JP6942002B2 - Fluid dynamic bearing device and motor equipped with it - Google Patents

Fluid dynamic bearing device and motor equipped with it Download PDF

Info

Publication number
JP6942002B2
JP6942002B2 JP2017153217A JP2017153217A JP6942002B2 JP 6942002 B2 JP6942002 B2 JP 6942002B2 JP 2017153217 A JP2017153217 A JP 2017153217A JP 2017153217 A JP2017153217 A JP 2017153217A JP 6942002 B2 JP6942002 B2 JP 6942002B2
Authority
JP
Japan
Prior art keywords
bearing
bearing sleeve
radial
peripheral surface
adhesive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017153217A
Other languages
Japanese (ja)
Other versions
JP2018031475A (en
Inventor
正志 山郷
正志 山郷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NTN Corp
Original Assignee
NTN Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NTN Corp filed Critical NTN Corp
Publication of JP2018031475A publication Critical patent/JP2018031475A/en
Application granted granted Critical
Publication of JP6942002B2 publication Critical patent/JP6942002B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Sliding-Contact Bearings (AREA)
  • Mounting Of Bearings Or Others (AREA)

Description

本発明は、流体動圧軸受装置及びこれを備えるモータに関する。 The present invention relates to a fluid dynamic bearing device and a motor including the same.

周知のように、流体動圧軸受装置は、高速回転、高回転精度および低騒音等の特長を有する。このため、流体動圧軸受装置は、種々の電気機器に搭載される各種モータ、例えば、HDD等のディスク駆動装置に組み込まれるスピンドルモータ用、PC等に組み込まれるファンモータ用、あるいはレーザビームプリンタに組み込まれるポリゴンスキャナモータ用の軸受装置などとして好適に使用されている。 As is well known, the fluid dynamic bearing device has features such as high speed rotation, high rotation accuracy and low noise. Therefore, the hydrodynamic bearing device can be used for various motors mounted on various electric devices, for example, for spindle motors incorporated in disk drive devices such as HDDs, fan motors incorporated in PCs, or laser beam printers. It is suitably used as a bearing device for a built-in polygon scanner motor.

例えば、下記の特許文献1〜3には、ハウジングと、ハウジングの内周に固定された軸受スリーブと、軸受スリーブの内周面で形成され、流体(例えば、潤滑油)が介在するラジアル軸受隙間と、ラジアル軸受隙間内の流体に生じる動圧作用で支持すべき軸(軸受スリーブの内周に挿入される軸部材)をラジアル方向に相対回転自在に非接触支持するラジアル軸受部と、を備えた種々の形態の流体動圧軸受装置が開示されている。 For example, in Patent Documents 1 to 3 below, a radial bearing gap formed by a housing, a bearing sleeve fixed to the inner circumference of the housing, and an inner peripheral surface of the bearing sleeve and in which a fluid (for example, lubricating oil) is interposed. A radial bearing portion that non-contactly supports a shaft (a shaft member inserted into the inner circumference of the bearing sleeve) that should be supported by the dynamic pressure generated in the fluid in the radial bearing gap so as to be relatively rotatable in the radial direction. Various forms of hydrodynamic bearing devices are disclosed.

特開2004−116667号公報Japanese Unexamined Patent Publication No. 2004-116667 特開2010−96202号公報Japanese Unexamined Patent Publication No. 2010-96202 特開2010−255777号公報JP-A-2010-255777

上記の流体動圧軸受装置において、軸受スリーブの内周面精度(真円度や円筒度等)は、ラジアル軸受隙間の隙間幅精度、ひいてはラジアル軸受部の軸受性能(荷重支持能力)を大きく左右する。例えば、ハウジングに対する軸受スリーブの固定方法として圧入を選択した場合、圧入による締め付け力により軸受スリーブが変形し、軸受スリーブの内周面精度に悪影響が及び易くなる。 In the above hydrodynamic bearing device, the inner peripheral surface accuracy (roundness, cylindricity, etc.) of the bearing sleeve greatly affects the clearance width accuracy of the radial bearing gap and the bearing performance (load bearing capacity) of the radial bearing. do. For example, when press-fitting is selected as the method for fixing the bearing sleeve to the housing, the bearing sleeve is deformed by the tightening force due to the press-fitting, and the accuracy of the inner peripheral surface of the bearing sleeve is likely to be adversely affected.

このため、軸受スリーブは、いわゆる隙間接着によりハウジングの内周に固定する場合が多い。ここでいう隙間接着とは、ハウジングの内周に軸受スリーブをすきまばめ(JIS B 0401−1参照)することで互いに対向するハウジングの内周面と軸受スリーブの外周面との間に径方向隙間を形成し、この径方向隙間に介在させた接着剤を硬化させることで両者を固定する方法である。このような固定方法であれば、軸受スリーブがハウジングから締め付け力を受けないため、軸受スリーブの内周面の精度低下を防止できると考えられていた。しかしながら、本発明者の検証によれば、ハウジングの内周に軸受スリーブを隙間接着した場合でも、軸受スリーブの内周面精度が低下する場合があることが判明した。 Therefore, the bearing sleeve is often fixed to the inner circumference of the housing by so-called gap adhesion. Gap adhesion here means that the bearing sleeve is crevice-fitted on the inner circumference of the housing (see JIS B 0401-1) so that the inner peripheral surface of the housing facing each other and the outer peripheral surface of the bearing sleeve are in the radial direction. This is a method of fixing both by forming a gap and curing the adhesive interposed in the radial gap. It has been considered that such a fixing method can prevent a decrease in accuracy of the inner peripheral surface of the bearing sleeve because the bearing sleeve does not receive a tightening force from the housing. However, according to the verification by the present inventor, it has been found that the accuracy of the inner peripheral surface of the bearing sleeve may be lowered even when the bearing sleeve is gap-bonded to the inner circumference of the housing.

以上の実情に鑑み、本発明は、いわゆる隙間接着によりハウジングの内周に軸受スリーブが固定される流体動圧軸受装置において、軸受スリーブの内周面精度を高め、もってラジアル軸受部の軸受性能を一層高めることを目的とする。 In view of the above circumstances, the present invention improves the accuracy of the inner peripheral surface of the bearing sleeve in the fluid dynamic bearing device in which the bearing sleeve is fixed to the inner circumference of the housing by so-called gap adhesion, thereby improving the bearing performance of the radial bearing portion. The purpose is to further enhance it.

本発明者の検証によれば、前述した軸受スリーブの内周面精度の低下問題は、
(1)温度変化(特に、接着剤として熱硬化型接着剤を使用する場合、当該接着剤を硬化させるために実施される加熱処理)に伴うハウジングと軸受スリーブの変形量が相互に異なること。
(2)ハウジングと軸受スリーブの間に介在する接着剤(接着剤層)が温度変化の影響を受けて膨張・収縮する場合があること。
などに起因して生じることが判明した。上記(1)の問題は、例えば、ハウジングと軸受スリーブを同種材料、あるいは線膨張係数が近似した材料で形成すれば解消できるとも考えられる。しかしながら、ハウジングと軸受スリーブに対する要求特性は互いに異なり、ハウジングおよび軸受スリーブの形成材料としては、通常、それぞれに対する要求特性を最大限満足し得るものが選択される。そのため、ハウジングおよび/または軸受スリーブの形成材料をいたずらに変更するのは得策ではない。そこで、本発明者が鋭意検討を進めた結果、上記(2)を可及的に解消し得る技術手段を見出し、本発明を創案するに至った。
According to the verification of the present inventor, the above-mentioned problem of deterioration of the inner peripheral surface accuracy of the bearing sleeve is solved.
(1) The amount of deformation of the housing and the bearing sleeve due to a temperature change (particularly, when a heat-curable adhesive is used as the adhesive, a heat treatment performed to cure the adhesive) is different from each other.
(2) The adhesive (adhesive layer) between the housing and the bearing sleeve may expand or contract under the influence of temperature changes.
It turned out that it was caused by such things. It is considered that the problem (1) above can be solved by, for example, forming the housing and the bearing sleeve with the same material or a material having an approximate coefficient of linear expansion. However, the required characteristics for the housing and the bearing sleeve are different from each other, and as the material for forming the housing and the bearing sleeve, a material that can satisfy the required characteristics for each is usually selected. Therefore, it is not a good idea to change the housing and / or bearing sleeve forming material unnecessarily. Therefore, as a result of diligent studies by the present inventor, he has found a technical means capable of solving the above (2) as much as possible, and has come up with the present invention.

すなわち、上記の目的を達成するために創案された本発明は、内周面に、支持すべき軸部材の外周面との間にラジアル軸受隙間を形成するラジアル軸受面を有する軸受スリーブと、軸受スリーブを内周に固定したハウジングと、ラジアル軸受隙間に生じる流体の動圧作用で軸部材と軸受スリーブをラジアル方向に相対回転自在に非接触支持するラジアル軸受部とを備え、軸受スリーブが、その外周面とハウジングの内周面との間の径方向隙間に形成された接着剤層を介してハウジングの内周に固定された流体動圧軸受装置において、径方向隙間を介して互いに対向するハウジングの内周面と軸受スリーブの外周面との間に、接着剤層が介在しない円筒状の非接着部が設けられ、この非接着部は、少なくともその軸方向一部領域が、ラジアル軸受部のうち、流体動圧が最大となる最大圧力発生領域と軸方向でオーバーラップするように設けられていることを特徴とする。なお、ここでいう「最大圧力発生領域」とは、例えば、ラジアル軸受隙間内の流体に動圧作用を発生させるための動圧発生部として図3に示す形態のものを採用した場合、ラジアル軸受部(のラジアル軸受隙間)のうち、環状丘部Acの対向領域である。 That is, the present invention, which was devised to achieve the above object, has a bearing sleeve having a radial bearing surface forming a radial bearing gap between the inner peripheral surface and the outer peripheral surface of the shaft member to be supported, and a bearing. The bearing sleeve is provided with a housing in which the sleeve is fixed to the inner circumference and a radial bearing portion that non-contactly supports the shaft member and the bearing sleeve in the radial direction by the dynamic pressure action of the fluid generated in the radial bearing gap. In a hydrodynamic bearing device fixed to the inner circumference of a housing via an adhesive layer formed in a radial gap between the outer peripheral surface and the inner peripheral surface of the housing, the housings facing each other via the radial gap. A cylindrical non-adhesive portion without an adhesive layer is provided between the inner peripheral surface of the bearing and the outer peripheral surface of the bearing sleeve. Of these, it is characterized in that it is provided so as to overlap in the axial direction with the maximum pressure generation region where the fluid dynamic pressure is maximum. The "maximum pressure generation region" referred to here is, for example, a radial bearing when a dynamic pressure generating portion for generating a dynamic pressure action on the fluid in the radial bearing gap is adopted as shown in FIG. It is a region facing the annular hill portion Ac in the portion (radial bearing gap).

ラジアル軸受隙間に生じる流体の動圧作用で軸部材と軸受スリーブをラジアル方向に相対回転自在に非接触支持するラジアル軸受部、すなわち、いわゆる動圧軸受からなるラジアル軸受部の軸受性能(荷重支持能力)は、ラジアル軸受隙間内の流体に動圧作用を発生させるべく、互いに対向する軸部材の外周面および軸受スリーブの内周面(ラジアル軸受面)の少なくとも一方に設けられる動圧発生部の形態に応じて軸方向の各所で異なり、ラジアル軸受部のうち、流体動圧が最大となる最大圧力発生領域において最も高くなる。従って、動圧軸受からなるラジアル軸受部の軸受性能を高める上では、ラジアル軸受部の最大圧力発生領域においてラジアル軸受隙間の隙間幅精度を高めることが最も効果的である。 The bearing performance (load bearing capacity) of a radial bearing that supports the shaft member and the bearing sleeve in a non-contact manner so that they can rotate relative to each other in the radial direction by the dynamic pressure of the fluid generated in the radial bearing gap, that is, the radial bearing that consists of a so-called dynamic bearing. ) Is a form of a dynamic pressure generating portion provided on at least one of the outer peripheral surface of the shaft member facing each other and the inner peripheral surface (radial bearing surface) of the bearing sleeve in order to generate a dynamic pressure action on the fluid in the radial bearing gap. It differs in various places in the axial direction according to the above, and is the highest in the maximum pressure generation region where the fluid dynamic pressure is maximum among the radial bearing portions. Therefore, in order to improve the bearing performance of the radial bearing portion made of a dynamic pressure bearing, it is most effective to improve the clearance width accuracy of the radial bearing gap in the maximum pressure generation region of the radial bearing portion.

上記のように、径方向隙間を介して互いに対向するハウジングの内周面と軸受スリーブの外周面との間に接着剤層が介在しない円筒状の非接着部を設けておけば、軸受スリーブの内周面のうち、非接着部と軸方向でオーバーラップする円筒領域には、接着剤層の膨張・収縮の影響が及び難くなる。このため、非接着部の少なくとも軸方向一部領域がラジアル軸受部の最大圧力発生領域と軸方向でオーバーラップするように設けられていれば、最大圧力発生領域の少なくとも一部領域において、ラジアル軸受隙間の隙間幅精度が変動(低下)し難くなる。これにより、ラジアル軸受部の軸受性能を効果的に高めることが可能となる。 As described above, if a cylindrical non-adhesive portion is provided between the inner peripheral surface of the housing facing each other via the radial gap and the outer peripheral surface of the bearing sleeve so that the adhesive layer does not intervene, the bearing sleeve can be formed. Of the inner peripheral surface, the cylindrical region that overlaps the non-adhesive portion in the axial direction is less affected by the expansion / contraction of the adhesive layer. Therefore, if at least a part of the non-adhesive portion in the axial direction is provided so as to overlap with the maximum pressure generation region of the radial bearing portion in the axial direction, the radial bearing is provided in at least a part of the maximum pressure generation region. The clearance width accuracy of the gap is less likely to fluctuate (decrease). This makes it possible to effectively improve the bearing performance of the radial bearing portion.

非接着部は、例えば、その軸方向全域が最大圧力発生領域と軸方向でオーバーラップするように設けることができる(図5参照)。係る構成は、例えば、相対密度が80%以上90%未満の多孔質体で形成された軸受スリーブを用いる場合に好ましく採用することができる。なお、ここでいう「相対密度」とは真密度比とも称され、以下の関係式から算出される。
相対密度=(軸受スリーブ全体の密度/真密度)×100[%]
上式における「真密度」とは、溶製材のように内部に気孔が存在しない材料の理論密度を意味し、「軸受スリーブ全体の密度」は、例えばJIS Z2501に規定された方法により測定することができる。
The non-adhesive portion can be provided, for example, so that the entire axial direction overlaps the maximum pressure generation region in the axial direction (see FIG. 5). Such a configuration can be preferably adopted when, for example, a bearing sleeve formed of a porous body having a relative density of 80% or more and less than 90% is used. The "relative density" here is also called the true density ratio, and is calculated from the following relational expression.
Relative density = (overall bearing sleeve density / true density) x 100 [%]
The "true density" in the above equation means the theoretical density of a material such as a molten material that does not have pores inside, and the "density of the entire bearing sleeve" is measured by, for example, the method specified in JIS Z2501. Can be done.

非接着部は、その軸方向一方側および他方側の端部が、それぞれ、最大圧力発生領域の軸方向一方側および他方側の端部よりも軸方向外側に位置するように設けることもできる[図7(a)参照]。このようにすれば、非接着部の軸方向全域を最大圧力発生領域と軸方向でオーバーラップさせる場合に比べて非接着部の軸方向の形成範囲が拡大されるので、ラジアル軸受面の精度低下を防止する上で有利となる。係る構成は、例えば、相対密度が90%以上95%以下の多孔質体で形成された軸受スリーブを採用する場合に好ましく採用することができる。 The non-adhesive portion may be provided so that its axial one-side and other-side ends are located axially outside the axial one-side and other-side ends of the maximum pressure generation region, respectively []. See FIG. 7 (a)]. In this way, the axial formation range of the non-adhesive portion is expanded as compared with the case where the entire axial direction of the non-adhesive portion overlaps with the maximum pressure generation region in the axial direction, so that the accuracy of the radial bearing surface is reduced. It is advantageous in preventing the above. Such a configuration can be preferably adopted when, for example, a bearing sleeve formed of a porous body having a relative density of 90% or more and 95% or less is adopted.

相対密度が90%以上95%以下の多孔質体からなる軸受スリーブを採用する場合、少なくとも外周面の表面開孔が封止された軸受スリーブを用いるのが好ましい。上記表面開孔を封止した封孔部は、例えば、軸受スリーブの表層部を塑性変形させることで形成することができる。 When a bearing sleeve made of a porous body having a relative density of 90% or more and 95% or less is adopted, it is preferable to use a bearing sleeve in which at least the surface perforations on the outer peripheral surface are sealed. The sealing portion that seals the surface opening can be formed, for example, by plastically deforming the surface layer portion of the bearing sleeve.

銅を含む焼結金属の多孔質体で形成された軸受スリーブは、比較的安価に製造(量産)可能でありながら、各部(特にラジアル軸受面)の形状精度やラジアル軸受面の摺動性が良好である。そのため、このような軸受スリーブは、ラジアル軸受部の軸受性能に優れた流体動圧軸受装置を実現する上で好ましく採用し得る。 Bearing sleeves made of a porous body of sintered metal containing copper can be manufactured (mass-produced) at a relatively low cost, but the shape accuracy of each part (particularly the radial bearing surface) and the slidability of the radial bearing surface are excellent. It is good. Therefore, such a bearing sleeve can be preferably adopted in realizing a fluid dynamic bearing device having excellent bearing performance of the radial bearing portion.

以上の構成において、非接着部は、径方向隙間の隙間幅よりも大きい径方向寸法を有する環状凹部で構成することができる。このようにすれば、特に、径方向隙間に接着剤を充填・硬化させる過程(接着剤層の形成過程)で環状凹部内に接着剤が充填された場合でも、環状凹部内の接着剤を毛細管力によって径方向隙間側に移動させることができる。そのため、上記の非接着部を確実に設けることができ、これを通じて軸受スリーブの内周面精度の向上効果を適切に享受することができる。なお、毛細管力による径方向隙間側への接着剤の移動を適切に実行可能とするため、環状凹部に、軸方向外側に向かうにつれて漸次縮径した縮径部を設け、この縮径部を径方向隙間と軸方向で隣接配置するのが好ましい。 In the above configuration, the non-adhesive portion can be formed of an annular recess having a radial dimension larger than the clearance width of the radial gap. In this way, even when the adhesive is filled in the annular recess in the process of filling and curing the adhesive in the radial gap (the process of forming the adhesive layer), the adhesive in the annular recess is made into a capillary tube. It can be moved to the radial gap side by force. Therefore, the above-mentioned non-adhesive portion can be reliably provided, and the effect of improving the accuracy of the inner peripheral surface of the bearing sleeve can be appropriately enjoyed through this. In addition, in order to appropriately move the adhesive to the radial gap side by the capillary force, a diameter-reduced portion gradually reduced in diameter toward the outside in the axial direction is provided in the annular recess, and the diameter of this reduced portion is reduced. It is preferable to arrange them adjacent to the directional gap in the axial direction.

接着剤層は、熱硬化型接着剤で形成することができる。熱硬化型接着剤であれば、所定の条件で加熱処理を実施することにより、ハウジングと軸受スリーブを確実に接着固定することができる。熱硬化型接着剤は、これを硬化させるための加熱処理が必須であるが、加熱処理時の温度上昇に伴って一旦その粘度が低下する。そのため、特に、非接着部を上記の環状凹部で構成しておけば、接着剤層の形成過程で環状凹部内に接着剤(熱硬化型接着剤)が充填された場合でも、環状凹部内の接着剤を円滑かつ確実に径方向隙間側に移動させることができる、という利点がある。 The adhesive layer can be formed with a thermosetting adhesive. If it is a thermosetting adhesive, the housing and the bearing sleeve can be reliably adhered and fixed by performing heat treatment under predetermined conditions. A heat treatment for curing a thermosetting adhesive is indispensable, but its viscosity temporarily decreases as the temperature rises during the heat treatment. Therefore, in particular, if the non-adhesive portion is composed of the above-mentioned annular recess, even if the annular recess is filled with an adhesive (thermosetting adhesive) in the process of forming the adhesive layer, the inside of the annular recess There is an advantage that the adhesive can be smoothly and surely moved to the radial gap side.

本発明に係る流体動圧軸受装置は、ラジアル軸受部の軸受性能に優れる、という特徴を有することから、さらにロータマグネットおよびステータコイルを有する各種モータ、具体的には、ディスク駆動装置(特にHDD)用のスピンドルモータ、PC用のファンモータ、LBP用のポリゴンスキャナモータ等に組み込んで好適に使用することができる。 Since the hydrodynamic bearing device according to the present invention has a feature that the bearing performance of the radial bearing portion is excellent, various motors having a rotor magnet and a stator coil, specifically, a disk drive device (particularly HDD) It can be suitably used by being incorporated into a spindle motor for PC, a fan motor for PC, a polygon scanner motor for LBP, and the like.

以上より、本発明によれば、ラジアル軸受隙間の形成に直接関与する軸受スリーブの内周面精度を高めることができるので、ラジアル軸受部の軸受性能が高められた流体動圧軸受装置を提供することができる。 Based on the above, according to the present invention, it is possible to improve the accuracy of the inner peripheral surface of the bearing sleeve that is directly involved in the formation of the radial bearing gap, so that a fluid dynamic bearing device having improved bearing performance of the radial bearing portion is provided. be able to.

スピンドルモータの一例を概念的に示す断面図である。It is sectional drawing which shows an example of a spindle motor conceptually. 本発明の第1実施形態に係る流体動圧軸受装置を示す断面図である。It is sectional drawing which shows the fluid dynamic pressure bearing apparatus which concerns on 1st Embodiment of this invention. ハウジングの内周に軸受スリーブを固定したアセンブリの断面図である。It is sectional drawing of the assembly which fixed the bearing sleeve to the inner circumference of a housing. 軸受スリーブの下端面の平面図である。It is a top view of the lower end surface of a bearing sleeve. 図3に示すアセンブリの部分拡大図である。It is a partially enlarged view of the assembly shown in FIG. (a)図は、ハウジングと軸受スリーブの組付工程における初期段階を示す図、(b)図は、同組付工程における途中段階を示す図、(c)図は、同組付工程において軸受スリーブの挿入完了段階を示す図である。(A) is a diagram showing an initial stage in the assembling process of the housing and the bearing sleeve, (b) is a diagram showing an intermediate stage in the assembling process, and (c) is a diagram showing an intermediate stage in the assembling process. It is a figure which shows the insertion completion stage of a sleeve. (a)図は、ハウジングの内周に高密度の軸受スリーブを固定したアセンブリの部分拡大断面図、(b)図は、(a)図の部分拡大図である。(A) is a partially enlarged cross-sectional view of an assembly in which a high-density bearing sleeve is fixed to the inner circumference of a housing, and (b) is a partially enlarged view of FIG. (A). 本発明の第2実施形態に係る流体動圧軸受装置を示す断面図である。It is sectional drawing which shows the fluid dynamic pressure bearing apparatus which concerns on 2nd Embodiment of this invention. 本発明の第3実施形態に係る流体動圧軸受装置を示す断面図である。It is sectional drawing which shows the fluid dynamic pressure bearing apparatus which concerns on 3rd Embodiment of this invention. (a)図および(b)図は、何れも、非接着部の変形例を示す拡大図である。Both the figure (a) and the figure (b) are enlarged views showing a modified example of the non-adhesive portion. 接着固定前後で軸受スリーブの内径寸法がどの程度変化するかを確認した結果を示す図である。It is a figure which shows the result of having confirmed how much the inner diameter dimension of a bearing sleeve changes before and after adhesive fixing. ハウジングと軸受スリーブの接着強度の確認結果を示す図である。It is a figure which shows the confirmation result of the adhesive strength of a housing and a bearing sleeve.

以下、本発明の実施の形態を図面に基づいて説明する。 Hereinafter, embodiments of the present invention will be described with reference to the drawings.

図1に、スピンドルモータの一構成例を概念的に示す。同図に示すスピンドルモータは、HDD等のディスク駆動装置に用いられるものであって、流体動圧軸受装置1と、流体動圧軸受装置1の軸部材2に固定されたディスクハブ3と、半径方向隙間を介して対向するステータコイル4およびロータマグネット5と、内周に流体動圧軸受装置1のハウジング7を固定したモータベース6とを備える。ロータマグネット5はディスクハブ3に固定され、ステータコイル4はモータベース6に固定されている。ディスクハブ3には、所定枚数(図示例では2枚)のディスクDが保持されている。このような構成を有するスピンドルモータにおいて、ステータコイル4に通電すると、ステータコイル4とロータマグネット5との間の電磁力でロータマグネット5が回転し、これに伴って軸部材2、ディスクハブ3及びディスクDが一体的に回転する。 FIG. 1 conceptually shows an example of a configuration of a spindle motor. The spindle motor shown in the figure is used for a disk drive device such as an HDD, and has a fluid dynamic pressure bearing device 1, a disk hub 3 fixed to a shaft member 2 of the fluid dynamic pressure bearing device 1, and a radius. It includes a stator coil 4 and a rotor magnet 5 that face each other with a directional gap, and a motor base 6 in which a housing 7 of a fluid dynamic bearing device 1 is fixed to the inner circumference. The rotor magnet 5 is fixed to the disc hub 3, and the stator coil 4 is fixed to the motor base 6. A predetermined number of discs (two in the illustrated example) are held in the disc hub 3. In a spindle motor having such a configuration, when the stator coil 4 is energized, the rotor magnet 5 is rotated by an electromagnetic force between the stator coil 4 and the rotor magnet 5, and the shaft member 2, the disk hub 3, and the disk hub 3 and the rotor magnet 5 are rotated accordingly. The disk D rotates integrally.

図2に、本発明の第1実施形態に係る流体動圧軸受装置1を示す。この流体動圧軸受装置1は、軸部材2と、軸方向一方側および他方側の端部が開口したハウジング7と、ハウジング7の内周に固定された軸受スリーブ8と、ハウジング7の軸方向他方側の端部開口を閉塞する蓋部材10とを備え、ハウジング7の内部空間には流体としての潤滑油(密な散点ハッチングで示す)が充填されている。なお、以下では、説明の便宜上、蓋部材10が配置された側を下側、これとは軸方向の反対側を上側というが、流体動圧軸受装置1の使用態様を限定するものではない。 FIG. 2 shows the fluid dynamic bearing device 1 according to the first embodiment of the present invention. The fluid dynamic bearing device 1 includes a shaft member 2, a housing 7 having openings on one and other ends in the axial direction, a bearing sleeve 8 fixed to the inner circumference of the housing 7, and the axial direction of the housing 7. A lid member 10 for closing the end opening on the other side is provided, and the internal space of the housing 7 is filled with lubricating oil (indicated by dense scattering point hatching) as a fluid. In the following, for convenience of explanation, the side on which the lid member 10 is arranged is referred to as the lower side, and the side opposite to this is referred to as the upper side, but the usage mode of the fluid dynamic bearing device 1 is not limited.

軸部材2は、軸部2aと、軸部2aの下端に一体又は別体に設けられたフランジ部2bとを有し、軸部2aおよびフランジ部2bは、例えばステンレス鋼等の金属材料で形成される。軸部2aは、軸受スリーブ8の内周に挿入され、フランジ部2bは、ハウジング7、軸受スリーブ8および蓋部材10の間に画成される空間内に配置される。 The shaft member 2 has a shaft portion 2a and a flange portion 2b provided integrally or separately at the lower end of the shaft portion 2a, and the shaft portion 2a and the flange portion 2b are formed of a metal material such as stainless steel. Will be done. The shaft portion 2a is inserted into the inner circumference of the bearing sleeve 8, and the flange portion 2b is arranged in a space defined between the housing 7, the bearing sleeve 8 and the lid member 10.

ハウジング7は、黄銅やステンレス鋼等の金属材料(溶製材)、あるいは樹脂材料で略円筒状に形成され、円筒状の筒部7aと、筒部7aよりも径方向内側に突出した短円筒状のシール部7bとを一体に有する。筒部7aの内周面は、相対的に小径の小径内周面7a1と、小径内周面7a1の下側に配置され、相対的に大径の大径内周面7a2とを有する。 The housing 7 is formed of a metal material (molten material) such as brass or stainless steel, or a resin material in a substantially cylindrical shape, and has a cylindrical tubular portion 7a and a short cylindrical shape protruding radially inward from the tubular portion 7a. The seal portion 7b of the above is integrally provided. The inner peripheral surface of the tubular portion 7a has a relatively small diameter small diameter inner peripheral surface 7a1 and a relatively large diameter large diameter inner peripheral surface 7a2 arranged below the small diameter inner peripheral surface 7a1.

シール部7bの内周面7b1は、下方に向けて漸次縮径したテーパ面状に形成されており、対向する軸部2aの円筒状外周面2a1との間に下方に向けて漸次縮径したくさび状のシール空間Sを形成する。シール空間Sは、ハウジング7の内部空間に充填された潤滑油の温度変化に伴う容積変化量を吸収するバッファ機能を有し、想定される温度変化の範囲内で潤滑油の油面を常にシール空間Sの軸方向範囲内に保持する。図示は省略するが、くさび状のシール空間Sは、径一定の円筒面状に形成されたシール部7bの内周面7b1と、上方に向けて漸次縮径するテーパ面状に形成された軸部2aの外周面2a1とで形成することもできる。 The inner peripheral surface 7b1 of the seal portion 7b is formed in a tapered surface shape whose diameter is gradually reduced downward, and the diameter is gradually reduced downward between the inner peripheral surface 7b1 and the cylindrical outer peripheral surface 2a1 of the opposing shaft portion 2a. A wedge-shaped seal space S is formed. The seal space S has a buffer function of absorbing the amount of volume change due to the temperature change of the lubricating oil filled in the internal space of the housing 7, and always seals the oil level of the lubricating oil within the range of the assumed temperature change. It is held within the axial range of the space S. Although not shown, the wedge-shaped seal space S has an inner peripheral surface 7b1 of a sealing portion 7b formed in a cylindrical surface shape having a constant diameter and a shaft formed in a tapered surface shape whose diameter gradually decreases upward. It can also be formed by the outer peripheral surface 2a1 of the portion 2a.

蓋部材10は、黄銅やステンレス鋼等の金属材料、あるいは樹脂材料で円板状に形成され、ハウジング7の筒部7aの大径内周面7a2に固定される。蓋部材10の上端面10aは円環状のスラスト軸受面を有し、該スラスト軸受面には、スラスト軸受部T2のスラスト軸受隙間内の潤滑油に動圧作用を発生させるための動圧発生部(スラスト動圧発生部)Cが形成されている。図示は省略するが、スラスト動圧発生部Cは、例えば、後述するスラスト動圧発生部B(図4参照)と同様に、スパイラル形状の動圧溝と、動圧溝を区画する凸状の丘部とを周方向に交互に配して構成される。 The lid member 10 is formed of a metal material such as brass or stainless steel or a resin material in a disk shape, and is fixed to the large-diameter inner peripheral surface 7a2 of the tubular portion 7a of the housing 7. The upper end surface 10a of the lid member 10 has an annular thrust bearing surface, and the thrust bearing surface has a dynamic pressure generating portion for generating a dynamic pressure action on the lubricating oil in the thrust bearing gap of the thrust bearing portion T2. (Thrust dynamic pressure generating portion) C is formed. Although not shown, the thrust dynamic pressure generating portion C is, for example, a spiral-shaped dynamic pressure groove and a convex shape for partitioning the dynamic pressure groove, similarly to the thrust dynamic pressure generating portion B (see FIG. 4) described later. It is composed of hills and hills arranged alternately in the circumferential direction.

軸受スリーブ8は円筒状をなし、その内周面8aには、円筒面状のラジアル軸受面が軸方向に離間した二箇所に設けられている。2つのラジアル軸受面には、それぞれ、図3に示すように、ラジアル軸受部R1,R2のラジアル軸受隙間内の潤滑油に動圧作用を発生させるための動圧発生部(ラジアル動圧発生部)A1,A2が形成されている。図示例のラジアル動圧発生部A1,A2は、何れも、軸方向に対して傾斜し、周方向に離間して設けられた複数の上側動圧溝Aa1と、上側動圧溝Aa1とは反対方向に傾斜し、周方向に離間して設けられた複数の下側動圧溝Aa2と、両動圧溝Aa1,Aa2を区画する凸状の丘部(図中クロスハッチングで示す)とで構成され、丘部は全体としてヘリングボーン形状に形成されている。すなわち、丘部は、周方向で隣り合う動圧溝間に設けられた傾斜丘部Abと、上下の動圧溝Aa1,Aa2間に設けられた環状丘部Acとからなる。ラジアル動圧発生部A1においては、上側動圧溝Aa1の方が下側動圧溝Aa2よりも軸方向寸法が大きく、ラジアル動圧発生部A2を構成する両動圧溝Aa1,Aa2の軸方向寸法は、ラジアル動圧発生部A1の下側動圧溝Aa2の軸方向寸法と同寸である。 The bearing sleeve 8 has a cylindrical shape, and a cylindrical radial bearing surface is provided on the inner peripheral surface 8a at two positions separated in the axial direction. As shown in FIG. 3, the two radial bearing surfaces have dynamic pressure generating portions (radial dynamic pressure generating portions) for generating a dynamic pressure action on the lubricating oil in the radial bearing gaps of the radial bearing portions R1 and R2, respectively. ) A1 and A2 are formed. The radial dynamic pressure generating portions A1 and A2 in the illustrated example are opposite to the plurality of upper dynamic pressure grooves Aa1 which are inclined with respect to the axial direction and are provided apart from each other in the circumferential direction and the upper dynamic pressure grooves Aa1. It is composed of a plurality of lower dynamic pressure grooves Aa2 that are inclined in the direction and are provided apart from each other in the circumferential direction, and a convex hill portion (indicated by cross-hatching in the figure) that divides both dynamic pressure grooves Aa1 and Aa2. The hill is formed in the shape of a herringbone as a whole. That is, the hill portion is composed of an inclined hill portion Ab provided between adjacent dynamic pressure grooves in the circumferential direction and an annular hill portion Ac provided between the upper and lower dynamic pressure grooves Aa1 and Aa2. In the radial dynamic pressure generating portion A1, the upper dynamic pressure groove Aa1 has a larger axial dimension than the lower dynamic pressure groove Aa2, and the axial directions of both dynamic pressure grooves Aa1 and Aa2 constituting the radial dynamic pressure generating portion A2. The dimensions are the same as the axial dimensions of the lower dynamic pressure groove Aa2 of the radial dynamic pressure generating portion A1.

軸受スリーブ8の下端面8bにはスラスト軸受面が設けられ、このスラスト軸受面には、図4に示すように、スラスト軸受部T1のスラスト軸受隙間内の潤滑油に動圧作用を発生させるための動圧発生部(スラスト動圧発生部)Bが形成されている。図示例のスラスト動圧発生部Bは、スパイラル形状の動圧溝Baと、動圧溝Baを区画する凸状の丘部Bb(図中クロスハッチングで示す)とを周方向に交互に配して構成される。 A thrust bearing surface is provided on the lower end surface 8b of the bearing sleeve 8, and as shown in FIG. 4, the thrust bearing surface is used to generate a dynamic pressure action on the lubricating oil in the thrust bearing gap of the thrust bearing portion T1. The dynamic pressure generating portion (thrust dynamic pressure generating portion) B of the above is formed. In the thrust dynamic pressure generating portion B of the illustrated example, a spiral-shaped dynamic pressure groove Ba and a convex hill portion Bb (indicated by cross-hatching in the figure) for partitioning the dynamic pressure groove Ba are alternately arranged in the circumferential direction. It is composed of.

図2および図3に示すように、軸受スリーブ8の上端面8cには、環状溝8c1と、径方向外側および内側の端部が環状溝8c1および軸受スリーブ8の上端内周チャンファにそれぞれ開口した径方向溝8c2とが形成されている。また、軸受スリーブ8の外周面8dには、一又は複数(本実施形態では三本)の軸方向溝8d1が形成されている。 As shown in FIGS. 2 and 3, the upper end surface 8c of the bearing sleeve 8 has an annular groove 8c1 and radial outer and inner ends are opened in the annular groove 8c1 and the upper end inner peripheral chamfer of the bearing sleeve 8, respectively. A radial groove 8c2 is formed. Further, one or more (three in this embodiment) axial grooves 8d1 are formed on the outer peripheral surface 8d of the bearing sleeve 8.

以上の構成を有する軸受スリーブ8は、多孔質体、ここでは銅および鉄を主成分とする焼結金属の多孔質体で形成される。すなわち、本実施形態の軸受スリーブ8は、例えば銅粉末(銅系粉末)および鉄粉末(鉄系粉末)を主成分とする原料粉末の圧粉体を加熱・焼結することで形成された銅鉄系の焼結体からなり、ここでは、保油能力や機械的強度を考慮して、80%以上90%未満の相対密度を有するものが使用される。軸受スリーブ8の内周面8aに設けられるラジアル動圧発生部A1,A2は、焼結体に寸法矯正加工(サイジング)を施すのと同時に型成形される。軸受スリーブ8の下端面8bに設けられるスラスト動圧発生B、軸受スリーブ8の上端面8cに設けられる環状溝8c1および径方向溝8c2、並びに軸受スリーブ8の外周面8dに設けられる軸方向溝8d1は、例えば、上記圧粉体を圧縮成形するのと同時に、あるいは焼結体にサイジングを施すのと同時に型成形される。 The bearing sleeve 8 having the above configuration is formed of a porous body, here, a porous body of a sintered metal containing copper and iron as main components. That is, the bearing sleeve 8 of the present embodiment is copper formed by heating and sintering a green compact of a raw material powder containing, for example, copper powder (copper powder) and iron powder (iron powder) as main components. It is made of an iron-based sintered body, and here, one having a relative density of 80% or more and less than 90% is used in consideration of oil retention capacity and mechanical strength. The radial dynamic pressure generating portions A1 and A2 provided on the inner peripheral surface 8a of the bearing sleeve 8 are molded at the same time as the sintered body is subjected to dimensional correction processing (sizing). Thrust dynamic pressure generation B provided on the lower end surface 8b of the bearing sleeve 8, annular groove 8c1 and radial groove 8c2 provided on the upper end surface 8c of the bearing sleeve 8, and axial groove 8d1 provided on the outer peripheral surface 8d of the bearing sleeve 8. Is molded at the same time as, for example, compression molding of the green compact or at the same time as sizing the sintered body.

軸受スリーブ8は、その上端面8cをシール部7bの下端に当接させた状態でハウジング7の筒部7aの内周に固定されている。より詳細には、図5に示すように、軸受スリーブ8を筒部7aの内周にすきまばめすることで互いに対向する軸受スリーブ8の外周面8dと筒部7aの小径内周面7a1との間に径方向隙間11を形成し、この径方向隙間11に介在させた接着剤を硬化させることで筒部7aの内周に軸受スリーブ8が固定される。要するに、軸受スリーブ8は、径方向隙間11に形成した接着剤層12(図5中クロスハッチングで示す)を介してハウジング7の筒部7aの内周に固定されている。接着剤層12を構成する接着剤として、ここではエポキシ樹脂系接着剤に代表される熱硬化型接着剤を使用している。使用可能な熱硬化型接着剤の具体例としては、90℃程度でゲル化(硬化を開始)し、100℃程度で完全に硬化する味の素ファインテクノ社製のAE−780を挙げることができる。 The bearing sleeve 8 is fixed to the inner circumference of the tubular portion 7a of the housing 7 in a state where the upper end surface 8c is in contact with the lower end of the seal portion 7b. More specifically, as shown in FIG. 5, the bearing sleeve 8 is squeezed into the inner circumference of the tubular portion 7a so that the outer peripheral surface 8d of the bearing sleeve 8 and the small diameter inner peripheral surface 7a1 of the tubular portion 7a are opposed to each other. The bearing sleeve 8 is fixed to the inner circumference of the tubular portion 7a by forming a radial gap 11 between the two and curing the adhesive interposed in the radial gap 11. In short, the bearing sleeve 8 is fixed to the inner circumference of the tubular portion 7a of the housing 7 via an adhesive layer 12 (shown by cross-hatching in FIG. 5) formed in the radial gap 11. As the adhesive constituting the adhesive layer 12, a thermosetting adhesive typified by an epoxy resin adhesive is used here. Specific examples of the thermosetting adhesive that can be used include AE-780 manufactured by Ajinomoto Fine-Techno Co., Ltd., which gels (starts curing) at about 90 ° C. and completely cures at about 100 ° C.

図3および図5に示すように、径方向隙間11を介して互いに対向する軸受スリーブ8の外周面8dとハウジング7の筒部7aの小径内周面7a1との間には、接着剤層12が介在しない円筒(短円筒)状の非接着部13、すなわち軸受スリーブ8とハウジング7の筒部7aとを全周に亘って接着固定していない部分が上下二箇所に離間して設けられている。非接着部13は、径方向寸法が径方向隙間11の隙間幅δ1よりも大きい環状凹部14で構成され、環状凹部14は、筒部7aの小径内周面7a1に溝深さδの環状溝7cを設けることで形成される。各環状凹部14は、径一定の円筒状部14aと、円筒状部14aの軸方向両側に設けられ、軸方向外側に向かうにつれて漸次縮径した縮径部14b,14cとを有する。従って、各環状凹部14の縮径部14b,14cは、接着剤層12が形成された径方向隙間11と軸方向で隣接配置されている。 As shown in FIGS. 3 and 5, an adhesive layer 12 is formed between the outer peripheral surface 8d of the bearing sleeve 8 facing each other via the radial gap 11 and the small diameter inner peripheral surface 7a1 of the tubular portion 7a of the housing 7. A cylindrical (short cylindrical) non-adhesive portion 13 that does not intervene, that is, a portion in which the bearing sleeve 8 and the tubular portion 7a of the housing 7 are not adhesively fixed over the entire circumference is provided at two upper and lower positions. There is. The non-adhesive portion 13 is composed of an annular recess 14 having a radial dimension larger than the clearance width δ1 of the radial gap 11, and the annular recess 14 is an annular groove having a groove depth δ on the small diameter inner peripheral surface 7a1 of the tubular portion 7a. It is formed by providing 7c. Each annular recess 14 has a cylindrical portion 14a having a constant diameter, and diameter-reduced portions 14b, 14c provided on both sides of the cylindrical portion 14a in the axial direction and gradually reduced in diameter toward the outside in the axial direction. Therefore, the reduced diameter portions 14b and 14c of each annular recess 14 are arranged axially adjacent to the radial gap 11 in which the adhesive layer 12 is formed.

図2および図3に示すように、非接着部13(環状凹部14)は、少なくともその軸方向一部領域が、動圧軸受からなるラジアル軸受部R1,R2のうち、流体動圧が最大となる最大圧力発生領域VMAXと軸方向でオーバーラップするように設けられる。本実施形態の非接着部13は、図5に拡大して示すように、その軸方向全域が最大圧力発生領域VMAXと軸方向でオーバーラップするように設けられる。本実施形態におけるラジアル軸受部R1,R2の最大圧力発生領域VMAXは、それぞれ、ラジアル動圧発生部A1,A2を構成する環状丘部Acの対向領域である。従って、図5に示すように、非接着部13(環状凹部14)の軸方向寸法(環状溝7cの溝幅)をL、環状丘部Acの軸方向寸法をL1とすると、L≦L1の関係式が成立し、かつ非接着部13は、その上端部および下端部が、それぞれ、環状丘部Acの上端部および下端部よりも軸方向内側に位置するように(環状丘部Acの軸方向範囲内に位置するように)設けられる。 As shown in FIGS. 2 and 3, the non-adhesive portion 13 (annular recess 14) has the maximum fluid dynamic pressure among the radial bearing portions R1 and R2 in which at least a part of the axial direction thereof is composed of a dynamic pressure bearing. It is provided so as to overlap in the axial direction with the maximum pressure generation region V MAX. As shown in an enlarged view in FIG. 5, the non-adhesive portion 13 of the present embodiment is provided so that the entire axial direction overlaps the maximum pressure generation region VMAX in the axial direction. Maximum pressure generating region V MAX of the radial bearing portion R1, R2 in this embodiment, respectively, which is a counter area of the annular land portions Ac constituting the radial dynamic pressure generating portions A1, A2. Therefore, as shown in FIG. 5, assuming that the axial dimension (groove width of the annular groove 7c) of the non-adhesive portion 13 (annular recess 14) is L and the axial dimension of the annular hill portion Ac is L1, L ≦ L1. The relational expression is established, and the upper end and the lower end of the non-adhesive portion 13 are located axially inside the upper end and the lower end of the annular hill Ac, respectively (the axis of the annular hill Ac). (To be located within the directional range).

以下、以上の構成を有する流体動圧軸受装置1の組立方法について、ハウジング7の内周に軸受スリーブ8を接着固定する方法を中心に説明する。 Hereinafter, a method of assembling the fluid dynamic bearing device 1 having the above configuration will be described focusing on a method of adhesively fixing the bearing sleeve 8 to the inner circumference of the housing 7.

まず、図6(a)に示すように、環状溝7cが上下に離間した二箇所に設けられたハウジング7の小径内周面7a1のうち、下側の環状溝7cよりも下方側の領域に接着剤(熱硬化型接着剤)12’を全周に亘って塗布してから、ハウジング7の下端開口部を介して軸受スリーブ8を筒部7aの内周に挿入する。軸受スリーブ8の挿入がある程度進展すると、軸受スリーブ8が接着剤12’に接触し、軸受スリーブ8の上端外周縁部付近に接着剤12’が付着する。以降、軸受スリーブ8の挿入が進展するのに伴い、軸受スリーブ8に付着した接着剤12’が軸受スリーブ8の挿入方向後方側に相対移動し、互いに対向する軸受スリーブ8の外周面8dとハウジング7の小径内周面7a1との間の径方向隙間11に接着剤12’が充填されていく[以上、図6(b)(c)参照]。 First, as shown in FIG. 6A, in the small-diameter inner peripheral surface 7a1 of the housing 7 provided at two locations where the annular grooves 7c are vertically separated from each other, in the region below the lower annular groove 7c. After applying the adhesive (thermosetting adhesive) 12'over the entire circumference, the bearing sleeve 8 is inserted into the inner circumference of the tubular portion 7a via the lower end opening of the housing 7. When the insertion of the bearing sleeve 8 progresses to some extent, the bearing sleeve 8 comes into contact with the adhesive 12', and the adhesive 12'attaches to the vicinity of the outer peripheral edge of the upper end of the bearing sleeve 8. After that, as the insertion of the bearing sleeve 8 progresses, the adhesive 12'adhering to the bearing sleeve 8 moves relative to the rear side in the insertion direction of the bearing sleeve 8, and the outer peripheral surface 8d of the bearing sleeve 8 facing each other and the housing The adhesive 12'is filled in the radial gap 11 between the small diameter inner peripheral surface 7a1 of 7 [see FIGS. 6 (b) and 6 (c) above].

図6(a)に示す態様でハウジング7の小径内周面7a1に塗布した接着剤12’に軸受スリーブ8の上端外周縁部が接触すると、軸受スリーブ8の上端外周縁部には比較的多量の接着剤12’が付着する。このとき、接着剤12’の塗布箇所よりも軸受スリーブ8の挿入方向前方側(上側)に環状溝7cが存在しなければ、軸受スリーブ8の上端外周縁部に付着した接着剤12’の多くは軸受スリーブ8とともに軸受スリーブ8の挿入方向前方側に移動する。そのため、径方向隙間11に必要量の接着剤12’を介在させることができず、ハウジング7と軸受スリーブ8の間に所望の接着強度を確保できなくなる可能性がある。また、余剰の接着剤12’が軸受スリーブ8の上端面8cを介して軸受スリーブ8の内周に回り込み、ラジアル軸受部R1の軸受性能に悪影響を及ぼす可能性もある。 When the upper end outer peripheral edge of the bearing sleeve 8 comes into contact with the adhesive 12'applied to the small diameter inner peripheral surface 7a1 of the housing 7 in the embodiment shown in FIG. 6 (a), a relatively large amount is applied to the upper end outer peripheral edge of the bearing sleeve 8. Adhesive 12'is attached. At this time, if the annular groove 7c does not exist on the front side (upper side) of the bearing sleeve 8 in the insertion direction from the coating portion of the adhesive 12', most of the adhesive 12'attached to the outer peripheral edge of the upper end of the bearing sleeve 8. Moves together with the bearing sleeve 8 to the front side in the insertion direction of the bearing sleeve 8. Therefore, the required amount of the adhesive 12'cannot be interposed in the radial gap 11, and there is a possibility that the desired adhesive strength cannot be secured between the housing 7 and the bearing sleeve 8. Further, the excess adhesive 12'may wrap around the inner circumference of the bearing sleeve 8 via the upper end surface 8c of the bearing sleeve 8 and adversely affect the bearing performance of the radial bearing portion R1.

これに対し、上記のように、小径内周面7a1のうち環状溝7cよりも軸受スリーブ8の挿入方向後方側(特に、下側の環状溝7cよりも下側)に接着剤12’を予め塗布すれば、軸受スリーブ8の挿入に伴って軸受スリーブ8の上端外周縁部付近に付着した接着剤12’が上下二箇所の環状溝7cで捕捉されるため、上記のような問題発生の可能性が可及的に低減される。そのため、軸受スリーブ8の挿入完了後には、径方向隙間11の略全域[図6(c)中に、符号Yで示す軸方向領域]に接着剤12’を介在させることができる。 On the other hand, as described above, the adhesive 12'is previously applied to the small-diameter inner peripheral surface 7a1 on the rear side of the bearing sleeve 8 in the insertion direction (particularly, on the lower side of the lower annular groove 7c) than the annular groove 7c. If it is applied, the adhesive 12'adhered to the vicinity of the outer peripheral edge of the upper end of the bearing sleeve 8 is captured by the annular grooves 7c at the upper and lower positions as the bearing sleeve 8 is inserted, so that the above problems may occur. The sex is reduced as much as possible. Therefore, after the insertion of the bearing sleeve 8 is completed, the adhesive 12'can be interposed in substantially the entire radial gap 11 [axial region indicated by reference numeral Y in FIG. 6 (c)].

以上のようにして、ハウジング7の内周に軸受スリーブ8が仮固定されたアセンブリを製作した後、このアセンブリに加熱処理を施すことで接着剤12’を硬化させ、軸受スリーブ8をハウジング7に対して接着固定する。接着剤12’として前述の味の素ファインテクノ社製AE−780を使用する場合、アセンブリに対する加熱処理は、例えば、以下のような手順で行われる。
(A)内部温度が室温(25℃)程度に保たれた加熱容器に上記のアセンブリを投入する。(B)加熱容器の内部温度を、接着剤12’が完全に硬化可能な温度(100℃程度)に到達するまで徐々に昇温させる。
(C)容器内部温度を100℃程度で所定時間保持する。
As described above, after the assembly in which the bearing sleeve 8 is temporarily fixed to the inner circumference of the housing 7 is manufactured, the adhesive 12'is cured by applying heat treatment to this assembly, and the bearing sleeve 8 is attached to the housing 7. On the other hand, it is adhesively fixed. When the above-mentioned AE-780 manufactured by Ajinomoto Fine-Techno Co., Ltd. is used as the adhesive 12', the heat treatment for the assembly is performed by, for example, the following procedure.
(A) The above assembly is placed in a heating container whose internal temperature is maintained at about room temperature (25 ° C.). (B) The internal temperature of the heating container is gradually raised until the temperature at which the adhesive 12'can be completely cured (about 100 ° C.) is reached.
(C) The temperature inside the container is maintained at about 100 ° C. for a predetermined time.

上記(B)のステップでは、加熱容器の内部温度が上昇するのに伴い、接着剤12’の粘度が徐々に低下し、加熱容器の内部温度が接着剤12’のゲル化温度に到達する直前段階においては、接着剤12’の粘度がほぼゼロになる。これに伴い、ハウジング7の環状溝7cで形成される環状凹部14内に介在する接着剤12’は、毛細管力によって径方向寸法が相対的に小さい径方向隙間11に引き込まれ、その後硬化する。特に、本実施形態では、環状凹部14が軸方向外側に向かうにつれて漸次縮径した縮径部14b,14cを有し、該縮径部14b,14cが径方向隙間11と軸方向で隣接配置されているので、接着剤12’の粘度低下に伴って環状凹部14(環状溝7c)内に介在する接着剤12’は、径方向隙間11に円滑に引き込まれる。 In step (B) above, as the internal temperature of the heating container rises, the viscosity of the adhesive 12'gradually decreases, and immediately before the internal temperature of the heating container reaches the gelling temperature of the adhesive 12'. At the stage, the viscosity of the adhesive 12'is almost zero. Along with this, the adhesive 12'interspersed in the annular recess 14 formed by the annular groove 7c of the housing 7 is drawn into the radial gap 11 having a relatively small radial dimension by the capillary force, and then cured. In particular, in the present embodiment, the annular recess 14 has diameter-reduced portions 14b and 14c whose diameters are gradually reduced toward the outside in the axial direction, and the diameter-reduced portions 14b and 14c are arranged adjacent to the radial gap 11 in the axial direction. Therefore, as the viscosity of the adhesive 12'decreases, the adhesive 12'intervened in the annular recess 14 (annular groove 7c) is smoothly drawn into the radial gap 11.

以上により、図3および図5に示す態様でハウジング7の内周に軸受スリーブ8が接着固定されたアセンブリ、すなわち、径方向隙間11に形成された接着剤層12を介してハウジング7の内周に軸受スリーブ8が固定されたアセンブリであって、径方向隙間11を介して互いに対向するハウジング7の小径内周面7a1と軸受スリーブ8の外周面8dとの間に接着剤層12が介在しない円筒状の非接着部13が設けられたアセンブリ、が得られる。 As described above, in the embodiment shown in FIGS. 3 and 5, the bearing sleeve 8 is adhesively fixed to the inner circumference of the housing 7, that is, the inner circumference of the housing 7 is provided via the adhesive layer 12 formed in the radial gap 11. The bearing sleeve 8 is fixed to the assembly, and the adhesive layer 12 does not intervene between the small-diameter inner peripheral surface 7a1 of the housing 7 facing each other via the radial gap 11 and the outer peripheral surface 8d of the bearing sleeve 8. An assembly provided with a cylindrical non-adhesive portion 13 is obtained.

以上のようにして得られたアセンブリのうち、軸受スリーブ8の内周に軸部材2の軸部2aを挿入してから、蓋部材10をハウジング7の筒部7aの大径内周面7a2に固定する。具体的には、まず、軸部材2のフランジ部2bの上端面2b1を軸受スリーブ8の下端面8bに当接させると共に、フランジ部2bの下端面2b2に蓋部材10の上端面10aを当接させ、スラスト軸受部T1,T2のスラスト軸受隙間の隙間幅をゼロの状態にする。その後、軸部材2を両スラスト軸受隙間の隙間幅の合計量だけ下方に移動させることで蓋部材10をハウジング7に対して下降移動させ、その位置でハウジング7と蓋部材10を固定する。そして、いわゆる真空含浸等の手法により、焼結金属製の軸受スリーブ8の内部気孔も含め、ハウジング7の内部空間に潤滑油を充満させる。以上により、図2に示す流体動圧軸受装置1が完成する。 Of the assemblies obtained as described above, after inserting the shaft portion 2a of the shaft member 2 into the inner circumference of the bearing sleeve 8, the lid member 10 is attached to the large-diameter inner peripheral surface 7a2 of the tubular portion 7a of the housing 7. Fix it. Specifically, first, the upper end surface 2b1 of the flange portion 2b of the shaft member 2 is brought into contact with the lower end surface 8b of the bearing sleeve 8, and the upper end surface 10a of the lid member 10 is brought into contact with the lower end surface 2b2 of the flange portion 2b. Then, the clearance width of the thrust bearing gaps of the thrust bearing portions T1 and T2 is set to zero. After that, the lid member 10 is moved downward with respect to the housing 7 by moving the shaft member 2 downward by the total amount of the gap widths of the gaps between the two thrust bearings, and the housing 7 and the lid member 10 are fixed at that position. Then, the internal space of the housing 7 is filled with lubricating oil, including the internal pores of the sintered metal bearing sleeve 8, by a method such as so-called vacuum impregnation. With the above, the fluid dynamic bearing device 1 shown in FIG. 2 is completed.

以上の構成からなる流体動圧軸受装置1において、軸部材2と軸受スリーブ8が相対回転すると(本実施形態では軸部材2が回転する)、軸受スリーブ8の内周面8aに設けた上下2つのラジアル軸受面とこれに対向する軸部2aの外周面2a1との間にラジアル軸受隙間がそれぞれ形成される。そして、軸部材2の回転に伴い、両ラジアル軸受隙間に形成される油膜の圧力がラジアル動圧発生部A1,A2の動圧作用によって高められ、軸部材2をラジアル方向に非接触支持するラジアル軸受部R1,R2が上下に離間して形成される。これと同時に、軸受スリーブ8の下端面8bに設けたスラスト軸受面とフランジ部2bの上端面2b1との間、および蓋部材10の上端面10aとフランジ部2bの下端面2b2との間にスラスト軸受隙間がそれぞれ形成される。そして、軸部材2の回転に伴い、両スラスト軸受隙間に形成される油膜の圧力がスラスト動圧発生部B,Cの動圧作用によって高められ、軸部材2をスラスト一方向およびスラスト他方向に非接触支持するスラスト軸受部T1,T2が形成される。 In the hydrodynamic bearing device 1 having the above configuration, when the shaft member 2 and the bearing sleeve 8 rotate relative to each other (the shaft member 2 rotates in the present embodiment), the upper and lower 2 provided on the inner peripheral surface 8a of the bearing sleeve 8 A radial bearing gap is formed between each of the radial bearing surfaces and the outer peripheral surface 2a1 of the shaft portion 2a facing the radial bearing surface. Then, as the shaft member 2 rotates, the pressure of the oil film formed in the gap between both radial bearings is increased by the dynamic pressure action of the radial dynamic pressure generating portions A1 and A2, and the shaft member 2 is supported in the radial direction in a non-contact manner. The bearing portions R1 and R2 are formed so as to be separated from each other in the vertical direction. At the same time, thrust between the thrust bearing surface provided on the lower end surface 8b of the bearing sleeve 8 and the upper end surface 2b1 of the flange portion 2b, and between the upper end surface 10a of the lid member 10 and the lower end surface 2b2 of the flange portion 2b. Bearing gaps are formed respectively. Then, as the shaft member 2 rotates, the pressure of the oil film formed in the gap between the two thrust bearings is increased by the dynamic pressure action of the thrust dynamic pressure generating portions B and C, and the shaft member 2 is moved in one thrust direction and the other thrust direction. Thrust bearing portions T1 and T2 that support non-contact are formed.

軸部材2の回転時には、ラジアル動圧発生部A1を構成する上側動圧溝Aa1と下側動圧溝Aa2との軸方向寸法差により、軸部2aの外周面2a1と軸受スリーブ8の内周面8aとの間の径方向隙間(ラジアル軸受部R1のラジアル軸受隙間)に介在する潤滑油は下方に押し込まれ、第1スラスト軸受部T1のスラスト軸受隙間→軸受スリーブ8の軸方向溝8d1で形成される軸方向の流体通路→軸受スリーブ8の上端外周チャンファ等で形成される環状空間→軸受スリーブ8の環状溝8c1および径方向溝8c2で形成される流体通路という経路を循環して、ラジアル軸受部R1のラジアル軸受隙間に再び引き込まれる。これにより、ハウジング7の内部空間を満たす潤滑油の圧力バランスが保たれると同時に、局部的な負圧の発生に伴う気泡の生成、気泡の生成に起因する潤滑油の漏れや振動の発生等の問題を解消することができる。 When the shaft member 2 rotates, the outer peripheral surface 2a1 of the shaft portion 2a and the inner circumference of the bearing sleeve 8 due to the axial dimensional difference between the upper dynamic pressure groove Aa1 and the lower dynamic pressure groove Aa2 constituting the radial dynamic pressure generating portion A1. Lubricating oil intervening in the radial gap (radial bearing gap of the radial bearing portion R1) between the surface 8a is pushed downward, and the thrust bearing gap of the first thrust bearing portion T1 → the axial groove 8d1 of the bearing sleeve 8. Radial circulation through the path of the axial fluid passage formed → the annular space formed by the upper end outer peripheral chamfer of the bearing sleeve 8 → the fluid passage formed by the annular groove 8c1 and the radial groove 8c2 of the bearing sleeve 8. It is pulled back into the radial bearing gap of the bearing portion R1. As a result, the pressure balance of the lubricating oil that fills the internal space of the housing 7 is maintained, and at the same time, bubbles are generated due to the generation of local negative pressure, leakage of the lubricating oil and vibration due to the generation of bubbles, etc. Can solve the problem.

以上で説明したように、本発明に係る流体動圧軸受装置1においては、接着剤層12が形成された径方向隙間11を介して互いに対向するハウジング7の小径内周面7a1と軸受スリーブ8の外周面8dとの間に接着剤層12が介在しない円筒(短円筒)状の非接着部13が設けられる。このような非接着部13が設けられていれば、軸受スリーブ8の内周面8a(ラジアル軸受面)のうち、非接着部13と軸方向でオーバーラップする円筒領域には、接着剤層12の膨張・収縮の影響が及び難くなる。このため、非接着部13の少なくとも軸方向一部領域(本実施形態では軸方向全域)を、ラジアル軸受部R1,R2の最大圧力発生領域VMAXと軸方向でオーバーラップするように設けておけば、最大圧力発生領域VMAXの少なくとも一部領域において、ラジアル軸受部R1,R2のラジアル軸受隙間の隙間幅精度が変動し難くなる。これにより、ラジアル軸受部R1,R2の軸受性能を効果的に高めることが可能となる。 As described above, in the fluid dynamic bearing device 1 according to the present invention, the small-diameter inner peripheral surface 7a1 and the bearing sleeve 8 of the housing 7 facing each other through the radial gap 11 in which the adhesive layer 12 is formed are formed. A cylindrical (short cylindrical) non-adhesive portion 13 in which the adhesive layer 12 does not intervene is provided between the outer peripheral surface 8d and the outer peripheral surface 8d. If such a non-adhesive portion 13 is provided, the adhesive layer 12 is provided in the cylindrical region of the inner peripheral surface 8a (radial bearing surface) of the bearing sleeve 8 that overlaps the non-adhesive portion 13 in the axial direction. The influence of expansion and contraction of the bearing becomes difficult. Therefore, at least a part of the non-adhesive portion 13 in the axial direction (in the present embodiment, the entire axial direction) should be provided so as to overlap the maximum pressure generation region V MAX of the radial bearing portions R1 and R2 in the axial direction. For example, in at least a part of the maximum pressure generation region V MAX , the clearance width accuracy of the radial bearing gaps of the radial bearing portions R1 and R2 is less likely to fluctuate. This makes it possible to effectively improve the bearing performance of the radial bearing portions R1 and R2.

前述のとおり、ラジアル軸受部R1,R2の軸受性能は、ラジアル軸受隙間の隙間幅精度に影響を受けることから、ラジアル軸受部R1,R2の軸受性能を高める上では、非接着部13の軸方向の形成範囲(軸方向寸法L:図5参照)を拡大するのが有利であるとも考えられる。しかしながら、非接着部13の軸方向の形成範囲を拡大するほど、接着剤層12の軸方向の形成範囲が縮小することから、ハウジング7に対する軸受スリーブ8の接着強度が弱まり易くなる。特に、以上で説明したように、相対密度が80%以上90%未満の焼結金属からなる軸受スリーブ8を用いた場合、接着剤層12の形成過程では、径方向隙間11に介在させた接着剤12’が毛細管力によって軸受スリーブ8の内部気孔に吸い込まれ易い。このため、非接着部13の軸方向の形成範囲をむやみに拡大すると、ハウジング7と軸受スリーブ8の間に所望の接着強度を確保することができなくなる。ハウジング7と軸受スリーブ8の間に所望の接着強度が確保されていない場合、例えば流体動圧軸受装置1に対して大きな衝撃荷重が負荷されると、ハウジング7に対する軸受スリーブ8の相対位置等に狂いが生じ、流体動圧軸受装置1の軸受性能が低下する。 As described above, the bearing performance of the radial bearing portions R1 and R2 is affected by the clearance width accuracy of the radial bearing gap. Therefore, in order to improve the bearing performance of the radial bearing portions R1 and R2, the axial direction of the non-adhesive portion 13 It is also considered advantageous to expand the formation range (axial dimension L: see FIG. 5). However, as the axial formation range of the non-adhesive portion 13 is expanded, the axial formation range of the adhesive layer 12 is reduced, so that the adhesive strength of the bearing sleeve 8 to the housing 7 is likely to be weakened. In particular, as described above, when the bearing sleeve 8 made of sintered metal having a relative density of 80% or more and less than 90% is used, in the process of forming the adhesive layer 12, adhesion is interposed in the radial gap 11. The agent 12'is easily sucked into the internal pores of the bearing sleeve 8 by the capillary force. Therefore, if the axial formation range of the non-adhesive portion 13 is unnecessarily expanded, it becomes impossible to secure a desired adhesive strength between the housing 7 and the bearing sleeve 8. When the desired adhesive strength is not secured between the housing 7 and the bearing sleeve 8, for example, when a large impact load is applied to the hydrodynamic bearing device 1, the position of the bearing sleeve 8 relative to the housing 7 or the like is changed. The deviation occurs, and the bearing performance of the hydrodynamic bearing device 1 deteriorates.

軸受スリーブ8を黄銅等の非多孔質材料で形成すれば、接着剤12’の吸い込みに起因した接着強度の低下を防止することができるため、非接着部13の軸方向の形成範囲を拡大することができる。しかしながら、焼結金属からなる軸受スリーブ8であれば、その内部気孔で潤滑油を保持することができるため、ラジアル軸受部R1,R2のラジアル軸受隙間やスラスト軸受部T1のスラスト軸受隙間における油膜切れを可及的に防止し、ラジアル軸受部R1,R2およびスラスト軸受部T1の軸受性能を安定的に発揮可能とする上で有利である。 If the bearing sleeve 8 is formed of a non-porous material such as brass, it is possible to prevent a decrease in adhesive strength due to suction of the adhesive 12', and thus the axial formation range of the non-adhesive portion 13 is expanded. be able to. However, since the bearing sleeve 8 made of sintered metal can hold the lubricating oil in the internal pores, the oil film runs out in the radial bearing gaps of the radial bearing portions R1 and R2 and the thrust bearing gap of the thrust bearing portion T1. It is advantageous in preventing the above as much as possible and making it possible to stably exhibit the bearing performance of the radial bearing portions R1 and R2 and the thrust bearing portion T1.

そこで、軸受スリーブ8を焼結金属で形成する場合に享受し得る上記の作用効果を損なわずに、非接着部13の軸方向の形成範囲を拡大するためには、例えば、相対密度が90%以上に高められた高密度の焼結金属からなる軸受スリーブ8を用いるのが有効である。但し、軸受スリーブ8の相対密度を高め過ぎると、軸受スリーブ8の内部気孔での保油量が減少するために軸受隙間の油膜切れ防止効果が損なわれる可能性がある。そのため、焼結軸受スリーブ8の相対密度は95%以下にするのが好ましい。 Therefore, in order to expand the axial formation range of the non-adhesive portion 13 without impairing the above-mentioned action and effect that can be enjoyed when the bearing sleeve 8 is formed of sintered metal, for example, the relative density is 90%. It is effective to use the bearing sleeve 8 made of the above-enhanced high-density sintered metal. However, if the relative density of the bearing sleeve 8 is increased too much, the amount of oil retained in the internal pores of the bearing sleeve 8 decreases, which may impair the effect of preventing the oil film from running out in the bearing gap. Therefore, the relative density of the sintered bearing sleeve 8 is preferably 95% or less.

ハウジング7の内周に、相対密度が90%以上に高められた焼結金属(銅鉄系の焼結金属)製の軸受スリーブ8を固定してなるアセンブリの部分拡大断面図を図7(a)に示す。同図に示す軸受スリーブ8は、その相対密度が90%以上に高められている以外に、少なくとも外周面8dの表面開孔を封止した封孔部15を有する点において、以上で説明した軸受スリーブ8と構成を異にしている。封孔部15は、軸受スリーブ8の表層部の内部気孔に樹脂材料等の封孔材を含浸・硬化させることで形成することもできるが、本実施形態では、軸受スリーブ8(の基材である焼結体)に塑性加工としてのサイジング加工を施すことで封孔部15を形成している。 FIG. 7 (a) is a partially enlarged cross-sectional view of an assembly in which a bearing sleeve 8 made of a sintered metal (copper iron-based sintered metal) having a relative density increased to 90% or more is fixed to the inner circumference of the housing 7. ). The bearing sleeve 8 shown in the figure has the relative density increased to 90% or more, and at least has a sealing portion 15 for sealing the surface opening of the outer peripheral surface 8d. The configuration is different from that of the sleeve 8. The sealing portion 15 can also be formed by impregnating and curing a sealing material such as a resin material in the internal pores of the surface layer portion of the bearing sleeve 8, but in the present embodiment, the sealing portion 15 (with the base material of the bearing sleeve 8) is formed. A sealed body 15 is formed by subjecting a sintered body to a sizing process as a plastic working process.

すなわち、詳細な図示は省略するが、上記の封孔部15は、軸方向に相対移動可能に同軸配置された軸状のコア、円筒状のダイおよび上下パンチを有するサイジング金型を用いて形成することができる。具体的には、まず、軸受スリーブ8を下パンチの上端面に載置してから、コアを下降させ、軸受スリーブ8の内周にコアを挿入(すきまばめ)する。次いで、上パンチを下降移動させ、上下パンチで軸受スリーブ8を軸方向に挟持した後、コア、上パンチおよび下パンチを一体的に下降させてダイの内周に軸受スリーブ8を圧入する。ダイの内周面に対する軸受スリーブ8の外周面8dの圧入代は、軸受スリーブ8の大きさに応じて変更されるが、例えば、径方向の肉厚(内周面8aと外周面8dの間の径差)が2mm以下の軸受スリーブ8の場合、100μm以上とする。 That is, although detailed illustration is omitted, the sealing portion 15 is formed by using a sizing mold having a shaft-shaped core, a cylindrical die, and upper and lower punches coaxially arranged so as to be relatively movable in the axial direction. can do. Specifically, first, the bearing sleeve 8 is placed on the upper end surface of the lower punch, then the core is lowered, and the core is inserted (gap-fitted) into the inner circumference of the bearing sleeve 8. Next, the upper punch is moved downward, the bearing sleeve 8 is sandwiched in the axial direction by the upper and lower punches, and then the core, the upper punch, and the lower punch are integrally lowered to press-fit the bearing sleeve 8 into the inner circumference of the die. The press-fitting allowance of the outer peripheral surface 8d of the bearing sleeve 8 with respect to the inner peripheral surface of the die is changed according to the size of the bearing sleeve 8. For example, the wall thickness in the radial direction (between the inner peripheral surface 8a and the outer peripheral surface 8d). In the case of a bearing sleeve 8 having a diameter difference of 2 mm or less, the diameter difference is 100 μm or more.

ダイの内周に軸受スリーブ8を圧入した後、上パンチをさらに下降させて軸受スリーブ8を軸方向に圧縮すると、軸受スリーブ8が径方向に膨張変形し、軸受スリーブ8の外周面8dがダイの内周面に強く押し付けられる。これにより、軸受スリーブ8の外径側表層部(特に外周面8d)が塑性変形し、外周面8dの表面開孔を封止する封孔部15が形成される。本実施形態のように軸受スリーブ8が銅鉄系の焼結金属からなる場合、封孔部15は、図7(b)に模式的に示すように、軸受スリーブ8が有するFe組織とCu組織のうち、主に、相対的に軟質のCu組織が部分的に塑性変形することで形成される。従って、同図に示すように、軸受スリーブ8にサイジング加工を施すことで軸受スリーブ8に形成される封孔部15は、Cu組織の一部が塑性変形してなる変形部16を有する。 When the bearing sleeve 8 is press-fitted into the inner circumference of the die and then the upper punch is further lowered to compress the bearing sleeve 8 in the axial direction, the bearing sleeve 8 expands and deforms in the radial direction, and the outer peripheral surface 8d of the bearing sleeve 8 becomes the die. It is strongly pressed against the inner peripheral surface of. As a result, the outer diameter side surface layer portion (particularly the outer peripheral surface 8d) of the bearing sleeve 8 is plastically deformed, and a sealing portion 15 for sealing the surface opening of the outer peripheral surface 8d is formed. When the bearing sleeve 8 is made of a copper-iron-based sintered metal as in the present embodiment, the sealing portion 15 has an Fe structure and a Cu structure of the bearing sleeve 8 as schematically shown in FIG. 7 (b). Of these, it is mainly formed by partially plastically deforming a relatively soft Cu structure. Therefore, as shown in the figure, the sealing portion 15 formed in the bearing sleeve 8 by subjecting the bearing sleeve 8 to a sizing process has a deformed portion 16 in which a part of the Cu structure is plastically deformed.

相対密度が90%以上に高められた焼結金属(銅鉄系の焼結金属)からなり、かつ、外周面8dの表面開孔を封止する封孔部15を有する軸受スリーブ8を用いることにより、接着剤層12の形成過程で軸受スリーブ8の内部気孔に接着剤12’が吸い込まれ難くなるので、図7(a)に示すように、非接着部13の軸方向の形成範囲(軸方向寸法L)を拡大しても、ハウジング7に対する軸受スリーブ8の接着強度を高めることができる。図示例では、L>L1の関係式を満たし、かつ非接着部13(環状凹部14)の上端部および下端部が、それぞれ、ラジアル動圧発生部A1(A2)の環状丘部Acの上端部および下端部よりも軸方向外側に位置するように非接着部13を設けている。なお、上記構成の軸受スリーブ8を採用することにより、ハウジング7に対する軸受スリーブ8の接着強度(単位面積当たりの接着強度)を高めることができると言えども、非接着部13の軸方向寸法Lを過剰に拡大すると、ハウジング7に対する軸受スリーブ8の接着強度が却って低下する。そのため、非接着部13の軸方向寸法Lは、環状丘部Acの軸方向寸法L1の6倍未満(L<6L1)とするのが好ましい。 Use a bearing sleeve 8 made of a sintered metal (copper-iron-based sintered metal) having a relative density increased to 90% or more and having a sealing portion 15 for sealing the surface opening of the outer peripheral surface 8d. As a result, it becomes difficult for the adhesive 12'to be sucked into the internal pores of the bearing sleeve 8 in the process of forming the adhesive layer 12. Therefore, as shown in FIG. 7A, the forming range (axis) of the non-adhesive portion 13 in the axial direction. Even if the directional dimension L) is enlarged, the adhesive strength of the bearing sleeve 8 to the housing 7 can be increased. In the illustrated example, the relational expression of L> L1 is satisfied, and the upper end portion and the lower end portion of the non-adhesive portion 13 (annular recess 14) are the upper end portions of the annular hill portion Ac of the radial dynamic pressure generating portion A1 (A2), respectively. The non-adhesive portion 13 is provided so as to be located on the outer side in the axial direction from the lower end portion. Although it is possible to increase the adhesive strength of the bearing sleeve 8 to the housing 7 (adhesive strength per unit area) by adopting the bearing sleeve 8 having the above configuration, the axial dimension L of the non-adhesive portion 13 can be increased. If it is expanded excessively, the adhesive strength of the bearing sleeve 8 to the housing 7 will rather decrease. Therefore, it is preferable that the axial dimension L of the non-adhesive portion 13 is less than 6 times (L <6L1) the axial dimension L1 of the annular hill portion Ac.

以上、本発明の第1実施形態に係る流体動圧軸受装置1を説明したが、本発明を適用し得る流体動圧軸受装置は上記の実施形態に限られない。以下、図面を参照しながら本発明を適用し得る他の実施形態に係る流体動圧軸受装置を説明するが、説明の簡略化を図るため、上述した流体動圧軸受装置1と共通する構成については詳細説明を省略する。 Although the fluid dynamic bearing device 1 according to the first embodiment of the present invention has been described above, the fluid dynamic bearing device to which the present invention can be applied is not limited to the above embodiment. Hereinafter, the fluid dynamic pressure bearing device according to another embodiment to which the present invention can be applied will be described with reference to the drawings, but for simplification of the description, the configuration common to the above-mentioned fluid dynamic pressure bearing device 1 will be described. Omits a detailed description.

図8に、本発明の第2実施形態に係る流体動圧軸受装置21を示す。この流体動圧軸受装置21が図2等に示す流体動圧軸受装置1と異なる主な点は、ハウジングとして、円筒状の筒部7aと、筒部7aの下端開口を閉塞する底部7d(蓋部材10に相当する部位)とが一体に設けられた有底筒状のハウジング17を使用している点、および内周面9aでシール空間Sを形成するシール部9がハウジング17とは別部材で構成され、ハウジング17の上端部内周に圧入、接着等の適宜の手段で固定されている点、にある。従って、動圧軸受からなるスラスト軸受部T2のスラスト軸受隙間は、フランジ部2bの下端面2b2とハウジング17の底部17dの上端面17d1との間に形成される。 FIG. 8 shows the fluid dynamic bearing device 21 according to the second embodiment of the present invention. The main difference between the fluid dynamic bearing device 21 and the fluid dynamic bearing device 1 shown in FIG. 2 and the like is that the housing includes a cylindrical tubular portion 7a and a bottom portion 7d (lid) that closes the lower end opening of the tubular portion 7a. The point that the bottomed cylindrical housing 17 integrally provided with the member 10) and the seal portion 9 forming the seal space S on the inner peripheral surface 9a are separate members from the housing 17. The point is that the housing 17 is fixed to the inner circumference of the upper end portion by an appropriate means such as press fitting or bonding. Therefore, the thrust bearing gap of the thrust bearing portion T2 made of the dynamic pressure bearing is formed between the lower end surface 2b2 of the flange portion 2b and the upper end surface 17d1 of the bottom portion 17d of the housing 17.

図9に本発明の第3実施形態に係る流体動圧軸受装置31を示す。この流体動圧軸受装置31が、図2等に示す流体動圧軸受装置1と異なる主な点は、
・ハウジングとして、内周に軸受スリーブ8を隙間接着した円筒状の筒部7aと、内径寸法および外径寸法が、それぞれ、筒部7aの内径寸法および外径寸法よりも大きい大径筒部7eとが一体に設けられたハウジング27を使用している点、
・円盤部19aおよび円筒部19bを一体に有する断面逆L字状のシール部材19を軸受スリーブ8の上端に固定し、円盤部19aのテーパ状内周面19a1と軸部2aの円筒状外周面2a1との間に下方に向けて漸次縮径したくさび状の第1シール空間S1を形成すると共に、円筒部19bの円筒状外周面19b2とハウジング27の大径筒部7eのテーパ状内周面7e1との間に下方に向けて漸次縮径したくさび状の第2シール空間S2を形成している点、
などにある。
FIG. 9 shows the fluid dynamic bearing device 31 according to the third embodiment of the present invention. The main difference between the fluid dynamic bearing device 31 and the fluid dynamic bearing device 1 shown in FIG. 2 and the like is.
-As a housing, a cylindrical tubular portion 7a in which a bearing sleeve 8 is gap-bonded to the inner circumference, and a large-diameter tubular portion 7e whose inner diameter and outer diameter dimensions are larger than the inner diameter and outer diameter dimensions of the cylinder 7a, respectively. The point that the housing 27 provided integrally with and is used,
A sealing member 19 having an inverted L-shaped cross section integrally having a disk portion 19a and a cylindrical portion 19b is fixed to the upper end of the bearing sleeve 8, and the tapered inner peripheral surface 19a1 of the disk portion 19a and the cylindrical outer peripheral surface of the shaft portion 2a are fixed. A wedge-shaped first seal space S1 whose diameter is gradually reduced downward is formed between 2a1 and the cylindrical outer peripheral surface 19b2 of the cylindrical portion 19b and the tapered inner peripheral surface of the large-diameter tubular portion 7e of the housing 27. A point forming a wedge-shaped second seal space S2 with a diameter gradually reduced downward with 7e1.
And so on.

第1シール空間S1と第2シール空間S2は、何れも潤滑油の油面を保持しており、両シール空間S1,S2は、円盤部19aの下端面19a2に設けた径方向溝19a3で形成される流体通路、軸受スリーブ8の外周面8dに設けた軸方向溝8d1で形成される流体通路、および円筒部19bの下端面とハウジング27の段差面7a4との間の軸方向隙間などを介して連通している。 Both the first seal space S1 and the second seal space S2 hold the oil level of the lubricating oil, and both the seal spaces S1 and S2 are formed by the radial groove 19a3 provided on the lower end surface 19a2 of the disk portion 19a. Through the fluid passage formed by the fluid passage, the fluid passage formed by the axial groove 8d1 provided on the outer peripheral surface 8d of the bearing sleeve 8, and the axial gap between the lower end surface of the cylindrical portion 19b and the stepped surface 7a4 of the housing 27. Communicate with each other.

また、本実施形態の流体動圧軸受装置31では、軸受スリーブ8の外周面8dの軸方向の一部領域のみがハウジング27の筒部7aの小径内周面7a1に隙間接着(両面8d,7a1間の径方向隙間11に形成された接着剤層12を介して固定)されている。このため、軸受スリーブ8の内周面8aのうち、軸受スリーブ8の外周面8dが筒部7aの小径内周面7a1に固定されていない軸方向領域Pの精度は、軸受スリーブ8がハウジング7の内周に固定されても変化しない。特に、図示例の形態では、上記の軸方向領域Pと、ラジアル軸受部R1の最大圧力発生領域VMAXの軸方向略全域とが軸方向でオーバーラップしていることから、ラジアル軸受部R1の軸受性能がハウジング7と軸受スリーブ8の固定態様に大きく影響を受けない。従って、本実施形態において、非接着部13は、ラジアル軸受部R2の最大圧力発生領域VMAXと軸方向でオーバーラップするように設けられる。 Further, in the fluid dynamic bearing device 31 of the present embodiment, only a part of the axial direction of the outer peripheral surface 8d of the bearing sleeve 8 is gap-bonded to the small-diameter inner peripheral surface 7a1 of the tubular portion 7a of the housing 27 (both sides 8d, 7a1). It is fixed via the adhesive layer 12 formed in the radial gap 11 between them). Therefore, of the inner peripheral surface 8a of the bearing sleeve 8, the accuracy of the axial region P in which the outer peripheral surface 8d of the bearing sleeve 8 is not fixed to the small diameter inner peripheral surface 7a1 of the tubular portion 7a is such that the bearing sleeve 8 is the housing 7. It does not change even if it is fixed to the inner circumference of. In particular, in the form of illustrated example, the axial region P described above, since the axial substantially entire region of the maximum pressure generation region V MAX of the radial bearing portion R1 are overlapped in the axial direction, of the radial bearing portion R1 The bearing performance is not significantly affected by the fixing mode of the housing 7 and the bearing sleeve 8. Accordingly, in the present embodiment, the non-adhesive portion 13 is provided so as to overlap at a maximum pressure generation region V MAX and the axial direction of the radial bearing portion R2.

本実施形態では、軸受スリーブ8の外周面8dの軸方向一部領域のみがハウジングの内周面に接着固定されるため、軸方向寸法が同寸の軸受スリーブ8を使用すると仮定すると、軸受スリーブ8の外周面8dの軸方向全域がハウジングの内周面に接着固定される場合(例えば、図2)に比べ、ハウジングに対する軸受スリーブ8の接着強度が低くなる。そのため、本実施形態では、図8の拡大図中に示すように、筒部7aの小径内周面7a1の上端部に小径内周面7a1よりも大径の大径内周面7fを設け、この大径内周面7fと軸受スリーブ8の外周面8dとの間に接着剤溜り(径方向隙間11に形成される接着剤層12よりも径方向の肉厚が大きい接着剤層12が形成された部位)を設けている。 In the present embodiment, only a part of the outer peripheral surface 8d of the bearing sleeve 8 in the axial direction is adhesively fixed to the inner peripheral surface of the housing. Therefore, assuming that the bearing sleeve 8 having the same axial dimensions is used, the bearing sleeve The adhesive strength of the bearing sleeve 8 to the housing is lower than that in the case where the entire axial direction of the outer peripheral surface 8d of 8 is adhesively fixed to the inner peripheral surface of the housing (for example, FIG. 2). Therefore, in the present embodiment, as shown in the enlarged view of FIG. 8, a large-diameter inner peripheral surface 7f having a diameter larger than that of the small-diameter inner peripheral surface 7a1 is provided at the upper end of the small-diameter inner peripheral surface 7a1 of the tubular portion 7a. An adhesive layer 12 having a larger radial wall thickness than the adhesive layer 12 formed in the radial gap 11 is formed between the large-diameter inner peripheral surface 7f and the outer peripheral surface 8d of the bearing sleeve 8. The part that was done) is provided.

以上、本発明の実施形態に係る流体動圧軸受装置1,21,31について説明したが、これらの流体動圧軸受装置には本発明の要旨を逸脱しない範囲で適宜の変更を施すことが可能である。 The fluid dynamic bearing devices 1, 21, 31 according to the embodiment of the present invention have been described above, but these fluid dynamic bearing devices can be appropriately modified without departing from the gist of the present invention. Is.

例えば、非接着部13を構成する環状凹部14は、図10(a)に示すように、ハウジング7の小径内周面7a1に断面V字状の溝底形状を有する環状溝7cを設けることで形成することができる他、図10(b)に示すように、溝底面の一部が円弧面状をなす環状溝7cをハウジング7の小径内周面7a1に設けることで形成することもできる。なお、図10(a)に示す形態の場合、環状凹部14は、円筒状部14aが省略され、縮径部14b,14cのみで構成される。また、以上の実施形態では、ハウジング7の内周面7a1に環状溝7cを設けることで非接着部13(環状凹部14)を形成するようにしたが、この非接着部13は、径方向隙間11を介してハウジング7の内周面7a1と対向する軸受スリーブ8の外周面8dに環状溝を設けることで形成することができる他、径方向隙間11を介して対向するハウジング7の内周面7a1および軸受スリーブ8の外周面8dの双方に環状溝を設けることで形成することもできる。 For example, as shown in FIG. 10A, the annular recess 14 constituting the non-adhesive portion 13 is provided with an annular groove 7c having a groove bottom shape having a V-shaped cross section on the small diameter inner peripheral surface 7a1 of the housing 7. In addition to being formed, as shown in FIG. 10B, it can also be formed by providing an annular groove 7c in which a part of the bottom surface of the groove has an arcuate surface shape on the small diameter inner peripheral surface 7a1 of the housing 7. In the case of the form shown in FIG. 10A, the annular recess 14 is composed of only the reduced diameter portions 14b and 14c without the cylindrical portion 14a being omitted. Further, in the above embodiment, the non-adhesive portion 13 (annular recess 14) is formed by providing the annular groove 7c on the inner peripheral surface 7a1 of the housing 7, but the non-adhesive portion 13 has a radial gap. It can be formed by providing an annular groove on the outer peripheral surface 8d of the bearing sleeve 8 facing the inner peripheral surface 7a1 of the housing 7 via 11, and also the inner peripheral surface of the housing 7 facing through the radial gap 11. It can also be formed by providing an annular groove on both the outer peripheral surface 8d of the 7a1 and the bearing sleeve 8.

また、以上の実施形態では、ハウジングの内周に軸受スリーブ8を接着固定(隙間接着)するための接着剤12’として熱硬化型接着剤を使用したが、本発明は、熱硬化型接着剤以外の接着剤、例えば嫌気性接着剤を用いてハウジングの内周に軸受スリーブ8が接着固定される流体動圧軸受装置にも好ましく適用することができる。但し、熱硬化型接着剤であれば、これを硬化させる過程で一旦粘度が下がる関係上、径方向隙間11を介して互いに対向するハウジングの内周面と軸受スリーブ8の外周面との間に、所望の接着剤層12と非接着部13とを容易に形成できるという利点がある。 Further, in the above embodiment, a heat-curable adhesive is used as the adhesive 12'for adhering and fixing the bearing sleeve 8 to the inner circumference of the housing (gap adhesion), but the present invention uses the heat-curable adhesive. It can also be preferably applied to a hydrodynamic bearing device in which the bearing sleeve 8 is adhesively fixed to the inner circumference of the housing by using an adhesive other than the above, for example, an anaerobic adhesive. However, in the case of a thermosetting adhesive, since the viscosity drops once in the process of curing the adhesive, between the inner peripheral surface of the housing and the outer peripheral surface of the bearing sleeve 8 facing each other via the radial gap 11. There is an advantage that the desired adhesive layer 12 and the non-adhesive portion 13 can be easily formed.

また、以上の実施形態では、銅鉄系の焼結金属の多孔質体からなる軸受スリーブ8を使用したが、本発明は、銅を含むその他の焼結金属(例えば、銅−ステンレス鋼系の焼結金属や、銅−鉄−ステンレス鋼系の焼結金属)で形成された軸受スリーブ8を使用する場合や、焼結金属以外の多孔質体、例えば多孔質樹脂で形成された軸受スリーブ8を使用する場合にも好ましく適用することができる。また、本発明は、黄銅等の軟質金属や樹脂材料等、非多孔質材料で形成された軸受スリーブ8を使用する場合にも適用することができる。 Further, in the above embodiments, the bearing sleeve 8 made of a porous body of a copper-iron-based sintered metal is used, but the present invention relates to other sintered metals containing copper (for example, copper-sintered steel-based). When using a bearing sleeve 8 made of a sintered metal or a copper-iron-sintered steel-based sintered metal, or a bearing sleeve 8 made of a porous body other than the sintered metal, for example, a porous resin. Can also be preferably applied when using. The present invention can also be applied to the case where a bearing sleeve 8 made of a non-porous material such as a soft metal such as brass or a resin material is used.

また、ラジアル動圧発生部A1,A2の形状は以上で示したものに限られるわけではなく、要求特性等に応じて適宜変更されるのはもちろんである。また、ラジアル動圧発生部A1,A2は、軸受スリーブ8の内周面8aに対向する軸部2aの外周面2a1に設けても構わない。 Further, the shapes of the radial dynamic pressure generating portions A1 and A2 are not limited to those shown above, and of course, they are appropriately changed according to the required characteristics and the like. Further, the radial dynamic pressure generating portions A1 and A2 may be provided on the outer peripheral surface 2a1 of the shaft portion 2a facing the inner peripheral surface 8a of the bearing sleeve 8.

また、本発明は、軸部材2を回転側、軸受スリーブ8を静止側とした流体動圧軸受装置のみならず、軸部材2を静止側、軸受スリーブ8を回転側とした流体動圧軸受装置にも好ましく適用することができる。 Further, the present invention includes not only a fluid dynamic bearing device in which the shaft member 2 is on the rotating side and the bearing sleeve 8 is on the stationary side, but also a fluid dynamic bearing device in which the shaft member 2 is on the stationary side and the bearing sleeve 8 is on the rotating side. It can also be preferably applied to.

また、本発明は、送風用の羽根を有するロータ、あるいはポリゴンミラーが軸部材2に設けられる流体動圧軸受装置にも好ましく適用することができる。すなわち、本発明は、図1に示すディスク駆動装置用のスピンドルモータのみならず、PC用のファンモータやレーザビームプリンタ(LBP)用のポリゴンスキャナモータ等、その他の電気機器用モータに組み込まれる流体動圧軸受装置にも好ましく適用することができる。 Further, the present invention can be preferably applied to a rotor having blades for blowing air, or a fluid dynamic bearing device in which a polygon mirror is provided on the shaft member 2. That is, the present invention is a fluid incorporated not only in the spindle motor for the disk drive shown in FIG. 1, but also in other motors for electric devices such as fan motors for PCs and polygon scanner motors for laser beam printers (LBPs). It can also be preferably applied to a hydraulic bearing device.

本発明の有用性を実証するため、以下に説明する2種類の確認試験(第1および第2の確認試験)を実施した。 In order to demonstrate the usefulness of the present invention, two types of confirmation tests (first and second confirmation tests) described below were carried out.

[第1の確認試験]
第1の確認試験では、内周面形状、具体的には、環状溝7cの溝幅(環状凹部14の軸方向寸法)Lおよび溝深さδ(図5参照)が相互に異なる三種類のハウジング(ここでは、図8に示すハウジング27)を、それぞれ10個準備した。次いで、味の素ファインテクノ社製の熱硬化型接着剤AE−780を使用し、各ハウジングの内周に、内周面に図3に示すラジアル動圧発生部A1,A2が形成された軸受スリーブ8を図5に示す態様で隙間接着した。そして、
(a)接着前後での軸受スリーブの内径寸法変化量(より詳細には、ラジアル動圧発生部A2を構成する環状丘部Acの形成領域における内径寸法変化量)
(b)ハウジングに対する軸受スリーブの接着強度
を確認した。なお、上記の接着強度は、軸受スリーブに軸方向荷重を付与し、接着剤層が破壊された(ハウジングから軸受スリーブが抜け落ちた)際の軸方向荷重(抜去力)で評価した。
[First confirmation test]
In the first confirmation test, there are three types in which the inner peripheral surface shape, specifically, the groove width (axial dimension of the annular recess 14) L and the groove depth δ (see FIG. 5) of the annular groove 7c are different from each other. Ten housings (here, the housing 27 shown in FIG. 8) were prepared. Next, a bearing sleeve 8 in which the radial dynamic pressure generating portions A1 and A2 shown in FIG. 3 are formed on the inner peripheral surface of each housing by using the thermosetting adhesive AE-780 manufactured by Ajinomoto Fine-Techno. Was gap-bonded in the manner shown in FIG. and,
(A) Amount of change in inner diameter dimension of the bearing sleeve before and after bonding (more specifically, amount of change in inner diameter dimension in the formation region of the annular hill portion Ac constituting the radial dynamic pressure generating portion A2).
(B) The adhesive strength of the bearing sleeve to the housing was confirmed. The above adhesive strength was evaluated by an axial load (pulling force) when an axial load was applied to the bearing sleeve and the adhesive layer was broken (the bearing sleeve fell off from the housing).

第1の確認試験の実施に際して準備した三種類のハウジング(第1〜第3のハウジング)および軸受スリーブは以下のとおりである。
・第1のハウジング:環状溝なし(L=0mm、δ=0mm)
・第2のハウジング:L=1mm、δ=0.05mm
・第3のハウジング:L=2.5mm、δ=0.05mm
・軸受スリーブ:環状丘部Acの軸方向寸法L1(図3参照)=0.6mm
・ハウジングの内周面と軸受スリーブの外周面との間に形成される径方向隙間の隙間幅δ1(図5参照)=0.005mm
The three types of housings (first to third housings) and bearing sleeves prepared for carrying out the first confirmation test are as follows.
・ First housing: No annular groove (L = 0 mm, δ = 0 mm)
-Second housing: L = 1 mm, δ = 0.05 mm
-Third housing: L = 2.5 mm, δ = 0.05 mm
-Bearing sleeve: Axial dimension L1 of annular hill Ac (see FIG. 3) = 0.6 mm
-Gap width δ1 (see FIG. 5) of the radial gap formed between the inner peripheral surface of the housing and the outer peripheral surface of the bearing sleeve = 0.005 mm

上記(a)(b)の確認結果を図11および図12にそれぞれ示す。図11および図12中の「サンプル1」〜「サンプル3」とは、それぞれ、上記の第1〜第3のハウジングの内周に上記の軸受スリーブを隙間接着してなるアセンブリである。 The confirmation results of the above (a) and (b) are shown in FIGS. 11 and 12, respectively. “Sample 1” to “Sample 3” in FIGS. 11 and 12 are assemblies formed by adhering the bearing sleeves to the inner circumferences of the first to third housings, respectively.

図11に示すとおり、軸受スリーブの内径寸法(環状丘部Acの形成領域における内径寸法)は、サンプル1において平均で1.05μm程度小さくなり、サンプル2において平均で0.4μm小さくなり、また、サンプル3において平均で0.15μm程度大きくなった。この確認結果から、軸受スリーブの内径寸法変化量の絶対値は環状溝の溝幅Lが大きくなるほど小さくなることがわかる。従って、軸受スリーブ8の内周面精度(特にラジアル軸受面の精度)を向上する上では、図5に示すように、径方向隙間11を介して互いに対向する軸受スリーブ8の外周面8dとハウジング7の内周面7a1との間に接着剤層12が介在しない円環状の非接着部13を設けることが有利であり、さらには、非接着部13の軸方向寸法を拡大することが一層有利であると言える。 As shown in FIG. 11, the inner diameter dimension of the bearing sleeve (inner diameter dimension in the formation region of the annular hill Ac) is reduced by about 1.05 μm on average in sample 1, and is reduced by 0.4 μm on average in sample 2, and is also reduced. In sample 3, it increased by about 0.15 μm on average. From this confirmation result, it can be seen that the absolute value of the amount of change in the inner diameter dimension of the bearing sleeve becomes smaller as the groove width L of the annular groove becomes larger. Therefore, in order to improve the accuracy of the inner peripheral surface of the bearing sleeve 8 (particularly the accuracy of the radial bearing surface), as shown in FIG. 5, the outer peripheral surface 8d of the bearing sleeve 8 and the housing facing each other through the radial gap 11 and the housing. It is advantageous to provide an annular non-adhesive portion 13 in which the adhesive layer 12 does not intervene between the inner peripheral surface 7a1 of 7 and further, it is further advantageous to expand the axial dimension of the non-adhesive portion 13. It can be said that.

一方、図12に示すとおり、ハウジングに対する軸受スリーブの接着強度は、環状溝7c(非接着部13)の軸方向寸法が拡大するほど低下し、特にサンプル3では、接着強度の低下が顕著であった。 On the other hand, as shown in FIG. 12, the adhesive strength of the bearing sleeve to the housing decreases as the axial dimension of the annular groove 7c (non-adhesive portion 13) increases, and the decrease in adhesive strength is particularly remarkable in Sample 3. rice field.

以上より、実際のところは、必要とされる接着強度等に応じて非接着部の軸方向寸法を決定付ければ良いが、ラジアル軸受部の軸受性能を高めるためには、非接着部を、ラジアル軸受部の最大圧力発生領域(の軸方向全域)と軸方向でオーバーラップするように設けるのが好ましいと言える。 From the above, in reality, the axial dimensions of the non-adhesive portion may be determined according to the required adhesive strength, etc., but in order to improve the bearing performance of the radial bearing portion, the non-adhesive portion should be radial. It can be said that it is preferable to provide the bearing portion so as to overlap with the maximum pressure generation region (the entire axial direction) in the axial direction.

[第2の確認試験]
第2の確認試験では、多孔質体からなる軸受スリーブの相対密度と、軸受スリーブの外周面の表面開孔を封止する封孔部の有無とがハウジングと軸受スリーブの間の接着強度にどの程度影響を与えるかを確認した。具体的には、以下の(1)(2)の構成を有する軸受スリーブを、図2に示す黄銅製のハウジングの内周に隙間接着した場合の接着強度(10個のサンプルの平均値)を確認した。両者を固定するために使用した接着剤は、第1の確認試験と同様に、味の素ファインテクノ社製の熱硬化型接着剤AE−780である。
(1)相対密度が80%以上90%未満(87%)の銅鉄系の焼結金属からなり、外周面に封孔部を有さない軸受スリーブ(図5参照)。
(2)相対密度が90%以上(93%)の銅鉄系の焼結金属からなり、外周面に封孔部を有する軸受スリーブ[図7(a)参照]。
[Second confirmation test]
In the second confirmation test, the relative density of the bearing sleeve made of a porous body and the presence or absence of a sealing portion for sealing the surface opening of the outer peripheral surface of the bearing sleeve determine the adhesive strength between the housing and the bearing sleeve. It was confirmed whether it would affect the degree. Specifically, the adhesive strength (average value of 10 samples) when the bearing sleeve having the following configurations (1) and (2) is gap-bonded to the inner circumference of the copper housing shown in FIG. confirmed. The adhesive used to fix the two is a thermosetting adhesive AE-780 manufactured by Ajinomoto Fine-Techno Co., Ltd., as in the first confirmation test.
(1) A bearing sleeve made of a copper-iron-based sintered metal having a relative density of 80% or more and less than 90% (87%) and having no sealing portion on the outer peripheral surface (see FIG. 5).
(2) A bearing sleeve made of a copper-iron-based sintered metal having a relative density of 90% or more (93%) and having a sealing portion on the outer peripheral surface [see FIG. 7 (a)].

上記(1)の軸受スリーブ8を用いた場合、抜去力の平均値は985Nであったのに対し、上記(2)の軸受スリーブ8を用いた場合、抜去力の平均値は3202Nであった。 When the bearing sleeve 8 of the above (1) was used, the average value of the pulling force was 985N, whereas when the bearing sleeve 8 of the above (2) was used, the average value of the pulling force was 3202N. ..

以上より、多孔質体からなる軸受スリーブを用いる場合、軸受スリーブの相対密度を高める(高密度の軸受スリーブを用いる)こと、さらには軸受スリーブの外周面に封孔部を設けることが、ハウジングに対する軸受スリーブの接着強度を高め、信頼性に富む流体動圧軸受装置を実現する上で好ましいと言える。 From the above, when using a bearing sleeve made of a porous body, it is necessary to increase the relative density of the bearing sleeve (use a high-density bearing sleeve) and to provide a sealing portion on the outer peripheral surface of the bearing sleeve for the housing. It can be said that it is preferable for increasing the adhesive strength of the bearing sleeve and realizing a highly reliable hydrodynamic bearing device.

1 流体動圧軸受装置
2 軸部材
7 ハウジング
7a 筒部
7a1 小径内周面
7c 環状溝
8 軸受スリーブ
8d 外周面
11 径方向隙間
12 接着剤層
12’ 接着剤
13 非接着部
14 環状凹部
14b 縮径部
14c 縮径部
15 封孔部
A1、A2 ラジアル動圧発生部
Ac 環状丘部
L 非接着部(環状凹部)の軸方向寸法
L1 環状丘部の軸方向寸法
R1、R2 ラジアル軸受部
T スラスト軸受部
MAX 最大圧力発生領域
δ 環状溝の溝深さ
δ1 径方向隙間の隙間幅
1 Fluid dynamic bearing device 2 Shaft member 7 Housing 7a Cylindrical part 7a1 Small diameter Inner peripheral surface 7c Circular groove 8 Bearing sleeve 8d Outer peripheral surface 11 Radial gap 12 Adhesive layer 12'Adhesive 13 Non-adhesive part 14 Annular recess 14b Reduced diameter Part 14c Reduced diameter part 15 Sealed part A1, A2 Radial dynamic pressure generating part Ac Circular hill part L Axial dimension of non-adhesive part (annular recess) L1 Axial dimension of annular hill R1, R2 Radial bearing part T Thrust bearing Part V MAX Maximum pressure generation region δ Groove depth of annular groove δ1 Gap width of radial gap

Claims (7)

内周面に、支持すべき軸部材の外周面との間にラジアル軸受隙間を形成するラジアル軸受面を有する軸受スリーブと、軸受スリーブを内周に固定したハウジングと、前記ラジアル軸受隙間に生じる流体の動圧作用で前記軸部材と前記軸受スリーブをラジアル方向に相対回転自在に非接触支持するラジアル軸受部とを備え、前記軸受スリーブが、その外周面と前記ハウジングの内周面との間の径方向隙間に形成された接着剤層を介して前記ハウジングの内周に固定された流体動圧軸受装置において、
前記径方向隙間を介して互いに対向する前記ハウジングの内周面と前記軸受スリーブの外周面との間に前記接着剤層が介在しない円筒状の非接着部が設けられ、該非接着部は、その軸方向長さが前記ラジアル軸受部のうち流体動圧が最大となる最大圧力発生領域の軸方向長さに略等しく、かつ軸方向で前記最大圧力発生領域と略同じ位置に設けられていることを特徴とする流体動圧軸受装置。
A bearing sleeve having a radial bearing surface forming a radial bearing gap between the inner peripheral surface and the outer peripheral surface of a shaft member to be supported, a housing in which the bearing sleeve is fixed to the inner circumference, and a fluid generated in the radial bearing gap. The shaft member and the bearing sleeve are provided with a radial bearing portion that rotatably and non-contactly supports the bearing sleeve in the radial direction by the dynamic pressure action of the bearing sleeve, and the bearing sleeve is provided between the outer peripheral surface thereof and the inner peripheral surface of the housing. In a hydrodynamic bearing device fixed to the inner circumference of the housing via an adhesive layer formed in a radial gap,
A cylindrical non-adhesive portion is provided between the inner peripheral surface of the housing facing each other via the radial gap and the outer peripheral surface of the bearing sleeve without the adhesive layer intervening, and the non-adhesive portion is the non-adhesive portion thereof. The axial length is substantially equal to the axial length of the maximum pressure generating region where the fluid dynamic pressure is maximum in the radial bearing portion, and is provided at substantially the same position as the maximum pressure generating region in the axial direction. A hydrodynamic bearing device characterized by the above.
前記軸受スリーブは、相対密度が80%以上90%未満の多孔質体で形成されている請求項に記載の流体動圧軸受装置。 The fluid dynamic bearing device according to claim 1 , wherein the bearing sleeve is made of a porous body having a relative density of 80% or more and less than 90%. 前記軸受スリーブが、銅を含む焼結金属の多孔質体で形成されている請求項1又は2に記載の流体動圧軸受装置。 The fluid dynamic bearing device according to claim 1 or 2 , wherein the bearing sleeve is made of a porous body of a sintered metal containing copper. 前記非接着部が、前記径方向隙間の隙間幅よりも大きい径方向寸法を有する筒状凹部で構成された請求項1〜の何れか一項に記載の流体動圧軸受装置。 The fluid dynamic bearing device according to any one of claims 1 to 3 , wherein the non-adhesive portion is formed of a tubular recess having a radial dimension larger than the clearance width of the radial gap. 前記筒状凹部は、軸方向外側に向かうにつれて漸次縮径した縮径部を有し、該縮径部が前記径方向隙間と軸方向で隣接配置されている請求項に記載の流体動圧軸受装置。 The fluid dynamic pressure according to claim 4 , wherein the tubular recess has a reduced diameter portion whose diameter is gradually reduced toward the outside in the axial direction, and the reduced diameter portion is arranged adjacent to the radial gap in the axial direction. Bearing device. 前記接着剤層が、熱硬化型接着剤で形成されている請求項1〜の何れか一項に記載の流体動圧軸受装置。 The fluid dynamic bearing device according to any one of claims 1 to 5 , wherein the adhesive layer is formed of a thermosetting adhesive. 請求項1〜の何れか一項に記載の流体動圧軸受装置と、ロータマグネットと、ステータコイルとを有するモータ。 A motor having the fluid dynamic bearing device according to any one of claims 1 to 6, a rotor magnet, and a stator coil.
JP2017153217A 2016-08-23 2017-08-08 Fluid dynamic bearing device and motor equipped with it Active JP6942002B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016162628 2016-08-23
JP2016162628 2016-08-23

Publications (2)

Publication Number Publication Date
JP2018031475A JP2018031475A (en) 2018-03-01
JP6942002B2 true JP6942002B2 (en) 2021-09-29

Family

ID=61303220

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017153217A Active JP6942002B2 (en) 2016-08-23 2017-08-08 Fluid dynamic bearing device and motor equipped with it

Country Status (1)

Country Link
JP (1) JP6942002B2 (en)

Also Published As

Publication number Publication date
JP2018031475A (en) 2018-03-01

Similar Documents

Publication Publication Date Title
JP2005321089A (en) Dynamic pressure bearing device
JP5306747B2 (en) Hydrodynamic bearing device
KR20100089073A (en) Fluid dynamic-pressure bearing device
CN101184929B (en) Fluid bearing device
JP5207657B2 (en) Method for manufacturing hydrodynamic bearing device
JP6422755B2 (en) Fluid dynamic bearing device and motor including the same
CN107002762A (en) The manufacture method of fluid dynamic-pressure bearing device
JP6942002B2 (en) Fluid dynamic bearing device and motor equipped with it
JP2009103252A (en) Fluid bearing device and motor having the same
TW201812190A (en) Fluid dynamic bearing device and motor with same
JP4579218B2 (en) Manufacturing method of hydrodynamic bearing unit
JP4828908B2 (en) Hydrodynamic bearing device
JP2009228873A (en) Fluid bearing device
JP2007071312A (en) Dynamic pressure bearing device
JP2008039104A (en) Fluid bearing device
JP6981900B2 (en) Fluid dynamic bearing device and motor equipped with it
JP5133156B2 (en) Fluid dynamic bearing device
JP2010091004A (en) Hydrodynamic pressure bearing device and manufacturing method therefor
JP7094118B2 (en) Sintered metal dynamic pressure bearing
WO2011040164A1 (en) Fluid dynamic bearing device
WO2013038913A1 (en) Fluid dynamic bearing device and motor equipped with same
JP2017145841A (en) Fluid dynamic pressure bearing device
JP4738835B2 (en) Hydrodynamic bearing device
JP4739247B2 (en) Hydrodynamic bearing device
JP5247987B2 (en) Hydrodynamic bearing device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200316

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20201210

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210202

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210401

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210701

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210805

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210824

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210907

R150 Certificate of patent or registration of utility model

Ref document number: 6942002

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150