JP2000035041A - Dynamic pressure type sintered and oil retaining bearing unit - Google Patents

Dynamic pressure type sintered and oil retaining bearing unit

Info

Publication number
JP2000035041A
JP2000035041A JP10205508A JP20550898A JP2000035041A JP 2000035041 A JP2000035041 A JP 2000035041A JP 10205508 A JP10205508 A JP 10205508A JP 20550898 A JP20550898 A JP 20550898A JP 2000035041 A JP2000035041 A JP 2000035041A
Authority
JP
Japan
Prior art keywords
oil
bearing
dynamic pressure
housing
shaft
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP10205508A
Other languages
Japanese (ja)
Inventor
Natsuhiko Mori
夏比古 森
Kazuo Okamura
一男 岡村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NTN Corp
Original Assignee
NTN Corp
NTN Toyo Bearing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NTN Corp, NTN Toyo Bearing Co Ltd filed Critical NTN Corp
Priority to JP10205508A priority Critical patent/JP2000035041A/en
Publication of JP2000035041A publication Critical patent/JP2000035041A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Sliding-Contact Bearings (AREA)

Abstract

PROBLEM TO BE SOLVED: To surely prevent the outflow and splash of oil. SOLUTION: A seal 13, equipped with an oil absorbing member 13a for absorbing and catching oil leaked from a dynamic pressure type sintered and oil retaining bearing 1a, is provided on the opening part of a housing 1b; and is composed of a seal main body 13b fixed to the housing 1b, and an oil absorbing member 13a composed of a fiber material or a porous body. The oil absorving member 13a is arranged in a space between the seal main body 13b fixed to the housing 1b and the opening side end surface of the bearing 1a.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、高回転精度、高速
安定性、高耐久性などに優れた特徴を有する動圧型焼結
含油軸受ユニットに関し、特に情報機器におけるスピン
ドルモータ、例えばDVD−ROM、DVD−RAMな
どの光ディスク、MOなどの光磁気ディスク、HDDな
どの磁気ディスクを駆動するモータ、あるいはレーザビ
ームプリンタ(LBP)のポリゴンスキャナモータなど
のスピンドル支持用として好適なものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a hydrodynamic sintered oil-impregnated bearing unit having features such as high rotational accuracy, high-speed stability and high durability, and more particularly to a spindle motor for information equipment, for example, a DVD-ROM, It is suitable for supporting a spindle of an optical disk such as a DVD-RAM, a magneto-optical disk such as an MO, a magnetic disk such as an HDD, or a polygon scanner motor of a laser beam printer (LBP).

【0002】[0002]

【従来の技術】上記情報機器類のスピンドルモータに
は、高回転精度の他、さらなる高速化、低コスト化、低
騒音化などが求められているが、これらの要求性能を決
定づける構成要素の一つにモータのスピンドルを支持す
る軸受がある。従来では、この軸受としてボールベアリ
ングか一般的な真円型の焼結含油軸受が用いられてい
る。
2. Description of the Related Art In addition to high rotational accuracy, higher speed, lower cost, lower noise, and the like are required for spindle motors of the above information devices. One of the components that determine these required performances is as follows. One type is a bearing that supports a motor spindle. Conventionally, a ball bearing or a general round-shaped sintered oil-impregnated bearing is used as this bearing.

【0003】しかしながら、この種のスピンドルモータ
は8000〜10000rpm程度、特にLBPに使用
されるポリゴンスキャナモータでは、数万rpmの高速
で使用される場合が多く、また、軸振れ、NRRO(非
繰り返し回転精度)、ジッタなどの回転精度も考慮する
必要があるため、ボールベアリングや焼結含油軸受では
上記要求性能を満足することが難しくなっている。
However, this kind of spindle motor is often used at a high speed of about 8,000 to 10,000 rpm, especially a polygon scanner motor used for LBP at tens of thousands of rpm, and has a shaft runout, NRRO (non-repetitive rotation). It is necessary to consider rotational accuracy such as accuracy) and jitter, so that it is difficult to satisfy the required performance in ball bearings and sintered oil-impregnated bearings.

【0004】以上の観点から、近年ではこの種の軸受と
して動圧型の焼結含油軸受を使用することが検討されて
いる。この軸受は、焼結金属製の軸受本体に潤滑油また
は潤滑グリースを含浸させ、軸受面に設けた動圧溝の動
圧効果で軸受隙間に潤滑油膜を形成してスピンドルを非
接触支持するもので、低コストでありながら上記要求性
能にも十分に対応できる。
In view of the above, the use of a dynamic pressure type sintered oil-impregnated bearing has been studied in recent years as this type of bearing. This bearing impregnates a sintered metal bearing body with lubricating oil or lubricating grease, forms a lubricating oil film in the bearing gap by the dynamic pressure effect of the dynamic pressure groove provided on the bearing surface, and supports the spindle in a non-contact manner. Therefore, the above-mentioned required performance can be sufficiently satisfied at a low cost.

【0005】[0005]

【発明が解決しようとする課題】一般に動圧軸受の使用
時には、軸受隙間に油を充満させることが重要である。
上記の焼結含油軸受は、軸受本体の内部に油を含有して
いるものであるが、回転軸を軸受本体に挿入する際に
は、これとは別に軸受隙間に注油しておくのが望まし
い。これは、組立初期から油が軸受隙間に満たされてい
れば、駆動時に空気を巻き込みにくくなるので、運転当
初から安定した軸受性能を発揮できること、また、注油
しない場合は、運転当初にスラスト軸受の摺動部分(球
面状の軸端とスラストワッシャとの接触部)が無給油状
態となること、等の理由による。
Generally, when a dynamic pressure bearing is used, it is important to fill the gap in the bearing with oil.
The above-described sintered oil-impregnated bearing contains oil inside the bearing body, but when inserting the rotating shaft into the bearing body, it is desirable to lubricate the bearing gap separately from this. . This means that if oil is filled in the bearing gap from the initial stage of assembly, it becomes difficult for air to be entrained during driving, so that stable bearing performance can be exhibited from the beginning of operation. This is because the sliding portion (the contact portion between the spherical shaft end and the thrust washer) is in an oil-free state.

【0006】ところが、軸姿勢を横向きで使用する場合
や、縦軸姿勢でも回転数が軸表面の周速で2m/以上に
なる場合には、油の流出や飛散が生じる。注油した油が
流出したり、飛散したりすると、結局、軸受隙間に空気
を巻き込みやすくなるので動圧軸受としての機能を維持
できなくなる。
However, when the shaft is used in a horizontal orientation, or when the rotation speed is 2 m / or more at the peripheral speed of the shaft surface even in the vertical orientation, oil spills or scatters. If the lubricated oil leaks out or scatters, eventually it becomes easier for air to be trapped in the bearing gap, so that the function as a dynamic pressure bearing cannot be maintained.

【0007】そこで、本発明では、特に注油した油が流
失したり、飛散したりするのを確実に防止可能とするこ
とを目的とする。
In view of the above, an object of the present invention is to make it possible to reliably prevent oil that has been infused, in particular, from being washed away or scattered.

【0008】[0008]

【課題を解決するための手段】上記目的を達成するた
め、本発明では、焼結金属で形成され、かつ軸の外周面
と軸受隙間を介して対向する軸受面を備えた軸受本体に
潤滑油または潤滑グリースを含浸させてなり、軸と軸受
本体との相対回転で生じる動圧作用により軸を非接触支
持する動圧型焼結含油軸受と、一端が開口され、内径部
に上記動圧型焼結含油軸受が内装されたハウジングと、
ハウジングの他端側において軸をスラスト方向で支持す
るスラスト軸受とを有するものにおいて、ハウジングの
開口部に、軸受部より漏れ出た油を吸収するための油吸
収部材を有するシールを設けることとした。
In order to achieve the above object, according to the present invention, a lubricating oil is applied to a bearing body formed of a sintered metal and having a bearing surface opposed to an outer peripheral surface of a shaft via a bearing gap. Alternatively, a hydrodynamic sintered oil-impregnated bearing which is impregnated with lubricating grease and supports the shaft in a non-contact manner by a dynamic pressure effect generated by the relative rotation of the shaft and the bearing body, and one end of which is opened and the above-mentioned hydrodynamic sintered A housing containing an oil-impregnated bearing;
A thrust bearing for supporting the shaft in the thrust direction at the other end of the housing, wherein a seal having an oil absorbing member for absorbing oil leaked from the bearing is provided at the opening of the housing. .

【0009】動圧型焼結含油軸受として、例えば軸受面
に傾斜状の動圧溝を設けたものが使用可能である。
As the dynamic pressure-type sintered oil-impregnated bearing, for example, a bearing in which an inclined dynamic pressure groove is provided on the bearing surface can be used.

【0010】油吸収部材は、繊維材料または多孔質体で
構成することができる。
[0010] The oil absorbing member can be made of a fibrous material or a porous body.

【0011】シールは、ハウジングに固定したシール本
体と、少なくとも一部をシール本体よりもハウジング他
端側の空間に臨ませて配置した上記油吸収部材とで構成
される。この場合、油吸収部材は、シール本体と動圧型
焼結含油軸受の開口側端面との間の空間に設けたり、あ
るいは、シール本体と対向する軸の外周部に設けること
ができる。
The seal comprises a seal body fixed to the housing and the oil absorbing member arranged at least partially so as to face a space on the other end side of the housing with respect to the seal body. In this case, the oil absorbing member can be provided in a space between the seal main body and the opening-side end face of the hydrodynamic sintered oil-impregnated bearing, or can be provided on the outer peripheral portion of the shaft facing the seal main body.

【0012】スラスト軸受は、軸の端面若しくはその対
向部に設けられた動圧溝で構成することができる。ある
いは、ハウジング他端側の上記軸受面に軸方向両側で非
対称に形成された傾斜状の動圧溝で構成し、かつ当該動
圧溝を軸との間の相対回転に伴ってハウジング他端側に
油を送り込むものとしてもよい。
The thrust bearing can be constituted by a dynamic pressure groove provided on an end face of the shaft or an opposing portion thereof. Alternatively, the bearing surface at the other end of the housing is constituted by an inclined dynamic pressure groove formed asymmetrically on both sides in the axial direction, and the dynamic pressure groove is formed on the other end of the housing with relative rotation between the shaft and the shaft. The oil may be supplied to the hopper.

【0013】[0013]

【発明の実施の形態】以下、本発明の実施形態を図1乃
至図11に基いて説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below with reference to FIGS.

【0014】図1は、本発明にかかる動圧型焼結含油軸
受ユニット1の一実施形態を示す断面図である。
FIG. 1 is a sectional view showing one embodiment of a hydrodynamic sintered oil-impregnated bearing unit 1 according to the present invention.

【0015】図示のように、軸受ユニット1は、動圧型
の焼結含油軸受1aと、焼結含油軸受1aを内径部に固定し
たハウジング1bと、ハウジング1bの底部に設けられたス
ラスト軸受12とで構成される。ハウジング1bは、一端
(図面上方)を開口させた略円筒型をなし、その他端側
はスラスト軸受12によって密閉されている。スラスト軸
受12は、例えば円板状に形成された樹脂製のスラストワ
ッシャ12aと、これを支持する裏金12bとを積層して構
成され、軸受1aの内径部に挿入された回転軸2は、球面
状の下端をスラスト軸受12のスラストワッシャ12aにピ
ボット接触させて回転自在に支持されている。
As shown in the figure, the bearing unit 1 comprises a dynamic pressure type sintered oil-impregnated bearing 1a, a housing 1b in which the sintered oil-impregnated bearing 1a is fixed to the inner diameter, and a thrust bearing 12 provided at the bottom of the housing 1b. It consists of. The housing 1b has a substantially cylindrical shape with one end (upper side in the drawing) opened, and the other end side is sealed by a thrust bearing 12. The thrust bearing 12 is formed by laminating, for example, a resin-made thrust washer 12a formed in a disc shape and a back metal 12b that supports the thrust washer 12a. The rotating shaft 2 inserted into the inner diameter portion of the bearing 1a has a spherical surface. The lower end of the shape is pivotally contacted with a thrust washer 12a of the thrust bearing 12 and is rotatably supported.

【0016】焼結含油軸受1aは、図2に示すように、回
転軸2の外周面と軸受隙間を介して対向する軸受面10b
を有する焼結金属からなる円筒状の軸受本体10に、潤滑
油あるいは潤滑グリースを含浸させて構成される。焼結
金属からなる軸受本体10は、銅系あるいは鉄系、または
その双方を主成分とする焼結金属で形成され、望ましく
は銅を20〜95%使用して成形される。軸受本体10の内周
には、軸方向に離隔する2つの軸受面10bが形成され、
2つの軸受面10bの双方に、それぞれ軸方向に対して傾
斜した複数の動圧溝10c(へリングボーン型)が円周方
向に配列形成される。動圧溝10cは軸方向に対して傾斜
して形成されていれば足り、この条件を満たす限りへリ
ングボーン型以外の他の形状、例えばスパイラル型でも
よい。焼結含油軸受1aの外周には、軸受1aの内径部に軸
2を挿入する際の空気抜きとなる一または複数の溝10g
が軸方向に沿って形成されている。なお、両軸受面10b
間の領域10fの内径寸法は、軸受面10bにおける動圧溝
部分を除く凸部(背の部分10e)の内径寸法よりも大き
く設定される。
As shown in FIG. 2, the sintered oil-impregnated bearing 1a has a bearing surface 10b opposed to the outer peripheral surface of the rotating shaft 2 via a bearing gap.
The bearing body 10 is formed by impregnating a lubricating oil or lubricating grease into a cylindrical bearing body 10 made of a sintered metal having The bearing body 10 made of a sintered metal is formed of a sintered metal containing copper or iron, or both as a main component, and is desirably formed using 20 to 95% of copper. On the inner periphery of the bearing body 10, two bearing surfaces 10b are formed, which are separated in the axial direction,
On both of the two bearing surfaces 10b, a plurality of dynamic pressure grooves 10c (herringbone type) each inclined with respect to the axial direction are arranged in the circumferential direction. It is sufficient that the dynamic pressure groove 10c is formed to be inclined with respect to the axial direction. As long as this condition is satisfied, a shape other than the herringbone type, for example, a spiral type may be used. On the outer periphery of the sintered oil-impregnated bearing 1a, one or more grooves 10g for venting air when inserting the shaft 2 into the inner diameter of the bearing 1a.
Are formed along the axial direction. In addition, both bearing surfaces 10b
The inner diameter of the region 10f between them is set to be larger than the inner diameter of the convex portion (back portion 10e) excluding the dynamic pressure groove portion on the bearing surface 10b.

【0017】この実施形態では、軸受本体10を1個と
し、その内径面の複数箇所(本実施形態では2箇所)に
動圧軸受面1bを設けることにより、複数個の軸受1を別
体に配置した場合に問題となる精度不良等の弊害を回避
している。
In this embodiment, a single bearing body 10 is provided, and a plurality of bearings 1 are provided at a plurality of locations (two locations in the present embodiment) on the inner diameter surface of the bearing body 10 so that a plurality of bearings 1 are separately provided. The disadvantages such as poor accuracy which may be a problem in the arrangement are avoided.

【0018】上記焼結含油軸受1aでは、回転軸2の回転
に伴う圧力発生と昇温による油の熱膨張によって軸受本
体10の内部の潤滑剤(潤滑油または潤滑グリースの基
油)が軸受本体10の表面からにじみ出し、動圧溝の作用
によって軸受隙間に引き込まれる。軸受隙間に引き込ま
れた油は潤滑油膜を形成して回転軸を非接触支持する。
すなわち、軸受面10bに、上記傾斜状の動圧溝10cを設
けると、その動圧作用によってにじみ出した軸受本体10
内部の潤滑剤が軸受隙間に引き込まれると共に、軸受面
10bに潤滑剤が押し込まれ続けるので、油膜力が高ま
り、軸受の剛性を向上させることができる。
In the sintered oil-impregnated bearing 1a, a lubricant (lubricating oil or a base oil of lubricating grease) inside the bearing body 10 is generated by pressure generation due to rotation of the rotary shaft 2 and thermal expansion of the oil due to temperature rise. It oozes out from the surface of 10 and is drawn into the bearing gap by the action of the dynamic pressure groove. The oil drawn into the bearing gap forms a lubricating oil film and supports the rotating shaft in a non-contact manner.
That is, when the above-mentioned inclined dynamic pressure groove 10c is provided on the bearing surface 10b, the bearing body 10 which is oozed by the dynamic pressure action is provided.
The internal lubricant is drawn into the bearing gap and the bearing surface
As the lubricant continues to be pushed into 10b, the oil film strength increases, and the rigidity of the bearing can be improved.

【0019】軸受隙間に正圧が発生すると、軸受面10b
の表面に孔(開孔部:多孔質体組織の細孔が外表面に開
口した部分をいう)があるため、潤滑剤は軸受本体の内
部に還流するが、次々と新たな潤滑剤が軸受隙間に押し
込まれ続けるので油膜力および剛性は高い状態で維持さ
れる。この場合、連続しかつ安定した油膜が形成される
ので、高回転精度が得られ、軸振れやNRRO、ジッタ
等が低減される。また、回転軸2と軸受本体10が非接触
で回転するために低騒音であり、しかも低コストであ
る。
When a positive pressure is generated in the bearing gap, the bearing surface 10b
There is a hole on the surface (opening part: the part where the pores of the porous body structure are open on the outer surface), so the lubricant flows back into the bearing body, but new lubricants are successively added to the bearing. The oil film force and the rigidity are maintained in a high state because the oil film force and the rigidity continue to be pushed into the gap. In this case, since a continuous and stable oil film is formed, high rotation accuracy is obtained, and shaft runout, NRRO, jitter and the like are reduced. Further, since the rotating shaft 2 and the bearing main body 10 rotate in a non-contact manner, the noise is low and the cost is low.

【0020】両軸受面10bは、一方に傾斜する動圧溝10
cが配列された第1の溝領域m1と、第1の溝領域m1から
軸方向に離隔し、他方に傾斜する動圧溝10cが配列され
た第2の溝領域m2と、2つの溝領域m1、m2の間に位置す
る環状の平滑部nとを備えており、2つの溝領域m1、m2
の動圧溝10cは平滑部nで区画されて非連続になってい
る。平滑部nと動圧溝10c間の背の部分10eは同一レベ
ルにある。この種の非連続型の動圧溝10cは、連続型、
すなわち平滑部nを省略し、動圧溝10cを両溝領域m1、
m2間で互いに連続するV字状に形成した場合に比べ、平
滑部nを中心として油が集められるために油膜圧力が高
く、また溝のない平滑部nを有するので軸受剛性が高い
という利点を有する。
The two bearing surfaces 10b are provided with a dynamic pressure groove 10 inclined to one side.
c, a second groove region m2 in which a dynamic pressure groove 10c that is axially spaced from the first groove region m1 and is inclined to the other groove region, and two groove regions an annular smooth portion n located between m1 and m2, and two groove regions m1 and m2.
The dynamic pressure groove 10c is partitioned by a smooth portion n and is discontinuous. The back portion 10e between the smooth portion n and the dynamic pressure groove 10c is at the same level. This type of non-continuous type dynamic pressure groove 10c is a continuous type,
That is, the smooth portion n is omitted, and the dynamic pressure groove 10c is formed in both groove regions m1,
Compared to the case of forming a continuous V-shape between m2, the oil film pressure is high because oil is collected around the smooth portion n, and the advantage that the bearing rigidity is high because the smooth portion n without grooves is provided. Have.

【0021】本発明においては、ハウジング1bの開口部
の近傍に当該開口部を密封するためのシール13が配置さ
れる。シール13は、繊維材料(フェルト等)や多孔質体
(焼結金属や樹脂等で成形される)からなる薄肉リング
状の油吸収部材13aと、樹脂あるいは金属からなる同じ
く薄肉リング状のシール本体13b(例えばワッシャ)と
で構成され、シール本体13bをハウジング1bの開口端側
に配置してハウジング1bの内径部に組み込まれている。
シール13のうち、油吸収部材13aは、ハウジング1bに固
定してもよいし、あるいは、特に固定することなく、軸
受本体10の開口側端面上に置くようにしてもよい。油吸
収部材13aの内径側は、軸2の外周面2aに対して僅かな
隙間をあけておくのがよいが、フェルト等の繊維状の油
吸収部材13aを使用する場合は、トルク上昇やトルク変
動を与えない範囲で軸2に接触させてもよい。一方、シ
ール本体13bは、軸2の外周面2aに対して僅かな隙間
(直径で0.3mm以下、望ましくは0.2mm以下)をあ
けてハウジング1bの内周面に固着される。
In the present invention, a seal 13 for sealing the opening is provided near the opening of the housing 1b. The seal 13 includes a thin ring-shaped oil absorbing member 13a made of a fiber material (felt or the like) or a porous body (formed of sintered metal or resin), and a thin ring-shaped seal body made of a resin or metal. 13b (for example, a washer), and the seal body 13b is disposed on the opening end side of the housing 1b and is incorporated in the inner diameter portion of the housing 1b.
Of the seal 13, the oil absorbing member 13a may be fixed to the housing 1b, or may be placed on the opening-side end face of the bearing body 10 without being particularly fixed. It is preferable to leave a slight gap on the inner diameter side of the oil absorbing member 13a with respect to the outer peripheral surface 2a of the shaft 2. However, when a fibrous oil absorbing member 13a such as a felt is used, a torque increase or torque increase is required. The shaft 2 may be brought into contact with the shaft 2 within a range that does not change. On the other hand, the seal body 13b is fixed to the inner peripheral surface of the housing 1b with a small gap (0.3 mm or less in diameter, preferably 0.2 mm or less in diameter) from the outer peripheral surface 2a of the shaft 2.

【0022】このように油吸収部材13aを有するシール
13を設けることにより、軸姿勢が縦向き、横向き何れの
場合でも、軸受1aの開口側端面(内外径のチャンファ部
10h、10iも含む)より漏れ出ようとする油Oを吸収捕
捉し、これを内部に保持することができる。従って、油
が流出して遠心力により周囲に飛散するような事態を防
止することができる。
The seal having the oil absorbing member 13a as described above
13 allows the bearing 1a to have an opening-side end face (inside and outside diameter chamfer portions) regardless of whether the shaft attitude is vertical or horizontal.
(Including 10h and 10i), the oil O which is about to leak out can be absorbed and captured and held inside. Therefore, it is possible to prevent a situation in which oil flows out and scatters around due to centrifugal force.

【0023】また、軸受1aの毛細管力による油の保持力
を油吸収部材13aよりも強く設定すれば、仮に軸受内部
に油の存在しない空孔が生じた場合でも、油吸収部材13
aに吸収捕捉された油が軸受1a側に還流するため、油不
足になりにくく、軸受の長寿命化が達成される。この観
点から、油吸収部材13aは軸受1aの端面に接触させてお
くのが好ましい(還流性が問題にならなければ、離して
配置してもよい)。
Further, if the oil retaining force due to the capillary force of the bearing 1a is set to be stronger than that of the oil absorbing member 13a, even if an oil-free hole is formed inside the bearing, the oil absorbing member 13
Since the oil absorbed and captured by a flows back to the bearing 1a, oil shortage hardly occurs, and the life of the bearing is extended. From this viewpoint, it is preferable that the oil absorbing member 13a be in contact with the end face of the bearing 1a (if the recirculating property does not matter, the oil absorbing member 13a may be separated).

【0024】なお、油吸収部材13aは予め油を含浸させ
てからハウジング1bに組み込んでもよく、また、油を含
浸することなく組み込み、注油された油が軸2の軸受1a
内周部への挿入時に空気抜き溝10gを通って押し上げれ
た際にこれを吸収捕捉して含浸させるようにしてもよ
い。後者の場合、油と共に押し出されてきた空気が抜け
やすくなるので、空気が軸受隙間に残留しにくくなる利
点がある。
The oil absorbing member 13a may be impregnated with oil in advance and then incorporated in the housing 1b. Alternatively, the oil absorbing member 13a may be incorporated without impregnating the oil, and the injected oil may be injected into the bearing 1a of the shaft 2.
When it is pushed up through the air vent groove 10g at the time of insertion into the inner peripheral portion, it may be absorbed and captured and impregnated. In the latter case, there is an advantage that the air that has been pushed out together with the oil easily escapes, so that the air hardly remains in the bearing gap.

【0025】図3は、本発明にかかる軸受ユニットの他
の実施形態で、円筒状の油吸収部材13aを、シール本体
13bの内径端と対向させて軸2の外周部に固定したもの
である。油吸収部材13aは、例えば図4に示すように、
軸2に設けた円周溝2bに嵌め込むことにより固定され
る。この構成であれば、回転する軸2にまとわりついて
軸受外に流出しようとする油も吸収捕捉することがで
き、油の飛散をさらに抑えることができる。この場合、
油吸収部材13aとシール本体13bとの間には僅かな隙間
をあけておくのが望ましいが、トルク上昇やトルク変動
を招かない範囲で両者を接触させてもよい。
FIG. 3 shows another embodiment of the bearing unit according to the present invention, in which a cylindrical oil absorbing member 13a is attached to a seal body.
13b is fixed to the outer peripheral portion of the shaft 2 so as to face the inner diameter end of the shaft 13b. The oil absorbing member 13a is, for example, as shown in FIG.
It is fixed by being fitted into a circumferential groove 2b provided on the shaft 2. According to this configuration, oil that is likely to flow out of the bearings together with the rotating shaft 2 can be absorbed and captured, and the scattering of the oil can be further suppressed. in this case,
It is desirable to leave a slight gap between the oil absorbing member 13a and the seal body 13b, but they may be in contact with each other as long as the torque does not increase or the torque fluctuates.

【0026】油吸収部材13aは、軸受1aから漏れ出た油
を吸収捕捉できる位置、すなわち少なくともその一部が
シール本体13bよりもハウジング1b底部側の空間を臨む
ような位置にあれば足り、図1や図3に示す構造には限
定されない。
The oil absorbing member 13a only needs to be at a position where it can absorb and leak oil leaking from the bearing 1a, that is, at a position where at least a part thereof faces the space on the bottom side of the housing 1b with respect to the seal body 13b. It is not limited to the structure shown in FIG.

【0027】図5および図6は、スラスト軸受12の他の
実施形態で、軸2の端面2cを平坦に形成すると共に、こ
の軸端面2cと対向するスラストワッシャ12aの表面12a1
にスパイラル状の動圧溝12c を形成したものである。こ
の動圧溝12cは、例えば軟質金属材からなるスラストワ
ッシャ12aをプレスすることにより形成することができ
る。なお、動圧溝12cは、軸2の平坦な端面2cに形成し
てもよい。
FIGS. 5 and 6 show another embodiment of the thrust bearing 12, in which the end surface 2c of the shaft 2 is formed flat and the surface 12a1 of the thrust washer 12a facing the shaft end surface 2c.
A spiral dynamic pressure groove 12c is formed in the groove. This dynamic pressure groove 12c can be formed by pressing a thrust washer 12a made of, for example, a soft metal material. The dynamic pressure groove 12c may be formed on the flat end face 2c of the shaft 2.

【0028】図7は、スラスト軸受12の他の実施形態
で、ハウジング1bの他端側(スラスト軸受側)の軸受面
10bに軸方向両側で非対称に形成された傾斜状の動圧溝
10c1、10c2でスラスト軸受12を構成したものである。こ
の場合、軸2の回転に伴って油が下側に押し込まれるた
め、軸2を浮上支持することができる。十分な動圧効果
を得るため、焼結含油軸受1aの端面とスラストワッシャ
12aとは接触させておくのがよい。
FIG. 7 shows another embodiment of the thrust bearing 12, in which the bearing surface on the other end side (the thrust bearing side) of the housing 1b is shown.
Inclined hydrodynamic grooves formed asymmetrically on both sides in the axial direction in 10b
The thrust bearing 12 is constituted by 10c1 and 10c2. In this case, the oil is pushed downward along with the rotation of the shaft 2, so that the shaft 2 can be floated and supported. In order to obtain a sufficient dynamic pressure effect, the end face of the sintered oil-impregnated bearing 1a and the thrust washer
It is good to make contact with 12a.

【0029】以上の説明では、動圧型焼結含油軸受とし
て傾斜状の動圧溝を有するタイプを例示しているが、本
発明はこれに限定されず、他の動圧型軸受、例えばステ
ップ軸受、円弧軸受、テーパ軸受、テーパドランド軸受
にも同様に適用可能である。
In the above description, a type having an inclined hydrodynamic groove has been exemplified as a hydrodynamic sintered oil-impregnated bearing. However, the present invention is not limited to this, and other hydrodynamic bearings such as a step bearing, The present invention is similarly applicable to arc bearings, tapered bearings, and tapered land bearings.

【0030】[0030]

【実施例】以下、本発明の効果を確認するために行った
試験の概要および試験結果を説明する。
EXAMPLES The outline of tests performed to confirm the effects of the present invention and the test results will be described below.

【0031】ポリゴンスキャナモータによる油飛散試
験 ポリゴンスキャナモータは、図8に示すように、回転軸
2を支持する軸受ユニット1、回転軸2の上端に取り付
けられたポリゴンミラー11、ステータ5およびロータ6
からなるモータ部M、ポリゴンミラー11をロータハブ18
に押付ける予圧ばね17で構成され、ステータ5への通電
により、ロータ6の回転に伴ってポリゴンミラー11を回
転させるものである。レーザー光源から所定の光学系を
経てポリゴンミラー11に入射したレーザ光は、ポリゴン
ミラー11により反射されて感光ドラム面を走査する。
Oil splash test by polygon scanner motor As shown in FIG. 8, the polygon scanner motor has a bearing unit 1 for supporting the rotating shaft 2, a polygon mirror 11, a stator 5, and a rotor 6 attached to the upper end of the rotating shaft 2.
The motor section M is composed of a polygon mirror 11 and a rotor hub 18.
The preload spring 17 presses the polygon mirror 11 with the rotation of the rotor 6 by energizing the stator 5. Laser light that has entered the polygon mirror 11 from a laser light source via a predetermined optical system is reflected by the polygon mirror 11 and scans the photosensitive drum surface.

【0032】このモータを囲うように円筒状の紙片を配
置し、実施例1(図1の軸受ユニット)、実施例2(図
3の軸受ユニット)、比較例1(シール13なし)、およ
び比較例2(ワッシャ13bのみのシール)についてそれ
ぞれ油の飛散状況を調べた。雰囲気は常温常湿、軸径は
φ3、軸姿勢は縦向き、回転数は10000〜3000
0rpm、試験時間は20時間である。
A cylindrical piece of paper is arranged so as to surround this motor, and the first embodiment (the bearing unit in FIG. 1), the second embodiment (the bearing unit in FIG. 3), the first comparative example (without the seal 13), and For Example 2 (seal with only the washer 13b), the state of oil scattering was examined. The atmosphere is room temperature and normal humidity, the shaft diameter is φ3, the shaft posture is vertical, and the rotation speed is 10,000 to 3000.
0 rpm, test time is 20 hours.

【0033】図9に示すように、シールなし(比較例
1)の場合は、10000rpm(周速1.57m /s )か
ら油の飛散が認められ、またワッシャのみのシール(比
較例2)の場合は、15000rpm(周速2.36m /s
)以上の高速回転では、実用上不適当であることが判
明した。これに対し、実施例1および2の構造であれ
ば、30000rpm(周速4.71m /s )もの高速回転
でも油飛散防止効果が認められた。
As shown in FIG. 9, in the case of no seal (Comparative Example 1), oil scattering was observed at 10,000 rpm (peripheral speed of 1.57 m / s), and in the case of a seal having only a washer (Comparative Example 2). Is 15,000 rpm (peripheral speed 2.36 m / s
The above high speed rotation was found to be unsuitable for practical use. On the other hand, in the case of the structures of Examples 1 and 2, the oil scattering prevention effect was recognized even at a high rotation speed of 30,000 rpm (peripheral speed of 4.71 m / s).

【0034】光ディスク用モータによる耐久試験 光ディスク用モータは、図10に示すように、回転軸2を
支持する軸受ユニット1、回転軸2の上端に取り付けら
れ、光ディスク3を支持固定するターンテーブル4およ
びクランパ8、ステータ5およびロータ6を有するモー
タ部Mで構成され、ステータ5への通電により、ロータ
6と一体になったロータケース7、ターンテーブル4、
光ディスク3、クランパ8を一体回転させるものであ
る。
Endurance Test Using Optical Disk Motor As shown in FIG. 10, the optical disk motor includes a bearing unit 1 for supporting the rotating shaft 2, a turntable 4 attached to the upper end of the rotating shaft 2 and supporting and fixing the optical disk 3. The motor unit M includes a clamper 8, a stator 5, and a rotor 6. A rotor case 7 integrated with the rotor 6 by energizing the stator 5, a turntable 4,
The optical disc 3 and the clamper 8 are integrally rotated.

【0035】このモータを軸姿勢が横向きになるように
固定し、連続運転試験を行って、実施例1、2、および
比較例1、2(各軸受ユニットの構造はと同様)のそ
れぞれについて連続運転試験を行い、耐久性を比較し
た。評価は200時間ごとにモータを恒温槽から取出
し、軸振れと電流値を測定し、軸振れが初期の1.5倍
以上、あるいは電流値が初期値に対して±20%の範囲
を超えた次点で寿命と判定した。試験結果を示す図11の
表には寿命と判定した時点での試験時間を記入してあ
る。また、試験は2000時間まで実施し、その時点で
寿命に至らなかった場合は、「2000↑」と記録し
た。雰囲気は50℃、軸径はφ3、軸姿勢は横向き、回
転数は7000rpm一定の連続運転、アンバランス荷
重は0.501cmである。
This motor was fixed so that the shaft attitude was horizontal, and a continuous operation test was carried out. For each of Examples 1 and 2 and Comparative Examples 1 and 2 (the structure of each bearing unit was the same), An operation test was performed and the durability was compared. In the evaluation, the motor was taken out of the thermostat every 200 hours, the shaft runout and the current value were measured, and the shaft runout was 1.5 times or more of the initial value, or the current value exceeded the range of ± 20% of the initial value. The life was judged at the next point. In the table of FIG. 11 showing the test results, the test time at the time when the life was determined is written. The test was performed for up to 2000 hours, and when the life was not reached at that time, "2000 °" was recorded. The atmosphere is 50 ° C., the shaft diameter is φ3, the shaft posture is horizontal, the rotation speed is 7000 rpm, the continuous operation is performed, and the unbalance load is 0.501 cm.

【0036】比較例1、2はともに、軸振れが増大して
寿命に至った。何れの場合も、特にシールなしのものに
ついては顕著に、周囲への油漏れが認められた。油膜不
足による軸振れ増大が寿命に至った原因と思われる。実
施例1、2はともに2000時間の時点でも軸振れ、電
流値に変化はなく、継続使用が可能な状態で、かつ油漏
れも全く認められなかった。
In both Comparative Examples 1 and 2, the shaft runout was increased and the life was extended. In each case, the oil leakage to the surroundings was remarkably observed especially in the case without the seal. The increase in shaft runout due to lack of oil film seems to be the cause of the service life. In both Examples 1 and 2, the shaft oscillated, the current value did not change even at the time of 2,000 hours, the state where continuous use was possible, and no oil leakage was observed.

【0037】[0037]

【発明の効果】本発明によれば、動圧型焼結含油軸受か
らの油の流出を防止できるので、長期にわたって良好な
油膜を維持することができ、耐久性が飛躍的に向上す
る。また、油漏れによって周囲を汚染することもない。
According to the present invention, it is possible to prevent oil from flowing out of the hydrodynamic sintered oil-impregnated bearing, so that a good oil film can be maintained over a long period of time, and the durability is dramatically improved. Further, the surroundings are not polluted by the oil leak.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明にかかる動圧型焼結含油軸受ユニットの
断面図である。
FIG. 1 is a sectional view of a hydrodynamic sintered oil-impregnated bearing unit according to the present invention.

【図2】上記軸受ユニットに用いられる動圧型焼結含油
軸受の断面図である。
FIG. 2 is a sectional view of a hydrodynamic sintered oil-impregnated bearing used in the bearing unit.

【図3】他の実施形態を示す縦断面図である。FIG. 3 is a longitudinal sectional view showing another embodiment.

【図4】図3の要部拡大断面図である。FIG. 4 is an enlarged sectional view of a main part of FIG.

【図5】スラスト軸受の他の実施形態を示す断面図であ
る。
FIG. 5 is a sectional view showing another embodiment of the thrust bearing.

【図6】スラストワッシャの平面図である。FIG. 6 is a plan view of a thrust washer.

【図7】スラストワッシャの平面図である。FIG. 7 is a plan view of a thrust washer.

【図8】ポリゴンスキャナモータの断面図である。FIG. 8 is a sectional view of a polygon scanner motor.

【図9】油飛散試験の結果を示す図である。FIG. 9 is a diagram showing the results of an oil splash test.

【図10】光ディスク用モータの断面図である。FIG. 10 is a sectional view of an optical disk motor.

【図11】耐久試験の結果を示す図である。FIG. 11 is a diagram showing the results of a durability test.

【符号の説明】[Explanation of symbols]

1 動圧型焼結含油軸受ユニット 1a 動圧型焼結含油軸受 1b ハウジング 2 軸 2a 外周面 10 軸受本体 10b 軸受面 10c 動圧溝 12 スラスト軸受 12a スラストワッシャ 13 シール 13a 油吸収部材 13b シール本体 O 油 DESCRIPTION OF SYMBOLS 1 Dynamic-pressure-type sintered oil-impregnated bearing unit 1a Dynamic-pressure-type sintered oil-impregnated bearing 1b Housing 2 Shaft 2a Outer peripheral surface 10 Bearing body 10b Bearing surface 10c Dynamic-pressure groove 12 Thrust bearing 12a Thrust washer 13 Seal 13a Oil absorbing member 13b Seal body O Oil

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】 焼結金属で形成され、かつ軸の外周面と
軸受隙間を介して対向する軸受面を備えた軸受本体に潤
滑油または潤滑グリースを含浸させてなり、軸と軸受本
体との相対回転で生じる動圧作用により軸を非接触支持
する動圧型焼結含油軸受と、一端が開口され、内径部に
上記動圧型焼結含油軸受が内装されたハウジングと、ハ
ウジングの他端側において軸をスラスト方向で支持する
スラスト軸受とを有するものにおいて、 ハウジングの開口部に、軸受部より漏れ出た油を吸収す
るための油吸収部材を有するシールを設けることを特徴
とする動圧型焼結含油軸受ユニット。
A bearing body formed of a sintered metal and having a bearing surface opposed to an outer peripheral surface of a shaft via a bearing gap is impregnated with lubricating oil or lubricating grease. A dynamic pressure type oil-impregnated bearing that supports the shaft in a non-contact manner by a dynamic pressure action generated by the relative rotation, a housing having one end opened and the above-mentioned dynamic pressure type oil-impregnated bearing mounted inside the inner diameter portion, and a housing on the other end side. A thrust bearing for supporting a shaft in a thrust direction, wherein a seal having an oil absorbing member for absorbing oil leaked from the bearing is provided at an opening of the housing. Oil-impregnated bearing unit.
【請求項2】 動圧型焼結含油軸受の軸受面に、傾斜状
の動圧溝を設けた請求項1記載の動圧型焼結含油軸受ユ
ニット。
2. The hydrodynamic sintered oil-impregnated bearing unit according to claim 1, wherein an inclined hydrodynamic groove is provided on the bearing surface of the hydrodynamic sintered oil-impregnated bearing.
【請求項3】 油吸収部材が、繊維材料または多孔質体
で構成されている請求項1または2記載の動圧型焼結含
油軸受ユニット。
3. The hydrodynamic sintered oil-impregnated bearing unit according to claim 1, wherein the oil absorbing member is made of a fiber material or a porous body.
【請求項4】 シールが、ハウジングに固定したシール
本体と、少なくとも一部をシール本体よりもハウジング
他端側の空間に臨ませて配置した上記油吸収部材とで構
成されている請求項1乃至3何れか記載の動圧型焼結含
油軸受ユニット。
4. The seal according to claim 1, wherein the seal includes a seal main body fixed to the housing, and the oil absorbing member disposed at least partially so as to face a space on the other end side of the housing with respect to the seal main body. 3. The hydrodynamic sintered oil-impregnated bearing unit according to any one of 3).
【請求項5】 油吸収部材が、シール本体と動圧型焼結
含油軸受の開口側端面との間の空間に設けられている請
求項4記載の動圧型焼結含油軸受ユニット。
5. The hydrodynamic sintered oil-impregnated bearing unit according to claim 4, wherein the oil-absorbing member is provided in a space between the seal body and the open end surface of the hydrodynamic sintered oil-impregnated bearing.
【請求項6】 油吸収部材を、シール本体と対向する軸
の外周部に設けた請求項4記載の動圧型焼結含油軸受ユ
ニット。
6. The hydrodynamic sintered oil-impregnated bearing unit according to claim 4, wherein the oil absorbing member is provided on an outer peripheral portion of the shaft facing the seal body.
【請求項7】 スラスト軸受が、軸の端面若しくはその
対向部に設けられた動圧溝で構成されている請求項1乃
至6何れか記載の動圧型焼結含油軸受ユニット。
7. The hydrodynamic sintered oil-impregnated bearing unit according to claim 1, wherein the thrust bearing is constituted by a hydrodynamic groove provided on an end face of the shaft or an opposing portion thereof.
【請求項8】 スラスト軸受が、ハウジング他端側の上
記軸受面に軸方向両側で非対称に形成された傾斜状の動
圧溝で構成され、かつ当該動圧溝が軸との間の相対回転
に伴ってハウジング他端側に油を送り込むものである請
求項1乃至6何れか記載の動圧型焼結含油軸受ユニッ
ト。
8. The thrust bearing is constituted by an inclined dynamic pressure groove formed asymmetrically on both sides in the axial direction on the bearing surface on the other end side of the housing, and the dynamic pressure groove is rotated relative to the shaft. 7. The dynamic pressure type sintered oil-impregnated bearing unit according to claim 1, wherein oil is fed to the other end of the housing in accordance with the above.
JP10205508A 1998-07-21 1998-07-21 Dynamic pressure type sintered and oil retaining bearing unit Withdrawn JP2000035041A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10205508A JP2000035041A (en) 1998-07-21 1998-07-21 Dynamic pressure type sintered and oil retaining bearing unit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10205508A JP2000035041A (en) 1998-07-21 1998-07-21 Dynamic pressure type sintered and oil retaining bearing unit

Related Child Applications (2)

Application Number Title Priority Date Filing Date
JP2005042520A Division JP4170300B2 (en) 2005-02-18 2005-02-18 Hydrodynamic sintered oil-impregnated bearing unit
JP2005042510A Division JP2005188751A (en) 2005-02-18 2005-02-18 Dynamic pressure type sintered oil retaining bearing unit

Publications (1)

Publication Number Publication Date
JP2000035041A true JP2000035041A (en) 2000-02-02

Family

ID=16508036

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10205508A Withdrawn JP2000035041A (en) 1998-07-21 1998-07-21 Dynamic pressure type sintered and oil retaining bearing unit

Country Status (1)

Country Link
JP (1) JP2000035041A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2431700A (en) * 2005-10-28 2007-05-02 Sunonwealth Electr Mach Ind Co Oil-suspension and oil-retaining bearing
KR100919059B1 (en) 2007-11-19 2009-09-24 주식회사 삼홍사 Spindle motor
US7604411B2 (en) 2001-11-13 2009-10-20 Ntn Corporation Fluid lubricated bearing device
CN113357267A (en) * 2020-03-04 2021-09-07 马勒国际有限公司 Sliding bearing, method for producing sliding bearing, internal combustion engine having sliding bearing, and electric machine having sliding bearing

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7604411B2 (en) 2001-11-13 2009-10-20 Ntn Corporation Fluid lubricated bearing device
GB2431700A (en) * 2005-10-28 2007-05-02 Sunonwealth Electr Mach Ind Co Oil-suspension and oil-retaining bearing
KR100919059B1 (en) 2007-11-19 2009-09-24 주식회사 삼홍사 Spindle motor
CN113357267A (en) * 2020-03-04 2021-09-07 马勒国际有限公司 Sliding bearing, method for producing sliding bearing, internal combustion engine having sliding bearing, and electric machine having sliding bearing

Similar Documents

Publication Publication Date Title
JP4481475B2 (en) Hydrodynamic bearing unit
KR100549102B1 (en) Spindle motor and rotating shaft supporting device of information equipment
US5834870A (en) Oil impregnated porous bearing units and motors provided with same
US7241051B2 (en) Radial capillary seal for fluid dynamic bearing motors
JP3942482B2 (en) DYNAMIC PRESSURE BEARING DEVICE AND MOTOR HAVING THE SAME
JP2008008368A (en) Hydrodynamic bearing device
US20100166346A1 (en) Dynamic bearing device
JP2001271828A (en) Dynamic pressure type oil-impregnated sintered bearing unit
JP4360482B2 (en) Hydrodynamic bearing device
US7144161B2 (en) Hydrodynamic bearing system for a rotary bearing of spindle motors
JP3799176B2 (en) Hydrodynamic sintered oil-impregnated bearing unit
JP2000035041A (en) Dynamic pressure type sintered and oil retaining bearing unit
JP4633388B2 (en) Hydrodynamic bearing device
JP4170300B2 (en) Hydrodynamic sintered oil-impregnated bearing unit
JP2005195180A (en) Dynamic oil-impregnated sintered bearing unit
JP4309642B2 (en) Hydrodynamic bearing device and manufacturing method thereof
JPH033805B2 (en)
JP2005188751A (en) Dynamic pressure type sintered oil retaining bearing unit
JP2003065324A (en) Hydrodyanamic type bearing apparatus
KR100453332B1 (en) Fluid dynamic bearing spindle motor
JPH1182479A (en) Supporting device for information equipment spindle motor
JP2900560B2 (en) Bearing device for magnetic disk
JPH1069714A (en) Bearing device for magnetic disk
JPH1069713A (en) Magnetic disk device
JP2002188635A (en) Fluid bearing device

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20051004