JPH10274241A - Porous oilless bearing - Google Patents

Porous oilless bearing

Info

Publication number
JPH10274241A
JPH10274241A JP8153597A JP8153597A JPH10274241A JP H10274241 A JPH10274241 A JP H10274241A JP 8153597 A JP8153597 A JP 8153597A JP 8153597 A JP8153597 A JP 8153597A JP H10274241 A JPH10274241 A JP H10274241A
Authority
JP
Japan
Prior art keywords
bearing
oil
dynamic pressure
porous
shaft
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8153597A
Other languages
Japanese (ja)
Inventor
Natsuhiko Mori
夏比古 森
Kazuo Okamura
一男 岡村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NTN Corp
Original Assignee
NTN Corp
NTN Toyo Bearing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NTN Corp, NTN Toyo Bearing Co Ltd filed Critical NTN Corp
Priority to JP8153597A priority Critical patent/JPH10274241A/en
Priority to GB9804367A priority patent/GB2322915B/en
Priority to GB0024065A priority patent/GB2351781B/en
Priority to US09/033,651 priority patent/US6299356B1/en
Priority to NL1008457A priority patent/NL1008457C2/en
Priority to DE19809770A priority patent/DE19809770B4/en
Priority to KR1019980007442A priority patent/KR100606982B1/en
Publication of JPH10274241A publication Critical patent/JPH10274241A/en
Priority to US09/921,704 priority patent/US6513980B2/en
Priority to US09/921,602 priority patent/US7059052B2/en
Priority to US10/022,399 priority patent/US6533460B2/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To reduce shaft vibration when an unbalance load is applied by providing a second region separated from a first region in an axial direction and having a plurality of dynamic pressure grooves arrayed in a circumferential direction and an annular smooth part positioned between the first and second regions. SOLUTION: Dynamic pressure grooves 5 are formed to be arrayed opposite to each other in two regions separated in an axial direction in a bearing surface 1a. The dynamic pressure grooves 5 of m1 and m2 in both regions are made discontinuous by being partitioned by a part region smooth part (n) of a bearing surface therebetween, and formed to be symmetrical to each other around the center line L of a bearing cross direction. The back part 6 and the smooth part (n) between the dynamic pressure grooves 5 are formed to be continuous. The outer surface of a shaft is supported to be floated on the bearing surface by circulating oil between the inner part of a bearing main body and the space of the bearing via the opening hole part of the bearing surface 1a containing the dynamic pressure grooves 5. Thus, shaft vibration is reduced irrespective of the size of an unbalance load, especially the increase of shaft vibration is small in a high rotational number region.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、潤滑油あるいは潤
滑グリースなどの潤滑剤を含浸させて自己潤滑機能を持
たせると共に、軸受の内周面に複数の傾斜した溝を形成
することによって動圧を発生し、この動圧作用によって
回転軸を支持する多孔質含油軸受に関するものである。
この多孔質含油軸受は、特に、レーザビームプリンタの
ポリゴンミラーモータ(LBP)や磁気ディスクドライ
ブ用のスピンドルモータ(HDD)などのように、高速
で高回転精度が要求される軸受装置や、DVD−ROM
などのようにディスクがのることによって大きなアンバ
ランス荷重が作用し、且つ高速で駆動される軸受装置な
どに好適なものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a hydrodynamic bearing by providing a self-lubricating function by impregnating a lubricant such as lubricating oil or lubricating grease and forming a plurality of inclined grooves on the inner peripheral surface of a bearing. And a porous oil-impregnated bearing that supports the rotating shaft by the dynamic pressure action.
This porous oil-impregnated bearing is used especially for a bearing device requiring high speed and high rotational accuracy, such as a polygon mirror motor (LBP) for a laser beam printer and a spindle motor (HDD) for a magnetic disk drive, and a DVD-ROM. ROM
It is suitable for a bearing device or the like in which a large unbalanced load acts upon the mounting of a disk as described above and is driven at high speed.

【0002】[0002]

【従来の技術】多孔質含油軸受は自己潤滑性を有する軸
受として広く用いられているが、真円軸受の一種である
ため、軸の偏心が小さいところでは不安定振動が発生し
やすく、回転速度の1/2の速度で振れ回るいわゆるホ
ワールが発生しやすいという欠点がある。この対策とし
ては、軸受面にヘンリングボーン形、あるいはスパイラ
ル形と呼ばれる軸方向に傾斜した複数の動圧溝を設ける
ことが挙げられる。
2. Description of the Related Art Porous oil-impregnated bearings are widely used as self-lubricating bearings. However, since they are a kind of perfect circular bearing, unstable vibration is likely to occur where the eccentricity of the shaft is small, and the rotational speed is reduced. There is a drawback that a so-called whirl that swings at half the speed is easily generated. As a countermeasure, a plurality of axially inclined dynamic pressure grooves called a henling bone type or a spiral type may be provided on the bearing surface.

【0003】多孔質含油軸受に動圧溝を形成し、その動
圧作用によって軸を支持し、不安定振動を制御しようと
した例としては、実公昭63-19627号が挙げられる。
Japanese Utility Model Publication No. Sho 63-19627 discloses an example in which a dynamic pressure groove is formed in a porous oil-impregnated bearing, and the shaft is supported by the dynamic pressure action to control unstable vibration.

【0004】この実公昭63-19627号は、多孔質含油軸受
の軸受面に、表面目つぶし加工で形成された動圧発生用
の溝を有するものである。
In Japanese Utility Model Publication No. 63-19627, a bearing surface of a porous oil-impregnated bearing has a groove for generating a dynamic pressure formed by a surface blinding process.

【0005】[0005]

【発明が解決しようとする課題】しかし上記公報記載の
構造であると、 溝部が完全に封孔されているので、多孔質含油軸受
の最大の特徴である油の循環が阻害される。したがっ
て、いったん軸受すきまに滲み出した油は、動圧溝の作
用によって溝の屈曲部に押し込まれ、そこにとどまるこ
とになる。この時、軸受すきま内では大きな剪断作用が
働いているので、動圧溝にとどまった油はその剪断力と
摩擦熱によって変性しやすく、また、温度上昇により酸
化劣化するのが早くなる(通常の多孔質含油軸受(動圧
溝のないタイプ)では、含浸された油は、軸の回転に伴
って常に軸受すきま及び軸受内部を循環するため、軸受
すきま内で連続的に剪断力を受けることはなく、いった
ん暖められても軸受内部で冷やされるので、温度上昇に
よる酸化劣化の影響は受けにくい)。したがって、寿命
が短かった。
However, according to the structure described in the above publication, the groove is completely sealed, so that the circulation of oil, which is the most characteristic feature of the porous oil-impregnated bearing, is hindered. Therefore, the oil that has once oozed into the bearing clearance is pushed into the bent portion of the groove by the action of the dynamic pressure groove and stays there. At this time, since a large shearing action is acting in the bearing clearance, the oil remaining in the dynamic pressure groove is easily denatured by the shearing force and frictional heat, and the oil is apt to be oxidized and degraded due to a rise in temperature (normally). In porous oil-impregnated bearings (types without dynamic pressure grooves), impregnated oil constantly circulates in and through the bearing clearance as the shaft rotates. In other words, once heated, it is cooled inside the bearing, so it is less susceptible to oxidative degradation due to temperature rise.) Therefore, the life was short.

【0006】 溝部を封孔処理することは極めて困難
である。上記公報では塑性加工により封孔できるとして
いるが、通常、動圧溝の溝深さはμmオーダーのもので
あり、この程度の圧縮成形で表面の開孔部が封孔される
とは考えにくい。また、塑性加工の他の手段としてはコ
ーティングなどを挙げているが、コーティング被膜の厚
さは溝深さよりも当然薄くする必要があり、数μmのコ
ーティング被膜を溝部だけに施す方法は極めて困難で工
業的に成立するものではない。
[0006] It is extremely difficult to seal the groove. In the above publication, it is described that the hole can be sealed by plastic working. However, the groove depth of the dynamic pressure groove is usually on the order of μm, and it is difficult to imagine that the opening on the surface is sealed by this degree of compression molding. . In addition, as another means of plastic working, coating etc. are mentioned, but the thickness of the coating film must be naturally thinner than the groove depth, and it is extremely difficult to apply a coating film of several μm only to the groove portion. It does not hold industrially.

【0007】 この種の軸受では、図1に示すよう
に、動圧溝(5)が軸方向で連続しているが、これで
は、アンバランス荷重が加わった際に軸振れが大きくな
る。
In this type of bearing, as shown in FIG. 1, the dynamic pressure grooves (5) are continuous in the axial direction, but in this case, the shaft runout increases when an unbalanced load is applied.

【0008】そこで、本発明は、 a:通常の多孔質含油軸受のように含浸された油が軸受
すきまと軸受内部を循環するようにして油が劣化しにく
い構造とし、 b:工業的に実現可能なものとするため、背(動圧溝間
の部分)および溝部の双方に開孔部を残しつつ、その場
合でも十分な動圧効果を確保し、 c:アンバランス荷重が加わった際の軸振れを小さくす
ることを目的とする。
Accordingly, the present invention provides: a: a structure in which impregnated oil circulates through the bearing clearance and the inside of the bearing so that the oil is unlikely to deteriorate as in a normal porous oil-impregnated bearing; In order to make it possible, a sufficient dynamic pressure effect is secured even in such a case while leaving an opening in both the back (the portion between the dynamic pressure grooves) and the groove, and c: when an unbalanced load is applied The purpose is to reduce shaft runout.

【0009】[0009]

【課題を解決するための手段】上記目的を達成すべく、
本発明にかかる多孔質含油軸受は、多孔質体の内周に、
この多孔質体と相対的に回転する軸を支持するための軸
受面を設けて軸受本体を形成し、この軸受本体に潤滑油
あるいは潤滑グリースを含浸させたものにおいて、軸受
面が、軸方向に対して一方に傾斜した複数の動圧溝を円
周方向に配列した第1領域と、第1領域から軸方向に離
隔し、軸方向に対して他方に傾斜した複数の動圧溝を円
周方向に配列した第2領域と、第1領域と第2領域との
間に位置する環状の平滑部とを有するものである(請求
項1)。
In order to achieve the above object,
The porous oil-impregnated bearing according to the present invention, on the inner periphery of the porous body,
A bearing main body is formed by providing a bearing surface for supporting a shaft that rotates relatively to the porous body, and the bearing body is impregnated with lubricating oil or lubricating grease. A first region in which a plurality of dynamic pressure grooves inclined to one side are arranged in the circumferential direction, and a plurality of dynamic pressure grooves separated in the axial direction from the first region and inclined to the other side with respect to the axial direction. It has a second region arranged in the direction and an annular smooth portion located between the first region and the second region (claim 1).

【0010】このような構造にすると、 軸と軸受本体との間に相対回転が生じると、軸方向
両側の領域に逆向きに形成された動圧溝によって、油が
平滑部に集められるため、この部分での油膜圧力が高ま
る。
[0010] With this structure, when relative rotation occurs between the shaft and the bearing body, the oil is collected in the smooth portion by the dynamic pressure grooves formed in opposite regions on both axial sides. The oil film pressure in this part increases.

【0011】 平滑部には動圧溝がないため、動圧溝
が軸方向に連続している従来品に比べて軸受剛性が高く
なる。従って、軸振れを小さく抑えることができる。
Since the smooth portion has no dynamic pressure grooves, the bearing rigidity is higher than that of a conventional product in which the dynamic pressure grooves are continuous in the axial direction. Therefore, shaft runout can be suppressed to a small value.

【0012】 開孔のばらつきによる動圧発生の不均
一性を避けることができる。なお、本明細書において、
「開孔」とは、多孔質体組織の細孔が外表面に開口した
部分をいう。
It is possible to avoid non-uniformity of dynamic pressure generation due to variations in apertures. In this specification,
The term “open hole” refers to a portion where the pores of the porous body tissue are opened on the outer surface.

【0013】かかる効果〜が得られるのは、以下の
理由による。
The above effects are obtained for the following reasons.

【0014】図1に示すように、一般に円筒状の多孔質
体からなる軸受本体(1)の内径面に連続した動圧溝
(5:図面ではヘリングボーン型の動圧溝を例示する)
を設けると、軸方向断面での油の流れは図2のようにな
る。すなわち、軸(2)の回転に伴って、軸受本体
(1)の軸方向両側から油(O)がしみ出し、しみ出し
た油(O)が軸受中央部に押し込まれて圧力(動圧)を
生じ、この圧力によって軸(2)が支持される。
As shown in FIG. 1, a dynamic pressure groove (5: a herringbone type dynamic pressure groove is illustrated in the drawings) continuous with the inner diameter surface of a bearing body (1) generally formed of a cylindrical porous body.
Is provided, the oil flow in the axial cross section is as shown in FIG. That is, with the rotation of the shaft (2), the oil (O) exudes from both sides in the axial direction of the bearing body (1), and the exuded oil (O) is pushed into the center of the bearing to generate pressure (dynamic pressure). And this pressure supports the shaft (2).

【0015】ところが、このような圧力が発生すると、
油が表面の開孔部から軸受内部に還流するため、動圧効
果が減少する。この傾向は動圧溝を設ける場合のように
軸受面に凹凸を設けるとさらに顕著になる。例えば、動
圧溝の途中に大きな孔があった場合、油はその部分から
軸受内部に還流するので、動圧作用は大幅に減じられ
る。
However, when such a pressure is generated,
The oil returns to the inside of the bearing from the opening on the surface, so that the dynamic pressure effect is reduced. This tendency becomes more remarkable when unevenness is provided on the bearing surface as in the case of providing a dynamic pressure groove. For example, if there is a large hole in the middle of the dynamic pressure groove, the oil flows from that part back into the bearing, so that the dynamic pressure effect is greatly reduced.

【0016】一般に、軸受面の開孔部の分布を均一にす
ることは難しいため、軸受面には大きな孔や小さな孔が
混在する。従って、油の軸受内部への還流度合いは各部
で不均一となる。この場合、油の逃げやすい部分では油
膜ができにくく、逃げにくい部分では油膜ができやすく
なるため、図3(軸受面の周方向における展開図を示
す)に示すように、軸受面(1a)における油膜(S)の
分布が軸方向で不均一になる。このままでは、不安定振
動(ホワールなど)の抑制には一定の効果を奏するもの
の、十分な動圧効果を発揮することはできない。
In general, it is difficult to make the distribution of the openings on the bearing surface uniform, so that large and small holes are mixed on the bearing surface. Therefore, the degree of recirculation of the oil into the inside of the bearing becomes uneven at each part. In this case, it is difficult to form an oil film in a portion where oil easily escapes, and it is easy to form an oil film in a portion where oil does not easily escape. Therefore, as shown in FIG. 3 (a development view of the bearing surface in the circumferential direction is shown), the bearing surface (1a) The distribution of the oil film (S) becomes uneven in the axial direction. In this state, although a certain effect is achieved in suppressing unstable vibration (such as whirl), a sufficient dynamic pressure effect cannot be exerted.

【0017】以上の点から、従来例(実公昭63-19627
号)では溝部の封孔を提案しているのであるが、上述の
ように溝部の封孔は工業的に極めて困難なもので実現性
に乏しい。また、動圧溝間(5)の背の部分(6)が軸
を支持する支持面となるが、軸受面の断面形状が凹凸状
であるため、支持面となる背の部分(6)の面積が小さ
くなって軸受剛性が低下する。
In view of the above, the conventional example (Japanese Utility Model Publication No. 63-19627)
No.) proposes sealing of the groove, but as described above, sealing of the groove is extremely difficult industrially and is not feasible. The back portion (6) between the dynamic pressure grooves (5) serves as a support surface for supporting the shaft. However, since the cross-sectional shape of the bearing surface is uneven, the back portion (6) serving as the support surface is formed. The area becomes smaller and the bearing stiffness decreases.

【0018】これに対して、本発明品は、図4に示すよ
うに、第1及び第2領域(m1)(m2)の間に環状の平滑
部(n)を有する。平滑部(n)においては開孔度合を
管理しやすい。また、両領域(m1)(m2)では溝方向の
油の流れが支配的であるが、平滑部(n)では円周方向
の油の流れも存在しており、たとえ大きな孔があっても
次々と油が補われるため、動圧効果が減じられる度合が
はるかに少ない。図5に本発明品の軸受面(1a)の円周
方向における展開図を示す。図示のように、油膜(S)
の広い部分と狭い部分との差が縮まり、油膜分布が均一
化するので、安定した動圧効果が得られる。また、動圧
溝(5)間の背の部分(6)のみならず、平滑部(n)
も軸を支持する支持面となるので、支持面の面積が拡大
し、軸受剛性を高めることができる。
On the other hand, as shown in FIG. 4, the product of the present invention has an annular smooth portion (n) between the first and second regions (m1) and (m2). In the smooth portion (n), the degree of opening is easily managed. In both regions (m1) and (m2), oil flow in the groove direction is dominant, but in the smooth portion (n), oil flow in the circumferential direction also exists. As the oil is replenished one after another, the dynamic pressure effect is far less reduced. FIG. 5 is a developed view of the bearing surface (1a) of the product of the present invention in the circumferential direction. As shown, oil film (S)
The difference between the wide part and the narrow part is reduced, and the oil film distribution becomes uniform, so that a stable dynamic pressure effect can be obtained. Further, not only the back part (6) between the dynamic pressure grooves (5) but also the smooth part (n)
Since the support surface also supports the shaft, the area of the support surface is increased, and the rigidity of the bearing can be increased.

【0019】平滑部(n)の軸受幅方向の比率rは、軸
受幅を1とした場合、r=0.1〜0.6の範囲、望ま
しくは、r=0.2〜0.4の範囲に設定するのが良
い。軸受幅1に対して0.1未満では、平滑部(n)を
設けたことによる効果(動圧の増加、軸受剛性の増加)
が顕著に現れず、また、軸受け幅1に対してrを0.6
より大きくすると、動圧溝が少なくなり、油を軸方向中
央部に押し込む力が弱くなって動圧効果が有効に発揮さ
れない。
The ratio r of the smooth portion (n) in the bearing width direction is, when the bearing width is 1, r = 0.1 to 0.6, preferably r = 0.2 to 0.4. It is good to set to the range. If the width is less than 0.1 with respect to the bearing width 1, the effect of providing the smooth portion (n) (increase in dynamic pressure, increase in bearing rigidity)
Does not appear remarkably, and r is set to 0.6 with respect to the bearing width 1.
If it is larger, the number of dynamic pressure grooves decreases, and the force for pushing the oil into the central portion in the axial direction becomes weak, so that the dynamic pressure effect cannot be effectively exhibited.

【0020】平滑部(n)での表面開孔率は、第1及び
第2領域(m1)(m2)での表面開孔率よりも小さくする
のがよい(請求項2)。
The surface porosity in the smooth portion (n) is preferably smaller than the surface porosity in the first and second regions (m1) and (m2).

【0021】これにより、動圧溝によって平滑部(n)
に集められた油が表面の開孔部から軸受内部に逃げにく
くなるので、発生する圧力を高めることができる。ま
た、軸を支持するための支持面の面積が十分に確保され
るので、軸受剛性を高めることもできる。
Thus, the smooth portion (n) is formed by the dynamic pressure groove.
It is difficult for the oil collected at the surface to escape from the opening on the surface into the inside of the bearing, so that the generated pressure can be increased. Further, since the area of the support surface for supporting the shaft is sufficiently ensured, the rigidity of the bearing can be increased.

【0022】表面開孔率は、第1および第2領域(m1)
(m2)で5〜40%の範囲、望ましくは10〜30%の
範囲に設定し、平滑部(n)で2〜30%の範囲、望ま
しくは2〜20%の範囲に設定するのが良い。両領域で
の表面開孔率が5%未満では、軸受内部から軸受すきま
への油の供給量が減って油不足、潤滑不良となるおそれ
があり、40%を越えると軸受内部に逃げる油量が多く
なって平滑部に油が供給されず、やはり油不足、潤滑不
良となるおそれがある。また、平滑部での表面開孔率が
2%未満では、生産が極めて困難となってコストアップ
を招き、30%を越えると油の軸受内部への逃げ量が多
くなって潤滑不良を招くおそれがある。
The surface porosity is determined in the first and second regions (m1).
(M2) is set in the range of 5 to 40%, preferably 10 to 30%, and the smooth portion (n) is set in the range of 2 to 30%, preferably 2 to 20%. . If the surface porosity in both areas is less than 5%, the amount of oil supplied from inside the bearing to the bearing clearance may decrease, resulting in insufficient oil and poor lubrication. If it exceeds 40%, the amount of oil escaping into the bearing And the oil is not supplied to the smooth portion, which may result in insufficient oil and poor lubrication. If the surface porosity of the smooth portion is less than 2%, the production becomes extremely difficult and the cost increases. If it exceeds 30%, the amount of oil escaping into the bearing increases and lubrication failure may occur. There is.

【0023】動圧軸受であっても起動・停止時には、軸
と軸受とが瞬間的に接触する。この時の接触部は軸受端
の近傍で線接触である。従って、図9に示すように、軸
受面(1a)の軸方向両端部を軸受端側ほど内径を拡大さ
せたテーパ面状に形成しておけば(請求項3)、接触面
積が増え、瞬時にして非接触状態となる。図面では、第
1および第2領域(m1)(m2)の全体をテーパ面とした
場合を図示しているが、両領域(m1)(m2)の一部(軸
受端部側)のみをテーパ面としてもよい。なお、テーパ
面以外の軸受面(1a)は、軸の外周面と平行に形成され
る。
In the case of a dynamic pressure bearing, the shaft and the bearing momentarily come into contact with each other when starting and stopping. The contact portion at this time is a line contact near the bearing end. Therefore, as shown in FIG. 9, if both ends in the axial direction of the bearing surface (1a) are formed in a tapered surface shape whose inner diameter is enlarged toward the bearing end side (claim 3), the contact area increases and instantaneous In a non-contact state. The drawing shows a case where the entire first and second regions (m1) and (m2) are tapered, but only a part (bearing end side) of both regions (m1) and (m2) is tapered. It may be a surface. The bearing surface (1a) other than the tapered surface is formed parallel to the outer peripheral surface of the shaft.

【0024】この場合、平滑部(n)から軸受面(1a)
の端部に至るまでの軸受内径の増加分Δcと軸径Dとの
比は、Δc/D=1/3000〜1/200の範囲、よ
り望ましくはΔc/D=1/3000〜1/500の範
囲に設定するのが良い。Δc/Dが1/3000より小
さいと、テーパが小さすぎるために瞬間的な接触を防止
することができず、Δc/Dが1/200より大きい
と、テーパが過大となって動圧効果が有効に発揮されな
い。
In this case, from the smooth portion (n) to the bearing surface (1a)
The ratio of the increase Δc in the bearing inner diameter to the end of the shaft and the shaft diameter D is in the range of Δc / D = 1/3000 to 1/200, more preferably Δc / D = 1/3000 to 1/500. It is good to set in the range. When Δc / D is smaller than 1/3000, instantaneous contact cannot be prevented because the taper is too small. When Δc / D is larger than 1/200, the taper becomes excessively large and the dynamic pressure effect is reduced. Does not work effectively.

【0025】ところで、ハウジングに2個の軸受(多孔
質含油軸受)を圧入する場合、2個の軸受の同軸度、円
筒度などの精度が問題となる。精度が悪い場合、軸と軸
受が線接触したり、最悪の場合には軸が2個の軸受を貫
通しない場合も起こり得る。
When two bearings (porous oil-impregnated bearings) are press-fitted into the housing, accuracy of the two bearings such as coaxiality and cylindricity becomes a problem. If the accuracy is poor, the shaft may come into line contact with the bearing, or in the worst case, the shaft may not pass through the two bearings.

【0026】この場合には、図13に示すように、軸受本
体(1)の軸方向の2個所以上に、図4や図9に示す形
状の軸受面(1a)(請求項1乃至3の何れかの軸受面)
を設けるのがよい。この軸受は、軸受本体(1)を1個
とし、その内径面の複数箇所(図面では2個所)に動圧
軸受面(1a)を設けたものであるから、複数個の軸受を
別体に配置したことに起因する精度不良等の上記弊害を
回避することが可能となる。
In this case, as shown in FIG. 13, a bearing surface (1a) having the shape shown in FIGS. 4 and 9 is provided at two or more locations in the axial direction of the bearing body (1). Any bearing surface)
Should be provided. This bearing has a single bearing body (1) and a hydrodynamic bearing surface (1a) at a plurality of locations (two locations in the drawing) of the inner diameter surface. It is possible to avoid the above-mentioned adverse effects such as poor accuracy due to the arrangement.

【0027】この場合、動圧溝を転写するサイジングピ
ンの精度を良く仕上げておけば、軸受けの精度も良くな
る。サイジングピンの精度を必要とされる精度、例えば
真円度1μm以内、円筒度2μm以内などに仕上げるこ
とはさほど難しくなく、容易に達成できる。従って、組
立てが容易に行なえ、軸受も2個が1個になるので、低
コストに製作可能である。
In this case, if the precision of the sizing pin for transferring the dynamic pressure groove is finished well, the precision of the bearing is also improved. It is not so difficult to finish the sizing pin with required precision, for example, within a circularity of 1 μm or less and a cylindricity of 2 μm or less, and it can be easily achieved. Therefore, assembling can be performed easily, and the number of bearings is one, so that the bearing can be manufactured at low cost.

【0028】なお、動圧の発生を安定化させるため、第
1および第2領域(m1)(m2)の動圧溝(5)は、軸受
面(1a)の軸方向中間部(L)を中心として対称に形成
するのが好ましい(図4参照)。
In order to stabilize the generation of the dynamic pressure, the dynamic pressure grooves (5) in the first and second regions (m1) and (m2) are formed in the axial middle part (L) of the bearing surface (1a). It is preferably formed symmetrically with respect to the center (see FIG. 4).

【0029】[0029]

【発明の実施の形態】図4に本発明にかかる多孔質含油
軸受の断面図を示す。
FIG. 4 is a sectional view of a porous oil-impregnated bearing according to the present invention.

【0030】この多孔質含油軸受は、多孔質材料の一例
として焼結合金を用いたもので、例えば、図6に示すよ
うなレーザビームプリンタのスキャナモータにおいて、
ロータ(8)とステータとの間の励磁力によって高速回
転する回転軸(2)をハウジング(7)に対して回転自
在に支持するものである。この含油軸受は、焼結合金に
より多孔質に形成された円筒状の軸受本体(1)に回転
軸(2)が挿通される軸受孔(1b)を形成すると共に、
軸受孔(1b)の内径面、すなわち軸受面(1a)に軸方向
に傾斜する複数の動圧溝(5)を圧縮成形し、さらに軸
受本体(1)に潤滑油又は潤滑油を含浸させたものであ
る。図面では、動圧溝(5)としてへリングボーン型を
例示しているが、軸方向に傾斜する他の形状、例えばス
パイラル型としてもよい。
This porous oil-impregnated bearing uses a sintered alloy as an example of a porous material. For example, in a scanner motor of a laser beam printer as shown in FIG.
A rotating shaft (2) that rotates at high speed by an exciting force between the rotor (8) and the stator is rotatably supported on the housing (7). In this oil-impregnated bearing, a bearing hole (1b) through which a rotating shaft (2) is inserted is formed in a cylindrical bearing body (1) formed porous by a sintered alloy,
A plurality of axially inclined hydrodynamic grooves (5) are compression-molded on the inner surface of the bearing hole (1b), that is, the bearing surface (1a), and the bearing body (1) is further impregnated with lubricating oil or lubricating oil. Things. In the drawings, the herringbone type is illustrated as the dynamic pressure groove (5), but may be another shape inclined in the axial direction, for example, a spiral type.

【0031】動圧溝(5)は、軸受面(1a)のうち、軸
方向に離隔する2つの領域(第1領域m1及び第2領域m
2)にそれぞれ逆向きに配列して形成される。両領域(m
1)(m2)の動圧溝(5)は、その間の軸受面の一部領
域(平滑部n)で区画されて非連続となっており、軸受
幅方向の中心線(L)を中心として対称に形成されてい
る。
The dynamic pressure groove (5) is formed in two regions (first region m1 and second region m1) of the bearing surface (1a), which are separated in the axial direction.
In 2), they are arranged in opposite directions. Both areas (m
1) The dynamic pressure groove (5) of (m2) is partitioned by a part of the bearing surface (smooth portion n) therebetween and is discontinuous, and is centered on the center line (L) in the bearing width direction. It is formed symmetrically.

【0032】なお、動圧溝(5)の間の背の部分(6)
と平滑部(n)は連続して形成されている。また、この
実施形態では平滑部(n)および背の部分(6)のみな
らず、動圧溝(5)も開孔を有しており、動圧溝(5)
を含む軸受面(1a)の開孔部を介して、油を軸受本体の
内部と軸受すきまとの間を循環させて、軸の外周面を軸
受面で浮上支持する構成になっている。
The back portion (6) between the dynamic pressure grooves (5)
And the smooth portion (n) are formed continuously. In this embodiment, not only the smooth portion (n) and the back portion (6) but also the dynamic pressure groove (5) has an opening, and the dynamic pressure groove (5) is provided.
Oil is circulated between the inside of the bearing main body and the bearing clearance through an opening in the bearing surface (1a) including the above, so that the outer peripheral surface of the shaft is levitated and supported by the bearing surface.

【0033】この動圧溝(5)の圧縮成形は、コアロッ
ド(例えばサイジングピン)の外周面に軸方向に傾斜し
た凹凸からなる成形部を形成し、このコアロッドの外周
面に多孔質材を供給し、多孔質材に圧迫力を加えてその
内径部をコアロッドの成形部に加圧し、当該内径部にコ
アロッドの成形部に対応した形状の動圧溝を転写するこ
とにより行われる。動圧溝の形成後は、圧迫力を除去す
ることによる多孔質材のスプリングバックを利用してコ
アロッドを多孔質材の内径部から離型する。
In the compression molding of the dynamic pressure groove (5), a molded portion composed of irregularities inclined in the axial direction is formed on the outer peripheral surface of a core rod (for example, a sizing pin), and a porous material is supplied to the outer peripheral surface of the core rod. Then, a pressing force is applied to the porous material to press the inner diameter portion thereof to the core rod forming portion, and a dynamic pressure groove having a shape corresponding to the core rod forming portion is transferred to the inner diameter portion. After the formation of the dynamic pressure groove, the core rod is released from the inner diameter of the porous material by utilizing the springback of the porous material by removing the pressing force.

【0034】上記多孔質含油軸受を図6に示すような小
型スピンドルモータに組み込み、軸振れを測定した結果
を図7および図8に示す。
The above-described porous oil-impregnated bearing was incorporated into a small spindle motor as shown in FIG. 6, and the results of measuring the shaft runout are shown in FIGS. 7 and 8.

【0035】図7はほとんどアンバランス荷重が加わら
ない場合(アンバランス荷重;50mg・cm以下)、
図8はアンバランス荷重が大きい場合(アンバランス荷
重;1g・cm)の結果である。この図には比較のため
に溝のない真円軸受の結果も合わせて示した。真円軸受
の寸法、軸受すきまなどの動圧溝仕様以外の軸受仕様は
動圧溝付き軸受と同じに設定してある。テストピースの
仕様を整理すると、 従来例:連続したヘリングボーン型動圧溝を有する軸
受(図1)
FIG. 7 shows a case where almost no unbalance load is applied (unbalance load: 50 mg · cm or less).
FIG. 8 shows the results when the unbalance load is large (unbalance load; 1 g · cm). This figure also shows the result of a perfect circular bearing without a groove for comparison. The bearing specifications other than the dynamic pressure groove specifications such as the dimensions of the perfect circular bearing and the bearing clearance are set the same as those of the bearing with the dynamic pressure groove. The specification of the test piece can be summarized as follows: Conventional example: Bearing with a continuous herringbone type dynamic pressure groove (Fig. 1)

【0036】[0036]

【数1】 本発明品1;中間部に平滑部があるヘリングボーン型
動圧溝を有する軸受
(Equation 1) Invention product 1; a bearing having a herringbone-type dynamic pressure groove having a smooth portion in the middle portion

【0037】[0037]

【数2】 本発明品2;平滑部の表面開孔率がその両側の領域よ
りも小さなヘリングボーン型動圧溝を有する軸受
(Equation 2) Invention product 2: bearing having a herringbone-type dynamic pressure groove in which the surface porosity of the smooth portion is smaller than the regions on both sides thereof

【0038】[0038]

【数3】 である。(Equation 3) It is.

【0039】従来例は真円軸受に比べて軸振れが小さく
なるが、本発明品に比べて軸振れが大きく、特にアンバ
ランス荷重が大きく、回転数が高い領域では軸振れの増
加が大きい。本発明品はアンバランス荷重の大小にかか
わらず軸振れが小さく、特に回転数の高い領域での軸振
れの増加が少ない。したがって、LBPモータのような
アンバランス荷重が小さい機種はもとより、DVD−R
OMモータのようにディスクがのることにより大きなア
ンバランス荷重が加わるような機種でも、本発明品は軸
振れを小さく抑えることができる。
In the conventional example, the shaft run-out is smaller than that of a perfect circular bearing, but the shaft run-out is larger than that of the product of the present invention, especially the unbalance load is large, and the shaft run-out is large in a high rotation speed region. The product of the present invention has a small shaft run-out irrespective of the magnitude of the unbalance load, and the increase of the shaft run-out especially in a high rotation speed region is small. Therefore, not only a model such as an LBP motor having a small unbalance load but also a DVD-R
Even in a model such as an OM motor in which a large unbalance load is applied due to the mounting of a disk, the product of the present invention can reduce the shaft runout.

【0040】次に、図9に示すように、軸受面(1a)の
軸方向両端部を軸受端側ほど内径を拡大させたテーパ面
状に形成した軸受( 本発明品) と、図1に示す従来品と
のそれぞれについて、起動時における金属接触の頻度を
油膜形成率から測定した結果を図10に示す。なお、軸の
回転数は6000rpmとした。
Next, as shown in FIG. 9, a bearing (the product of the present invention) in which both ends in the axial direction of the bearing surface (1a) are formed in a tapered surface shape whose inner diameter is enlarged toward the bearing end, and FIG. FIG. 10 shows the results of measuring the frequency of metal contact at the time of startup from the oil film formation rate for each of the conventional products shown. The rotation speed of the shaft was 6000 rpm.

【0041】従来例(で示す)の場合、起動時の油膜
形成率が低いことから金属接触する頻度が多い。これは
起動直後では軸受すきまに油が潤沢でなく、また、軸が
みそすり運動(揺動)するため軸受端で軸受がエッジ当
たりして金属接触が発生することによる。これに対して
本発明品(で示す)は起動直後から金属接触が見られ
ず、瞬時にして油膜が形成されている。軸受端でテーパ
状となっているため軸と軸受のエッジ当たりが回避され
たためである。
In the case of the conventional example (shown by), the frequency of contact with metal is high due to the low oil film formation rate at startup. This is due to the fact that the oil is not abundant in the bearing clearance immediately after the start, and the shaft contacts the edge at the bearing end due to the shaft oscillating (oscillating), thereby causing metal contact. On the other hand, in the product of the present invention (indicated by), no metal contact is seen immediately after the start, and an oil film is formed instantaneously. This is because the tapered shape at the bearing end prevents the shaft from hitting the edge of the bearing.

【0042】なお、動圧溝の溝深さと半径すきまとの比
には最適な範囲があり、この範囲以外では動圧効果は著
しく減じられてしまう。c/h=0.5〜5.0(図11
参照)の範囲であれば実用上問題のない高回転精度を維
持することができる。
Note that there is an optimum range for the ratio between the groove depth of the dynamic pressure groove and the radius clearance, and outside this range, the dynamic pressure effect is significantly reduced. c / h = 0.5-5.0 (FIG. 11)
), It is possible to maintain high rotational accuracy without practical problems.

【0043】また、多孔質含油軸受は通常無給油で使用
されるが、油の飛散、蒸発などにより油が徐々に消耗、
流失することは避けられない。油が消耗されると油膜形
成範囲が収縮するため、軸振れなどの回転精度の悪化を
招く。特に、軸姿勢が縦型で使われる場合が多く、毎分
1万回転以上の高速で使用されるレーザービームプリン
タ用モータでは、図12に示すように、遠心力の作用で、
軸受の油が流失しやすく、油膜形成など性能の維持が難
しかった。LBP、HDDの場合、高精度を維持しよう
とすると油膜が切れることは致命的となる。多孔質軸受
が単独の場合、特に高速で回転すると油は周囲の空気も
巻き込んで軸受内部を循環するため軸受すきまに空気が
混ざり込んでしまうことがある。空気が混ざらないよう
にするためには、軸受本体に密着させて補油部材を配置
し、軸受内部に少しでも空孔ができたら補油部材から油
を補給することが有効である。補油部材を配置すること
は、寿命延長の効果もあるが、高精度を常に維持するた
めの油膜維持に効果がある。軸受本体に密着して用いら
れる補油部材は、金属や樹脂などの多孔質体、あるいは
フェルトなどの繊維物質に油を含ませた周知のものでも
よいが、固形状で少なくとも20℃以上の温度で内包し
た油を表面に滲み出し続ける固形状潤滑組成物を用いた
方がよい。例えば、潤滑油あるいは潤滑グリースと超高
分子量ポリオレフィン粉末との混合物で構成した固形状
のものが良い。これは低コストで量産性に富み、取扱い
が容易で組み込み作業が簡単なものとなる。この固形状
潤滑組成物は、常温以上の温度で内部に含有した油をご
くわずかずつ滲出させ続けるので、連続的に軸受へ油を
補給し続けることができる。
Further, the porous oil-impregnated bearing is usually used without lubrication, but the oil gradually depletes due to scattering and evaporation of the oil.
It is inevitable that it will be washed away. When the oil is consumed, the oil film forming range shrinks, which causes deterioration of rotation accuracy such as shaft runout. In particular, the shaft attitude is often used in a vertical type, and a laser beam printer motor used at a high speed of 10,000 revolutions per minute or more uses a centrifugal force as shown in FIG.
The oil in the bearing was easily washed away, and it was difficult to maintain performance such as oil film formation. In the case of LBP and HDD, it is fatal to break the oil film to maintain high accuracy. In the case where the porous bearing is used alone, especially when rotating at a high speed, the oil also entrains the surrounding air and circulates inside the bearing, so that air may be mixed into the bearing clearance. In order to prevent the air from being mixed, it is effective to arrange a refueling member in close contact with the bearing body and to replenish the oil from the refueling member if any voids are formed inside the bearing. Although disposing the bunkering member has the effect of extending the service life, it is effective in maintaining the oil film for constantly maintaining high accuracy. The bunkering member used in close contact with the bearing body may be a porous material such as metal or resin, or a well-known material in which oil is contained in a fibrous material such as felt. It is better to use a solid lubricating composition that keeps oozing out the oil encapsulated in the surface. For example, a solid material composed of lubricating oil or a mixture of lubricating grease and ultrahigh molecular weight polyolefin powder is preferable. This is low cost, rich in mass productivity, easy to handle, and easy to assemble. The solid lubricating composition keeps leaching out the oil contained therein at a temperature equal to or higher than room temperature, so that the oil can be continuously supplied to the bearing.

【0044】このように、静置した状態でも油が常に表
面に滲み出る固形状潤滑組成物を軸受の表面と密着する
ように配置すると、軸受の油が流失することがあって
も、油が多孔質軸受の毛細管現象によって軸受内部に補
給されるので、常時、良好な油膜を形成することができ
る。この固形状潤滑組成物は、ごく簡単な方法で製作す
ることができる。
As described above, if the solid lubricating composition in which the oil constantly oozes out on the surface even in the stationary state is arranged so as to be in intimate contact with the surface of the bearing, even if the oil of the bearing may run off, the oil may flow out. Since the inside of the porous bearing is replenished by capillary action, a good oil film can be always formed. This solid lubricating composition can be manufactured in a very simple manner.

【0045】例えば、所定量の潤滑グリースあるいは潤
滑油と所定量の超高分子量ポリオレフィン粉末を均一に
混合し、所定形状の型に流し込んで、超高分子量ポリオ
レフィン粉末のゲル化点以上で、かつ潤滑グリースを用
いた場合はその滴点以下の温度で分散保持させ、常温で
冷却することによって得られる。超高分子量ポリオレフ
ィン粉末は、ポリエチレン、ポリプロピレン、ポリブデ
ンもしくはこれらの共重合体からなる粉末またはそれぞ
れ単独の粉末を配合した混合粉末であってよく、各粉末
の分子量は、粘度法により測定される平均分子量が1×
106 〜5×106 である。このような平均分子量の範
囲にあるポリオレフィンは、剛性及び保油性において低
分子量のポリオレフィンより優れ、高温に加熱してもほ
とんど流動することがない。このような超高分子量ポリ
オレフィンの潤滑組成物中の配合割合は、95〜1wt%
であり、その量は組成物の所望の離油度、粘り強さ及び
硬さに依存する。したがって、超高分子量ポリオレフィ
ンの量が多いほど、所定温度で分散保持させた後のゲル
の硬さが大きくなる。
For example, a predetermined amount of lubricating grease or lubricating oil and a predetermined amount of ultra-high molecular weight polyolefin powder are uniformly mixed and poured into a mold having a predetermined shape. When grease is used, it can be obtained by dispersing and maintaining at a temperature below its drop point and cooling at room temperature. The ultrahigh molecular weight polyolefin powder may be a powder composed of polyethylene, polypropylene, polybutene or a copolymer thereof, or a mixed powder obtained by blending individual powders.The molecular weight of each powder is determined by an average molecular weight measured by a viscosity method. Is 1 ×
10 6 a to 5 × 10 6. Polyolefins having such an average molecular weight range are superior in rigidity and oil retention to low molecular weight polyolefins, and hardly flow even when heated to a high temperature. The blending ratio of such an ultrahigh molecular weight polyolefin in the lubricating composition is 95 to 1% by weight.
And the amount depends on the desired degree of oil release, toughness and hardness of the composition. Therefore, the greater the amount of ultrahigh molecular weight polyolefin, the greater the hardness of the gel after being dispersed and maintained at a predetermined temperature.

【0046】また、この発明に用いる潤滑グリースは、
特に限定されるものではなく、石鹸または非石鹸で増ち
ょうした潤滑グリースとして、リチウム石鹸−ジエステ
ル系、リチウム石鹸−鉱油系、ナトリウム石鹸−鉱油
系、アルミニウム石鹸ー鉱油系、リチウム石鹸−ジエス
テル鉱油系、非石鹸−ジエステル系、非石鹸−鉱油系、
非石鹸−ポリオールエステル系、リチウム石鹸−ポリオ
ールエステル系などのグリースが挙げられる。同じく、
潤滑油も特に限定されるものではなく、ジエステル系、
鉱油系、ジエステル鉱油系、ポリオールエステル系、ポ
リαオレファン系などの潤滑油を挙げることができる。
なお、潤滑グリースの基油あるいは潤滑油は、当初多孔
質含油軸受に含浸される潤滑油と同じものであることが
望ましいが、潤滑特性を損なわない限りにおいて、多少
異なるものであってもよい。
The lubricating grease used in the present invention is:
There is no particular limitation, and as a lubricating grease added with soap or non-soap, lithium soap-diester, lithium soap-mineral oil, sodium soap-mineral oil, aluminum soap-mineral oil, lithium soap-diester mineral oil , Non-soap-diester type, non-soap-mineral oil type,
Greases such as non-soap-polyol ester type and lithium soap-polyol ester type are exemplified. Similarly,
The lubricating oil is also not particularly limited, and is a diester type,
Lubricating oils such as a mineral oil type, a diester mineral oil type, a polyol ester type and a poly-α-olephane type can be used.
The base oil or lubricating oil of the lubricating grease is desirably the same as the lubricating oil initially impregnated in the porous oil-impregnated bearing, but may be slightly different as long as the lubricating characteristics are not impaired.

【0047】上記した超高分子量ポリオレフィンの融点
は、上記平均分子量に対応して変化するため一定ではな
いが、例えば粘度法による平均分子量が2×106 のも
のの融点は136℃である。同平均分子量の市販品とし
ては、三井石油化学工業社製:ミペロン(登録商標)X
M−220などがある。
The melting point of the above-mentioned ultrahigh molecular weight polyolefin varies depending on the average molecular weight, but is not constant. For example, the melting point of an average molecular weight of 2 × 10 6 determined by a viscosity method is 136 ° C. As commercially available products having the same average molecular weight, Miteron (registered trademark) X manufactured by Mitsui Petrochemical Industries, Ltd.
M-220 and the like.

【0048】したがって、上記した潤滑グリースあるい
は潤滑油に超高分子量ポリオレフィンを分散保持させる
には、上記した材料を混合した後、超高分子量ポリオレ
フィンがゲル化を起こす温度以上で、かつ潤滑グリース
を用いた場合は、その滴点未満の温度、例えば150〜
200℃に加熱する。
Therefore, in order to disperse and maintain the ultrahigh molecular weight polyolefin in the lubricating grease or lubricating oil, after mixing the above materials, the lubricating grease must be used at a temperature higher than the temperature at which the ultrahigh molecular weight polyolefin gels. If the temperature is below the drop point, e.g.
Heat to 200 ° C.

【0049】このような軸受装置は、レーザビームプリ
ンタのポリゴンミラーモータや磁気ディスクドライブ用
のスピンドルモータ、DVD−ROMモータなどのほ
か、軸流ファンや換気扇、扇風機などの電機製品、自動
車用電装品など、各種のモータに広範囲に利用するこが
でき、軸を動圧支持することによって特にその耐久性を
著しく向上することができる。
Such bearing devices include polygon mirror motors for laser beam printers, spindle motors for magnetic disk drives, DVD-ROM motors, electric products such as axial fans, ventilation fans and electric fans, and electrical components for automobiles. For example, it can be widely used for various kinds of motors, and the durability can be remarkably improved particularly by supporting the shaft with dynamic pressure.

【0050】[0050]

【発明の効果】以上の説明から明らかなように、本発明
の多孔質含油軸受は、軸方向に傾斜した動圧溝の間に平
滑部を設けたので、両側の動圧溝によって油が平滑部に
集められ,油膜圧力が高まる。また、平滑部には溝がな
いため、溝が連続している場合より軸受剛性が高く、軸
振れを小さく抑えることができる。さらに、開孔のばら
つきによる動圧発生の不均一性を避けることができる。
As is clear from the above description, in the porous oil-impregnated bearing of the present invention, since the smooth portion is provided between the dynamic pressure grooves inclined in the axial direction, the oil is smoothed by the dynamic pressure grooves on both sides. And the oil film pressure increases. Further, since there is no groove in the smooth portion, bearing rigidity is higher than in the case where the groove is continuous, and shaft runout can be reduced. Further, non-uniformity of dynamic pressure generation due to variations in apertures can be avoided.

【0051】平滑部の表面開孔率を第1および第2領域
の表面開孔率よりも小さく設定すると、両側の動圧溝に
よって集められた油が平滑部から軸受内部に逃げにくく
なり、さらに発生する圧力、軸受剛性を高めることがで
きる。
When the surface porosity of the smooth portion is set smaller than the surface porosity of the first and second regions, the oil collected by the dynamic pressure grooves on both sides becomes difficult to escape from the smooth portion to the inside of the bearing. The generated pressure and bearing rigidity can be increased.

【0052】軸受面の軸方向両端部にテーパ部を設けて
おくことによって、起動停止時の軸と軸受とのエッジ当
たりを防止することができる。
By providing tapered portions at both ends in the axial direction of the bearing surface, it is possible to prevent edge contact between the shaft and the bearing at the time of starting and stopping.

【0053】軸受本体の長さを長尺とし、軸方向の2か
所以上に動圧軸受面を設けると、同軸度、円筒度などの
精度不良を解消することができる。
If the length of the bearing body is long and the hydrodynamic bearing surfaces are provided at two or more locations in the axial direction, it is possible to eliminate poor accuracy such as coaxiality and cylindricity.

【図面の簡単な説明】[Brief description of the drawings]

【図1】従来品の多孔質含油軸受の軸方向の断面図であ
る。
FIG. 1 is an axial sectional view of a conventional porous oil-impregnated bearing.

【図2】従来品における油の動きを示す軸方向の断面図
である。
FIG. 2 is an axial sectional view showing movement of oil in a conventional product.

【図3】従来品における軸受面の円周方向での展開図で
ある。
FIG. 3 is a development view of a bearing surface of a conventional product in a circumferential direction.

【図4】本発明にかかる多孔質含油軸受の軸方向の断面
図である。
FIG. 4 is an axial sectional view of the porous oil-impregnated bearing according to the present invention.

【図5】本発明品における軸受面の円周方向での展開図
である。
FIG. 5 is a developed view of a bearing surface in a circumferential direction in the product of the present invention.

【図6】本発明にかかる軸受を組み込んだモータの軸方
向の断面図である。
FIG. 6 is an axial sectional view of a motor incorporating the bearing according to the present invention.

【図7】本発明品と従来品の軸振れを比較測定した結果
を示す図である(アンバランス荷重が小さい場合)。
FIG. 7 is a diagram showing the results of comparative measurement of shaft runout of the product of the present invention and the conventional product (when the unbalance load is small).

【図8】本発明品と従来品の軸振れを比較測定した結果
を示す図である(アンバランス荷重が大きい場合)。
FIG. 8 is a diagram showing the results of a comparative measurement of shaft runout of a product of the present invention and a conventional product (when the unbalance load is large).

【図9】本発明の他の実施形態を示す軸方向の断面図で
ある。
FIG. 9 is an axial sectional view showing another embodiment of the present invention.

【図10】本発明品と従来品の起動時における油膜形成
率を比較測定した結果を示す図である。
FIG. 10 is a diagram showing the results of comparative measurement of the oil film formation rate at the time of startup of the product of the present invention and the conventional product.

【図11】多孔質含油軸受の半径方向の断面図である。FIG. 11 is a radial sectional view of a porous oil-impregnated bearing.

【図12】多孔質含油軸受の油の飛散状況を示す軸方向
の断面図である。
FIG. 12 is an axial cross-sectional view showing a state of oil scattering of a porous oil-impregnated bearing.

【図13】本発明の他の実施形態を示す軸方向の断面図
である。
FIG. 13 is an axial sectional view showing another embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1 軸受本体 1a 軸受面 2 軸 5 動圧溝 m1 第1領域 m2 第2領域 n 平滑部 DESCRIPTION OF SYMBOLS 1 Bearing main body 1a Bearing surface 2 Shaft 5 Dynamic pressure groove m1 1st area m2 2nd area n Smooth part

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 多孔質体の内周に、この多孔質体と相対
的に回転する軸を支持するための軸受面を設けて軸受本
体を形成し、この軸受本体に潤滑油あるいは潤滑グリー
スを含浸させたものにおいて、 軸受面が、軸方向に対して一方に傾斜した複数の動圧溝
を円周方向に配列した第1領域と、第1領域から軸方向
に離隔し、軸方向に対して他方に傾斜した複数の動圧溝
を円周方向に配列した第2領域と、第1領域と第2領域
との間に位置する環状の平滑部とを有する多孔質含油軸
受。
1. A bearing body is provided on an inner periphery of a porous body for supporting a shaft which rotates relatively to the porous body to form a bearing body, and lubricating oil or lubricating grease is applied to the bearing body. In the impregnated bearing, the bearing surface is axially separated from the first region in which a plurality of dynamic pressure grooves inclined in one direction with respect to the axial direction are arranged in the circumferential direction. A porous oil-impregnated bearing having a second region in which a plurality of hydrodynamic grooves inclined in the other direction are arranged in the circumferential direction, and an annular smooth portion located between the first region and the second region.
【請求項2】 平滑部での表面開孔率を、第1および第
2領域での表面開孔率よりも小さくした請求項1記載の
多孔質含油軸受。
2. The porous oil-impregnated bearing according to claim 1, wherein the surface porosity in the smooth portion is smaller than the surface porosity in the first and second regions.
【請求項3】 軸受面の軸方向両端部が、軸受端側ほど
内径を拡大させたテーパ面状に形成されている請求項1
又は2記載の多孔質含油軸受。
3. The bearing surface according to claim 1, wherein both end portions in the axial direction of the bearing surface are formed in a tapered shape in which the inner diameter increases toward the bearing end.
Or the porous oil-impregnated bearing according to 2.
【請求項4】 軸受本体の軸方向の2個所以上に、請求
項1乃至3何れか記載の軸受面を有する多孔質含油軸
受。
4. A porous oil-impregnated bearing having the bearing surface according to claim 1 at two or more locations in the axial direction of the bearing body.
【請求項5】 第1及び第2領域の動圧溝が、軸受面の
軸方向中間部を中心として対称に形成されている請求項
1乃至4何れか記載の多孔質含油軸受。
5. The porous oil-impregnated bearing according to claim 1, wherein the dynamic pressure grooves in the first and second regions are formed symmetrically with respect to an axially intermediate portion of the bearing surface.
JP8153597A 1997-03-06 1997-03-31 Porous oilless bearing Pending JPH10274241A (en)

Priority Applications (10)

Application Number Priority Date Filing Date Title
JP8153597A JPH10274241A (en) 1997-03-31 1997-03-31 Porous oilless bearing
GB9804367A GB2322915B (en) 1997-03-06 1998-03-02 Hydrodynamic type porous oil-impregnated bearing
GB0024065A GB2351781B (en) 1997-03-06 1998-03-02 Hydrodynamic type porous oil-impregnated bearing
US09/033,651 US6299356B1 (en) 1997-03-06 1998-03-03 Hydrodynamic type porous oil-impregnated bearing
NL1008457A NL1008457C2 (en) 1997-03-06 1998-03-03 Hydrodynamic, porous oil-impregnated bearing.
DE19809770A DE19809770B4 (en) 1997-03-06 1998-03-06 Hydrodynamic, porous, oil-impregnated bearing
KR1019980007442A KR100606982B1 (en) 1997-03-06 1998-03-06 Dynamic pressure bearings with porous oil and manufacturing method
US09/921,704 US6513980B2 (en) 1997-03-06 2001-08-06 Hydrodynamic type porous oil-impregnated bearing
US09/921,602 US7059052B2 (en) 1997-03-06 2001-08-06 Hydrodynamic type porous oil-impregnated bearing
US10/022,399 US6533460B2 (en) 1997-03-06 2001-12-20 Hydrodynamic type porous oil-impregnated bearing

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8153597A JPH10274241A (en) 1997-03-31 1997-03-31 Porous oilless bearing

Publications (1)

Publication Number Publication Date
JPH10274241A true JPH10274241A (en) 1998-10-13

Family

ID=13749010

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8153597A Pending JPH10274241A (en) 1997-03-06 1997-03-31 Porous oilless bearing

Country Status (1)

Country Link
JP (1) JPH10274241A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013530303A (en) * 2010-04-06 2013-07-25 ヌオーヴォ ピニォーネ ソシエタ ペル アチオニ Self-lubricating coating and method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013530303A (en) * 2010-04-06 2013-07-25 ヌオーヴォ ピニォーネ ソシエタ ペル アチオニ Self-lubricating coating and method

Similar Documents

Publication Publication Date Title
US5941646A (en) Hydrodynamic type porous oil-impregnated bearing and bearing device
US7059052B2 (en) Hydrodynamic type porous oil-impregnated bearing
US6023114A (en) Spindle motor and rotating shaft supporting device for spindle motor
JP3607492B2 (en) Dynamic pressure type porous oil-impregnated bearing and manufacturing method thereof
JP3602317B2 (en) Dynamic pressure type porous oil-impregnated bearing unit
JP3607478B2 (en) Dynamic pressure type porous oil-impregnated bearing
JPH10274241A (en) Porous oilless bearing
JP3607480B2 (en) Dynamic pressure type porous oil-impregnated bearing and bearing device
JP3602325B2 (en) Dynamic pressure type porous oil-impregnated bearing
JP2004353871A (en) Hydrodynamic type porous oil-impregnated bearing
JP3908834B2 (en) Support device for spindle motor of information equipment
JP4263144B2 (en) Spindle motor
JPH11191944A (en) Spindle motor and rotary shaft supporting device of laser beam printer
JP3665606B2 (en) Dynamic pressure type porous oil-impregnated bearing
JP2001152174A (en) Sintered oilless bearing
JPH11191943A (en) Spindle motor and rotary shaft supporting device of optical disc device
JP4188288B2 (en) Manufacturing method of dynamic pressure type porous oil-impregnated bearing
JP4327038B2 (en) Spindle motor
JP2004353870A (en) Hydrodynamic type bearing device
JPH11191945A (en) Spindle motor and rotary shaft support device of hard disc drive
JP3784690B2 (en) Dynamic pressure type porous oil-impregnated bearing and manufacturing method thereof
JP2001124057A (en) Dynamic pressure bearing
JPS5817219A (en) Dynamic-pressure radial bearing device
JP3602318B2 (en) Manufacturing method of hydrodynamic porous oil-impregnated bearing
JP2002276645A (en) Dynamic pressure type bearing unit

Legal Events

Date Code Title Description
A977 Report on retrieval

Effective date: 20050523

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050526

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050721

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20051109