70 to 80 ° C. In a separate container, the remaining half of the base oil and diphenylmethane-4,4′-diisocyanate were added and heated to 70 to 80 ° C., which was added to the reaction container and stirred. Stirring was continued in this state for about 30 minutes, and after the reaction was sufficiently performed, the temperature was raised to 170 to 180 ° C. and kept at this temperature for 30 minutes. The cooled product was used as a base grease.
[0045]
When the spindle motor is assembled by inserting the rotating shaft 4 into the inner peripheral surface of the hydrodynamic sintered grease-containing bearing 2, the same (or the same type) lubricating grease or its base oil as the lubricating grease impregnated in the bearing body 2a is used. In addition to the impregnated grease, when the bearing surface of the thrust bearing 3 is wetted with the lubricating grease or its base oil and the bearing gap of the hydrodynamic sintered grease-containing bearing 2 is filled with the lubricating grease or its base oil, good. In this hydrodynamic sintered grease-containing bearing 2, the base oil of the lubricating grease impregnated inside the bearing body 2 a is increased by a very small amount due to the thermal expansion of the oil due to the pressure generated by the rotation of the rotating shaft 4 and the temperature rise. It exudes from the surface of the bearing body 2a while containing the thickener component, and is drawn into the bearing gap by the action of the dynamic pressure groove 2c. If the inside of the bearing gap of the hydrodynamic sintered grease-containing bearing 2 is filled with oil in the initial stage of driving, air is not involved, a good lubricating oil film is formed, and a stable bearing function is obtained. Further, the bearing surface of the thrust bearing 3 is wetted with oil from the initial stage of driving and is in a good lubricating state.
[0046]
In general, the rotating shaft 4 is inserted into the inner peripheral surface of the dynamic pressure type porous grease-containing bearing 2 with the thrust bearing 3 attached to the lower end opening of the housing 1. At the time of this insertion, air escapes from the bearing gap between the bearing 2 and the rotary shaft 4, but since the bearing gap is only about several μm, the air is confined in the lower space of the housing 1, and the rotary shaft 4 may be difficult to insert. Moreover, the heat confined in the space below the housing 1 may expand due to the heat generated when the motor rotates, and the rotating shaft 4 may be pushed up to destabilize the bearing function. In this case, as shown in FIGS. 1 and 2, this air passage S is provided between the outer peripheral surface of the bearing 2 and the inner peripheral surface of the housing 1 so as to open at both ends in the axial direction of the bearing body 2 a. The air in the lower space of the housing 1 may be released to the outside through the passage S. In this embodiment, the air passage S is formed on the outer peripheral surface of the bearing body 2 a, but the air passage S may be formed on the inner peripheral surface of the housing 1. Further, the number of air passages S may be one, or a plurality of air passages S may be formed in the circumferential direction.
[0047]
When a positive pressure is generated in the bearing gap of the hydrodynamic sintered grease-containing bearing 2, since the bearing surface 2b has a surface opening, oil flows back into the bearing body 2a through the surface opening of the bearing surface 2b. . At that time, if the surface opening of the bearing surface 2b or the size of the pore in the surface layer portion of a predetermined depth from the bearing surface 2b is large, the oil in the bearing gap passes through the large hole and the inside of the bearing body 2a. It becomes easy to reflux. Therefore, the pressure distribution in the bearing gap becomes non-uniform (a local pressure drop occurs), which affects the rotation accuracy. In this embodiment, the thickener of the lubricating grease is selectively embedded in the large pores of the bearing body 2a, and the surface openings and pore sizes are apparently averaged. Proper circulation of oil between the bearing gaps is ensured. As a result, the problem of non-uniform pressure distribution (local pressure drop) as described above is solved, and new oil continues to be pushed into the bearing gap one after another by the dynamic pressure action of the dynamic pressure groove 2c. The oil film force and radial rigidity of the lubricating oil film are maintained in a high state. As a result, the rotating shaft 4 is continuously supported in a non-contact manner by the hydrodynamic sintered grease-containing bearing 2 without causing unstable vibration such as whirl, and shaft runout, NRRO, jitter, and the like are reduced. Further, since the rotating shaft 4 and the bearing body 2a rotate without contact, the noise is low and the cost is low.
[0048]
The bearing surface 2b having the inclined dynamic pressure groove 2c as described above can be formed by compression molding. For example, a molding die corresponding to the shape of the bearing surface 2b is formed on the outer peripheral surface of a core rod such as a sizing pin used for processing a sintered grease-containing bearing, and a cylindrical shape that is a material of the bearing body 2a is formed on the outer peripheral surface of the core rod. A sintered metal material is supplied, a pressing force is applied to the sintered metal material, and the inner peripheral surface thereof is pressed against the core rod mold, and the shape of the mold is transferred to the inner peripheral surface of the sintered metal material. At this time, the formation region of the dynamic pressure groove 2c on the bearing surface 2b and the other region (the back 2d and the smooth region n) can be simultaneously formed. In this case, if the core rod mold is finished with high accuracy, the molding accuracy of the bearing surface 2b is improved. It is relatively easy to finish the core rod mold within required accuracy, for example, roundness within 1 μm and cylindricity within 2 μm. After forming the bearing surface 2b, the shape of the dynamic pressure groove 2c is changed by using a spring back of a sintered metal material and further adding a thermal expansion difference between the core rod and the sintered metal material by heating to the spring back. The core rod can be released from the inner peripheral surface of the sintered metal material without breaking.
[0049]
Before carrying out the above bearing surface molding, it is preferable to perform rotational sizing on the inner peripheral surface of the sintered metal material and adjust the surface open area ratio of the inner peripheral surface in advance. The surface opening ratio of the bearing surface 2b of the bearing body 2a as a finished product is smaller than the surface opening ratio (usually about 20 to 30%) of the bearing surface of a general sintered oil-impregnated bearing having no dynamic pressure grooves. Good to do. For example, when the surface area ratio of the bearing surface 2b is set to 3 to 15%, combined with the effect of the grease impregnation, it is advantageous for ensuring adequate oil circulation while maintaining sufficient oil film formation. is there. The surface opening ratio can be adjusted by the above-described rotational sizing, by setting the density of the bearing body 2a, or by combining surface treatment and density setting.
[0050]
【Example】
Using a DVD-ROM / RAM spindle motor shown in FIG. The dynamic pressure type sintered grease-containing / oil-impregnated bearing used in the test was impregnated with the lubricant shown in Table 1. Examples 1 to 7 were impregnated with lubricating grease, and Comparative Example 1 was impregnated with lubricating oil. The shaft runout was measured by replacing the rotating shaft 4 shown in FIG. 1 with a long one protruding from the upper end and measuring its behavior with a non-contact displacement meter.
[0051]
[Table 1]
Figure 0003782890
[0052]
The test was carried out in an environment with a rotational speed of 1000 to 8000 rpm, an unbalanced load of the rotating body of 1 g · cm, and a normal temperature and humidity environment. The specifications of the bearing and the bearing surface are as follows.
[0053]
[Bearing specifications]
Shaft diameter: φ3mm
Bearing dimensions: inner diameter φ3 × outer diameter φ6 × width 8.7 mm
Number of bearing surfaces: 2 on top and bottom
Axial width of bearing surface: 2.4 mm
Bearing gap (diameter): 4μm
"Dynamic pressure groove specification" (shape shown in Fig. 2)
Groove depth: 3 μm
Groove angle β: 20 °
Number of grooves: 8
The results of the comparative test are summarized in FIG. As shown in FIG. 5, in Examples 1 to 7 impregnated with lubricating grease, it was recognized that the axial runout was reduced as compared with Comparative Example 1, and in particular, in Example 4 where the thickener was urea. The tendency was remarkable. From this test result, in this type of hydrodynamic bearing, compared to the configuration impregnated with lubricating oil, the configuration impregnated with lubricating grease improves the bearing rigidity and is more effective in suppressing shaft runout. Was confirmed.
[0054]
【The invention's effect】
The present invention has the following effects.
[0055]
(1) A lubricating oil film is formed in the bearing gap due to the dynamic pressure effect of the inclined dynamic pressure groove provided on the bearing surface, and the sliding surface of the rotating shaft is supported in a non-contact manner by the lubricating oil film. Stable vibration hardly occurs and high rotation accuracy can be obtained. Further, since the lubricating action is performed while the oil retained in the pores inside the bearing body is circulated between the bearing body and the bearing gap, oxidation deterioration of the oil hardly occurs and a long bearing life can be obtained.
[0056]
(2) By using the lubricating grease impregnated in the bearing body as a lubricating grease, the area of each surface opening of the bearing surface is averaged, and each surface layer portion of a predetermined depth from the bearing surface Since the cross-sectional area of the pores is averaged, local pressure drop is unlikely to occur, and oil oozes out from the bearing body to the bearing gap and returns to the bearing body from the bearing gap to an appropriate amount. Adjusted. Therefore, the formation effect of the lubricating oil film by the dynamic pressure grooves is enhanced, the bearing rigidity (bearing load capacity) is improved, and at the same time, proper circulation of the oil is ensured, and the bearing life is improved.
[0057]
(3) Since the urea compound has a strong interaction force between molecules, it has excellent shear stability and is easily adsorbed on the metal surface. Therefore, by using this as a thickener for lubricating grease, a lubricating effect can be obtained. It can be further increased.
[0058]
(4) By forming a plurality of bearing surfaces spaced apart in the axial direction on the inner peripheral surface of the bearing body, the coaxiality between the bearing surfaces can be ensured with high accuracy. Further, the number of parts and the number of assembly steps can be reduced as compared with the case where a plurality of bearings are arranged.
[0059]
(5) The spindle motor of the information equipment according to the present invention in which the rotating shaft is supported in a non-contact manner by the dynamic pressure type sintered grease-containing bearing as described above is accompanied by high speed and high performance of the mounted device such as shaft runout, NRRO, and jitter. Satisfying the increasingly demanding characteristics, contributing to improved functionality and long life of information equipment.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view showing a spindle motor of a DVD-ROM / RAM device according to an embodiment.
FIG. 2 is a cross-sectional view (FIG. A) and a front view (FIG. B: view in the direction of arrow b in FIG. A) of a hydrodynamic sintered grease-containing bearing.
FIG. 3 is a diagram schematically showing an oil flow in an axial section when a shaft is supported in a non-contact manner by a hydrodynamic sintered grease-containing bearing.
FIG. 4 is a cross-sectional view schematically showing a relationship between a depth h of a dynamic pressure groove on a bearing surface and a bearing gap c in a dynamic pressure type sintered grease-containing bearing.
FIG. 5 is a diagram showing the results of a shaft runout comparison test.
[Explanation of symbols]
2 Dynamic pressure type sintered grease bearing
2a Bearing body
2b Bearing surface
2c Dynamic pressure groove
4 Rotating shaft

Claims (10)

支持すべき回転軸の摺動面と軸受隙間を介して対向する軸受面を有し、その軸受面に軸方向に対して傾斜した動圧溝が設けられた焼結金属からなる多孔質の軸受本体と、軸受本体の内部の細孔内に含浸された潤滑剤とを備え、
軸受本体に含浸される潤滑剤が、基油の40°Cでの動粘度が5〜60cSt、増稠剤の配合割合を0.1〜5.0重量%とした潤滑グリースであり、
上記軸受本体の軸受面の表面開孔率が3〜15%であり、
上記潤滑グリースの基油が、軸受面を含む表面の表面開孔を介して軸受本体の内部と軸受隙間との間を循環しつつ、上記動圧溝の動圧効果により軸受隙間内に潤滑油膜を形成し、その潤滑油膜によって回転軸の摺動面を軸受面に対して非接触支持することを特徴とする動圧型焼結含グリース軸受。
A porous bearing made of sintered metal having a bearing surface facing the sliding surface of the rotating shaft to be supported via a bearing gap, and provided with dynamic pressure grooves inclined with respect to the axial direction on the bearing surface A main body and a lubricant impregnated in pores inside the bearing main body,
Lubricants impregnated in the bearing body, Ri Oh lubricating grease kinematic viscosity at 40 ° C of the base oil is 5~60CSt, and 0.1 to 5.0 wt% blending ratio of the thickener,
The surface area of the bearing surface of the bearing body is 3 to 15%,
While the base oil of the lubricating grease circulates between the inside of the bearing body and the bearing gap through the surface opening including the bearing surface, the lubricating oil film is formed in the bearing gap by the dynamic pressure effect of the dynamic pressure groove. forming a dynamic pressure type sintered Yui含grease bearing characterized that you contact manner the sliding surface of the rotary shaft relative to the bearing surface by the lubricant film.
上記焼結金属が、銅、鉄、及びアルミニウムの中から選択される1種以上の材料を主成分とする請求項1記載の動圧型焼結含グリース軸受。  2. The hydrodynamic sintered grease-containing bearing according to claim 1, wherein the sintered metal is mainly composed of one or more materials selected from copper, iron, and aluminum. 上記潤滑グリースの増稠剤がウレア化合物である請求項1記載の動圧型焼結含グリース軸受。  The hydrodynamic sintered grease-containing bearing according to claim 1, wherein the thickener of the lubricating grease is a urea compound. 上記ウレア化合物が下記式(1)で表される群から選択される1種以上の化合物である請求項記載の動圧型焼結含グリース軸受。
R1−NHCONH−R2−NHCONH−R3 (1)
上記式中、R2は炭素原子数6〜15の芳香族炭化水素基を示し、R1及びR3は炭素原子数6〜12の芳香族炭化水素基、又は、炭素原子数8〜20のアルキル基を示し、R1及びR3中に占める芳香族炭化水素基の割合は0〜100モル%である。
4. The hydrodynamic sintered grease-containing bearing according to claim 3, wherein the urea compound is at least one compound selected from the group represented by the following formula (1).
R1-NHCONH-R2-NHCONH-R3 (1)
In the above formula, R2 represents an aromatic hydrocarbon group having 6 to 15 carbon atoms, and R1 and R3 represent an aromatic hydrocarbon group having 6 to 12 carbon atoms or an alkyl group having 8 to 20 carbon atoms. The ratio of the aromatic hydrocarbon group in R1 and R3 is 0-100 mol%.
上記軸受本体の内周面に複数の軸受面を軸方向に相互に離隔して形成すると共に、軸受面間の領域の内径寸法を、軸受面における動圧溝以外の領域の内径寸法よりも大きくした請求項1記載の動圧型焼結含グリース軸受。  A plurality of bearing surfaces are formed on the inner peripheral surface of the bearing body so as to be spaced apart from each other in the axial direction. The hydrodynamic sintered grease-containing bearing according to claim 1. 情報機器の回転要素と共に回転する回転軸と、この回転軸を支持する軸受と、所定のギャップを介して相対向配置されたロータ及びステータとを備えた情報機器のスピンドルモータにおいて、
上記軸受が、回転軸の摺動面と軸受隙間を介して対向する軸受面を有し、その軸受面に軸方向に対して傾斜した動圧溝が設けられた焼結金属からなる多孔質の軸受本体と、軸受本体の内部の細孔内に含浸された潤滑剤とを備え、該潤滑剤が、基油の40°Cでの動粘度が5〜60cSt、増稠剤の配合割合を0.1〜5.0重量%とした潤滑グリースであり、
上記軸受本体の軸受面の表面開孔率が3〜15%であり、
上記潤滑グリースの基油が、軸受面を含む表面の表面開孔を介して軸受本体の内部と軸受隙間との間を循環しつつ、上記動圧溝の動圧効果により軸受隙間内に潤滑油膜を形成し、その潤滑油膜によって回転軸の摺動面を軸受面に対して非接触支持することを特徴とする情報機器のスピンドルモータ。
In a spindle motor of an information device including a rotation shaft that rotates together with a rotation element of the information device, a bearing that supports the rotation shaft, and a rotor and a stator that are arranged to face each other with a predetermined gap therebetween.
The above-mentioned bearing has a bearing surface facing the sliding surface of the rotating shaft through a bearing gap, and the bearing surface is a porous metal made of sintered metal provided with dynamic pressure grooves inclined with respect to the axial direction. A bearing body, and a lubricant impregnated in pores inside the bearing body, the lubricant having a kinematic viscosity at 40 ° C. of the base oil of 5 to 60 cSt, and a blending ratio of the thickener of 0. .1~5.0 Ri Oh in weight percent and the lubricating grease,
The surface area of the bearing surface of the bearing body is 3 to 15%,
While the base oil of the lubricating grease circulates between the inside of the bearing body and the bearing gap through the surface opening including the bearing surface, the lubricating oil film is formed in the bearing gap by the dynamic pressure effect of the dynamic pressure groove. forming a spindle motor of an information device which is characterized that you contact manner the sliding surface of the rotary shaft relative to the bearing surface by the lubricant film.
上記焼結金属が、銅、鉄、及びアルミニウムの中から選択される1種以上の材料を主成分とする請求項記載の情報機器のスピンドルモータ。The spindle motor for information equipment according to claim 6 , wherein the sintered metal is mainly composed of one or more materials selected from copper, iron, and aluminum. 上記潤滑グリースの増稠剤がウレア化合物である請求項記載の情報機器のスピンドルモータ。7. The spindle motor for information equipment according to claim 6 , wherein the thickener for the lubricating grease is a urea compound. 上記ウレア化合物が下記式(1)で表される群から選択される1種以上の化合物である請求項記載の情報機器のスピンドルモータ。
R1−NHCONH−R2−NHCONH−R3 (1)
上記式中、R2は炭素原子数6〜15の芳香族炭化水素基を示し、R1及びR3は炭素原子数6〜12の芳香族炭化水素基、又は、炭素原子数8〜20のアルキル基を示し、R1及びR3中に占める芳香族炭化水素基の割合は0〜100モル%である。
9. The spindle motor for information equipment according to claim 8, wherein the urea compound is one or more compounds selected from the group represented by the following formula (1).
R1-NHCONH-R2-NHCONH-R3 (1)
In the above formula, R2 represents an aromatic hydrocarbon group having 6 to 15 carbon atoms, and R1 and R3 represent an aromatic hydrocarbon group having 6 to 12 carbon atoms or an alkyl group having 8 to 20 carbon atoms. The ratio of the aromatic hydrocarbon group in R1 and R3 is 0-100 mol%.
上記軸受本体の内周面に複数の軸受面を軸方向に相互に離隔して形成すると共に、軸受面間の領域の内径寸法を、軸受面における動圧溝以外の領域の内径寸法よりも大きくした請求項記載の情報機器のスピンドルモータ。A plurality of bearing surfaces are formed on the inner peripheral surface of the bearing body so as to be separated from each other in the axial direction, and the inner diameter dimension of the area between the bearing surfaces is larger than the inner diameter dimension of the area other than the dynamic pressure groove on the bearing surface. A spindle motor for an information device according to claim 6 .
JP14783898A 1998-05-28 1998-05-28 Dynamic pressure type sintered grease bearing Expired - Fee Related JP3782890B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP14783898A JP3782890B2 (en) 1998-05-28 1998-05-28 Dynamic pressure type sintered grease bearing
NL1012170A NL1012170C2 (en) 1998-05-28 1999-05-27 Dynamic pressure type impregnatedly-sintered grease bearing used in e.g. laser printer, tape recorder, facsimile machine
US12/944,471 US8132965B2 (en) 1998-05-28 2010-11-11 Hydrodynamic type oil-impregnated sintered bearing

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14783898A JP3782890B2 (en) 1998-05-28 1998-05-28 Dynamic pressure type sintered grease bearing

Publications (2)

Publication Number Publication Date
JPH11336761A JPH11336761A (en) 1999-12-07
JP3782890B2 true JP3782890B2 (en) 2006-06-07

Family

ID=15439403

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14783898A Expired - Fee Related JP3782890B2 (en) 1998-05-28 1998-05-28 Dynamic pressure type sintered grease bearing

Country Status (1)

Country Link
JP (1) JP3782890B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1533361B1 (en) 2002-08-21 2018-06-27 Citizen Watch Co., Ltd. Timepiece containing a grease composition
EP1806512B1 (en) * 2004-10-29 2011-09-21 Hitachi Construction Machinery Co., Ltd. Grease for sliding bearing
CN103917785B (en) * 2011-11-10 2016-01-06 丰田自动车株式会社 Vehicle inside engaged gear formula oil pump
US20160223016A1 (en) 2013-10-03 2016-08-04 Ntn Corporation Sintered bearing and manufacturing process therefor
JP6466105B2 (en) * 2014-09-01 2019-02-06 Ntn株式会社 Fluid dynamic bearing device and bearing member and shaft member used therefor
JP6571230B2 (en) * 2018-03-02 2019-09-04 Ntn株式会社 Sintered bearing
JP2020051546A (en) * 2018-09-27 2020-04-02 Ntn株式会社 Sintered bearing, fluid dynamic pressure bearing device and motor
JP6599572B2 (en) * 2019-01-09 2019-10-30 Ntn株式会社 Fluid dynamic bearing device and bearing member and shaft member used therefor

Also Published As

Publication number Publication date
JPH11336761A (en) 1999-12-07

Similar Documents

Publication Publication Date Title
NL1007854C2 (en) Porous oil-impregnated bearing of the hydrodynamic type and bearing arrangement.
US8132965B2 (en) Hydrodynamic type oil-impregnated sintered bearing
KR100549102B1 (en) Spindle motor and rotating shaft supporting device of information equipment
JP3782890B2 (en) Dynamic pressure type sintered grease bearing
JP3782889B2 (en) Hydrodynamic sintered oil-impregnated bearing
JP4074703B2 (en) Sintered oil-impregnated bearing unit
US6568856B2 (en) Rolling bearing
JP2008064170A (en) Hydrodynamic bearing, spindle motor, and recording disk driving device
CN100410553C (en) Ball bearing
US7988361B1 (en) Hydrodynamic type oil-impregnated sintered bearing
JP4213714B2 (en) Sintered oil-impregnated bearing
JP3607480B2 (en) Dynamic pressure type porous oil-impregnated bearing and bearing device
JP2001003074A (en) Grease to be filled into ball-and-roller bearing
JPH11182551A (en) Manufacture of hydrodynamic porous oil retaining bearing
JP2004353871A (en) Hydrodynamic type porous oil-impregnated bearing
JP2001208069A (en) Spindle motor with liquid bearing
JP2023182538A (en) Lubricant composition for fluid dynamic pressure bearing, fluid dynamic pressure bearing, and fluid dynamic pressure bearing device
JP3665606B2 (en) Dynamic pressure type porous oil-impregnated bearing
KR100485444B1 (en) Sintered oil-impregnated bearing
WO2023140383A1 (en) Grease composition and rolling bearing
JPH1182479A (en) Supporting device for information equipment spindle motor
JP3602325B2 (en) Dynamic pressure type porous oil-impregnated bearing
JP2001152174A (en) Sintered oilless bearing
JP2004353870A (en) Hydrodynamic type bearing device
JPH08152026A (en) Rolling bearing

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040803

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050719

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050801

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050929

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060209

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060313

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090317

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100317

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100317

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110317

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110317

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120317

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120317

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130317

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130317

Year of fee payment: 7

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130317

Year of fee payment: 7

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130317

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140317

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees