JP3602325B2 - Dynamic pressure type porous oil-impregnated bearing - Google Patents

Dynamic pressure type porous oil-impregnated bearing Download PDF

Info

Publication number
JP3602325B2
JP3602325B2 JP04797498A JP4797498A JP3602325B2 JP 3602325 B2 JP3602325 B2 JP 3602325B2 JP 04797498 A JP04797498 A JP 04797498A JP 4797498 A JP4797498 A JP 4797498A JP 3602325 B2 JP3602325 B2 JP 3602325B2
Authority
JP
Japan
Prior art keywords
bearing
oil
dynamic pressure
region
impregnated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP04797498A
Other languages
Japanese (ja)
Other versions
JPH10331842A (en
Inventor
夏比古 森
一男 岡村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NTN Corp
Original Assignee
NTN Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NTN Corp filed Critical NTN Corp
Priority to JP04797498A priority Critical patent/JP3602325B2/en
Publication of JPH10331842A publication Critical patent/JPH10331842A/en
Application granted granted Critical
Publication of JP3602325B2 publication Critical patent/JP3602325B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/02Parts of sliding-contact bearings
    • F16C33/04Brasses; Bushes; Linings
    • F16C33/06Sliding surface mainly made of metal
    • F16C33/10Construction relative to lubrication
    • F16C33/102Construction relative to lubrication with grease as lubricant

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Sliding-Contact Bearings (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、焼結金属等の多孔質体に潤滑油あるいは潤滑グリースを含浸させて自己潤滑機能を持たせると共に、軸受隙間に介在する潤滑油膜(動圧溝の動圧作用によって形成される潤滑油膜)によって軸を非接触支持する動圧型多孔質含油軸受に関し、特にレーザビームプリンタのポリゴンミラーモータ(LBP)や磁気ディスクドライブ用のスピンドルモータ(HDD)など、高速下で高回転精度が要求される機器や、DVD−ROMのように、ディスクが載ることによって大きなアンバランス荷重が作用し高速で駆動する機器などに好適である。
【0002】
【従来の技術】
上記のような情報機器関連の小型スピンドルモータでは、回転性能のより一層の向上と低コスト化が求められており、そのための手段として、スピンドルの軸受部を転がり軸受から多孔質含油軸受に置き換えることが検討されている。しかし、多孔質含油軸受は、真円軸受の一種であるため、軸の偏心が小さいところでは不安定振動が発生しやすく、回転速度の1/2の速度で振れ回るいわゆるホワールが発生しやすい欠点がある。そこで、軸受面にヘリングボーン形やスパイラル形などの動圧溝を設け、軸の回転に伴う動圧溝の作用によって軸受隙間に潤滑油膜を発生させて軸を非接触支持することが従来より試みられている(動圧型多孔質含油軸受)。
【0003】
多孔質含油軸受の軸受面に動圧溝を形成した従来技術としては、実公昭63−19627号に記載のものがある。同号記載の技術は、軸受面における動圧溝の形成領域に表面目つぶし加工を施して、動圧溝の形成領域を封孔したものである。
【0004】
【発明が解決しようとする課題】
軸の回転精度を確保するため、通常、軸受は複数個、例えば2個を組み合わせて使用される。また、軸受はハウジングに圧入して使用される場合が多い。そこで、2個の軸受の同軸度を確保するため、矯正ピンをハウジングに挿入した後、2個の軸受を同時に圧入する方法が採られている。しかしながら、軸受面に動圧溝を設けた軸受では、矯正ピンを用いて強制的に矯正すると、矯正ピンの食い付きによって軸受面の動圧溝が潰れてしまい、安定した動圧効果が得られなくなる。一方、矯正ピンを用いずに圧入作業を行うと、軸受相互間の必要とする同軸度が得られない。従って、実公昭63−19627号に記載されたような構成は、実用化が難しいと言える。
【0005】
また、2つの軸受面が軸方向に離隔して形成され、軸受面間の領域が軸受面よりも大径になった構成が特開平2−107705号公報に記載されているが、上述したような実用上の問題点はないものの、軸受面には動圧溝が形成されていないので、ホワールなどの不安定振動を防止することができない。
【0006】
本発明は、上記のような従来技術の問題点に鑑み、ホワールなどの不安定振動を防止でき、かつ、組込み上の不都合(動圧溝の形状の崩れ、同軸度のずれ)を解消することができる構成を提供することを目的とする。
【0007】
【課題を解決するための手段】
本発明では、多孔質体からなる軸受本体に、支持すべき軸の外周面と軸受隙間を介して対向する複数の軸受面を軸方向に離隔して形成すると共に、複数の軸受面の少なくとも1つに傾斜状の動圧溝を形成した。軸受面間の領域の内径寸法は、軸受面の内径寸法よりも大きく設定される。動圧溝が形成された軸受面には、該動圧溝を含めて開孔部がほぼ均一に分布しており、動圧溝が形成された軸受面における開孔部の表面積比率が2%以上15%以下であり、 含有する油の40℃での動粘度が2cSt以上であり、表面積比率と動粘度が、以下の式
(3/5)A−1 η (40/6)A+(20/3)
ここで、A;開孔部の表面積比率 [%]
η;油の40℃での動粘度[cSt]
を満足し、動圧溝が形成された軸受面において、軸受隙間に介在する油の潤滑油膜によって軸の摺動面が浮上支持されと共に、動圧溝を含む軸受面の開孔部を介して、油が軸受本体の内部と軸受隙間との間で循環する。
【0008】
1つの軸受に複数の軸受面を形成することにより、従来のような複数個の軸受を組み込む場合における同軸度の問題を解消することができる。すなわち、複数の軸受面が1つの軸受に設けられているため、従来のように矯正ピンを用いて同軸度を確保する必要がなく、また、矯正ピンによる動圧溝の形状の崩れも起こらない。少なくとも1つの軸受面に傾斜状の動圧溝を形成することにより、ホワールなどの不安定振動を効果的に防止することができる。
【0009】
軸受面と、軸受面間の領域との境界に段差を設けることにより、軸受面間の領域におけるトルクロスを効果的に低減することができる。
【0010】
軸受面間の領域の軸方向断面を、軸受面と連続する曲線で描がくことにより、軸受面間の領域の開孔部から滲み出した油が、その領域に沿って軸方向に流れて軸受面に供給され易くなるので、油の有効利用、潤滑油膜の形成促進になる。
【0011】
軸受面間の領域の軸方向断面は、その領域の中央部で最も大径になる円弧で描くことができる。その領域の表面開孔から滲み出した油が両側の軸受面に供給され易い。
【0012】
少なくとも1つの軸受面に対応する外径部の外径寸法を、軸受面間の領域に対応する外径部の外径寸法よりも小さく設定することにより、軸受本体をハウジングに圧入固定する場合、圧入力による軸受面の変形を防止または緩和することができる。
【0013】
【発明の実施の形態】
以下、本発明の実施形態について説明する。
【0014】
図1は、本発明の第1の実施形態に係わる多孔質含油軸受1をハウジング2に固定した状態を示している。多孔質含油軸受1は、多孔質体からなる軸受本体1aと、軸受本体1aに含浸された潤滑油又は潤滑グリースとで構成される。軸受本体1aは、例えば、銅又は鉄、あるいはその両者を主成分とする焼結金属で形成され、望ましくは銅を20〜95重量%含有し、密度が6.4〜7.2g/cmとなるように形成される。その他、軸受本体1aの材質として、鋳鉄、合成樹脂、セラミックスなどを焼結または発砲成形等することにより、多数の細孔を有する多孔質体としたものを用いても良い。
【0015】
軸受本体1aの内周には、支持すべき軸の外周面と軸受隙間4(図4参照)を介して対向する複数例えば2つの軸受面1bが軸方向に離隔形成され、2つの軸受面1bの双方に、それぞれ複数の動圧溝1cが円周方向に配列形成される。この実施形態における動圧溝1cは、軸方向に対して一方に傾斜した溝領域と、他方に傾斜した溝領域とが対をなしてV字状に連続した形状を有する。尚、動圧溝1cは少なくとも1つの軸受面1bに形成すれば良い。
【0016】
軸受本体1aにおける軸受面1b間の領域1dの内径寸法D1は、軸受面1bの内径寸法{厳密には動圧溝1c間の背1e(図4参照)の領域の内径寸法)D2よりも大きく設定されている。この実施形態では、領域1dの軸方向断面は軸受面1bに連続した1つの円弧で描かれ、その円弧の最大径部は領域1dの軸方向中央に位置している。尚、領域1dと軸受面1bとの境界に段差を設けても良い。また、領域1dの軸方向断面は、円弧の他、楕円、放物線等の曲線で描くことができる。同種の曲線を2つ組み合わせて(例えば2円弧)、異種の曲線を2つ組み合わせて(例えば円弧と放物線の組み合わせ)、あるいは、曲線と直線とを組み合わせて描いても良い。さらに、領域1dの最大径部は、一方の軸受面1b側に偏在していても良い。
【0017】
また、この実施形態では、軸受本体1aにおける、2つの軸受面1bにそれぞれ対応する外径部1fの外径寸法D3を、軸受面1b間の領域1dに対応する外径部1gの外径寸法D4よりも小さく設定してある。多孔質含油軸受1を同図に示す態様でハウジング2の内周に圧入固定する場合において、軸受面1bの圧入力による変形を防止し又は緩和することができるので、精度が出し易くなる。固定力は、外径部1gとハウジング2との圧入締め代によって得られる。領域1dは、軸受面1bよりも大径に形成されており、軸の支持には直接関与しないので、圧入力に見合う程度の変形が生じても軸受の精度には影響がない。外径部1fの外径寸法D3と外径部1gの外径寸法D4との寸法差(圧入前の寸法差)は、ハウジング2との圧入締め代(外径部1gの圧入締め代)を考慮し、外径部1fがハウジング2の内周と非接触になるか、軸受精度に影響しない程度の締め代となるように設定する。尚、2つの外径部1fのうち、一方のみの外径寸法を上記のような設定にし、他方に対応するハウジング2の内径を大径にして、外径部1gのみでハウジング2に圧入固定しても良い。
【0018】
図2は、上述した構成の多孔質含油軸受1で軸3を支持する際における、軸方向断面での油の流れを示している。軸3の回転に伴い、軸受本体1aに含浸された油が軸受面1bの軸方向両側およびチャンファー部付近から軸受隙間4に滲み出し、さらに動圧溝によって軸受隙間4の軸方向中央に向けて引き込まれる。その油の引き込み作用(動圧作用)によって軸受隙間4に介在する油膜の圧力が高められ、潤滑油膜5が形成される。この軸受隙間4に形成される潤滑油膜5によって、軸3はホワール等の不安定振動を生じることなく、軸受面1bに対して非接触支持される。軸受隙間4に滲み出した油は、軸3の回転に伴う発生圧力により、主に軸受面1bの表面開孔(多孔質体組織の細孔が外表面に開口した部分の意である。)から軸受本体1aの内部に戻り、軸受本体1aの内部を循環して、再び軸受面1bおよびチャンファー部付近から軸受隙間4に滲み出す。このようにして、軸受本体1aに含浸された油が軸受隙間4と軸受本体1aとの間を循環しながら、上記のような動圧効果によって軸3を継続して非接触支持する。
【0019】
また、この多孔質含油軸受1は、軸方向に離隔形成された2つの軸受面1bで軸3を非接触支持するので、1つの軸受で軸3を高精度に支持することができる。さらに、動圧溝1cの引き込み作用によって、軸受面1b間の領域1dと軸3の外周面との間に形成される空間部に負圧が生じ、領域1dの表面開孔からも油が滲み出して軸受面1bに供給されるので、軸受隙間4における潤滑油膜5の形成が促進され、軸受力が高められる。特に、この実施形態のように、領域1dの軸方向断面が軸受面1bに連続した円弧(又はその他の曲線)で描かれている場合は、領域1dの表面開孔から滲み出した油が、領域1dに沿って軸方向に流れて軸受面1bに効果的に供給されるので、油の有効利用、潤滑油膜の形成促進につながる。
【0020】
ところで、この実施形態では、動圧溝1cの形成領域を含む軸受面1bの全領域に表面開孔が分布している。これは、上述した実公昭63−19627号のように、動圧溝の形成領域が封孔されている場合、以下の問題が生じることに配慮したものである。
【0021】
▲1▼ 動圧溝の形成領域が完全に封孔されていると、その領域では多孔質含油軸受の最大の特徴である油の循環が阻害される。従って、一旦軸受隙間に滲み出した油は動圧溝の作用によって軸受面の軸方向中央部に押し込まれ、そこにとどまることになる。軸受隙間内では大きな剪断作用が働いているので、その剪断力と摩擦熱によって軸受隙間内にとどまった油は変性しやすく、また、温度上昇によって酸化劣化が早まる傾向にある。従って、軸受寿命が短くなる。
【0022】
▲2▼ 動圧溝の形成領域を封孔処理することは極めて困難である。上記公報では塑性加工により封孔できるとしているが、通常、動圧溝の溝深さはμmオーダーのものであり、この程度の圧縮成形で表面開孔が封孔されることはない。また、塑性加工の他の手段としてコーティング等を挙げているが、コーティング被膜の厚さは溝深さよりも薄くする必要があり、数μmのコーティング被膜を傾斜した溝領域にのみ施すのは極めて困難である。
【0023】
この実施形態のように、動圧溝1cの形成領域を含む軸受面1bの表面開孔を介して、油を軸受本体1aの内部と軸受隙間4との間で循環させる構成とすることにより、上記のような問題点を解消することができる。
【0024】
上記のような油の循環を適性に保つためには、軸受面1bにおける動圧溝1cおよび背1eの領域で表面開孔がほぼ均一に分布しているのが望ましい。表面開孔の割合が小さくなると、油は動きにくくなり、逆に大きくなると油は動きやすくなる。また、含浸油の粘度も油の動きやすさに関係し、粘度が低いと動きやすく、粘度が高いと動きにくくなる。
【0025】
表面開孔率(外表面の単位面積内に占める表面開孔の面積割合をいう。)が大きく、粘度が低い場合には、油は極めて動きやすくなるが、動圧溝の作用によって軸受隙間に滲み出した油は簡単に軸受本体の内部に戻されるため、動圧効果が小さくなり、高回転精度を維持できないばかりか、軸と軸受面とが接触してしまう可能性がある。逆に表面開孔率が小さく、粘度が高い場合は、油は極めて動きにくくなるので、発生圧力は大きくなるが、適切な循環が阻害され、またトルクも大きくなるため、軸受部分の昇温によって油の劣化が促進される。
【0026】
従って、表面開孔率と油の粘度には、軸を非接触支持するために必要な潤滑油膜の形成を確保し、同時に、油の適切な循環を確保し得る最適な範囲が存在する。
【0027】
この最適範囲を明らかにすべく、LBP実機モータを用いて評価試験を行った。評価試験に用いた実機モータは、軸径がφ4のもので、ミラーを実装した状態であり、また、回転数は10000rpm、雰囲気温度は40℃とした。
【0028】
図5に評価試験の結果を示す。図5中、「○」は1000時間連続運転した耐久試験で問題のなかったことを示す。「Δ」は500〜1000時間の間で軸振れ上昇(5μm以上)、トルク上昇=回転数低下(10000rpmまで回転数が上がらない)、異音発生などのトラブルを発生し、正常な運転が不可能になったことを示す。「×」は500時間までに上記のようなトラブルが発生したことを示す。
【0029】
以上の評価実験から、表面開孔率と油の粘度の最適範囲(「×」の存在しない範囲)は、図5に実線で区画する領域、すなわち、以下の条件
▲1▼ 動圧溝の形成領域を含む軸受面の表面開孔率が2%以上20%以下であり、
▲2▼ 含浸される油の40℃での動粘度が2cSt以上であり、
▲3▼ 軸受面の表面開孔率と油の40℃での動粘度が
(3/5)A−1 ≦ η ≦ (40/6)A+(20/3)
ここで、A;表面開孔率 [%]
η;油の40℃での動粘度[cSt]
を満たす場合であることが理解できる。このような範囲で表面開孔率と油の粘度を選定することにより、軸を非接触支持するために充分な潤滑油膜が形成されると同時に、油の適切な循環が確保されるので、高回転精度、長寿命を達成することができる。
【0030】
なお、軸受面の表面開孔率は望ましくは2%以上、15%以下とするのが良い。
【0031】
動圧溝の溝深さ(h)と軸受隙間の大きさ(半径隙間:c)との比には最適な範囲があり、この範囲外では充分な動圧効果が得られないと考えられる。この最適範囲を明らかにすべく、LBP実機モータの軸を軸振れが測定できるように長いものに入れ替えて評価試験を行った。回転数は10000rpm、試験雰囲気は常温常湿であり、LBP実機モータはφ4でミラー未実装としている。なお、軸振れは非接触型の変位計によって測定した。
【0032】
以上の条件の下、c/h(c;半径隙間、h;溝深さ)に対する軸振れの値をそれぞれプロットしたところ、図6に示す結果を得た。図6より、c/hが0.5〜4.0の範囲内であれば、軸振れは5μm以下になるが、0.5未満、あるいは4.0より大きくなると5μm以上となる。従って、高精度を維持するためには、c/h=0.5〜4.0の範囲内とするのが望ましい。尚、軸受隙間の大きさc(半径隙間)は、軸の半径をRとした場合、c/R=1/2000〜1/400の範囲内で設定するのが良い。
【0033】
図3は、本発明の第2の実施形態に係わる多孔質含油軸受1’を示している。この実施形態の多孔質含油軸受1’が上述した第1の実施形態の多孔質含油軸受1と異なる点は、軸受面1b’の形状と、軸受面1b’間の領域1d’の形状である。その他の構成は、第1の実施形態の構成に準ずるので、対応する部材及び部分には同一の符号を付して示し、重複する説明を省略する。
【0034】
この実施形態の多孔質含油軸受1’における軸受面1b’は、軸方向に対して一方に傾斜した複数の動圧溝1c1を円周方向に配列形成した第1領域m1と、第1領域m1から軸方向に離隔し、軸方向に対して他方に傾斜した複数の動圧溝1c2を円周方向に配列形成した第2領域m2と、第1領域m1と第2領域m2との間に位置する環状の平滑部nとを備えている。第1領域m1の背1e1、第2領域m2の背1e2は、平滑部nに連続している。軸受本体1a’と軸との間に相対回転が生じると、第1領域m1と第2領域m2にそれぞれ逆向きに傾斜形成された動圧溝1c1、1c2によって油が平滑部nに引き込まれ、油が平滑部nを中心に集められるため、軸受隙間内の油膜圧力が高められる。しかも、図1に示すような軸受面に比べ、平滑部nには動圧溝が形成されていないため、その部分における潤滑油膜の形成効果が高く、また、背1e1、1e2に加え、平滑部nも軸を支持する支持面になるので、支持面積が拡大し、軸受剛性が高められる。
【0035】
また、軸受面1b’間の領域1d’の軸方向断面は軸方向の直線で描かれ、かつ、領域1d’と軸受面1b’との境界は段差1hになっている。尚、領域1d’の軸方向断面は、軸方向に対して傾斜した2つの直線を組み合わせて描いても良い(V字状)。
【0036】
尚、第1の実施形態と同様に、領域1d’の内径寸法は、軸受面1b’の内径寸法よりも大きく設定され、軸受面1b’に対応した外径部1fの外径寸法は、領域1d’に対応した外径部1gの外径寸法よりも小さく設定されている。
【0037】
【実施例】
(1)ハウジングへの圧入比較試験
比較例品:動圧溝が形成された1つの軸受面を備えた構成。圧入前の内径寸法がφ3.006mmのテストピースを2個製作し、ハウジングとの締め代18μm、矯正ピン径φ3.000mmでハウジングに圧入した。
【0038】
実施例品:動圧溝が形成された2つの軸受面を備えた構成。テストピースを上記と同一条件でハウジングに圧入した。
【0039】
試験結果:比較例品では2個とも軸受面の動圧溝の一部が押しつぶされた。 モータに組み込んで試験を行ったが、回転が不安定となり、軸振れなどは通常の真円軸受(軸受面に動圧溝を形成していない軸受)よりも悪い結果が得られた。動圧溝の一部が押しつぶされた原因は、テストピースには偏肉があり(軸受製品でも同じ)、このため動圧溝の一部に矯正ピンの矯正力が強く作用したためと考えられる。
【0040】
これに対し、実施例品では、全体的に溝深さは浅くなったものの(4μmから3.5μmに減少)、一部が押しつぶされてしまう現象は見られなかった。モータに組み込んで軸振れを測定したところ、2000〜15000rpmで2μm以下という優れた性能を示した。
(2)回転精度比較試験
比較例品:動圧溝が形成されていない2つの軸受面を備え構成。
【0041】
実施例品:動圧溝が形成された2つの軸受面を備えた構成(図1の構成)。
【0042】
試験結果:試験結果を図7に示す。同図に示すように、実施例品は比較例品に比べて優れた性能を示した(黒四角は実施例品、黒丸は比較例品の測定データである)。
【0043】
【発明の効果】
本発明は以下に示す効果を有する。
【0044】
(1)1つの軸受に複数の軸受面を形成したので、従来のような複数個の軸受を組み込む場合における同軸度の問題を解消することができる。すなわち、複数の軸受面が1つの軸受に設けられているため、従来のように矯正ピンを用いて同軸度を確保する必要がなく、また、矯正ピンによる動圧溝の形状の崩れも起こらない。また、少なくとも1つの軸受面に傾斜状の動圧溝を形成したので、ホワールなどの不安定振動を効果的に防止することができる。また、動圧溝を有する軸受面において、表面開孔の分布態様、表面開孔率、及び油の動粘度を最適設定したので、軸を非接触支持するために充分な潤滑油膜が形成されると同時に、油の適切な循環が確保され、高回転精度、長寿命を達成することができる。
【0045】
(2)軸受面と、軸受面間の領域との境界に段差を設けることにより、軸受面間の領域におけるトルクロスを効果的に低減することができる。
【0046】
(3)軸受面間の領域の軸方向断面を、軸受面と連続する曲線で描がくことにより、軸受面間の領域の表面開孔から滲み出した油が、その領域に沿って軸方向に流れて軸受面に供給され易くなるので、油の有効利用、潤滑油膜の形成促進になる。
【0047】
(4)軸受面間の領域の軸方向断面を、その領域の中央部で最も大径になる円弧で描くことにより、その領域の表面開孔から滲み出した油を両側の軸受面に効果的に供給することができる。
【0048】
(5)軸受面に対応する外径部の外径寸法を、軸受面間の領域に対応する外径部の外径寸法よりも小さく設定することにより、軸受本体をハウジングに圧入固定する場合、圧入力による軸受面の変形を防止または緩和することができる。
【図面の簡単な説明】
【図1】本発明の第1の実施形態を示す断面図である。
【図2】実施形態の多孔質含油軸受で軸を支持する際における、軸方向断面での油の流れを模式的に示す図である。
【図3】本発明の第2の実施形態を示す断面図である。
【図4】軸受面の一部横断面を示す図である。
【図5】評価試験の結果を示す図である。
【図6】評価試験の結果を示す図である。
【図7】評価試験の結果を示す図である。
【符号の説明】
1 多孔質含油軸受
1a 軸受本体
1b 軸受面
1c 動圧溝
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention provides a self-lubricating function by impregnating a porous body such as a sintered metal with a lubricating oil or a lubricating grease, and a lubricating oil film (a lubricating oil formed by a dynamic pressure action of a dynamic pressure groove) interposed in a bearing gap. For a hydrodynamic porous oil-impregnated bearing that supports a shaft in a non-contact manner with an oil film, high rotational accuracy is required at high speeds, especially for a polygon mirror motor (LBP) for a laser beam printer and a spindle motor (HDD) for a magnetic disk drive. It is suitable for a device such as a DVD-ROM or a device such as a DVD-ROM which is driven at a high speed due to a large unbalance load acting on the disk.
[0002]
[Prior art]
In such small spindle motors related to information equipment, further improvement in rotational performance and cost reduction are required, and as a means for this, replacing the bearing part of the spindle from a rolling bearing to a porous oil-impregnated bearing. Is being considered. However, since porous oil-impregnated bearings are a kind of perfect circular bearings, unstable vibrations tend to occur where the eccentricity of the shaft is small, and so-called whirling, which oscillates at half the rotational speed, is likely to occur. There is. Therefore, it has been attempted to provide a dynamic pressure groove such as a herringbone type or spiral type on the bearing surface, and to generate a lubricating oil film in the bearing gap by the action of the dynamic pressure groove accompanying the rotation of the shaft to support the shaft in a non-contact manner. (Dynamic pressure type porous oil-impregnated bearing).
[0003]
As a prior art in which a dynamic pressure groove is formed on a bearing surface of a porous oil-impregnated bearing, there is one disclosed in Japanese Utility Model Publication No. 63-19627. In the technology described in the same publication, a region where a dynamic pressure groove is formed on a bearing surface is subjected to surface blinding to seal the region where the dynamic pressure groove is formed.
[0004]
[Problems to be solved by the invention]
Usually, in order to secure the rotation accuracy of the shaft, a plurality of bearings, for example, two bearings are used in combination. Further, the bearing is often used by being press-fitted into the housing. Therefore, in order to ensure the coaxiality of the two bearings, a method of inserting the straightening pin into the housing and then press-fitting the two bearings simultaneously is adopted. However, in a bearing with a dynamic pressure groove provided on the bearing surface, if the straightening pin is used to forcibly correct the dynamic pressure groove, the dynamic pressure groove on the bearing surface will be crushed by the biting of the straightening pin, and a stable dynamic pressure effect will be obtained. Disappears. On the other hand, if the press-fitting operation is performed without using the straightening pins, the required coaxiality between the bearings cannot be obtained. Therefore, it can be said that the configuration described in Japanese Utility Model Publication No. 63-19627 is difficult to put into practical use.
[0005]
Japanese Patent Laid-Open No. 2-107705 discloses a configuration in which two bearing surfaces are formed so as to be separated from each other in the axial direction, and a region between the bearing surfaces is larger in diameter than the bearing surfaces. Although there is no practical problem, the dynamic pressure grooves are not formed on the bearing surface, so that unstable vibration such as whirl cannot be prevented.
[0006]
SUMMARY OF THE INVENTION The present invention has been made in view of the above-described problems of the related art, and can prevent unstable vibration such as whirl and eliminate inconvenience in assembling (collapse of dynamic pressure groove shape, deviation of coaxiality). It is an object of the present invention to provide a configuration in which
[0007]
[Means for Solving the Problems]
According to the present invention, a plurality of bearing surfaces opposed to an outer peripheral surface of a shaft to be supported via a bearing gap are formed on a bearing body made of a porous body at a distance in the axial direction, and at least one of the plurality of bearing surfaces is formed. An inclined dynamic pressure groove was formed on each of the two. The inner diameter of the region between the bearing surfaces is set to be larger than the inner diameter of the bearing surface. The apertures including the dynamic pressure grooves are substantially uniformly distributed on the bearing surface on which the dynamic pressure grooves are formed, and the surface area ratio of the apertures on the bearing surface with the dynamic pressure grooves is 2%. And the kinematic viscosity at 40 ° C. of the contained oil is 2 cSt or more, and the surface area ratio and the kinematic viscosity are expressed by the following formula:
(3/5) A-1 η (40/6) A + (20/3)
Here, A: surface area ratio of opening [%]
η; kinematic viscosity at 40 ° C. of oil [cSt]
In the bearing surface where the dynamic pressure groove is formed, the sliding surface of the shaft is floated and supported by the lubricating oil film of the oil interposed in the bearing gap, and through the opening of the bearing surface including the dynamic pressure groove. Oil circulates between the inside of the bearing body and the bearing gap.
[0008]
By forming a plurality of bearing surfaces on one bearing, it is possible to solve the problem of coaxiality when a plurality of bearings are incorporated as in the related art. That is, since a plurality of bearing surfaces are provided on one bearing, it is not necessary to secure coaxiality using a correction pin as in the related art, and the shape of the dynamic pressure groove by the correction pin does not collapse. . By forming an inclined dynamic pressure groove on at least one bearing surface, unstable vibration such as whirl can be effectively prevented.
[0009]
By providing a step at the boundary between the bearing surface and the region between the bearing surfaces, it is possible to effectively reduce the torque loss in the region between the bearing surfaces.
[0010]
By drawing the axial cross section of the region between the bearing surfaces with a curve that is continuous with the bearing surface, oil that has oozed from the opening in the region between the bearing surfaces flows in the axial direction along that region, and Since the oil is easily supplied to the surface, the effective use of oil and the formation of a lubricating oil film are promoted.
[0011]
The axial cross section of the region between the bearing surfaces can be described by an arc having the largest diameter at the center of the region. Oil that has oozed out of the surface openings in that region is likely to be supplied to the bearing surfaces on both sides.
[0012]
When the outer diameter of the outer diameter portion corresponding to at least one bearing surface is set smaller than the outer diameter of the outer diameter portion corresponding to the region between the bearing surfaces, when the bearing body is press-fitted and fixed to the housing, It is possible to prevent or reduce deformation of the bearing surface due to press-fitting.
[0013]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of the present invention will be described.
[0014]
FIG. 1 shows a state in which a porous oil-impregnated bearing 1 according to a first embodiment of the present invention is fixed to a housing 2. The porous oil-impregnated bearing 1 is composed of a bearing body 1a made of a porous body, and lubricating oil or lubricating grease impregnated in the bearing body 1a. The bearing main body 1a is made of, for example, a sintered metal mainly containing copper or iron, or both, and desirably contains 20 to 95% by weight of copper and has a density of 6.4 to 7.2 g / cm 3. It is formed so that In addition, as the material of the bearing body 1a, a porous body having a large number of pores may be used by sintering or foaming cast iron, synthetic resin, ceramics, or the like.
[0015]
On the inner periphery of the bearing body 1a, a plurality of, for example, two bearing surfaces 1b opposed to an outer peripheral surface of a shaft to be supported via a bearing gap 4 (see FIG. 4) are formed in the axial direction so as to be separated from each other. , A plurality of dynamic pressure grooves 1c are respectively formed in the circumferential direction. The dynamic pressure groove 1c in this embodiment has a shape in which a groove region inclined to one side with respect to the axial direction and a groove region inclined to the other pair form a V-shaped continuous shape. The dynamic pressure groove 1c may be formed on at least one bearing surface 1b.
[0016]
The inner diameter D1 of the region 1d between the bearing surfaces 1b in the bearing body 1a is larger than the inner diameter of the bearing surface 1b (strictly speaking, the inner diameter of the region of the back 1e (see FIG. 4) between the dynamic pressure grooves 1c) D2. Is set. In this embodiment, the axial cross section of the region 1d is drawn as one circular arc that is continuous with the bearing surface 1b, and the largest diameter portion of the circular arc is located at the axial center of the region 1d. Note that a step may be provided at the boundary between the region 1d and the bearing surface 1b. In addition, the axial section of the region 1d can be drawn with a curve such as an ellipse, a parabola, or the like, in addition to a circular arc. You may draw by combining two curves of the same kind (for example, two arcs), combining two different kinds of curves (for example, a combination of an arc and a parabola), or combining a curve and a straight line. Further, the maximum diameter portion of the region 1d may be unevenly distributed on one bearing surface 1b side.
[0017]
In this embodiment, the outer diameter D3 of the outer diameter portion 1f corresponding to each of the two bearing surfaces 1b in the bearing body 1a is changed to the outer diameter size of the outer diameter portion 1g corresponding to the region 1d between the bearing surfaces 1b. It is set smaller than D4. In the case where the porous oil-impregnated bearing 1 is press-fitted and fixed to the inner periphery of the housing 2 in the manner shown in the figure, deformation due to press-fitting of the bearing surface 1b can be prevented or reduced, so that accuracy can be easily obtained. The fixing force is obtained by the press fit between the outer diameter portion 1g and the housing 2. The region 1d is formed to have a larger diameter than the bearing surface 1b, and is not directly involved in supporting the shaft. Therefore, even if a deformation corresponding to the press-in force occurs, the accuracy of the bearing is not affected. The dimensional difference between the outer diameter D3 of the outer diameter portion 1f and the outer diameter D4 of the outer diameter portion 1g (the dimensional difference before press-fitting) is the press-fitting allowance with the housing 2 (the press-fitting allowance of the outer diameter portion 1g). In consideration of the above, the outer diameter portion 1f is set so as not to be in contact with the inner periphery of the housing 2 or to have an interference that does not affect bearing accuracy. The outer diameter of only one of the two outer diameter portions 1f is set as described above, the inner diameter of the housing 2 corresponding to the other is increased, and the housing 2 is press-fitted and fixed to only the outer diameter portion 1g. You may.
[0018]
FIG. 2 shows the flow of oil in an axial section when the shaft 3 is supported by the porous oil-impregnated bearing 1 having the above-described configuration. With the rotation of the shaft 3, the oil impregnated in the bearing body 1a oozes into the bearing gap 4 from both sides in the axial direction of the bearing surface 1b and near the chamfer portion, and is further directed toward the axial center of the bearing gap 4 by the dynamic pressure groove. Pulled in. Due to the oil drawing action (dynamic pressure action), the pressure of the oil film interposed in the bearing gap 4 is increased, and the lubricating oil film 5 is formed. By the lubricating oil film 5 formed in the bearing gap 4, the shaft 3 is supported in a non-contact manner with respect to the bearing surface 1b without causing unstable vibration such as whirl. The oil that seeps into the bearing gap 4 is mainly a surface opening of the bearing surface 1b due to the pressure generated by the rotation of the shaft 3 (meaning a portion in which the pores of the porous body structure are opened on the outer surface). From the bearing body 1a, circulates inside the bearing body 1a, and oozes out again into the bearing gap 4 from the bearing surface 1b and the vicinity of the chamfer portion. In this way, while the oil impregnated in the bearing body 1a circulates between the bearing gap 4 and the bearing body 1a, the shaft 3 is continuously supported in a non-contact manner by the dynamic pressure effect as described above.
[0019]
Further, in the porous oil-impregnated bearing 1, the shaft 3 is supported in a non-contact manner by the two bearing surfaces 1b separated in the axial direction, so that the shaft 3 can be supported by one bearing with high precision. Further, a negative pressure is generated in a space formed between the region 1d between the bearing surfaces 1b and the outer peripheral surface of the shaft 3 due to the drawing action of the dynamic pressure groove 1c, and oil seeps from the surface opening in the region 1d. Since it is supplied to the bearing surface 1b, the formation of the lubricating oil film 5 in the bearing gap 4 is promoted, and the bearing force is increased. In particular, as in this embodiment, when the axial cross section of the region 1d is drawn by a continuous arc (or other curve) on the bearing surface 1b, the oil that has oozed from the surface opening of the region 1d is Since it flows in the axial direction along the region 1d and is effectively supplied to the bearing surface 1b, it leads to effective utilization of oil and promotion of formation of a lubricating oil film.
[0020]
By the way, in this embodiment, surface openings are distributed over the entire region of the bearing surface 1b including the region where the dynamic pressure groove 1c is formed. This is because the following problem occurs when the formation region of the dynamic pressure groove is sealed as described in Japanese Utility Model Publication No. 63-19627.
[0021]
{Circle around (1)} When the region where the dynamic pressure groove is formed is completely sealed, the circulation of oil, which is the greatest feature of the porous oil-impregnated bearing, is impeded in that region. Therefore, the oil once seeping into the bearing gap is pushed into the axial center of the bearing surface by the action of the dynamic pressure groove and stays there. Since a large shearing action is acting in the bearing gap, the oil remaining in the bearing gap due to the shearing force and frictional heat tends to be denatured, and the temperature tends to accelerate the oxidative deterioration. Therefore, the bearing life is shortened.
[0022]
{Circle around (2)} It is extremely difficult to seal the area where the dynamic pressure grooves are formed. Although the above-mentioned publication states that the hole can be sealed by plastic working, the groove depth of the dynamic pressure groove is usually on the order of μm, and the surface opening is not sealed by such compression molding. In addition, coating is mentioned as another means of plastic working, but the thickness of the coating film needs to be thinner than the groove depth, and it is extremely difficult to apply a coating film of several μm only to the inclined groove region. It is.
[0023]
As in this embodiment, the oil is circulated between the inside of the bearing main body 1a and the bearing gap 4 through the surface opening of the bearing surface 1b including the formation region of the dynamic pressure groove 1c. The above problems can be solved.
[0024]
In order to keep the circulation of the oil as described above appropriately, it is desirable that the surface openings are distributed almost uniformly in the region of the dynamic pressure groove 1c and the back 1e in the bearing surface 1b. When the ratio of the surface openings is small, the oil becomes difficult to move, and when it is large, the oil becomes easy to move. The viscosity of the impregnated oil is also related to the ease of movement of the oil. The lower the viscosity, the easier it is to move, and the higher the viscosity, the harder it is to move.
[0025]
When the surface porosity (meaning the area ratio of the surface porosity occupying a unit area of the outer surface) is large and the viscosity is low, the oil becomes extremely easy to move. The exuded oil is easily returned to the inside of the bearing main body, so that the dynamic pressure effect is reduced and high rotational accuracy cannot be maintained, and the shaft and the bearing surface may come into contact with each other. Conversely, when the surface porosity is small and the viscosity is high, the oil becomes extremely difficult to move, so the generated pressure increases, but proper circulation is hindered and the torque also increases. Oil degradation is promoted.
[0026]
Therefore, the surface porosity and the viscosity of the oil have an optimum range in which the formation of the lubricating oil film necessary for supporting the shaft in a non-contact manner can be ensured, and at the same time, the proper circulation of the oil can be ensured.
[0027]
In order to clarify this optimum range, an evaluation test was performed using an actual LBP motor. The actual motor used in the evaluation test had a shaft diameter of φ4, was mounted with a mirror, had a rotation speed of 10,000 rpm, and had an ambient temperature of 40 ° C.
[0028]
FIG. 5 shows the results of the evaluation test. In FIG. 5, “示 す” indicates that there was no problem in the durability test after continuous operation for 1000 hours. “Δ” indicates a problem such as an increase in shaft runout (5 μm or more), an increase in torque = a decrease in the number of revolutions (the number of revolutions does not increase until 10,000 rpm), abnormal noise, etc., during 500 to 1000 hours, and abnormal operation. Indicates that it is possible. “X” indicates that the above-mentioned trouble occurred by 500 hours.
[0029]
From the above evaluation experiments, the optimum range of the surface porosity and the viscosity of the oil (the range in which “x” does not exist) is the area defined by the solid line in FIG. 5, that is, the following conditions (1) Formation of dynamic pressure groove The surface porosity of the bearing surface including the region is 2% or more and 20% or less,
(2) The kinematic viscosity at 40 ° C. of the impregnated oil is 2 cSt or more,
{Circle around (3)} The surface porosity of the bearing surface and the kinematic viscosity of the oil at 40 ° C. are (3/5) A−1 ≦ η ≦ (40/6) A + (20/3)
Here, A; surface porosity [%]
η; kinematic viscosity at 40 ° C. of oil [cSt]
It can be understood that this is the case. By selecting the surface porosity and the viscosity of the oil within such a range, a sufficient lubricating oil film is formed to support the shaft in a non-contact manner, and at the same time, appropriate circulation of the oil is ensured. Rotation accuracy and long life can be achieved.
[0030]
The surface porosity of the bearing surface is desirably 2% or more and 15% or less.
[0031]
There is an optimal range for the ratio between the groove depth (h) of the dynamic pressure groove and the size of the bearing gap (radial gap: c), and it is considered that a sufficient dynamic pressure effect cannot be obtained outside this range. In order to clarify this optimum range, an evaluation test was performed by replacing the shaft of the actual LBP motor with a longer one so that the shaft runout could be measured. The rotation speed was 10000 rpm, the test atmosphere was room temperature and normal humidity, and the LBP actual motor was φ4 and no mirror was mounted. The shaft runout was measured by a non-contact displacement meter.
[0032]
Under the above conditions, the values of the shaft runout with respect to c / h (c: radial gap, h: groove depth) were plotted, and the results shown in FIG. 6 were obtained. According to FIG. 6, when c / h is in the range of 0.5 to 4.0, the shaft runout is 5 μm or less, but when it is less than 0.5 or larger than 4.0, it becomes 5 μm or more. Therefore, in order to maintain high accuracy, it is desirable that c / h be in the range of 0.5 to 4.0. Note that the size c (radial gap) of the bearing gap is preferably set within the range of c / R = 1/2000 to 1/400, where R is the radius of the shaft.
[0033]
FIG. 3 shows a porous oil-impregnated bearing 1 'according to a second embodiment of the present invention. The difference between the porous oil-impregnated bearing 1 'of this embodiment and the porous oil-impregnated bearing 1 of the first embodiment described above is the shape of the bearing surface 1b' and the shape of the region 1d 'between the bearing surfaces 1b'. . Other configurations are the same as those of the first embodiment, and corresponding members and portions are denoted by the same reference numerals, and redundant description will be omitted.
[0034]
The bearing surface 1b 'in the porous oil-impregnated bearing 1' of this embodiment has a first region m1 in which a plurality of hydrodynamic grooves 1c1 inclined to one side with respect to the axial direction are formed in a circumferential direction, and a first region m1. A second region m2 in which a plurality of dynamic pressure grooves 1c2 are formed in the circumferential direction and are spaced apart from each other in the axial direction and inclined in the other direction with respect to the axial direction, and are located between the first region m1 and the second region m2. And an annular smooth portion n. The back 1e1 of the first region m1 and the back 1e2 of the second region m2 are continuous with the smooth portion n. When relative rotation occurs between the bearing main body 1a 'and the shaft, the oil is drawn into the smooth portion n by the dynamic pressure grooves 1c1 and 1c2 that are formed in the first region m1 and the second region m2, respectively. Since oil is collected around the smooth portion n, the oil film pressure in the bearing gap is increased. Moreover, since the dynamic pressure grooves are not formed in the smooth portion n as compared with the bearing surface as shown in FIG. 1, the effect of forming the lubricating oil film in that portion is high, and in addition to the spine 1e1, 1e2, the smooth portion Since n is also a support surface for supporting the shaft, the support area is enlarged, and the bearing rigidity is increased.
[0035]
The axial section of the region 1d 'between the bearing surfaces 1b' is drawn as a straight line in the axial direction, and the boundary between the region 1d 'and the bearing surface 1b' is a step 1h. Incidentally, the axial section of the region 1d 'may be drawn by combining two straight lines inclined with respect to the axial direction (V-shape).
[0036]
As in the first embodiment, the inner diameter of the region 1d 'is set to be larger than the inner diameter of the bearing surface 1b', and the outer diameter of the outer diameter portion 1f corresponding to the bearing surface 1b 'is It is set smaller than the outer diameter of the outer diameter portion 1g corresponding to 1d '.
[0037]
【Example】
(1) Comparative test of press-fitting into housing Comparative example product: A configuration having one bearing surface in which a dynamic pressure groove is formed. Two test pieces each having an inner diameter of 3.006 mm before press-fitting were manufactured, and were press-fitted into the housing with an interference of 18 μm with the housing and a correction pin diameter of 3.000 mm.
[0038]
Example product: A configuration including two bearing surfaces on which dynamic pressure grooves are formed. The test piece was pressed into the housing under the same conditions as above.
[0039]
Test result: In each of the comparative examples, a part of the dynamic pressure groove on the bearing surface was crushed. A test was conducted by incorporating the motor into a motor. The results showed that the rotation was unstable and the shaft runout was lower than that of a normal circular bearing (a bearing having no dynamic pressure groove on the bearing surface). The reason why a part of the dynamic pressure groove was crushed is considered to be that the test piece has uneven thickness (the same applies to the bearing product), and thus the correcting force of the straightening pin strongly applied to a part of the dynamic pressure groove.
[0040]
On the other hand, in the example product, although the groove depth was reduced as a whole (decreased from 4 μm to 3.5 μm), the phenomenon of partially crushing was not observed. When the shaft runout was measured by incorporating the motor into a motor, it showed an excellent performance of 2 μm or less at 2000 to 15000 rpm.
(2) Rotational accuracy comparison test Comparative example: A configuration including two bearing surfaces on which no dynamic pressure grooves are formed.
[0041]
Example product: A configuration including two bearing surfaces on which dynamic pressure grooves are formed (the configuration in FIG. 1).
[0042]
Test results: The test results are shown in FIG. As shown in the figure, the product of the example exhibited superior performance as compared with the product of the comparative example (solid squares represent measurement data of the comparative product and comparative samples).
[0043]
【The invention's effect】
The present invention has the following effects.
[0044]
(1) Since a plurality of bearing surfaces are formed on one bearing, the problem of coaxiality when a plurality of bearings are incorporated as in the related art can be solved. That is, since a plurality of bearing surfaces are provided on one bearing, it is not necessary to secure coaxiality using a correction pin as in the related art, and the shape of the dynamic pressure groove by the correction pin does not collapse. . Further, since the inclined dynamic pressure grooves are formed on at least one bearing surface, unstable vibration such as whirl can be effectively prevented. In addition, on the bearing surface having the dynamic pressure groove, the distribution mode of the surface aperture, the surface aperture ratio, and the kinematic viscosity of the oil are optimally set, so that a sufficient lubricating oil film is formed to support the shaft in a non-contact manner. At the same time, appropriate circulation of oil is ensured, and high rotational accuracy and long life can be achieved.
[0045]
(2) By providing a step at the boundary between the bearing surface and the region between the bearing surfaces, it is possible to effectively reduce the torque loss in the region between the bearing surfaces.
[0046]
(3) By drawing the axial cross section of the region between the bearing surfaces with a curve that is continuous with the bearing surface, the oil that seeps out of the surface openings in the region between the bearing surfaces is axially drawn along the region. Since it flows and is easily supplied to the bearing surface, effective use of oil and formation of a lubricating oil film are promoted.
[0047]
(4) By drawing the axial cross section of the region between the bearing surfaces with an arc having the largest diameter at the center of the region, the oil oozing out from the surface opening in the region is effectively applied to the bearing surfaces on both sides. Can be supplied to
[0048]
(5) When the outer diameter of the outer diameter portion corresponding to the bearing surface is set smaller than the outer diameter of the outer diameter portion corresponding to the region between the bearing surfaces, the bearing body is press-fitted and fixed to the housing. It is possible to prevent or reduce deformation of the bearing surface due to press-fitting.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view showing a first embodiment of the present invention.
FIG. 2 is a view schematically showing the flow of oil in an axial section when the shaft is supported by the porous oil-impregnated bearing of the embodiment.
FIG. 3 is a cross-sectional view showing a second embodiment of the present invention.
FIG. 4 is a diagram showing a partial cross section of a bearing surface.
FIG. 5 is a diagram showing the results of an evaluation test.
FIG. 6 is a diagram showing the results of an evaluation test.
FIG. 7 is a diagram showing the results of an evaluation test.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Porous oil-impregnated bearing 1a Bearing main body 1b Bearing surface 1c Dynamic pressure groove

Claims (7)

多孔質体からなり、支持すべき軸の外周面と軸受隙間を介して対向する複数の軸受面が軸方向に離隔して形成され、前記軸受面間の領域の内径寸法が軸受面の内径寸法よりも大きく設定された軸受本体と、前記軸受本体に含浸された潤滑油又は潤滑グリースと、前記複数の軸受面の少なくとも1つに形成された傾斜状の動圧溝とを備え、
前記動圧溝が形成された軸受面には、該動圧溝を含めて開孔部がほぼ均一に分布しており、
前記動圧溝が形成された軸受面における開孔部の表面積比率が2%以上15%以下であり、
含有する油の40℃での動粘度が2cSt以上であり、
前記表面積比率と前記動粘度が、以下の式
(3/5)A−1 η (40/6)A+(20/3)
ここで、A;開孔部の表面積比率 [%]
η;油の40℃での動粘度[cSt]
を満足し、
前記動圧溝が形成された軸受面において、前記軸受隙間に介在する油の潤滑油膜によって軸の摺動面を浮上支持すると共に、前記動圧溝を含む軸受面の開孔部を介して、油を前記軸受本体の内部と軸受隙間との間で循環させる動圧型多孔質含油軸受。
A plurality of bearing surfaces formed of a porous body and opposed to an outer peripheral surface of a shaft to be supported via a bearing gap are formed apart in the axial direction, and an inner diameter of a region between the bearing surfaces is an inner diameter of the bearing surface. A bearing body set larger than the lubricating oil or lubricating grease impregnated in the bearing body, and an inclined dynamic pressure groove formed on at least one of the plurality of bearing surfaces ,
On the bearing surface on which the dynamic pressure groove is formed, the apertures are substantially uniformly distributed including the dynamic pressure groove,
A surface area ratio of the opening portion on the bearing surface on which the dynamic pressure groove is formed is 2% or more and 15% or less;
A kinematic viscosity at 40 ° C. of the contained oil is 2 cSt or more;
The surface area ratio and the kinematic viscosity are represented by the following formula:
(3/5) A-1 η (40/6) A + (20/3)
Here, A: surface area ratio of opening [%]
η; kinematic viscosity at 40 ° C. of oil [cSt]
Satisfied,
On the bearing surface in which the dynamic pressure groove is formed, the sliding surface of the shaft is levitated and supported by a lubricating oil film of oil interposed in the bearing gap, and through an opening in the bearing surface including the dynamic pressure groove, A hydrodynamic porous oil-impregnated bearing that circulates oil between the inside of the bearing body and a bearing gap .
上記軸受本体が焼結金属で形成されている請求項1記載の動圧型多孔質含油軸受。2. The hydrodynamic porous oil-impregnated bearing according to claim 1, wherein the bearing body is formed of a sintered metal. 上記焼結金属が銅又は鉄、あるいは、その両者を主成分とする請求項2記載の動圧型多孔質含油軸受。3. The hydrodynamic porous oil-impregnated bearing according to claim 2, wherein the sintered metal contains copper or iron, or both of them as main components. 前記軸受面と、前記軸受面間の領域との境界が、段差になっている請求項1、2又は3記載の動圧型多孔質含油軸受。4. The hydrodynamic porous oil-impregnated bearing according to claim 1, wherein a boundary between the bearing surface and a region between the bearing surfaces is a step. 前記軸受面間の領域の軸方向断面が、前記軸受面と連続する曲線で描かれている請求項1、2又は3記載の動圧型多孔質含油軸受。4. The hydrodynamic porous oil-impregnated bearing according to claim 1, wherein an axial cross section of a region between the bearing surfaces is drawn by a curve continuous with the bearing surface. 前記曲線が、前記軸受面間の領域の中央部で最も大径になる円弧である請求項5記載の動圧型多孔質含油軸受。6. The hydrodynamic porous oil-impregnated bearing according to claim 5, wherein the curve is an arc having the largest diameter at the center of the region between the bearing surfaces. 前記少なくとも1つの軸受面に対応する外径部の外径寸法が、前記軸受面間の領域に対応する外径部の外径寸法よりも小さく設定されている請求項1、2、3、4、5又は6記載の動圧型多孔質含油軸受。The outer diameter of an outer diameter portion corresponding to the at least one bearing surface is set smaller than the outer diameter of an outer diameter portion corresponding to a region between the bearing surfaces. 7. A dynamic pressure type porous oil-impregnated bearing according to item 5 or 6.
JP04797498A 1997-03-31 1998-02-27 Dynamic pressure type porous oil-impregnated bearing Expired - Lifetime JP3602325B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP04797498A JP3602325B2 (en) 1997-03-31 1998-02-27 Dynamic pressure type porous oil-impregnated bearing

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP8153697 1997-03-31
JP9-81536 1997-03-31
JP04797498A JP3602325B2 (en) 1997-03-31 1998-02-27 Dynamic pressure type porous oil-impregnated bearing

Publications (2)

Publication Number Publication Date
JPH10331842A JPH10331842A (en) 1998-12-15
JP3602325B2 true JP3602325B2 (en) 2004-12-15

Family

ID=26388190

Family Applications (1)

Application Number Title Priority Date Filing Date
JP04797498A Expired - Lifetime JP3602325B2 (en) 1997-03-31 1998-02-27 Dynamic pressure type porous oil-impregnated bearing

Country Status (1)

Country Link
JP (1) JP3602325B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000004298A1 (en) * 1998-07-17 2000-01-27 Koninklijke Philips Electronics N.V. Dynamic groove bearing comprising a porous lubricant reservoir
JP3918520B2 (en) * 2001-11-14 2007-05-23 Nokクリューバー株式会社 Lubricating composition for oil-impregnated bearings

Also Published As

Publication number Publication date
JPH10331842A (en) 1998-12-15

Similar Documents

Publication Publication Date Title
KR100606982B1 (en) Dynamic pressure bearings with porous oil and manufacturing method
US5834870A (en) Oil impregnated porous bearing units and motors provided with same
US7466050B2 (en) Brushless motor and method of manufacturing the same
JP3774080B2 (en) Hydrodynamic bearing unit
JP3607492B2 (en) Dynamic pressure type porous oil-impregnated bearing and manufacturing method thereof
JP3602325B2 (en) Dynamic pressure type porous oil-impregnated bearing
JP3602317B2 (en) Dynamic pressure type porous oil-impregnated bearing unit
JP3607478B2 (en) Dynamic pressure type porous oil-impregnated bearing
JP3842499B2 (en) Hydrodynamic bearing unit
JP3773721B2 (en) Hydrodynamic bearing
JP3908834B2 (en) Support device for spindle motor of information equipment
JP4048013B2 (en) Hydrodynamic bearing unit
JPH11191944A (en) Spindle motor and rotary shaft supporting device of laser beam printer
JP4024007B2 (en) Hydrodynamic bearing unit
JP4188288B2 (en) Manufacturing method of dynamic pressure type porous oil-impregnated bearing
JPH10325416A (en) Dynamic pressure type porous oil retaining bearing and bearing device
JPH11190340A (en) Dynamic pressure type bearing device
JP4263144B2 (en) Spindle motor
JP3784690B2 (en) Dynamic pressure type porous oil-impregnated bearing and manufacturing method thereof
JP4394657B2 (en) Hydrodynamic bearing unit
JP2004353871A (en) Hydrodynamic type porous oil-impregnated bearing
JPH11191943A (en) Spindle motor and rotary shaft supporting device of optical disc device
JP2004116623A (en) Fluid bearing device
JP2004301232A (en) Retainer for cylindrical roller bearing
WO2020013049A1 (en) Fluid dynamic pressure bearing device and motor with said bearing device

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040514

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040527

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040726

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040820

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040922

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071001

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081001

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091001

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101001

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111001

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121001

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121001

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131001

Year of fee payment: 9

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term