JPH1182479A - Supporting device for information equipment spindle motor - Google Patents

Supporting device for information equipment spindle motor

Info

Publication number
JPH1182479A
JPH1182479A JP24298297A JP24298297A JPH1182479A JP H1182479 A JPH1182479 A JP H1182479A JP 24298297 A JP24298297 A JP 24298297A JP 24298297 A JP24298297 A JP 24298297A JP H1182479 A JPH1182479 A JP H1182479A
Authority
JP
Japan
Prior art keywords
bearing
oil
dynamic pressure
spindle motor
bearing body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP24298297A
Other languages
Japanese (ja)
Other versions
JP3908834B2 (en
Inventor
Natsuhiko Mori
夏比古 森
Kazuo Okamura
一男 岡村
Yasuhiro Yamamoto
康裕 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NTN Corp
Original Assignee
NTN Corp
NTN Toyo Bearing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NTN Corp, NTN Toyo Bearing Co Ltd filed Critical NTN Corp
Priority to JP24298297A priority Critical patent/JP3908834B2/en
Priority to NL1010020A priority patent/NL1010020C2/en
Priority to KR1019980036999A priority patent/KR100549102B1/en
Priority to US09/149,437 priority patent/US6023114A/en
Publication of JPH1182479A publication Critical patent/JPH1182479A/en
Application granted granted Critical
Publication of JP3908834B2 publication Critical patent/JP3908834B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Sliding-Contact Bearings (AREA)
  • Mechanical Optical Scanning Systems (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a low-noise and highly precise bearing while reducing the cost. SOLUTION: Lubricating oil is supplied to a porous bearing main body 1 having bearing surfaces 17 opposing each other via the outer peripheral surface of a rotary shaft 2 and a bearing gap, and dynamic pressure grooves 5 are formed in the bearing surfaces 17. By the dynamic pressure oil film of lubricating oil formed in the bearing gap, the outer peripheral surface of the rotary shaft 2 for a spindle motor mounted in an information equipment is supported to be floated, and oil is circulated between the inside of the bearing main body 1 and the bearing gap via the open hole parts of the bearing surfaces.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、情報機器に装備さ
れるスピンドル用モータの支持装置に関する。ここでい
う情報機器には、磁気ディスク装置(HDD・FD
D)、光ディスク装置(CD・DVD)、光磁気ディス
ク装置(ODD)、デジタルオーディオテープレコーダ
(DAT)等の情報記録担体(ディスク・テープ等)を
用いる情報記憶装置の他に、レーザビームプリンタ(L
BP)、デジタルFAX、デジタルPPC等の情報処理
装置も含まれる。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an apparatus for supporting a spindle motor mounted on information equipment. The information equipment here includes a magnetic disk device (HDD / FD)
D), an optical disk device (CD / DVD), a magneto-optical disk device (ODD), a digital audio tape recorder (DAT) and other information storage devices using information recording carriers (disks and tapes), as well as laser beam printers ( L
(BP), digital facsimile, digital PPC and the like.

【0002】[0002]

【従来の技術】図16に、上記情報機器の一種であるレー
ザビームプリンタのポリゴンミラーモータ(スキャナー
モータ)を示す。このモータは、ハウジング(21)に挿
入、収容された回転軸(22)、回転軸(22)の外周面に
形成されたロータ(23)、ロータ(23)に対向配置され
たステータ(24)、回転軸(22)を回転自在に支承する
軸受(25)、および回転軸(22)に結合されたポリゴン
ミラー(26)(多面鏡)で構成される。ステータ(24)
に電流を通じると、ステータコイルの励磁力によりロー
タ(23)が回転し、この回転に伴って回転軸(22)に連
結されたポリゴンミラー(26)が回転する。レーザー光
源から所定の光学系を経てポリゴンミラー(26)に入射
したレーザ光は、ポリゴンミラー(26)により反射され
て感光ドラム面を走査する。
2. Description of the Related Art FIG. 16 shows a polygon mirror motor (scanner motor) of a laser beam printer which is a kind of the above information equipment. The motor includes a rotating shaft (22) inserted and accommodated in a housing (21), a rotor (23) formed on an outer peripheral surface of the rotating shaft (22), and a stator (24) opposed to the rotor (23). , A bearing (25) rotatably supporting the rotating shaft (22), and a polygon mirror (26) (polyhedral mirror) coupled to the rotating shaft (22). Stator (24)
When the current flows through the rotor, the rotor (23) rotates by the exciting force of the stator coil, and the polygon mirror (26) connected to the rotating shaft (22) rotates with this rotation. Laser light incident on the polygon mirror (26) from the laser light source via a predetermined optical system is reflected by the polygon mirror (26) and scans the photosensitive drum surface.

【0003】近年、各種情報機器のスピンドル用モータ
は、さらなる低コスト化、低騒音化、高性能化が求めら
れているが、これらの要求性能を決定付ける構成要素の
一つに当該モータの支持装置である軸受(25)がある。
従来では、この種の軸受として、ボールベアリング、流
体動圧軸受(例えば特開平8-247139号公報)、もしくは
焼結含油軸受が用いられている。
In recent years, spindle motors for various information devices have been required to be further reduced in cost, noise, and performance. One of the components determining these required performances is the support of the motor. There is a bearing (25) that is a device.
Conventionally, ball bearings, fluid dynamic pressure bearings (for example, JP-A-8-247139), or sintered oil-impregnated bearings have been used as this type of bearing.

【0004】[0004]

【発明が解決しようとする課題】しかし、ボールベアリ
ングを用いた場合には、以下の不具合がある。
However, the use of ball bearings has the following disadvantages.

【0005】この種のスピンドル用モータは8000
〜10000rpm程度、特にレーザビームプリンタで
は数万rpmの高速で使用される場合が多い。ボールベ
アリングには特有のレース音(ボールが軌道輪を転がる
音)や、保持器の自励振動による騒音発生があり、高速
で使用すると騒音レベルが大きく、低騒音化は限界にき
ている。
[0005] This type of spindle motor is 8000
In many cases, a laser beam printer is used at a high speed of about tens of thousands of rpm. Ball bearings have a unique race sound (sound of the ball rolling on the raceway) and noise generated by the self-excited vibration of the cage. When used at high speed, the noise level is large, and noise reduction has reached its limit.

【0006】上記スピンドル用モータには、軸振れ、
NRRO、ジッタ等に対処するために高回転精度が要求
される。ボールベアリングは、その構成部品が外輪、内
輪、ボール、保持器、シール、グリースと多く、その一
つ一つの機械精度やモータへの組み付け精度、与圧方法
など、回転精度に影響を与える因子が多く、複雑に関係
し合っている。従って、精度管理が難しく、管理できた
としてもコスト高となる。
The spindle motor has a shaft runout,
High rotational accuracy is required to deal with NRRO, jitter, and the like. Ball bearings are often composed of outer rings, inner rings, balls, cages, seals, and grease, and factors that affect rotational accuracy, such as the mechanical accuracy of each one, the accuracy of assembly to the motor, and the pressurization method. Many are intricately related. Therefore, precision control is difficult, and even if control is possible, the cost is high.

【0007】構成部品が多いため、製造コストも必然
的に高くなる。
[0007] Due to the large number of components, the manufacturing costs are necessarily high.

【0008】一方、流体動圧軸受の場合は、性能的には
低騒音であること、回転精度が高いこと、部品点数が少
なく管理しやすいこと、などからボールベアリングより
は優れているが、次のような欠点がある。
On the other hand, fluid dynamic pressure bearings are superior to ball bearings in terms of performance, such as low noise, high rotational accuracy, small number of parts and easy management. There are drawbacks such as:

【0009】軸にエッチング加工で動圧溝を形成する
と、高精度で溝加工が実施できるものの加工コストが極
めて高くなる。
When a dynamic pressure groove is formed on a shaft by etching, the groove processing can be performed with high precision, but the processing cost becomes extremely high.

【0010】特開平8-232958号公報のように、軸受を
軟質金属などで構成し、塑性加工を利用して軸受内周面
に動圧溝を形成する方法もあるが、塑性加工後に溝に隣
接する部分に素材の隆起が生じるので、これを除去する
ためにリーマ加工などを施す必要がある。このため、エ
ッチング加工よりは安価にできるが、依然としてコスト
が高い。
As disclosed in JP-A-8-232958, there is a method in which a bearing is made of a soft metal or the like and a dynamic pressure groove is formed on the inner peripheral surface of the bearing using plastic working. Since the material is raised in the adjacent portion, it is necessary to perform reaming or the like to remove the material. For this reason, it can be cheaper than the etching process, but the cost is still high.

【0011】わずか数ミクロンの軸受隙間に空気を混
入させずに潤滑油を充填する必要がある。このために特
殊な工程や特殊な治具を用意する必要があり、工程が煩
雑化して製造コストが高くなる。
It is necessary to fill the lubricating oil without mixing air into the bearing gap of only a few microns. For this purpose, it is necessary to prepare a special process and a special jig, so that the process is complicated and the manufacturing cost is increased.

【0012】わずか数ミクロンの軸受隙間に初期注入
した潤滑油のみで稼動させるので、油の蒸発や遠心力に
よる油の飛散などが生じた場合に油不足による潤滑不良
を招きやすく、耐久性が不安定である。
Since the operation is performed using only the lubricating oil initially injected into the bearing gap of only a few microns, when the oil evaporates or the oil is scattered due to centrifugal force, poor lubrication due to insufficient oil is likely to occur, resulting in poor durability. It is stable.

【0013】また、焼結含油軸受の場合には下記のよう
な欠点がある。
In the case of a sintered oil-impregnated bearing, there are the following disadvantages.

【0014】CD−ROMやDVD−ROM等のディス
クドライブモータでは、ディスクのアンバランス荷重に
より、軸受に振れ回り荷重が加わる。回転数が高く、振
れ回りが大きいと、回転に伴って荷重負荷域が周方向に
移動するため、油膜がこれに追従することができない。
また、焼結含油軸受では、回転に伴って空気も巻き込ま
れるが、高速回転下ではこの巻き込み量が多くなり、油
膜形成を阻害する。油膜形成が不十分である場合には、
金属接触が発生して摩耗が進行し、この摩耗によって振
れ回りが大きくなるため、さらに油膜の形成が困難にな
るという悪循環に陥る。
In a disk drive motor such as a CD-ROM or a DVD-ROM, a whirling load is applied to a bearing due to an unbalanced load of a disk. If the rotation speed is high and the whirling is large, the load area moves in the circumferential direction with the rotation, so that the oil film cannot follow this.
Further, in the sintered oil-impregnated bearing, air is also entrained with the rotation, but under high-speed rotation, the entrained amount increases, and the formation of an oil film is hindered. If the oil film formation is insufficient,
Abrasion proceeds due to metal contact, and whirling increases due to the abrasion. This causes a vicious cycle in which formation of an oil film becomes more difficult.

【0015】また、焼結含油軸受は真円軸受の一種であ
るから、HDD、LBPなどに用いると、ホワールなど
の不安定振動が発生する。
Further, since the sintered oil-impregnated bearing is a kind of perfect circular bearing, when it is used for HDD, LBP, etc., unstable vibration such as whirl occurs.

【0016】そこで、本発明はボールベアリング、流体
動圧軸受、あるいは焼結含油軸受が抱える前記問題点を
解決することを目的とする。
Accordingly, an object of the present invention is to solve the above-mentioned problems of a ball bearing, a fluid dynamic bearing, or a sintered oil-impregnated bearing.

【0017】[0017]

【課題を解決するための手段】[Means for Solving the Problems]

1.上記問題点を解決するものとして、本発明にかかる
情報機器のスピンドル用モータの支持装置は、情報機器
の回転要素が装着され、ロータとステータとの間に生じ
る励磁力で回転駆動される回転軸と、この回転軸を回転
自在に支持する軸受とを有するものにおいて、前記軸受
を、回転軸の外周面と軸受隙間を介して対向する軸受面
を有する多孔質の軸受本体と、軸受本体に含浸された潤
滑油又は潤滑グリースと、軸受本体の軸受面に傾斜して
設けられた動圧溝とを備え、軸受隙間に形成された潤滑
油の動圧油膜によって回転軸を非接触支持すると共に、
軸受面の開孔部を介して油を軸受本体の内部と軸受隙間
との間で循環させるものである(請求項1)。
1. In order to solve the above problems, a supporting device for a spindle motor of an information device according to the present invention includes a rotating shaft on which a rotating element of the information device is mounted and which is rotationally driven by an exciting force generated between a rotor and a stator. And a bearing that rotatably supports the rotating shaft, wherein the bearing is impregnated with a porous bearing body having a bearing surface facing an outer peripheral surface of the rotating shaft via a bearing gap, and a bearing body. A lubricating oil or lubricating grease, and a hydrodynamic groove provided on the bearing surface of the bearing body at an angle, and the rotating shaft is non-contact supported by a hydrodynamic oil film of lubricating oil formed in the bearing gap,
Oil is circulated between the inside of the bearing main body and the bearing gap through an opening in the bearing surface (claim 1).

【0018】前記情報機器をレーザビームプリンタと
し、回転要素をポリゴンミラーとすればポリゴンミラー
用のスピンドルモータとして、また、情報機器をディス
ク装置(磁気ディスク装置、光ディスク装置、光磁気デ
ィスク装置等)とし、回転要素を情報記録担体であるデ
ィスクを支持するためのターンテーブルとすれば、ディ
スクドライブ用のスピンドルモータとして用いることが
できる(請求項2および3)。
If the information device is a laser beam printer and the rotating element is a polygon mirror, the information device is a spindle motor for the polygon mirror, and the information device is a disk device (magnetic disk device, optical disk device, magneto-optical disk device, etc.). If the rotary element is a turntable for supporting a disk as an information recording carrier, it can be used as a spindle motor for a disk drive (claims 2 and 3).

【0019】この種の多孔質含油軸受では、軸の回転に
伴って軸受本体の内部の潤滑剤(潤滑油または潤滑グリ
ース)が軸受隙間に引き込まれる。この軸受隙間に引き
込まれた油は潤滑油膜を形成して回転軸を非接触支持す
る。この際、軸受面に複数の動圧溝を設けると、その動
圧作用によってさらに軸受本体内部の潤滑剤を軸受隙間
に引き込むと共に、軸受面に潤滑剤を押し込み続けるの
で、油膜力が高まり、軸受の剛性を向上させることがで
きる。もちろん正圧が発生すると、軸受面の表面に孔
(開孔部)があるため、潤滑剤は軸受本体の内部に還流
するが、次々と潤滑剤が押し込まれ続けるので油膜力お
よび剛性は高い状態で維持される。したがって高回転精
度が達成され、軸振れやNRRO、ジッタが低減され
る。また、軸と軸受本体が非接触で回転するために低騒
音であり、しかも低コストである。さらに、油膜内に気
泡が発生したり巻き込まれた場合でも、油が循環してい
るために気泡が軸受本体の内部に吸収され、軸受機能が
不安定化することもない。
In this type of porous oil-impregnated bearing, the lubricant (lubricating oil or lubricating grease) inside the bearing body is drawn into the bearing gap as the shaft rotates. The oil drawn into the bearing gap forms a lubricating oil film and supports the rotating shaft in a non-contact manner. At this time, if a plurality of dynamic pressure grooves are provided on the bearing surface, the lubricant inside the bearing body is further drawn into the bearing gap by the dynamic pressure action, and the lubricant is continuously pushed into the bearing surface. Rigidity can be improved. Of course, when a positive pressure is generated, the lubricant flows back into the bearing body because there are holes (openings) in the surface of the bearing surface, but the lubricant continues to be pushed in one after another, so the oil film force and rigidity are high. Is maintained in. Therefore, high rotational accuracy is achieved, and shaft runout, NRRO, and jitter are reduced. Further, since the shaft and the bearing main body rotate in a non-contact manner, low noise and low cost are obtained. Furthermore, even when bubbles are generated or entrained in the oil film, the oil is circulated so that the bubbles are absorbed into the inside of the bearing body and the bearing function is not destabilized.

【0020】なお、動圧溝は、コアロッドの外周面に動
圧溝形状に対応した形状の溝型(軸方向に傾斜した凹凸
で構成される)を形成し、このコアロッドの外周面に多
孔質材を供給し、多孔質材に圧迫力を加えてその内径部
をコアロッドの溝型に加圧することによって形成するこ
とができる。多孔質材を圧縮成形しても溝の隣接部分に
盛り上がりが生じることはないので、特開平8-232958号
のようなリーマ加工は不要であり、低コストに加工する
ことができる。
The dynamic pressure groove is formed on the outer peripheral surface of the core rod with a groove shape (consisting of unevenness inclined in the axial direction) corresponding to the shape of the dynamic pressure groove. It can be formed by supplying a material, applying a compressive force to the porous material, and pressing the inner diameter portion of the porous material against the groove of the core rod. Even if the porous material is compression-molded, no bulging occurs at the adjacent portion of the groove, so that the reamer processing as in JP-A-8-232958 is unnecessary, and the processing can be performed at low cost.

【0021】2.軸受面に、軸方向に対して一方に傾斜
した複数の動圧溝を円周方向に配列した第1動圧発生領
域と、第1動圧発生領域から軸方向に離隔し、軸方向に
対して他方に傾斜した複数の動圧溝を円周方向に配列し
た第2動圧発生領域と、第1および第2動圧発生領域の
間に位置する平滑部とを設けてもよい(請求項6)。
2. A first dynamic pressure generation region in which a plurality of dynamic pressure grooves inclined to one side with respect to the axial direction are arranged in the circumferential direction on the bearing surface, and are separated in the axial direction from the first dynamic pressure generation region, A second dynamic pressure generating region in which a plurality of dynamic pressure grooves inclined in the other direction are arranged in the circumferential direction, and a smooth portion located between the first and second dynamic pressure generating regions. 6).

【0022】このような構造にすると、 軸と軸受本体との間に相対回転が生じると、軸方向両
側の領域に逆向きに形成された動圧溝によって、油が平
滑部に集められるため、この部分での油膜圧力が高ま
る。 平滑部には動圧溝がないため、動圧溝が軸方向に連続
している場合に比べて軸受剛性が高くなる。従って、軸
振れを小さく抑えることができる。 開孔部のばらつきによる動圧発生の不均一性を避ける
ことができる。なお、本明細書において、「開孔部」と
は、多孔質体組織の細孔が外表面に開口した部分をい
う。
With such a structure, when relative rotation occurs between the shaft and the bearing main body, the oil is collected in the smooth portion by the dynamic pressure grooves formed in opposite regions on both sides in the axial direction. The oil film pressure in this part increases. Since the smooth portion has no dynamic pressure grooves, the bearing rigidity is higher than when the dynamic pressure grooves are continuous in the axial direction. Therefore, shaft runout can be suppressed to a small value. The nonuniformity of the dynamic pressure generation due to the variation of the opening can be avoided. In addition, in this specification, the "opening portion" refers to a portion where pores of a porous body structure are opened on the outer surface.

【0023】図1に示すように、円筒状の含油多孔質体
からなる軸受本体(1)の内径面に連続した動圧溝
(5:図面ではヘリングボーン型の動圧溝を例示する)
を設けると、軸方向断面での油の流れは図2のようにな
る。すなわち、軸(2)の回転に伴って、軸受本体
(1)の軸方向両側から油(O)がしみ出し、しみ出し
た油(O)が軸受隙間(4)の軸方向中央部に押し込ま
れて圧力(動圧)を生じ、この圧力によって軸(2)が
非接触支持される。
As shown in FIG. 1, a dynamic pressure groove (5: a herringbone type dynamic pressure groove is illustrated in the drawing) continuous with the inner diameter surface of a cylindrical bearing body (1) made of an oil-containing porous body.
Is provided, the oil flow in the axial cross section is as shown in FIG. That is, with the rotation of the shaft (2), the oil (O) exudes from both sides in the axial direction of the bearing body (1), and the exuded oil (O) is pushed into the axial center of the bearing gap (4). Pressure (dynamic pressure), which causes the shaft (2) to be supported in a non-contact manner.

【0024】ところが、このような圧力が発生すると、
油が表面の開孔部から軸受内部に還流する。また、一般
に軸受面の開孔部の分布を均一にすることは難しいた
め、軸受面には大きな孔や小さな孔が混在する。この傾
向は動圧溝を設ける場合のように軸受面に凹凸を設ける
とさらに顕著になる。例えば、動圧溝の途中に大きな孔
があった場合、油はその部分から軸受内部に還流するの
で、動圧作用は大幅に減じられる。従って、油の軸受内
部への還流度合いは各部で不均一とならざるを得ない。
この場合、油の逃げやすい部分では油膜ができにくく、
逃げにくい部分では油膜ができやすくなるため、図3
(軸受面の周方向における展開図を示す)に示すよう
に、軸受面(1a)における油膜(S)の分布が軸方向で
不均一になる。このままでは、真円軸受に比べれば不安
定振動(ホワールなど)の抑制には一定の効果を奏する
ものの、十分な動圧効果を発揮することはできない。
However, when such a pressure is generated,
Oil returns to the inside of the bearing from the opening on the surface. In addition, since it is generally difficult to make the distribution of apertures on the bearing surface uniform, large and small holes are mixed on the bearing surface. This tendency becomes more remarkable when unevenness is provided on the bearing surface as in the case of providing a dynamic pressure groove. For example, if there is a large hole in the middle of the dynamic pressure groove, the oil flows from that part back into the bearing, so that the dynamic pressure effect is greatly reduced. Therefore, the degree of recirculation of oil into the bearing must be non-uniform at each part.
In this case, it is difficult to form an oil film in the area where oil escapes easily,
The oil film tends to be formed in the hard to escape area.
As shown in the figure (showing a development of the bearing surface in the circumferential direction), the distribution of the oil film (S) on the bearing surface (1a) becomes uneven in the axial direction. In this state, although it has a certain effect in suppressing unstable vibration (such as whirl) as compared with a perfect circular bearing, it cannot exert a sufficient dynamic pressure effect.

【0025】また、動圧溝間(5)の背の部分(6)が
軸を支持する支持面となるが、軸受面の断面形状が凹凸
状であるため、支持面となる背の部分(6)の面積が小
さくなって軸受剛性が低下する。
The back portion (6) between the dynamic pressure grooves (5) serves as a support surface for supporting the shaft. However, since the cross-sectional shape of the bearing surface is uneven, the back portion (6) serves as the support surface. 6) The area is reduced, and the bearing rigidity is reduced.

【0026】これに対して、図4に示すように、第1及
び第2動圧発生領域(m1)(m2)の間に環状の平滑部
(n)を設けると、平滑部(n)においては開孔度合を
管理しやすくなる。また、両領域(m1)(m2)では溝方
向の油の流れが支配的であるが、平滑部(n)では円周
方向の油の流れも存在しており、たとえ大きな孔があっ
ても次々と油が補われるため、動圧効果が減じられる度
合がはるかに少ない。図5にこの場合の軸受面(1a)の
円周方向における展開図を示す。図示のように、油膜
(S)の広い部分と狭い部分との差が縮まり、油膜分布
が均一化するので、安定した動圧効果が得られる。ま
た、動圧溝(5)間の背の部分(6)のみならず、平滑
部(n)も軸を支持する支持面となるので、支持面の面
積が拡大し、軸受剛性を高めることができる。
On the other hand, as shown in FIG. 4, when an annular smooth portion (n) is provided between the first and second dynamic pressure generating regions (m1) and (m2), the smooth portion (n) is reduced. Makes it easier to control the degree of aperture. In both regions (m1) and (m2), oil flow in the groove direction is dominant, but in the smooth portion (n), oil flow in the circumferential direction also exists. As the oil is replenished one after another, the dynamic pressure effect is far less reduced. FIG. 5 shows a developed view of the bearing surface (1a) in this case in the circumferential direction. As shown in the drawing, the difference between the wide portion and the narrow portion of the oil film (S) is reduced, and the oil film distribution is made uniform, so that a stable dynamic pressure effect can be obtained. Further, not only the back portion (6) between the dynamic pressure grooves (5) but also the smooth portion (n) is a support surface for supporting the shaft, so that the area of the support surface is enlarged and the rigidity of the bearing can be increased. it can.

【0027】この場合の表面開孔率は、第1および第2
動圧発生領域(m1)(m2)で3〜40%の範囲、望まし
くは3〜20%の範囲に設定し、平滑部(n)で2〜3
0%の範囲、望ましくは2〜20%の範囲に設定するの
が良い。両領域での表面開孔率が3%未満では、軸受内
部から軸受すきまへの油の供給量が減って油不足、潤滑
不良となるおそれがあり、40%を越えると軸受内部に
逃げる油量が多くなって平滑部に油が供給されず、やは
り油不足、潤滑不良となるおそれがある。また、平滑部
での表面開孔率が2%未満では、生産が極めて困難とな
ってコストアップを招き、30%を越えると油の軸受内
部への逃げ量が多くなって潤滑不良を招くおそれがあ
る。
In this case, the surface porosity is determined by the first and second porosity.
The dynamic pressure generation region (m1) (m2) is set in the range of 3 to 40%, preferably 3 to 20%, and the smooth portion (n) is set in the range of 2 to 3%.
It is good to set it in the range of 0%, preferably in the range of 2 to 20%. If the surface porosity in both regions is less than 3%, the amount of oil supplied from inside the bearing to the bearing clearance may decrease, resulting in insufficient oil and poor lubrication. If it exceeds 40%, the amount of oil escaping into the bearing And the oil is not supplied to the smooth portion, which may result in insufficient oil and poor lubrication. If the surface porosity of the smooth portion is less than 2%, the production becomes extremely difficult and the cost increases. If it exceeds 30%, the amount of oil escaping into the bearing increases and lubrication failure may occur. There is.

【0028】また、平滑部(n)の軸受幅方向の比率r
は、軸受幅を1とした場合、r=0.1〜0.6の範
囲、望ましくは、r=0.2〜0.4の範囲に設定する
のが良い。軸受幅1に対して0.1未満では、平滑部
(n)を設けたことによる効果(動圧の増加、軸受剛性
の増加)が顕著に現れず、連続した溝の場合と変わらな
い。また、軸受け幅1に対してrを0.6より大きくす
ると、動圧溝が少なくなり、油を軸方向中央部に押し込
む力が弱くなって動圧効果が有効に発揮されない。
The ratio r of the smooth portion (n) in the bearing width direction
When the bearing width is 1, r is preferably set in a range of r = 0.1 to 0.6, and more preferably, in a range of r = 0.2 to 0.4. If the width is less than 0.1 with respect to the bearing width 1, the effects (increase in dynamic pressure and increase in bearing rigidity) provided by the smooth portion (n) do not appear remarkably, and are the same as in the case of continuous grooves. Further, when r is larger than 0.6 with respect to the bearing width 1, the dynamic pressure groove is reduced, the force for pushing the oil into the central portion in the axial direction is weakened, and the dynamic pressure effect is not effectively exhibited.

【0029】平滑部(n)での表面開孔率は、第1及び
第2領域(m1)(m2)での表面開孔率よりも小さくする
のがよい。これにより、動圧溝によって平滑部(n)に
集められた油が表面の開孔部から軸受内部に逃げにくく
なるので、発生する圧力を高めることができる。また、
軸を支持するための支持面の面積が十分に確保されるの
で、軸受剛性を高めることもできる。
The surface porosity in the smooth portion (n) is preferably smaller than the surface porosity in the first and second regions (m1) and (m2). This makes it difficult for the oil collected in the smooth portion (n) by the dynamic pressure grooves to escape from the opening on the surface into the inside of the bearing, thereby increasing the pressure generated. Also,
Since the area of the support surface for supporting the shaft is sufficiently ensured, the rigidity of the bearing can be increased.

【0030】3.ところで、ハウジングに2個の軸受
(多孔質含油軸受)を圧入する場合、2個の軸受の同軸
度、円筒度などの精度が問題となる。精度が悪い場合、
軸と軸受が線接触したり、最悪の場合には軸が2個の軸
受を貫通しない場合も起こり得る。
3. By the way, when two bearings (porous oil-impregnated bearings) are press-fitted into the housing, accuracy of the two bearings such as coaxiality and cylindricity becomes a problem. If the accuracy is poor,
In some cases, the shaft and the bearing make line contact, or in the worst case, the shaft does not pass through the two bearings.

【0031】この場合には、図6に示すように、軸受本
体(1)の軸方向の2個所以上に、図4に示す形状の軸
受面(1a)を設けるのがよい(請求項7)。この軸受
は、軸受本体(1)を1個とし、その内径面の複数箇所
(図面では2個所)に動圧軸受面(1a)を設けたもので
あるから、複数個の軸受を別体に配置したことに起因す
る精度不良等の上記弊害を回避することが可能となる。
In this case, as shown in FIG. 6, a bearing surface (1a) having the shape shown in FIG. 4 is preferably provided at two or more locations in the axial direction of the bearing body (1). . This bearing has a single bearing body (1) and a hydrodynamic bearing surface (1a) at a plurality of locations (two locations in the drawing) of the inner diameter surface. It is possible to avoid the above-mentioned adverse effects such as poor accuracy due to the arrangement.

【0032】この場合、動圧溝を転写するサイジングピ
ンの精度を良く仕上げておけば、軸受けの精度も良くな
る。サイジングピンの精度を必要とされる精度、例えば
真円度1μm以内、円筒度2μm以内などに仕上げるこ
とはさほど難しくなく、容易に達成できる。従って、組
立てが容易に行なえ、軸受も2個が1個になるので、低
コストに製作可能である。
In this case, if the precision of the sizing pin for transferring the dynamic pressure groove is finished well, the precision of the bearing is also improved. It is not so difficult to finish the sizing pin with required precision, for example, within a circularity of 1 μm or less and a cylindricity of 2 μm or less, and it can be easily achieved. Therefore, assembling can be performed easily, and the number of bearings is one, so that the bearing can be manufactured at low cost.

【0033】4.上述のようにポリゴンミラーモータは
高速で使用されるため、潤滑油や潤滑グリース等の潤滑
剤の粘度が高すぎると、所定の回転数まで上がらない、
発熱が大きい等の不具合を生じる。従って、最適な粘度
設定を行なう必要がある。40℃での動粘度を30cS
tより大きくすると、高速での駆動に支障を来す。逆に
5cStより小さくすると、動粘度が小さすぎて油が飛
散しやすく、耐久性に問題を生じる。以上から、軸受本
体に含浸させた潤滑油または潤滑グリースの基油の40
℃での動粘度は、5cSt以上、30cSt以下に設定
する(請求項4)。
4. Since the polygon mirror motor is used at a high speed as described above, if the viscosity of the lubricant such as lubricating oil or lubricating grease is too high, it does not increase to a predetermined rotational speed.
Problems such as large heat generation occur. Therefore, it is necessary to set the optimum viscosity. Kinematic viscosity at 40 ° C is 30 cS
If it is larger than t, it will hinder high-speed driving. Conversely, if it is smaller than 5 cSt, the kinematic viscosity is too small, and the oil is liable to be scattered, causing a problem in durability. Based on the above, the lubricating oil impregnated in the bearing body or 40 g
The kinematic viscosity at ° C is set to 5 cSt or more and 30 cSt or less (claim 4).

【0034】5.潤滑剤を潤滑グリースとすると、剪断
力を受ける軸受隙間以外では見かけの粘度が油に比べて
著しく大きくなり、周囲へ流出しにくくなる。しかし、
油に混合分散させる増稠剤の量を5wt%より大きくす
ると見かけの粘度が高すぎて軸受本体に含浸しにくくな
り、また含浸後に表面に付着した過剰なグリースの除去
作業が煩雑なものとなる。一方、増稠剤量を0.5wt
%より小さくすると、グリースとした効果が少なく、流
出度合いが油を使用する場合と変わらなくなる。以上か
ら、潤滑グリースの増稠剤濃度は0.5wt%以上、5
wt%以下とする(請求項5)。
5. When lubricating grease is used as the lubricant, the apparent viscosity becomes significantly larger than that of the oil except for the bearing gap receiving the shearing force, so that the lubricant does not easily flow out to the surroundings. But,
If the amount of the thickener mixed and dispersed in the oil is larger than 5 wt%, the apparent viscosity is too high to impregnate the bearing body, and the work of removing excess grease adhering to the surface after the impregnation becomes complicated. . On the other hand, 0.5 wt
If it is less than%, the effect of grease is small, and the degree of outflow is not different from that in the case of using oil. From the above, the thickener concentration of the lubricating grease is 0.5 wt% or more,
wt% or less (claim 5).

【0035】6.動圧溝(5)の溝深さ(h:図8参
照)と半径隙間(c)との比には最適な範囲があり、こ
の範囲外では充分な動圧効果が得られないと考えられ
る。この最適範囲を明らかにすべく、図7に示すLBP
実機モータの軸(2)の振れを測定する評価試験を行っ
た。回転数は10000rpm、試験雰囲気は常温常湿
である。なお、図7中の(7)はハウジング、(8)は
ロータ、(9)はスラスト受けである。ロータ(8)
は、図示しないステータと対向して配置され、このロー
タ(8)とステータとの間に生じる励磁力で軸(2)が
回転駆動される。
6. There is an optimal range for the ratio between the groove depth (h: see FIG. 8) of the dynamic pressure groove (5) and the radial gap (c), and it is considered that a sufficient dynamic pressure effect cannot be obtained outside this range. . To clarify this optimum range, the LBP shown in FIG.
An evaluation test for measuring the run-out of the shaft (2) of the actual motor was performed. The number of revolutions was 10,000 rpm, and the test atmosphere was room temperature and normal humidity. In FIG. 7, (7) is a housing, (8) is a rotor, and (9) is a thrust receiver. Rotor (8)
Is arranged to face a stator (not shown), and the shaft (2) is rotationally driven by an exciting force generated between the rotor (8) and the stator.

【0036】以上の条件の下、c/hに対する軸振れの
値をそれぞれプロットしたところ、図9に示す結果を得
た。図9より、c/hが0.5〜4.0の範囲内であれ
ば、軸振れは5μm以下になるが、0.5未満、あるい
は4.0より大きくなると5μm以上となる。従って、
高精度を維持するためには、動圧溝の溝深さhと軸受隙
間cとの比を、c/h=0.5〜4.0の範囲内とする
のが望ましい(請求項8)。
Under the above conditions, the values of the shaft runout with respect to c / h were plotted, and the results shown in FIG. 9 were obtained. According to FIG. 9, when c / h is in the range of 0.5 to 4.0, the shaft runout becomes 5 μm or less, but when it is less than 0.5 or larger than 4.0, it becomes 5 μm or more. Therefore,
In order to maintain high accuracy, it is desirable that the ratio between the groove depth h of the dynamic pressure groove and the bearing gap c be in the range of c / h = 0.5 to 4.0 (claim 8). .

【0037】図11に示すCD−ROM実機モータについ
ても同様の試験を行なった。回転数は8000rpm、
試験雰囲気は常温常湿であり、軸には500mg・cmのア
ンバランス荷重を付加している。図11中の(18)はター
ンテーブル、(19)はディスク、(20)はクランパであ
る。試験結果を図12に示す。図12より、c/hが0.5
〜4.0の範囲内であれば、軸振れは10m以下になる
が、0.5未満、あるいは4.0より大きくなると10
m以上となる。従って、高精度を維持するためには、上
記LBPの場合と同様に、c/h=0.5〜4.0の範
囲内とするのが望ましい。
The same test was performed on the actual CD-ROM motor shown in FIG. The rotation speed is 8000 rpm,
The test atmosphere was room temperature and normal humidity, and an unbalance load of 500 mg · cm was applied to the shaft. In FIG. 11, (18) is a turntable, (19) is a disk, and (20) is a clamper. The test results are shown in FIG. From FIG. 12, c / h is 0.5
If it is within the range of ~ 4.0, the shaft runout will be 10m or less, but if it is less than 0.5 or larger than 4.0, it will be 10m.
m or more. Therefore, in order to maintain high accuracy, it is desirable that c / h be in the range of 0.5 to 4.0 as in the case of the LBP.

【0038】7.軸受隙間(半径隙間:c)と回転軸の
半径(r)との比には最適な範囲があり、この範囲外で
は充分な動圧効果が得られないと考えられる。この最適
範囲を明らかにすべく、上記と同様に図7に示すLBP
実機モータの軸(2)の振れを測定する評価試験を行っ
た。回転数は10000rpm、試験雰囲気は常温常湿
である。
7. There is an optimal range for the ratio between the bearing clearance (radial clearance: c) and the radius (r) of the rotating shaft, and it is considered that a sufficient dynamic pressure effect cannot be obtained outside this range. To clarify this optimum range, the LBP shown in FIG.
An evaluation test for measuring the run-out of the shaft (2) of the actual motor was performed. The number of revolutions was 10,000 rpm, and the test atmosphere was room temperature and normal humidity.

【0039】以上の条件の下、c/rに対する軸振れの
値をそれぞれプロットしたところ、図10に示す結果を得
た。図10より、c/rが0.0005〜0.01の範囲
内であれば、軸振れは5μm以下になるが、0.000
5未満ではトルクが大きすぎて所定の回転数まで増速で
きなかった。また、0.01より大きくなると軸振れは
5μm以上となる。従って、高精度を維持するために
は、軸受隙間cと回転軸の半径rとの比を、c/r=
0.0005〜0.01の範囲内とするのが望ましい
(請求項9)。
Under the above conditions, the values of the shaft runout with respect to c / r were plotted, and the results shown in FIG. 10 were obtained. According to FIG. 10, when c / r is in the range of 0.0005 to 0.01, the shaft runout becomes 5 μm or less,
If it is less than 5, the torque is too large to increase the speed to a predetermined number of revolutions. On the other hand, when it is larger than 0.01, the shaft runout becomes 5 μm or more. Therefore, in order to maintain high accuracy, the ratio between the bearing clearance c and the radius r of the rotating shaft is determined by c / r =
It is desirable to be in the range of 0.0005 to 0.01 (claim 9).

【0040】図11に示すCD−ROM実機モータについ
ても同様の試験を行なった。回転数は8000rpm、
試験雰囲気は常温常湿であり、軸には500mg・cmのア
ンバランス荷重を付加している。試験結果を図13に示
す。図13より、c/rが0.0005〜0.003の範
囲内であれば、軸振れは10μm以下になるが、0.0
005未満では所定の回転数まで増速できず、また、
0.003より大きくなると軸振れは10μm以上とな
る。従って、高精度を維持するためには、軸受隙間cと
回転軸の半径rとの比は、上記LBPの場合と同様にc
/r=0.0005〜0.01の範囲内とするのが望ま
しく、その中でも特にc/r=0.0005〜0.00
3の範囲内とするのが好ましい。
The same test was performed on the actual CD-ROM motor shown in FIG. The rotation speed is 8000 rpm,
The test atmosphere was room temperature and normal humidity, and an unbalance load of 500 mg · cm was applied to the shaft. The test results are shown in FIG. As shown in FIG. 13, when c / r is in the range of 0.0005 to 0.003, the shaft runout becomes 10 μm or less.
If it is less than 005, the speed cannot be increased to a predetermined number of revolutions.
If it exceeds 0.003, the shaft runout will be 10 μm or more. Therefore, in order to maintain high accuracy, the ratio between the bearing clearance c and the radius r of the rotating shaft should be c as in the case of the LBP.
/R=0.005-0.01, and more preferably, c / r = 0.005-0.00.
It is preferably within the range of 3.

【0041】8.多孔質含油軸受は、通常無給油で使用
されるが、油の飛散、蒸発などにより油が徐々に消耗、
流出することが避けられない。その場合には、油膜形成
範囲が収縮するため、軸振れなどの回転精度の悪化を招
く。特に軸姿勢が縦型で使用される場合が多く、毎分1
万回転以上の高速で使用されるレーザビームプリンタ
(LBP)用モータでは、遠心力の作用で油が流出し易
く、油膜形成性等の潤滑性能の維持が難しかった。
8. Porous oil-impregnated bearings are usually used without lubrication, but oil gradually depletes due to oil scattering and evaporation.
Outflow is inevitable. In this case, the oil film formation range shrinks, which causes deterioration of rotation accuracy such as shaft runout. In particular, the shaft attitude is often used in a vertical type,
In a motor for a laser beam printer (LBP) used at a high speed of 10,000 rotations or more, oil easily flows out due to the action of centrifugal force, and it is difficult to maintain lubrication performance such as oil film forming properties.

【0042】ポリゴンミラーモータでは、油膜切れを生
じることは、高精度の回転を維持する上で、致命的とな
る。特に軸受本体を単独とした場合には、高速で回転す
ると、油は周囲の空気も巻き込んで軸受内部を循環する
ため、軸受隙間に空気が混入することがある。空気の混
入を防止するためには、軸受本体の内部に少しでも空孔
ができたら油を補給する部材(補油部材)を配置するの
が有効な対策となる。
In the polygon mirror motor, the occurrence of oil film shortage is fatal in maintaining high-precision rotation. In particular, when the bearing body is used alone, when rotating at a high speed, the oil also entrains the surrounding air and circulates inside the bearing, so that air may enter the bearing gap. In order to prevent air from being mixed in, an effective measure is to arrange a member (oil replenishing member) for replenishing oil when a small amount of holes are formed inside the bearing body.

【0043】このような補油部材としては、合成樹脂を
基材として潤滑油または潤滑グリースを配合あるいは含
浸させた固形状の樹脂潤滑組成物が考えられる。この樹
脂潤滑組成物は、例えば合成樹脂の粉末と潤滑油または
潤滑グリースを混合し、この混合物を焼成することによ
って得ることができ、これを軸受の軸受本体(軸受面を
除く)に接触させて配置すれば、軸受本体の油が流出し
ても、樹脂潤滑組成物から新たな油が毛細管現象によっ
て軸受本体の内部に補給されるので、回転軸との間に常
時良好な動圧油膜を形成することができる。この樹脂潤
滑組成物は、少なくとも20℃以上の温度では、静置し
た状態でも含有する油が表面に滲み出すような性状とす
るのが望ましい。
As such a refueling member, a solid resin lubricating composition in which a synthetic resin is used as a base material and a lubricating oil or lubricating grease is blended or impregnated therewith is considered. This resin lubricating composition can be obtained, for example, by mixing a synthetic resin powder and lubricating oil or lubricating grease, and baking the mixture, and bringing the mixture into contact with the bearing body (excluding the bearing surface) of the bearing. If it is arranged, even if oil from the bearing body flows out, new oil is replenished from the resin lubricating composition into the bearing body by capillary action, so that a good dynamic pressure oil film is always formed between the bearing and the rotating shaft. can do. It is desirable that the resin lubricating composition has such a property that at least at a temperature of 20 ° C. or more, the oil contained therein oozes out to the surface even in a stationary state.

【0044】具体的には、軸受本体が含有する潤滑油又
は当該潤滑油を基油とする潤滑グリース5〜99wt%
に、平均分子量が1×106 〜5×106 である超高分
子量ポリオレフィンの粉末95〜1wt%を混合すると
共に、超高分子量ポリオレフィン粉末のゲル化点以上、
かつ、潤滑グリースを用いた場合はグリースの滴点以下
の温度で分散保持させ、常温で冷却することによって成
形することができ、これによって低コストで量産性に富
み、取扱いが容易で組込み作業が簡単な樹脂潤滑組成物
が提供される。超高分子量ポリオレフィン粉末は、ポリ
エチレン、ポリプロピレン、ポリブデン若しくはこれら
の共重合体からなる粉末、またはそれぞれ単独の粉末を
配合した混合粉末である。
Specifically, lubricating oil contained in the bearing body or lubricating grease containing the lubricating oil as a base oil is 5 to 99 wt%.
Is mixed with 95 to 1 wt% of an ultrahigh molecular weight polyolefin powder having an average molecular weight of 1 × 10 6 to 5 × 10 6 , and a gel point of the ultrahigh molecular weight polyolefin powder or higher.
In addition, when lubricating grease is used, it can be dispersed and maintained at a temperature below the grease drop point, and can be molded by cooling at room temperature. A simple resin lubricating composition is provided. The ultra-high molecular weight polyolefin powder is a powder composed of polyethylene, polypropylene, polybutene or a copolymer thereof, or a mixed powder in which a single powder is blended.

【0045】その他にも、上述の樹脂潤滑組成物とフェ
ルト材とを一体に複合した潤滑性樹脂複合物、又は油を
含浸したフェルト材、の何れかよりなる補油部材を軸受
本体に接触させても同様の補油効果が得られる(請求項
10)。前記潤滑性樹脂複合物は、例えば合成樹脂の粉
末と潤滑油または潤滑グリースとを混合し、この混合物
をフェルトに含浸させて焼成することにより成形するこ
とができる。
In addition, a lubricating member made of either a lubricating resin composite in which the above-described resin lubricating composition and a felt material are integrally combined or a felt material impregnated with oil is brought into contact with the bearing body. The same bunkering effect can be obtained also by (claim 10). The lubricating resin composite can be formed, for example, by mixing a synthetic resin powder with lubricating oil or lubricating grease, impregnating the mixture with felt, and firing.

【0046】9.図14に示すように、軸受本体(1)の
軸方向一方側または両側に、油漏れ防止部材(11)を配
置し、この油漏れ防止部材(11)の内周面に、回転軸
(2)との相対回転に際して当該回転軸(2)との間の
隙間に軸受本体側へ流れる気流を発生させる気流発生溝
(12)を設けてもよい(請求項11、12)。油漏れ防
止部材(11)は、例えば軸受本体(1)と同等若しくは
これよりも僅かに大きい内径を有する円筒状とし、気流
発生溝(12)は、例えば複数の傾斜溝とする。
9. As shown in FIG. 14, an oil leakage prevention member (11) is arranged on one or both sides in the axial direction of the bearing body (1), and a rotating shaft (2) is provided on the inner peripheral surface of the oil leakage prevention member (11). ) May be provided with an airflow generating groove (12) for generating an airflow flowing toward the bearing main body in a gap between the rotary shaft (2) and the rotary shaft (2). The oil leakage prevention member (11) is, for example, cylindrical with an inner diameter equal to or slightly larger than the bearing body (1), and the airflow generation groove (12) is, for example, a plurality of inclined grooves.

【0047】この構成では、図15に示すように、回転軸
(2)と油漏れ防止部材(12)の内周面との間の隙間
(13)に、軸(2)の回転に伴って軸受本体(1)の方
向(図面下方)へ流れる気流が発生するので、軸受本体
(1)から油が漏れ出たとしても、軸(2)と油漏れ防
止部材(11)との間の隙間(13)を通過できない。この
作用によって油漏れが防止される。また、静止時には、
当該隙間(13)の毛細管力で油を保持するので、回転が
止まっても油が漏れ出ることはない。
In this configuration, as shown in FIG. 15, a gap (13) between the rotating shaft (2) and the inner peripheral surface of the oil leakage preventing member (12) is formed with the rotation of the shaft (2). Since an airflow is generated in the direction of the bearing body (1) (downward in the drawing), even if oil leaks from the bearing body (1), the gap between the shaft (2) and the oil leakage prevention member (11) (13) cannot pass. This action prevents oil leakage. Also, at rest,
Since the oil is held by the capillary force of the gap (13), the oil does not leak even if the rotation stops.

【0048】油漏れ防止部材(11)を多孔質体とし、且
つ隣接する軸受本体(1)との間に空間(14)を設けれ
ば、漏れ出てきた油を多孔質体からなる油漏れ防止部材
(11)に吸収することができ、また、静止時には油漏れ
防止部材(11)と軸(2)との間の油も吸収できるの
で、大気にさらされる部分が減り、油の蒸発や発塵を減
少させることができる。油漏れ防止部材(11)に吸収さ
れた油は、回転に伴って隙間(13)内に引き出され、気
流発生溝(12)の作用で生じた気流により空間(14)を
介して軸受本体(1)側に返される。
If the oil leakage prevention member (11) is made of a porous material and a space (14) is provided between the oil leakage prevention member (11) and the adjacent bearing body (1), the leaked oil can be leaked out of the porous material. The oil can be absorbed by the prevention member (11), and at rest, the oil between the oil leakage prevention member (11) and the shaft (2) can be absorbed. Dust generation can be reduced. The oil absorbed by the oil leakage prevention member (11) is drawn into the gap (13) with the rotation, and is caused to flow through the space (14) by the airflow generated by the action of the airflow generation groove (12). 1) Returned to the side.

【0049】また、油漏れ防止部材(11)の、軸受本体
(1)と反対側の端面(11a)及びチャンファ部(11
b)に目潰し加工を施し、この部分の表面開孔率が面積
比で5%以下、望ましくは完全に封孔すれば、油漏れ防
止部材(11)に吸収された油の蒸発、発塵をさらに減少
させることができる。
Further, the end face (11a) of the oil leakage prevention member (11) on the opposite side to the bearing body (1) and the chamfer portion (11
If b) is subjected to crushing and the surface porosity of this portion is 5% or less in area ratio, desirably completely sealed, evaporation and dust generation of the oil absorbed by the oil leakage prevention member (11) can be prevented. It can be further reduced.

【0050】[0050]

【発明の実施の形態】以下、本発明の一実施形態を説明
する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS One embodiment of the present invention will be described below.

【0051】図14は、本発明にかかるスピンドル用モー
タ(ポリゴンミラーモータ用)の支持装置の一例を示す
もので、一端が開放され、他端が閉塞されているハウジ
ング(7)内に、軸方向の2箇所にラジアル軸受面(1
7)を有する単体の軸受本体(1)を圧入固定し、この
軸受本体(1)の内周部に、ロータとポリゴンミラーと
を組み付けた回転軸(2)を挿入して多孔質含油軸受
(A)を構成したものである。
FIG. 14 shows an example of a supporting device for a spindle motor (for a polygon mirror motor) according to the present invention, wherein a shaft (7) in which one end is open and the other end is closed is provided. Radial bearing surface (1
7) is press-fitted and fixed, and a rotating shaft (2) in which a rotor and a polygon mirror are assembled is inserted into the inner peripheral portion of the bearing body (1) to insert a porous oil-impregnated bearing ( A).

【0052】軸受本体(1)の下側端面とスラスト板
(9)の上面との間の空間(15)には、油を含浸したフ
ェルト材からなる補油部材(3)が軸受本体(1)と接
触させて配置される。軸受本体(1)の上方には、僅か
な空間(14)を介して円筒状の油漏れ防止部材(11)が
配置され、この油漏れ防止部材(11)によってハウジン
グ(7)の上端開口部が閉塞されている。油漏れ防止部
材(11)は多孔質体で形成されており、潤滑油などは含
浸されていない。
In a space (15) between the lower end surface of the bearing body (1) and the upper surface of the thrust plate (9), a refueling member (3) made of an oil-impregnated felt material is provided. ). Above the bearing body (1), a cylindrical oil leakage prevention member (11) is disposed via a small space (14), and the oil leakage prevention member (11) is used to open the upper end opening of the housing (7). Is closed. The oil leakage prevention member (11) is formed of a porous body, and is not impregnated with lubricating oil or the like.

【0053】ハウジング(7)底部の空間(15)は、空
気の流通路(16)を介してハウジング外部と連通してい
る。この空気流通路(16)は、空気抜きとして機能する
もので、例えば軸受本体(1)及び油漏れ防止部材(1
1)の外形面の一部に軸方向の切欠きを設けることによ
り形成される。これにより、組立時に軸(2)が挿入し
易くなり、また、回転時には発熱によって内圧が高ま
り、軸(ロータ)が押し上げられて回転が不安定となる
場合があるが、かかる事態も防止可能となる。
The space (15) at the bottom of the housing (7) communicates with the outside of the housing via an air flow passage (16). The air flow passage (16) functions as an air vent, and is, for example, a bearing body (1) and an oil leakage prevention member (1).
It is formed by providing a notch in the axial direction on a part of the outer surface of 1). As a result, the shaft (2) can be easily inserted at the time of assembling, and the internal pressure increases due to heat generation at the time of rotation, and the shaft (rotor) may be pushed up to make the rotation unstable, but such a situation can be prevented. Become.

【0054】軸受本体(1)の2つの軸受面(17)及び
油漏れ防止部材(11)の内周面には、複数の傾斜した溝
(動圧溝5及び気流発生溝12)が設けられる。これらの
溝は、図示したへリングボーン形の他、スパイラル形と
することもできる。軸受本体(1)の2つの軸受面(1
7)には、軸方向に対して一方に傾斜した複数の動圧溝
(5)を円周方向に配列した第1動圧発生領域(m1)
と、第1動圧発生領域(m1)から軸方向に離隔し、軸方
向に対して他方に傾斜した複数の動圧溝(5)を円周方
向に配列した第2動圧発生領域(m2)と、両領域(m1)
(m2)間に位置する平滑部(n)とがそれぞれ形成され
ている。
On the two bearing surfaces (17) of the bearing body (1) and the inner peripheral surface of the oil leakage preventing member (11), a plurality of inclined grooves (dynamic pressure grooves 5 and airflow generating grooves 12) are provided. . These grooves may have a spiral shape in addition to the herringbone shape illustrated. Two bearing surfaces (1
7) In the first dynamic pressure generation region (m1), a plurality of dynamic pressure grooves (5) inclined to one side with respect to the axial direction are arranged in the circumferential direction.
And a second dynamic pressure generation region (m2) in which a plurality of dynamic pressure grooves (5) that are axially separated from the first dynamic pressure generation region (m1) and are inclined in the other direction with respect to the axial direction are arranged in the circumferential direction. ) And both areas (m1)
(M2) and a smooth portion (n) located between them.

【0055】なお、軸受本体(1)及び油漏れ防止部材
(11)の成形材料は、特に限定されるものではなく、粉
末冶金、鋳鉄、合成樹脂、セラミックなどを焼結または
発泡成形することにより、通気孔を有する周知の多孔質
体状に成形される。
The molding material of the bearing body (1) and the oil leakage preventing member (11) is not particularly limited, and may be obtained by sintering or foaming powder metallurgy, cast iron, synthetic resin, ceramic, or the like. It is formed into a well-known porous body having vent holes.

【0056】軸受本体(1)に含浸させる潤滑油あるい
は潤滑グリースは、特に限定されるものではないが、潤
滑油としては蒸発量が少なく、酸化安定度に優れ、攪拌
時に泡の発生が少ないポリαオレフィン系、あるいはエ
ステル系合成油(ジエステル、ポリオールエステル系合
成油)を使用するのが望ましい。また、潤滑グリースの
増稠剤としては、取り扱いが簡便で生産性に優れるリチ
ウム系増稠剤を使用するのが望ましい。潤滑油または潤
滑グリースの基油の40℃での動粘度は、5cSt以
上、30cSt以下に設定される。潤滑グリースを使用
する場合は、増稠剤濃度が0.5wt%以上、5wt%
以下のものが選択される。
The lubricating oil or lubricating grease to be impregnated into the bearing body (1) is not particularly limited. However, the lubricating oil has a small amount of evaporation, is excellent in oxidative stability, and has little foaming during stirring. It is desirable to use α-olefin or ester synthetic oils (diester, polyol ester synthetic oils). As a thickener for lubricating grease, it is desirable to use a lithium-based thickener which is easy to handle and has excellent productivity. The kinematic viscosity at 40 ° C. of the lubricating oil or the base oil of the lubricating grease is set to 5 cSt or more and 30 cSt or less. When using lubricating grease, the thickener concentration should be 0.5 wt% or more and 5 wt%
The following are selected:

【0057】動圧溝の溝深さ(h)、軸受隙間(c)、
回転軸の半径(r)のそれぞれの比は、c/h=0.5
〜4.0、 c/r=0.0005〜0.01に設定さ
れている。
The groove depth (h) of the dynamic pressure groove, the bearing gap (c),
Each ratio of the radius (r) of the rotation axis is c / h = 0.5
44.0, c / r = 0.0005 to 0.01.

【0058】このような軸受装置は、レーザビームプリ
ンタのポリゴンミラーモータだけでなく、回転軸(2)
にディスク(19)を支持するためのターンテーブル(1
8)を装着したディスクドライブ用のスピンドルモータ
(CD−ROMモータ、DVDROMモータ等)にも適
用可能である。その他にも軸流ファンや換気扇、扇風機
などの電気製品、自動車用電装品など、各種のモータに
広範囲に利用することができ、軸受部周辺を油で汚染さ
せることなく、特にその耐久性を著しく向上させること
ができる。
Such a bearing device is not only a polygon mirror motor of a laser beam printer, but also a rotary shaft (2).
Turntable (1) to support the disc (19)
The present invention can also be applied to a spindle motor (CD-ROM motor, DVDROM motor, etc.) for a disk drive equipped with 8). In addition, it can be used for a wide range of motors, such as electric products such as axial fans, ventilation fans, and electric fans, and electrical components for automobiles. Can be improved.

【0059】[0059]

【発明の効果】以上のように、本発明によれば、情報機
器のスピンドル用モータの支持装置として、 動圧作用で剛性が高くなり、軸振れ、NRRO、ジッ
タなどの回転精度が向上する、 動圧溝の形状、構造、潤滑剤の動粘度、増稠剤量、溝
深さと軸受隙間の比、軸受隙間と回転軸の半径との比を
最適としたので、低トルクでより軸受剛性が高くなる、 補油部材を軸受に接するように配置したので、常に良
好な油膜が形成され、耐久寿命が大幅に向上する、等の
効果が得られる。
As described above, according to the present invention, as a support device for a spindle motor of an information device, rigidity is increased by dynamic pressure action, and rotation accuracy such as shaft runout, NRRO, and jitter is improved. The shape and structure of the dynamic pressure groove, the kinematic viscosity of the lubricant, the amount of the thickener, the ratio of the groove depth to the bearing clearance, and the ratio of the bearing clearance to the radius of the rotating shaft have been optimized. Since the refueling member is arranged so as to be in contact with the bearing, a favorable oil film is always formed and the durability life is greatly improved.

【図面の簡単な説明】[Brief description of the drawings]

【図1】連続したへリングボーン溝を有する多孔質含油
軸受の軸方向の断面図である。
FIG. 1 is an axial sectional view of a porous oil-impregnated bearing having a continuous herringbone groove.

【図2】へリングボーン溝を有する多孔質含油軸受にお
ける油の動きを示す軸方向断面図である。
FIG. 2 is an axial sectional view showing movement of oil in a porous oil-impregnated bearing having a herringbone groove.

【図3】図1に示す多孔質含油軸受における軸受面の円
周方向での展開図である。
FIG. 3 is a developed view of a bearing surface of the porous oil-impregnated bearing shown in FIG. 1 in a circumferential direction.

【図4】本発明にかかる多孔質含油軸受の軸方向の断面
図である。
FIG. 4 is an axial sectional view of the porous oil-impregnated bearing according to the present invention.

【図5】本発明品における軸受面の円周方向での展開図
である。
FIG. 5 is a developed view of a bearing surface in a circumferential direction in the product of the present invention.

【図6】本発明にかかる多孔質含油軸受の軸方向の断面
図である。
FIG. 6 is an axial sectional view of the porous oil-impregnated bearing according to the present invention.

【図7】LBP実機モータを使用した評価試験機の軸方
向の断面図である。
FIG. 7 is an axial cross-sectional view of an evaluation tester using an actual LBP motor.

【図8】動圧型多孔質含油軸受の半径方向断面図であ
る。
FIG. 8 is a radial cross-sectional view of a dynamic pressure type porous oil-impregnated bearing.

【図9】c/hと軸振れとの関係を求める評価試験(図
7)の結果を示す図である。
FIG. 9 is a diagram showing the results of an evaluation test (FIG. 7) for determining the relationship between c / h and shaft runout.

【図10】c/rと軸振れとの関係を求める評価試験(図
7)の結果を示す図である。
FIG. 10 is a diagram showing the results of an evaluation test (FIG. 7) for determining the relationship between c / r and shaft runout.

【図11】CD−ROM実機モータを使用した評価試験機
の軸方向の断面図である。
FIG. 11 is an axial sectional view of an evaluation tester using a CD-ROM actual motor.

【図12】c/hと軸振れとの関係を求める評価試験(図
11)の結果を示す図である。
FIG. 12 is an evaluation test for determining the relationship between c / h and shaft runout (FIG.
It is a figure which shows the result of 11).

【図13】c/rと軸振れとの関係を求める評価試験(図
11)の結果を示す図である。
FIG. 13 is an evaluation test for determining a relationship between c / r and shaft runout (FIG.
It is a figure which shows the result of 11).

【図14】本発明にかかる軸受装置の一実施形態を示す軸
方向断面図である。
FIG. 14 is an axial sectional view showing one embodiment of the bearing device according to the present invention.

【図15】油漏れ防止部材を有する多孔質含油軸受におけ
る油の動きを示す軸方向断面図である。
FIG. 15 is an axial sectional view showing movement of oil in a porous oil-impregnated bearing having an oil leakage prevention member.

【図16】ポリゴンミラーモータの断面図である。FIG. 16 is a sectional view of a polygon mirror motor.

【符号の説明】 1 軸受本体 2 回転軸 3 補油部材 4 軸受隙間 5 動圧溝 7 ハウジング 8 ロータ 11 油漏れ防止部材 12 気流発生溝 17 軸受面 18 ターンテーブル 26 ポリゴンミラー A 多孔質含油軸受 m1 第1動圧発生領域 m2 第2動圧発生領域 n 平滑部[Description of Signs] 1 Bearing main body 2 Rotary shaft 3 Refueling member 4 Bearing gap 5 Dynamic pressure groove 7 Housing 8 Rotor 11 Oil leakage prevention member 12 Air flow generation groove 17 Bearing surface 18 Turntable 26 Polygon mirror A Porous oil-impregnated bearing m1 First dynamic pressure generation area m2 Second dynamic pressure generation area n Smoothing section

Claims (12)

【特許請求の範囲】[Claims] 【請求項1】 情報機器の回転要素が装着され、ロータ
とステータとの間に生じる励磁力で回転駆動される回転
軸と、この回転軸を回転自在に支持する軸受とを有する
スピンドル用モータの支持装置において、 前記軸受が、回転軸の外周面と軸受隙間を介して対向す
る軸受面を有する多孔質の軸受本体と、軸受本体に含浸
された潤滑油又は潤滑グリースと、軸受本体の軸受面に
傾斜して設けられた動圧溝とを備え、軸受隙間に形成さ
れた潤滑油の動圧油膜によって回転軸を非接触支持する
と共に、軸受面の開孔部を介して油を軸受本体の内部と
軸受隙間との間で循環させるものである情報機器のスピ
ンドル用モータの支持装置。
1. A spindle motor, comprising: a rotating shaft on which a rotating element of an information device is mounted and driven to rotate by an exciting force generated between a rotor and a stator; and a bearing rotatably supporting the rotating shaft. In the supporting device, the bearing is a porous bearing body having a bearing surface opposed to an outer peripheral surface of a rotating shaft via a bearing gap, a lubricating oil or lubricating grease impregnated in the bearing body, and a bearing surface of the bearing body. A dynamic pressure groove provided in a slanted manner, the rotary shaft is supported in a non-contact manner by a dynamic pressure oil film of lubricating oil formed in the bearing gap, and oil is supplied to the bearing body through an opening in the bearing surface. A support device for a spindle motor of an information device that circulates between the inside and a bearing gap.
【請求項2】 前記情報機器がレーザビームプリンタで
あり、かつ前記回転要素がポリゴンミラーである請求項
1記載の情報機器のスピンドル用モータの支持装置。
2. The apparatus according to claim 1, wherein the information device is a laser beam printer, and the rotating element is a polygon mirror.
【請求項3】 前記情報機器がディスク装置であり、か
つ前記回転要素が、情報記録担体であるディスクを支持
するためのターンテーブルである請求項1記載の情報機
器のスピンドル用モータの支持装置。
3. A supporting device for a spindle motor of an information device according to claim 1, wherein said information device is a disk device, and said rotating element is a turntable for supporting a disk as an information recording carrier.
【請求項4】 軸受本体に含浸させた潤滑油または潤滑
グリースの基油の40℃での動粘度が、5cSt以上、
30cSt以下である請求項1または2記載の情報機器
のスピンドル用モータの支持装置。
4. The kinematic viscosity at 40 ° C. of a lubricating oil or a lubricating grease base oil impregnated in a bearing body is 5 cSt or more.
The support device for a spindle motor of an information device according to claim 1 or 2, wherein the support speed is 30 cSt or less.
【請求項5】 前記潤滑グリースの増稠剤濃度が0.5
wt%以上、5wt%以下であることを特徴とする請求
項1、2または4記載の情報機器のスピンドル用モータ
の支持装置。
5. The lubricating grease having a thickener concentration of 0.5
5. The supporting device for a spindle motor of an information device according to claim 1, wherein the content is not less than 5 wt% and not more than 5 wt%.
【請求項6】 軸受面が、軸方向に対して一方に傾斜し
た複数の動圧溝を円周方向に配列した第1動圧発生領域
と、第1動圧発生領域から軸方向に離隔し、軸方向に対
して他方に傾斜した複数の動圧溝を円周方向に配列した
第2動圧発生領域と、第1および第2動圧発生領域の間
に位置する平滑部とを有する請求項1乃至5何れか記載
の情報機器のスピンドル用モータの支持装置。
6. A first dynamic pressure generating region in which a plurality of dynamic pressure grooves inclined in one direction with respect to the axial direction are arranged in a circumferential direction, and a bearing surface is axially separated from the first dynamic pressure generating region. A second dynamic pressure generating region in which a plurality of dynamic pressure grooves inclined in the other direction with respect to the axial direction are arranged in a circumferential direction, and a smooth portion located between the first and second dynamic pressure generating regions. Item 6. A support device for a spindle motor of an information device according to any one of Items 1 to 5.
【請求項7】 前記軸受面を軸受本体の軸方向2箇所以
上に設けた請求項1乃至6何れか記載の情報機器のスピ
ンドル用モータの支持装置。
7. The support device for a spindle motor of an information device according to claim 1, wherein the bearing surface is provided at two or more positions in the axial direction of the bearing body.
【請求項8】 動圧溝の溝深さhと軸受隙間cとの比
が、 c/h=0.5〜4.0 であることを特徴とする請求項1乃至7何れか記載の情
報機器のスピンドル用モータの支持装置。
8. The information according to claim 1, wherein the ratio of the groove depth h of the dynamic pressure groove to the bearing gap c is c / h = 0.5 to 4.0. Support device for motor for spindle of equipment.
【請求項9】 軸受隙間cと回転軸の半径rとの比が、 c/r=0.0005〜0.01 であることを請求項1乃至8何れか記載の情報機器のス
ピンドル用モータの支持装置。
9. The spindle motor for information equipment according to claim 1, wherein the ratio of the bearing clearance c to the radius r of the rotating shaft is c / r = 0.0005 to 0.01. Support device.
【請求項10】 合成樹脂を基材として潤滑油または潤
滑グリースを配合あるいは含浸させた樹脂潤滑組成物、
前記樹脂潤滑組成物とフェルト材とを一体に複合した潤
滑性樹脂複合物、又は油を含浸したフェルト材の何れか
よりなる補油部材を、請求項1乃至9何れか記載の軸受
本体に接触させた情報機器のスピンドル用モータの支持
装置。
10. A resin lubricating composition comprising a synthetic resin as a base material and blended or impregnated with lubricating oil or lubricating grease,
A lubricating resin composite in which the resin lubricating composition and a felt material are integrally composited, or an oil-impregnated oil-impregnated oil replenishing member is in contact with the bearing body according to any one of claims 1 to 9. Support device for spindle motor of information equipment.
【請求項11】 請求項1乃至9何れか記載の軸受本体
の軸方向一方側または両側に油漏れ防止部材を配置し、
この油漏れ防止部材の内周面に、回転軸の回転に際して
当該回転軸との間の隙間に軸受本体側へ流れる気流を発
生させる気流発生溝を設けた情報機器のスピンドル用モ
ータの支持装置。
11. An oil leakage prevention member is disposed on one or both sides in the axial direction of the bearing body according to claim 1,
A support device for a spindle motor of an information device, wherein an airflow generating groove for generating an airflow flowing toward a bearing body side in a gap between the rotary shaft and the rotary shaft when the rotary shaft rotates is provided on an inner peripheral surface of the oil leakage prevention member.
【請求項12】 軸受本体の軸方向一方側または両側に
油漏れ防止部材を配置し、この油漏れ防止部材の内周面
に、回転軸の回転に際して当該回転軸との間の隙間に軸
受本体側へ流れる気流を発生させる気流発生溝を設けた
請求項10記載の情報機器のスピンドル用モータの支持
装置。
12. An oil leakage preventing member is disposed on one or both sides of the bearing body in the axial direction, and a bearing body is provided on an inner peripheral surface of the oil leakage preventing member in a gap between the rotating shaft and the rotating shaft. The support device for a spindle motor of an information device according to claim 10, further comprising an airflow generation groove for generating an airflow flowing to the side.
JP24298297A 1997-09-08 1997-09-08 Support device for spindle motor of information equipment Expired - Lifetime JP3908834B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP24298297A JP3908834B2 (en) 1997-09-08 1997-09-08 Support device for spindle motor of information equipment
NL1010020A NL1010020C2 (en) 1997-09-08 1998-09-07 Spindle motor and device for supporting the rotating shaft of a spindle motor.
KR1019980036999A KR100549102B1 (en) 1997-09-08 1998-09-08 Spindle motor and rotating shaft supporting device of information equipment
US09/149,437 US6023114A (en) 1997-09-08 1998-09-08 Spindle motor and rotating shaft supporting device for spindle motor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24298297A JP3908834B2 (en) 1997-09-08 1997-09-08 Support device for spindle motor of information equipment

Publications (2)

Publication Number Publication Date
JPH1182479A true JPH1182479A (en) 1999-03-26
JP3908834B2 JP3908834B2 (en) 2007-04-25

Family

ID=17097144

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24298297A Expired - Lifetime JP3908834B2 (en) 1997-09-08 1997-09-08 Support device for spindle motor of information equipment

Country Status (1)

Country Link
JP (1) JP3908834B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6779924B2 (en) 2001-09-25 2004-08-24 Koyo Seiko Co., Ltd. Dynamic pressure bearing and method of manufacturing the same
JP2007198420A (en) * 2006-01-24 2007-08-09 Nippon Densan Corp Method for manufacturing bearing unit and motor mounting the bearing unit
US7525226B2 (en) 2005-01-28 2009-04-28 Victor Company Of Japan, Limited Dynamic pressure bearing and motor using the same

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6779924B2 (en) 2001-09-25 2004-08-24 Koyo Seiko Co., Ltd. Dynamic pressure bearing and method of manufacturing the same
US6904682B2 (en) 2001-09-25 2005-06-14 Koyo Seiko Co., Ltd. Dynamic pressure bearing and method of manufacturing the same
US7525226B2 (en) 2005-01-28 2009-04-28 Victor Company Of Japan, Limited Dynamic pressure bearing and motor using the same
JP2007198420A (en) * 2006-01-24 2007-08-09 Nippon Densan Corp Method for manufacturing bearing unit and motor mounting the bearing unit

Also Published As

Publication number Publication date
JP3908834B2 (en) 2007-04-25

Similar Documents

Publication Publication Date Title
US6023114A (en) Spindle motor and rotating shaft supporting device for spindle motor
US5941646A (en) Hydrodynamic type porous oil-impregnated bearing and bearing device
US5834870A (en) Oil impregnated porous bearing units and motors provided with same
US6789320B2 (en) Method of producing a sintered oil retaining bearing
JP2001271828A (en) Dynamic pressure type oil-impregnated sintered bearing unit
JP3602317B2 (en) Dynamic pressure type porous oil-impregnated bearing unit
JP3782889B2 (en) Hydrodynamic sintered oil-impregnated bearing
JP3908834B2 (en) Support device for spindle motor of information equipment
JP3799176B2 (en) Hydrodynamic sintered oil-impregnated bearing unit
JP3607480B2 (en) Dynamic pressure type porous oil-impregnated bearing and bearing device
JPH11182551A (en) Manufacture of hydrodynamic porous oil retaining bearing
JP2004353871A (en) Hydrodynamic type porous oil-impregnated bearing
JPH11191944A (en) Spindle motor and rotary shaft supporting device of laser beam printer
JPH11191943A (en) Spindle motor and rotary shaft supporting device of optical disc device
JP2000035041A (en) Dynamic pressure type sintered and oil retaining bearing unit
JP4263144B2 (en) Spindle motor
JP4795116B2 (en) Hydrodynamic bearing device
JP3602325B2 (en) Dynamic pressure type porous oil-impregnated bearing
JP2003065324A (en) Hydrodyanamic type bearing apparatus
JP4024007B2 (en) Hydrodynamic bearing unit
JP2005195180A (en) Dynamic oil-impregnated sintered bearing unit
JP3665606B2 (en) Dynamic pressure type porous oil-impregnated bearing
JP2005188751A (en) Dynamic pressure type sintered oil retaining bearing unit
JP2001124057A (en) Dynamic pressure bearing
JP2005233428A (en) Manufacturing method of oil-impregnated sintered bearing

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20040526

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040726

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040830

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20040830

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20041004

A912 Removal of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20050304

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061122

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070119

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110126

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110126

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120126

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120126

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130126

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130126

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140126

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term