JPH1162969A - Sintered oil retaining bearing and manufacture thereof - Google Patents

Sintered oil retaining bearing and manufacture thereof

Info

Publication number
JPH1162969A
JPH1162969A JP24345197A JP24345197A JPH1162969A JP H1162969 A JPH1162969 A JP H1162969A JP 24345197 A JP24345197 A JP 24345197A JP 24345197 A JP24345197 A JP 24345197A JP H1162969 A JPH1162969 A JP H1162969A
Authority
JP
Japan
Prior art keywords
dynamic pressure
pressure generating
sintered body
groove
concave portion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP24345197A
Other languages
Japanese (ja)
Other versions
JP3647008B2 (en
Inventor
Motohiro Miyasaka
元博 宮坂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Corp
Original Assignee
Hitachi Powdered Metals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Powdered Metals Co Ltd filed Critical Hitachi Powdered Metals Co Ltd
Priority to JP24345197A priority Critical patent/JP3647008B2/en
Publication of JPH1162969A publication Critical patent/JPH1162969A/en
Application granted granted Critical
Publication of JP3647008B2 publication Critical patent/JP3647008B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/02Parts of sliding-contact bearings
    • F16C33/04Brasses; Bushes; Linings
    • F16C33/06Sliding surface mainly made of metal
    • F16C33/10Construction relative to lubrication
    • F16C33/1025Construction relative to lubrication with liquid, e.g. oil, as lubricant
    • F16C33/103Construction relative to lubrication with liquid, e.g. oil, as lubricant retained in or near the bearing
    • F16C33/104Construction relative to lubrication with liquid, e.g. oil, as lubricant retained in or near the bearing in a porous body, e.g. oil impregnated sintered sleeve

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Mechanical Engineering (AREA)
  • Automatic Assembly (AREA)
  • Sliding-Contact Bearings (AREA)

Abstract

PROBLEM TO BE SOLVED: To form a dynamic pressure generating recessed part, easy to generate a high dynamic pressure, at a low cost. SOLUTION: A protrusion 11 axially protruded is formed on the inner peripheral sides of the two end faces of a cylindrical sintered body 10, and a plurality of axially extending groove-form recessed parts 13 are formed at equal intervals throughout a portion extending between the two end faces of the protrusion 11. The sintered body 10 is arranged in the cavity 6 of a mold 1, and axially compressed by upper and lower punches 3 and 4 to produce a bearing 10A. Through plastic flow generated by compressing the protrusion 11, the upper and lower end parts of the groove-form recessed part 13 disappear, and a central part is expanded to form a dynamic pressure generating recessed part 14.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、スピンドルモータ
用軸受等の、比較的高速で回転する軸を高精度で支持す
るのに好適な焼結含油軸受に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a sintered oil-impregnated bearing suitable for supporting a shaft rotating at a relatively high speed, such as a spindle motor bearing, with high precision.

【0002】[0002]

【従来の技術】上記焼結含油軸受は、含有された潤滑油
が軸との摺動面である内周面にしみ出して油膜が形成さ
れることにより、摩擦抵抗が低減して騒音や振動が抑え
られるといったものである。また、振動や騒音の抑制効
果をさらに高めたものとして、内周面に溝や凹部を形成
して摩擦抵抗の低減を図った焼結含油軸受がある。この
ような軸受にあっては、摩擦抵抗の低減とともに、軸の
回転に伴い溝や凹部に供給された潤滑油が流動すること
により、その潤滑油の圧力が高まって動圧が発生し、そ
の動圧によって軸の荷重の一部を支持する作用も合わせ
もっている。
2. Description of the Related Art In the above-described sintered oil-impregnated bearing, the lubricating oil contained therein exudes to an inner peripheral surface which is a sliding surface with a shaft to form an oil film. Is suppressed. Further, as a further improved effect of suppressing vibration and noise, there is a sintered oil-impregnated bearing in which a groove or a concave portion is formed on an inner peripheral surface to reduce frictional resistance. In such a bearing, the lubricating oil supplied to the groove and the concave portion flows with the rotation of the shaft together with the reduction of the frictional resistance, so that the pressure of the lubricating oil increases and a dynamic pressure is generated. It also has the effect of supporting part of the shaft load by dynamic pressure.

【0003】[0003]

【発明が解決しようとする課題】ところで、上記動圧
は、その圧力が高ければ高いほど軸受としての剛性が向
上して好ましいが、焼結含油軸受においては、多孔質ゆ
えに潤滑油が漏出して動圧が上昇しにくく、大きな動圧
を得にくいといった特性があった。そこで、動圧を確保
するために、例えば溝の形状をV字状としてその屈曲部
を軸の回転方向に向けたり、溝の深さが軸の回転方向に
向かうにしたがって浅くなるようにして、流動する潤滑
油が溝の端部側に集中して大きな動圧を得ることができ
るようにしたものがある。しかしながら、潤滑油の漏出
の程度は変わらないので、得られる動圧にも限度があっ
た。また、そのような溝を形成するには金型成形では困
難であるから、焼結体に対して切削や転造による後加工
を施して形成することになり、製造コストの上昇を招い
ていた。したがって本発明は、動圧が発生しやすく、か
つその動圧が大きなものとなって軸受としての剛性の向
上が図られるとともに、製造コストの上昇が抑制される
焼結含油軸受およびその製造方法を提供することを目的
としている。
As for the dynamic pressure, the higher the pressure is, the more preferable the rigidity of the bearing is. Therefore, in a sintered oil-impregnated bearing, the lubricating oil leaks due to its porosity. There was such a characteristic that the dynamic pressure was hard to increase and a large dynamic pressure was hardly obtained. Therefore, in order to secure the dynamic pressure, for example, the shape of the groove is V-shaped, and the bent portion is directed in the rotation direction of the shaft, or the depth of the groove becomes shallower toward the rotation direction of the shaft, There is one in which flowing lubricating oil is concentrated on the end side of the groove to obtain a large dynamic pressure. However, since the degree of leakage of the lubricating oil does not change, the obtained dynamic pressure is limited. In addition, since it is difficult to form such grooves by die molding, the sintered body is formed by performing post-processing by cutting or rolling, resulting in an increase in manufacturing cost. . Therefore, the present invention provides a sintered oil-impregnated bearing and a method for producing the same, in which dynamic pressure is easily generated and the dynamic pressure becomes large to improve rigidity of the bearing and increase in production cost is suppressed. It is intended to provide.

【0004】[0004]

【課題を解決するための手段】本発明の第1の発明であ
る焼結含油軸受は、内周面に形成された動圧発生凹部の
軸線方向長さ、深さおよび密度のうちの少なくとも一つ
が、円周方向に沿ってみた場合に変化していることを特
徴としている。
According to a first aspect of the present invention, there is provided a sintered oil-impregnated bearing having at least one of an axial length, a depth and a density of a dynamic pressure generating recess formed on an inner peripheral surface. One of the characteristics is that it changes when viewed along the circumferential direction.

【0005】具体的には、形状の場合であれば、多角形
状、矩形状あるいは円形状に形成すれば、軸線方向長さ
は円周方向に沿ってみた場合に変化し、いずれの場合も
円周方向の端部側に向かうにしたがって軸線方向に沿っ
た縦断面積が小さくなる。また、深さの場合であれば、
その底部を円周方向の端部側に向かうにしたがって浅く
なる傾斜した形状にすれば、円周方向に沿った横断面積
が円周方向に向かうにしたがって小さくなる。このよう
に、円周方向の端部側に向かうにしたがって縦断面積あ
るいは横断面積を小さくすると、その端部側がくさび状
の隙間となって動圧が発生しやすい。当該軸受によって
支持される軸が一方向回転であるならば、少なくともそ
の回転方向の端部を上記のように形成すればよい。ま
た、密度の場合、動圧発生凹部の縁部から内周面に至る
移行部の密度が他の部分よりも高くなっている(つまり
気孔率が低くなっている)と、その移行部は軸の回転に
伴って流動する潤滑油がもっとも集中して動圧が大きく
なる部分であるから、動圧が発生しやすく、かつその動
圧のリークが抑制される。これに加え動圧発生凹部の底
部の密度を他の部分の密度よりも低くすれば、動圧発生
凹部に潤滑油を豊富に含有することができる。これらの
結果、軸受としての剛性が向上し、高精度で軸を支持す
ることが可能となる。
[0005] Specifically, in the case of a shape, if it is formed in a polygonal shape, a rectangular shape or a circular shape, the axial length changes when viewed along the circumferential direction. The longitudinal cross-sectional area along the axial direction decreases toward the end in the circumferential direction. In the case of depth,
If the bottom is formed to have an inclined shape that becomes shallower toward the end in the circumferential direction, the cross-sectional area along the circumferential direction becomes smaller as it goes toward the circumferential direction. As described above, if the longitudinal cross-sectional area or the cross-sectional area is reduced toward the end in the circumferential direction, the end becomes a wedge-shaped gap and dynamic pressure is easily generated. If the shaft supported by the bearing rotates in one direction, at least the end in the rotation direction may be formed as described above. In the case of density, if the density of the transition portion from the edge of the dynamic pressure generating recess to the inner peripheral surface is higher than that of the other portion (that is, the porosity is lower), the transition portion becomes the shaft. Since the lubricating oil flowing along with the rotation is most concentrated and the dynamic pressure is increased, the dynamic pressure is easily generated and the leak of the dynamic pressure is suppressed. In addition, if the density of the bottom of the dynamic pressure generating concave portion is lower than the density of other portions, the dynamic pressure generating concave portion can be rich in lubricating oil. As a result, the rigidity of the bearing is improved, and the shaft can be supported with high accuracy.

【0006】また、動圧発生凹部を内周面において閉塞
したものとすれば、潤滑油の動圧発生凹部内に常に確保
され、動圧のリークが抑制される。これとは反対に、動
圧発生凹部を軸受の端面に開口させた場合には、動圧の
リークはある程度生じるものの、その開口から動圧発生
凹部に潤滑油を供給することができるので、少ない潤滑
油量でも安定した動圧を得ることが可能となる。
Further, if the dynamic pressure generating concave portion is closed on the inner peripheral surface, the dynamic pressure generating concave portion is always secured in the dynamic pressure generating concave portion of the lubricating oil, and the leakage of the dynamic pressure is suppressed. Conversely, when the dynamic pressure generating concave portion is opened on the end face of the bearing, although the dynamic pressure leaks to some extent, lubricating oil can be supplied from the opening to the dynamic pressure generating concave portion, so A stable dynamic pressure can be obtained even with the amount of lubricating oil.

【0007】本発明の第2の発明は、上記のような焼結
含油軸受を製造するに好適な方法であって、金型のキャ
ビティに配置した筒状の焼結体を、パンチにより軸線方
向に圧縮してその内周面に動圧発生凹部を形成するにあ
たり、前記焼結体の内周面に略軸線方向に延在する溝状
凹部を形成し、焼結体の両端面の少なくとも溝状凹部に
対応する位置と、パンチにおける焼結体の両端面に接触
する端面の少なくとも溝状凹部に対応する位置のうち
の、少なくともいずれか一方に、軸線方向に突出する凸
部を設け、次いで、パンチにより焼結体を軸線方向に圧
縮して凸部により焼結体の内周面における溝状凹部の周
囲を塑性流動させるに伴わせ、この溝状凹部の両端側の
幅を縮小させるかもしくは消失させることにより、同凹
部を動圧発生凹部として形成することを特徴としてい
る。
A second invention of the present invention is a method suitable for manufacturing the above-described sintered oil-impregnated bearing, wherein a cylindrical sintered body arranged in a cavity of a mold is axially moved by a punch. To form a dynamic pressure generating recess on the inner peripheral surface thereof, a groove-like concave portion extending substantially in the axial direction is formed on the inner peripheral surface of the sintered body, and at least grooves on both end surfaces of the sintered body are formed. At least one of a position corresponding to the groove-shaped concave portion and a position corresponding to at least a groove-shaped concave portion of an end surface of the punch that is in contact with both end surfaces of the sintered body, provided with a convex portion protruding in the axial direction, The width of both ends of the groove is reduced by compressing the sintered body in the axial direction by the punch and causing the protrusion to plastically flow around the groove in the inner peripheral surface of the sintered body by the protrusion. Or, by making it disappear, the concave part becomes a dynamic pressure generating concave part. It is characterized by the formation Te.

【0008】この製造方法によれば、焼結体の両端面も
しくはパンチの焼結体に接触する端面の少なくともいず
れか一方に形成された凸部により、溝状凹部の両端側の
周囲に塑性流動が大きく生じる。このため、その溝状凹
部が変形させられて、溝状凹部の形状や深さ等に応じた
動圧発生凹部が形成される。溝状凹部は、焼結体の両端
面に開口しているかいないかは任意である。上記塑性流
動により溝状凹部の両端側の幅が縮小するかあるいは消
失することにより、動圧発生凹部は、軸線方向の両端部
から中央に向かってその幅(円周方向長さ)が大きくな
るような形状(例えば菱形状や円形状)になる。動圧発
生凹部自体の形状や断面形状は、凸部や溝状凹部に応じ
た圧縮加工量を適宜に制御することで、所望通りのもの
を得ることができる。また、焼結体を圧縮すると同時に
動圧発生凹部を形成することができるので、切削や転造
による後加工を施して形成する場合に比べると、製造コ
ストの上昇が抑制される。
According to this manufacturing method, plastic flow is formed around both ends of the groove-shaped concave portion by the convex portions formed on at least one of the both end surfaces of the sintered body and the end surface of the punch contacting the sintered body. Greatly occurs. For this reason, the groove-shaped concave portion is deformed, and a dynamic pressure generating concave portion corresponding to the shape and the depth of the groove-shaped concave portion is formed. It is optional whether or not the groove-shaped concave portions are open at both end surfaces of the sintered body. The width (circumferential length) of the dynamic pressure generating concave portion increases from both ends in the axial direction toward the center by reducing or eliminating the width of both ends of the groove-shaped concave portion due to the plastic flow. Such a shape (for example, a rhombus shape or a circular shape). The desired shape and cross-sectional shape of the dynamic pressure generating concave portion itself can be obtained by appropriately controlling the amount of compression processing in accordance with the convex portion and the groove-shaped concave portion. In addition, since the dynamic pressure generating concave portion can be formed at the same time as the sintered body is compressed, an increase in manufacturing cost is suppressed as compared with the case of forming by performing post-processing by cutting or rolling.

【0009】[0009]

【発明の実施の形態】(1)第1実施形態 以下、図1〜図4を参照して本発明の第1実施形態につ
いて説明する。図1は、素材である円筒状の焼結体10
の平面図、図2(a)は焼結体10の縦割り斜視図、図
2(b)は焼結体10から製造された焼結含油軸受(以
下、軸受と略称する)10Aの縦割り斜視図、図3
(a)、(b)は製造方法の工程を示す金型1の縦断面
図である。図3(a)、(b)に示した金型1は、断面
円形の孔2aを有するダイス2と、ダイス2の孔2aに
嵌合して上下方向に移動可能になされた上パンチ3およ
び下パンチ4と、これら上下のパンチ3,4の中空部に
嵌合可能とされた円柱状のコア5とを備えている。この
金型1によって焼結体10を圧縮し、図2(b)の軸受
10Aを得る。
DESCRIPTION OF THE PREFERRED EMBODIMENTS (1) First Embodiment Hereinafter, a first embodiment of the present invention will be described with reference to FIGS. FIG. 1 shows a cylindrical sintered body 10 as a raw material.
2A is a vertical perspective view of a sintered body 10, and FIG. 2B is a vertical view of a sintered oil-impregnated bearing (hereinafter simply referred to as a bearing) 10 </ b> A manufactured from the sintered body 10. Perspective view, FIG. 3
(A), (b) is a longitudinal cross-sectional view of the metal mold 1 showing the steps of the manufacturing method. The die 1 shown in FIGS. 3A and 3B has a die 2 having a hole 2a having a circular cross section, an upper punch 3 fitted in the hole 2a of the die 2 and movable vertically. A lower punch 4 and a columnar core 5 that can be fitted into the hollow portions of the upper and lower punches 3 and 4 are provided. The sintered body 10 is compressed by the mold 1 to obtain the bearing 10A shown in FIG.

【0010】焼結体10の上下の端面の内周側には、図
1および図2(a)に示すように、軸線方向に突出する
同じ高さの凸条(凸部)11が、全周にわたって形成さ
れている。焼結体10の孔は、図1に示すように、断面
正多角形状(図示例では正五角形状)である。図1およ
び図2(a)の二点鎖線12は、軸受10Aに製造され
た際に金型1のコア5に密着して形成される断面円形の
内周面(軸との摺動面)を示している。そしてこの場合
では、孔における内周面12よりも外側に膨出する複数
の角の部分が、軸線方向に延在する溝状凹部13とされ
ている。これら溝状凹部13は、円周方向に等間隔に形
成され、かつ上下の凸条11を通って凸条11の端面に
開口している。
As shown in FIG. 1 and FIG. 2 (a), on the inner peripheral side of the upper and lower end faces of the sintered body 10, ridges (convex portions) 11 of the same height protruding in the axial direction are entirely provided. It is formed over the circumference. As shown in FIG. 1, the holes of the sintered body 10 have a regular polygonal cross section (a regular pentagonal shape in the illustrated example). The two-dot chain line 12 in FIGS. 1 and 2 (a) is a circular inner circumferential surface (sliding surface with the shaft) formed in close contact with the core 5 of the mold 1 when the bearing 10A is manufactured. Is shown. In this case, a plurality of corners of the hole that protrude outside the inner peripheral surface 12 are formed as groove-shaped recesses 13 extending in the axial direction. These groove-shaped recesses 13 are formed at equal intervals in the circumferential direction, and pass through the upper and lower ridges 11 and open to the end surfaces of the ridges 11.

【0011】この焼結体10から軸受10Aを製造する
には、まず、図3(a)に示すように、ダイス2、下パ
ンチ4およびコア5によって形成されるキャビティ6に
焼結体10を挿入し、同図(b)に示すように、上パン
チ3を下降させて焼結体10を軸線方向に圧縮する。す
ると、上下の凸条11が圧縮されて塑性流動が生じるこ
とにより、溝状凹部13の上下の端部が消失するととも
にコア5の方へ突出してコア5に押圧され、断面円形の
内周面12が形成される。また、溝状凹部13の中央部
は残るが、上記塑性流動の影響を受けて、その形は図2
(b)に示すような菱形状となる。この残った凹部が、
動圧発生凹部14とされる。この動圧発生凹部14は、
溝状凹部13の数に対応して、内周面12の軸線方向の
略中央部において、円周方向に等間隔に形成される。
In order to manufacture a bearing 10A from the sintered body 10, first, as shown in FIG. 3A, the sintered body 10 is placed in a cavity 6 formed by a die 2, a lower punch 4 and a core 5. Then, as shown in FIG. 3B, the upper punch 3 is lowered to compress the sintered body 10 in the axial direction. Then, the upper and lower ridges 11 are compressed to generate a plastic flow, so that the upper and lower ends of the groove-shaped recess 13 disappear, and protrude toward the core 5 to be pressed by the core 5, and the inner peripheral surface having a circular cross section 12 are formed. Although the central portion of the groove-shaped concave portion 13 remains, the shape thereof is affected by the plastic flow and the shape thereof is changed as shown in FIG.
A rhombus shape as shown in FIG. This remaining recess is
It is a dynamic pressure generating recess 14. This dynamic pressure generating recess 14 is
Corresponding to the number of the groove-shaped recesses 13, they are formed at equal intervals in the circumferential direction at a substantially central portion in the axial direction of the inner peripheral surface 12.

【0012】以上のようにして製造された軸受10Aの
動圧発生凹部14は、菱形状に形成されたことにより、
その軸線方向長さは、円周方向に沿ってみた場合に、中
央部がもっとも長く、両端に向かってテーパ状に収束す
るといったように変化している。また、図4(a)、
(b)は、図2(b)の円周方向に沿ったA−A’断面
および軸線方向に沿ったB−B’断面をそれぞれ示して
いる。これらの図で示すように、動圧発生凹部14の底
部は、中心部がもっとも深く、その中心部から内周面1
2に向かってしだいに浅くなるよう傾斜している。した
がって、軸の回転に伴って流動する潤滑油は、円周方向
に向かう角の部分に集中し、動圧が発生しやすい。
The dynamic pressure generating recess 14 of the bearing 10A manufactured as described above is formed in a rhombus shape.
When viewed along the circumferential direction, the length in the axial direction varies such that the central portion is the longest and converges in a tapered shape toward both ends. FIG. 4A,
2B shows an AA ′ cross section along the circumferential direction and a BB ′ cross section along the axial direction in FIG. 2B, respectively. As shown in these figures, the bottom of the dynamic pressure generating concave portion 14 has the deepest center portion, and the inner peripheral surface 1 extends from the center portion.
It is inclined to become gradually shallower toward 2. Therefore, the lubricating oil flowing with the rotation of the shaft is concentrated at the corners in the circumferential direction, and dynamic pressure is easily generated.

【0013】また、動圧発生凹部14の周囲は、上下の
凸条11の塑性流動の影響により特に強く圧縮されて加
工度が高くなっているから、その部分の密度は、それよ
りも外周側の部分と動圧発生凹部の底部の密度よりも高
くなっている(つまり気孔率が低くなっている)。その
密度が高くなっている部分を、図2(b)のドットで示
す。図4(a)に示すように、特に円周方向の断面をみ
た場合においては、動圧発生凹部14の縁部14aから
内周面12にわたる移行部15の密度は高く、反面、縁
部14a以外の底部14bの密度は低い。密度が高い移
行部15は、軸16の回転に伴って流動する潤滑油がも
っとも集中して動圧が大きくなる部分であり、その移行
部15の密度が高いので、動圧が発生しやすく、かつそ
の動圧のリークが抑制される。また、動圧発生凹部14
の底部14bの密度は周囲の密度よりも低いので、潤滑
油を豊富に含有することができる。これらの結果、軸受
としての剛性が向上し、高精度で軸を支持することが可
能となる。さらに、焼結体10を圧縮すると同時に動圧
発生凹部14を形成することができるので、切削や転造
による後加工を施して形成する場合に比べると、製造コ
ストの上昇が抑制される。
Further, the periphery of the dynamic pressure generating concave portion 14 is particularly strongly compressed due to the influence of the plastic flow of the upper and lower ridges 11 and has a high workability. And the density at the bottom of the dynamic pressure generating concave portion (ie, the porosity is low). The portion where the density is high is indicated by dots in FIG. As shown in FIG. 4A, particularly in the case of looking at a cross section in the circumferential direction, the density of the transition portion 15 extending from the edge portion 14a of the dynamic pressure generating concave portion 14 to the inner peripheral surface 12 is high, while the edge portion 14a The density of the bottom portion 14b other than that is low. The transition portion 15 having a high density is a portion where the lubricating oil flowing with the rotation of the shaft 16 is concentrated most and the dynamic pressure is increased. Since the density of the transition portion 15 is high, the dynamic pressure is easily generated, And the leak of the dynamic pressure is suppressed. Also, the dynamic pressure generating recess 14
Since the density of the bottom portion 14b is lower than the surrounding density, the lubricating oil can be contained abundantly. As a result, the rigidity of the bearing is improved, and the shaft can be supported with high accuracy. Furthermore, since the dynamic pressure generating recess 14 can be formed at the same time as the sintered body 10 is compressed, an increase in manufacturing cost is suppressed as compared with the case where the sintered body 10 is formed by performing post-processing by cutting or rolling.

【0014】なお、上記のようにして形成される動圧発
生凹部の形状、大きさおよび深さ等は、圧縮される凸部
(上記第1実施形態では凸条11)の形状、厚さおよび
高さ等や、溝状凹部の形状、長さおよび幅等を適宜に制
御することにより、所望通りのものを得ることができ
る。言い換えると、焼結体に形成する凸部や溝状凹部に
応じた圧縮加工量を、所望通りの動圧発生凹部が形成さ
れるように適宜に設定すればよい。例えば、図5に示す
ように、三角形状の動圧発生凹部17や、溝状凹部の上
下の端部の幅を縮小して残し、その部分が軸受の端面に
開口する溝18aとして形成された動圧発生凹部18等
を形成することも可能である。
The shape, size, depth, and the like of the dynamic pressure generating recess formed as described above are determined by the shape, thickness, and thickness of the compressed protrusion (the protrusion 11 in the first embodiment). By appropriately controlling the height and the like, the shape, the length and the width of the groove-shaped concave portion, a desired one can be obtained. In other words, the amount of compression processing according to the convex portions and groove-shaped concave portions formed on the sintered body may be appropriately set so that a desired dynamic pressure generating concave portion is formed. For example, as shown in FIG. 5, the width of the upper and lower ends of the triangular dynamic pressure generating concave portion 17 and the groove-shaped concave portion is reduced and left, and the portion is formed as a groove 18a opening to the end face of the bearing. It is also possible to form the dynamic pressure generating recess 18 and the like.

【0015】続いて、本発明の第2〜第4実施形態を説
明する。これら実施形態の説明で参照する図面におい
て、上記第1実施形態と同一の構成要素がある場合には
同じ符号を付し、その説明を省略する。
Next, second to fourth embodiments of the present invention will be described. In the drawings referred to in the description of these embodiments, the same components as those in the first embodiment are denoted by the same reference numerals, and description thereof will be omitted.

【0016】(2)第2実施形態 図6〜図8を参照して、本発明の第2実施形態について
説明する。図6および図7(a)は、素材である円筒状
の焼結体20を示している。これら図に示すように、こ
の焼結体20の上下の端面の内周側には、軸線方向に突
出する同じ高さの凸条(凸部)21が、全周にわたって
形成されている。焼結体20の孔は、図6に示すように
断面円形状で、その内周面22には、軸線方向に延在し
て上下の凸条21の端面に開口する複数の溝状凹部23
が、円周方向に等間隔に形成されている。これら溝状凹
部23は、断面円弧状の大凹部23aの底部に、断面矩
形状の小凹部23bが形成されてなる2段構成となって
いる。
(2) Second Embodiment A second embodiment of the present invention will be described with reference to FIGS. 6 and 7A show a cylindrical sintered body 20 as a raw material. As shown in these figures, on the inner peripheral side of the upper and lower end surfaces of the sintered body 20, a ridge (convex portion) 21 having the same height and projecting in the axial direction is formed over the entire circumference. The hole of the sintered body 20 has a circular cross section as shown in FIG. 6, and a plurality of groove-shaped recesses 23 extending in the axial direction and opening on the end faces of the upper and lower ridges 21 are formed on the inner peripheral surface 22.
Are formed at equal intervals in the circumferential direction. These groove-shaped concave portions 23 have a two-stage configuration in which a small concave portion 23b having a rectangular cross section is formed at the bottom of a large concave portion 23a having an arc cross section.

【0017】図8(b)は、焼結体20を第1実施形態
と同様の金型1で軸線方向に圧縮して軸受20Aを製造
した状態を示している。製造された軸受20Aの内周面
22には、図7(b)に示すように、溝状凹部23に応
じた動圧発生凹部24が形成されている。この動圧発生
凹部24は、溝状凹部23の小凹部23bの幅が縮小し
て残った上下の溝部24bと、これら溝状凹部24bの
間の菱形状凹部23aとから構成されている。この場
合、溝状凹部23の大凹部23aの上下の端部は、凸条
21が圧縮されて生じた塑性流動によって消失してい
る。この動圧発生凹部24の周囲は、加工度が高くなっ
ていることにより他の部分よりも密度が高くなってお
り、その密度が高くなっている部分を、図7(b)のド
ットで示す。
FIG. 8 (b) shows a state in which the sintered body 20 is compressed in the axial direction by the same mold 1 as in the first embodiment to produce the bearing 20A. As shown in FIG. 7B, a dynamic pressure generating concave portion 24 corresponding to the groove-shaped concave portion 23 is formed on the inner peripheral surface 22 of the manufactured bearing 20A. The dynamic pressure generating concave portion 24 is composed of upper and lower groove portions 24b remaining after the width of the small concave portion 23b of the groove concave portion 23 is reduced, and a rhombic concave portion 23a between the groove concave portions 24b. In this case, the upper and lower ends of the large concave portion 23a of the groove-shaped concave portion 23 have disappeared due to the plastic flow generated by the compression of the ridge 21. The periphery of the dynamic pressure generating concave portion 24 has a higher density than the other portions due to a higher degree of processing, and the portion having the higher density is indicated by dots in FIG. .

【0018】この軸受20Aの動圧発生凹部24によれ
ば、第1実施形態と同等の作用効果を奏するのに加え、
上下の端面に開口する溝部24bによっても動圧を得る
ことができるので、軸線方向全長にわたってバランスよ
く軸を支持することが可能となる。また、溝部24bの
開口から潤滑油を供給することができるので、少ない潤
滑油量でも安定した動圧を得ることが可能となる。
According to the dynamic pressure generating recess 24 of the bearing 20A, the same operation and effect as those of the first embodiment can be obtained.
Since dynamic pressure can be obtained also by the grooves 24b opened in the upper and lower end surfaces, it is possible to support the shaft in a balanced manner over the entire length in the axial direction. Further, since lubricating oil can be supplied from the opening of the groove 24b, a stable dynamic pressure can be obtained even with a small amount of lubricating oil.

【0019】(3)第3実施形態 次に、図9〜図11を参照して本発明の第3実施形態に
ついて説明する。図9および図10(a)は、素材であ
る円筒状の焼結体30を示している。これら図に示すよ
うに、この焼結体30の上下の端面の内周側には、軸線
方向に突出する同じ高さの複数の円弧状の凸条(凸部)
31が、円周方向に等間隔に形成されている。これら凸
条31の中央部には、切欠き31aが形成されている。
この焼結体30の孔は、図9に示すように断面円形状
で、その内周面32には、軸線方向に延在して上下の凸
条31の端面に開口する複数の溝状凹部33が、円周方
向に等間隔に形成されている。図10(a)に示すよう
に、この溝状凹部33の幅は凸条31の幅よりも小さ
く、上下の切欠き31aを結ぶ線を中心に左右対称に形
成されている。
(3) Third Embodiment Next, a third embodiment of the present invention will be described with reference to FIGS. FIG. 9 and FIG. 10A show a cylindrical sintered body 30 which is a raw material. As shown in these figures, a plurality of arc-shaped ridges (convex portions) of the same height protruding in the axial direction are provided on the inner peripheral side of the upper and lower end faces of the sintered body 30.
31 are formed at equal intervals in the circumferential direction. A notch 31a is formed at the center of each of the ridges 31.
The hole of the sintered body 30 has a circular cross section as shown in FIG. 9, and a plurality of groove-shaped recesses extending in the axial direction and opening on the end faces of the upper and lower ridges 31 are formed on the inner peripheral surface 32. 33 are formed at equal intervals in the circumferential direction. As shown in FIG. 10A, the width of the groove-shaped recess 33 is smaller than the width of the ridge 31, and is formed symmetrically about a line connecting the upper and lower cutouts 31a.

【0020】図11(b)は、焼結体30を第1実施形
態と同様の金型1で軸線方向に圧縮して軸受30Aを製
造した状態を示している。製造された軸受30Aの内周
面32には、図10(b)に示すように、溝状凹部33
に応じた六角形状の動圧発生凹部34が形成されてい
る。溝状凹部33の上下の端部は凸条31が圧縮されて
生じた塑性流動により消失しているが、凸条31の中央
部に切欠き31aが形成されていたことにより、動圧発
生凹部34の上下の端部は、軸受30Aの端面に向かっ
て三角形状に延びている。その上下の端部の周囲は、加
工度が高くなっていることにより他の部分よりも密度が
高くなっており、その密度が高くなっている部分を、図
10(b)のドットで示す。また、図12(a)、
(b)に、図10(b)の円周方向に沿ったA−A’断
面および軸線方向に沿ったB−B’断面をそれぞれ示
す。図12(a)、(b)に示したように、この場合の
動圧発生凹部34は、円周方向および軸線方向ともその
底部がほぼ一定の深さであり、内周面32に至る縁部が
凹状に湾曲している。
FIG. 11B shows a state in which the sintered body 30 is compressed in the axial direction by the same mold 1 as in the first embodiment to produce a bearing 30A. As shown in FIG. 10B, a groove-shaped recess 33 is formed on the inner peripheral surface 32 of the manufactured bearing 30A.
A hexagonal dynamic pressure generating concave portion 34 corresponding to the shape is formed. Although the upper and lower ends of the groove-shaped recess 33 have disappeared due to the plastic flow generated by the compression of the ridge 31, the notch 31a is formed in the center of the ridge 31, so that the dynamic pressure-generating recess is formed. The upper and lower ends of 34 extend in a triangular shape toward the end surface of the bearing 30A. The periphery of the upper and lower ends has a higher density than the other portions due to the higher degree of processing, and the portions having the higher density are indicated by dots in FIG. FIG. 12 (a),
10B shows an AA ′ cross section along the circumferential direction and a BB ′ cross section along the axial direction in FIG. 10B. As shown in FIGS. 12A and 12B, in this case, the dynamic pressure generating concave portion 34 has a substantially constant depth at the bottom in both the circumferential direction and the axial direction. The part is concavely curved.

【0021】この軸受30Aでは、第1実施形態と同等
の作用効果を奏する他に、凸条31を焼結体30の端面
に分割して形成し、さらにその中央部に切欠き31aを
形成したので、凸条31にかかる上下のパンチ3,4の
圧縮力が全周にわたる凸条の場合よりも大きくなり、塑
性流動を発生させやすいといった利点を有する。
In this bearing 30A, in addition to the same operation and effect as in the first embodiment, a ridge 31 is formed by dividing the end surface of the sintered body 30, and a notch 31a is formed in the center thereof. Therefore, the compression force of the upper and lower punches 3 and 4 applied to the ridges 31 is greater than that of the ridges over the entire circumference, which has an advantage that plastic flow is easily generated.

【0022】(4)第4実施形態 次に、図13〜図15を参照して、本発明の第4実施形
態について説明する。図13および図14(a)は、素
材である円筒状の焼結体40を示している。これら図に
示すように、この焼結体40の内周面42には、軸線方
向に延在して上下の端面に開口する複数の溝状凹部43
が、円周方向に等間隔に形成されている。一方、図15
に示すように、金型1Aの上下のパンチ3A,4Aの端
面の溝状凹部43に対応する位置には、この溝状凹部4
3の開口を囲むようにして平面視略コ字状の凸条(凸
部)41が形成されている。図13には、この凸条41
のみを二点鎖線で示している。このような上下のパンチ
3A,4Aを使用して図15(b)に示すように焼結体
40を圧縮すると、図14(b)に示す軸受40Aが製
造される。この軸受40Aの上下の端面には、凸部41
が刻設されることによって略コ字状の凹部45が形成さ
れ、また、内周面42には、溝状凹部43に応じた菱形
状の動圧発生凹部44が形成されている。
(4) Fourth Embodiment Next, a fourth embodiment of the present invention will be described with reference to FIGS. FIG. 13 and FIG. 14A show a cylindrical sintered body 40 which is a raw material. As shown in these figures, a plurality of groove-shaped recesses 43 extending in the axial direction and opening at upper and lower end surfaces are formed on the inner peripheral surface 42 of the sintered body 40.
Are formed at equal intervals in the circumferential direction. On the other hand, FIG.
As shown in FIG. 5, the groove-shaped recess 4 is located at a position corresponding to the groove-shaped recess 43 on the end face of the upper and lower punches 3A and 4A of the mold 1A.
A substantially U-shaped projection (projection) 41 is formed so as to surround the opening 3. FIG. 13 shows this ridge 41.
Only the two-dot chain line is shown. When the sintered body 40 is compressed as shown in FIG. 15B using the upper and lower punches 3A and 4A, a bearing 40A shown in FIG. 14B is manufactured. At the upper and lower end surfaces of the bearing 40A, a convex portion 41 is provided.
Is formed to form a substantially U-shaped concave portion 45, and a diamond-shaped dynamic pressure generating concave portion 44 corresponding to the groove-shaped concave portion 43 is formed on the inner peripheral surface 42.

【0023】この軸受40Aでは、第1〜第3実施形態
のように焼結体の上下の端面に凸条(凸部)を形成する
代わりに上下のパンチ3A,4Aの端面に凸条41を形
成し、これによって溝状凹部43の上下の端部の周囲に
塑性流動を生じさせている。その塑性流動により溝状凹
部43の上下の端部は消失し、動圧発生凹部44の周囲
ならびに凹部45の周囲は、加工度が高くなって他の部
分よりも密度が高くなっている。これにより、第1実施
形態と同等の効果を奏する。なお、その密度が高くなっ
ている部分を、図14(b)のドットで示す。
In this bearing 40A, instead of forming ridges (projections) on the upper and lower end surfaces of the sintered body as in the first to third embodiments, ridges 41 are formed on the end surfaces of the upper and lower punches 3A and 4A. Thus, a plastic flow is generated around the upper and lower ends of the groove-shaped concave portion 43. Due to the plastic flow, the upper and lower end portions of the groove-shaped concave portion 43 disappear, and the periphery of the dynamic pressure generating concave portion 44 and the periphery of the concave portion 45 have a higher workability and a higher density than other portions. Thereby, an effect equivalent to that of the first embodiment is achieved. The portion where the density is high is indicated by dots in FIG.

【0024】なお、上記各実施形態で示した動圧発生凹
部の断面形状は、様々な形態に変化させることが可能で
ある。図16(a)〜(c)は、内周面に形成される動
圧発生凹部の円周方向断面の変形例を示している。同図
で符号52が軸受の内周面、54が動圧発生凹部であ
る。また、図2(b)や図10(b)に示したように、
溝状凹部の上下の端部を消失させて内周面において完全
に閉塞する形態としたり、図7(b)に示したように、
溝状凹部の上下の端部の幅を縮小させるのみで開口を残
した形態とすることもできる。このように、動圧発生凹
部自体の形状や断面形状は、上述の如く、焼結体に形成
する凸部(あるいは上下のパンチに形成する凸部)や溝
状凹部に応じた圧縮加工量を適宜に制御することで、所
望通りのものを得ることができる。
The cross-sectional shape of the dynamic pressure generating recess shown in each of the above embodiments can be changed to various forms. FIGS. 16A to 16C show modified examples of the cross section in the circumferential direction of the dynamic pressure generating concave portion formed on the inner peripheral surface. In the figure, reference numeral 52 denotes an inner peripheral surface of the bearing, and reference numeral 54 denotes a dynamic pressure generating concave portion. As shown in FIG. 2B and FIG. 10B,
The upper and lower ends of the groove-shaped concave portion may be eliminated to completely close the inner peripheral surface, or as shown in FIG.
A configuration in which an opening is left only by reducing the width of the upper and lower ends of the groove-shaped concave portion may be employed. Thus, as described above, the shape and cross-sectional shape of the dynamic pressure generating concave portion itself are determined by the amount of compression processing corresponding to the convex portion formed on the sintered body (or the convex portion formed on the upper and lower punches) and the groove-shaped concave portion. By controlling appropriately, a desired product can be obtained.

【0025】[0025]

【発明の効果】以上説明したように、本発明の焼結含油
軸受では、内周面に形成された動圧発生凹部の形状や密
度等により、その動圧発生凹部において発生する動圧が
大きなものとなり、かつ発生する動圧のリークが抑制さ
れて、軸受性能の向上が図られる。また、本発明の焼結
含油軸受の製造方法によれば、製造コストの上昇を招く
ことなく効果的な動圧を発生する動圧発生凹部を製造す
ることができる。
As described above, in the sintered oil-impregnated bearing of the present invention, the dynamic pressure generated in the dynamic pressure generating recess is large due to the shape and density of the dynamic pressure generating recess formed in the inner peripheral surface. And the leakage of the generated dynamic pressure is suppressed, and the bearing performance is improved. Further, according to the method for manufacturing a sintered oil-impregnated bearing of the present invention, it is possible to manufacture a dynamic pressure generating concave portion that generates an effective dynamic pressure without increasing the manufacturing cost.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明の第1実施形態に係る焼結体の平面図
である。
FIG. 1 is a plan view of a sintered body according to a first embodiment of the present invention.

【図2】 (a)は本発明の第1実施形態に係る焼結体
の縦割り斜視図、(b)はその焼結体から製造した軸受
の縦割り斜視図である。
FIG. 2A is a vertical perspective view of a sintered body according to the first embodiment of the present invention, and FIG. 2B is a vertical perspective view of a bearing manufactured from the sintered body.

【図3】 本発明の第1実施形態の製造方法を説明する
ための金型の断面図である。
FIG. 3 is a cross-sectional view of a mold for explaining the manufacturing method according to the first embodiment of the present invention.

【図4】 (a)は図2(b)のA−A’線断面図、
(b)は図2(b)のB−B’線断面図である。
FIG. 4A is a sectional view taken along line AA ′ of FIG. 2B;
FIG. 2B is a sectional view taken along line BB ′ of FIG.

【図5】 本発明の第1実施形態の変形例の軸受の縦割
り斜視図である。
FIG. 5 is a vertical perspective view of a bearing according to a modified example of the first embodiment of the present invention.

【図6】 本発明の第2実施形態に係る焼結体の平面図
である。
FIG. 6 is a plan view of a sintered body according to a second embodiment of the present invention.

【図7】 (a)は本発明の第2実施形態に係る焼結体
の縦割り斜視図、(b)はその焼結体から製造した軸受
の縦割り斜視図である。
FIG. 7A is a vertical perspective view of a sintered body according to a second embodiment of the present invention, and FIG. 7B is a vertical perspective view of a bearing manufactured from the sintered body.

【図8】 本発明の第2実施形態の製造方法を説明する
ための金型の断面図である。
FIG. 8 is a cross-sectional view of a mold for explaining a manufacturing method according to a second embodiment of the present invention.

【図9】 本発明の第3実施形態に係る焼結体の平面図
である。
FIG. 9 is a plan view of a sintered body according to a third embodiment of the present invention.

【図10】(a)は本発明の第3実施形態に係る焼結体
の縦割り斜視図、(b)はその焼結体から製造した軸受
の縦割り斜視図である。
10A is a vertical perspective view of a sintered body according to a third embodiment of the present invention, and FIG. 10B is a vertical perspective view of a bearing manufactured from the sintered body.

【図11】本発明の第3実施形態の製造方法を説明する
ための金型の断面図である。
FIG. 11 is a cross-sectional view of a mold for explaining a manufacturing method according to a third embodiment of the present invention.

【図12】(a)は図10(b)のA−A’線断面図、
(b)は図10(b)のB−B’線断面図である。
12A is a sectional view taken along line AA ′ of FIG.
FIG. 11B is a sectional view taken along line BB ′ of FIG.

【図13】本発明の第4実施形態に係る焼結体の平面図
である。
FIG. 13 is a plan view of a sintered body according to a fourth embodiment of the present invention.

【図14】(a)は本発明の第4実施形態に係る焼結体
の縦割り斜視図、(b)はその焼結体から製造した軸受
の縦割り斜視図である。
FIG. 14A is a vertical perspective view of a sintered body according to a fourth embodiment of the present invention, and FIG. 14B is a vertical perspective view of a bearing manufactured from the sintered body.

【図15】本発明の第4実施形態の製造方法を説明する
ための金型の断面図である。
FIG. 15 is a sectional view of a metal mold for explaining a manufacturing method according to a fourth embodiment of the present invention.

【図16】本発明に係る動圧発生凹部の断面形態の変形
例を示す断面図である。
FIG. 16 is a sectional view showing a modification of the sectional form of the dynamic pressure generating concave portion according to the present invention.

【符号の説明】[Explanation of symbols]

1,1A…金型、3,3A…上パンチ、4,4A…下パ
ンチ、6…キャビティ、10,20,30,40…焼結
体、10A,20A,30A,40A…焼結含油軸受、
11,21,31,41…凸条(凸部)、12,22,
32,42,52…内周面、13,23,33,43…
溝状凹部、14,24,34,44…動圧発生凹部、1
4a…縁部、15…移行部。
1, 1A: die, 3, 3A: upper punch, 4, 4A: lower punch, 6: cavity, 10, 20, 30, 40: sintered body, 10A, 20A, 30A, 40A: sintered oil-impregnated bearing,
11, 21, 31, 41 ... ridges (projections), 12, 22,
32, 42, 52 ... inner peripheral surface, 13, 23, 33, 43 ...
Groove-shaped concave portions, 14, 24, 34, 44 ... dynamic pressure generating concave portions, 1
4a: rim, 15: transition.

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 筒状の焼結体の内周面に動圧発生凹部が
形成された焼結含油軸受であって、 前記動圧発生凹部の軸線方向長さ、深さおよび密度のう
ちの少なくとも一つが円周方向に沿ってみた場合に変化
していることを特徴とする焼結含油軸受。
1. A sintered oil-impregnated bearing in which a dynamic pressure generating concave portion is formed on an inner peripheral surface of a cylindrical sintered body, wherein the dynamic pressure generating concave portion has an axial length, a depth and a density. A sintered oil-impregnated bearing characterized in that at least one of them changes when viewed along the circumferential direction.
【請求項2】 前記動圧発生凹部は、多角形状、矩形状
あるいは円形状等に形成され、かつ前記内周面において
閉塞していることを特徴とする請求項1に記載の焼結含
油軸受。
2. The sintered oil-impregnated bearing according to claim 1, wherein the dynamic pressure generating recess is formed in a polygonal shape, a rectangular shape, a circular shape, or the like, and is closed on the inner peripheral surface. .
【請求項3】 前記動圧発生凹部は、多角形状、矩形状
あるいは円形状等に形成され、かつ当該軸受の端面に開
口していることを特徴とする請求項1に記載の焼結含油
軸受。
3. The sintered oil-impregnated bearing according to claim 1, wherein the dynamic pressure generating recess is formed in a polygonal shape, a rectangular shape, a circular shape, or the like, and is opened at an end face of the bearing. .
【請求項4】 前記動圧発生凹部の縁部から前記内周面
に至る移行部の密度が、他の部分の密度よりも高くなっ
ていることを特徴とする請求項1〜3のいずれかに記載
の焼結含油軸受。
4. The density of a transition portion from the edge of the dynamic pressure generating recess to the inner peripheral surface is higher than the density of the other portion. 2. The sintered oil-impregnated bearing according to item 1.
【請求項5】 前記動圧発生凹部の底部の密度が、他の
部分の密度よりも低くなっていることを特徴とする請求
項1〜4のいずれかに記載の焼結含油軸受。
5. The sintered oil-impregnated bearing according to claim 1, wherein a density of a bottom portion of the dynamic pressure generating concave portion is lower than a density of other portions.
【請求項6】 金型のキャビティに配置した筒状の焼結
体を、パンチにより軸線方向に圧縮してその内周面に動
圧発生凹部を形成する焼結含油軸受の製造方法であっ
て、 前記焼結体の内周面に、略軸線方向に延在する溝状凹部
を形成し、 前記焼結体の両端面の少なくとも前記溝状凹部に対応す
る位置と、前記パンチにおける前記焼結体の両端面に接
触する端面の少なくとも前記溝状凹部に対応する位置の
うちの、少なくともいずれか一方に、軸線方向に突出す
る凸部を設け、 次いで、前記パンチにより前記焼結体を軸線方向に圧縮
して前記凸部により焼結体の内周面における前記溝状凹
部の周囲を塑性流動させるに伴わせ、この溝状凹部の両
端側の幅を縮小させるかもしくは消失させることによ
り、同凹部を動圧発生凹部として形成することを特徴と
する焼結含油軸受の製造方法。
6. A method for producing a sintered oil-impregnated bearing, wherein a cylindrical sintered body disposed in a cavity of a mold is axially compressed by a punch to form a dynamic pressure generating recess on an inner peripheral surface thereof. Forming a groove-shaped recess extending substantially in the axial direction on an inner peripheral surface of the sintered body; and positioning the sintering in the punch at a position corresponding to at least the groove-shaped recess on both end faces of the sintered body. At least one of the positions corresponding to the groove-shaped recesses on the end face that contacts both end faces of the body is provided with a protrusion that protrudes in the axial direction, and then the sintered body is axially moved by the punch. By causing the protrusions to plastically flow around the groove-shaped recesses on the inner peripheral surface of the sintered body by the protrusions, thereby reducing or eliminating the width of both ends of the groove-shaped recesses. Forming the recess as a dynamic pressure generating recess A method for producing a sintered oil-impregnated bearing.
JP24345197A 1997-08-25 1997-08-25 Method for producing sintered oil-impregnated bearing Expired - Fee Related JP3647008B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24345197A JP3647008B2 (en) 1997-08-25 1997-08-25 Method for producing sintered oil-impregnated bearing

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24345197A JP3647008B2 (en) 1997-08-25 1997-08-25 Method for producing sintered oil-impregnated bearing

Publications (2)

Publication Number Publication Date
JPH1162969A true JPH1162969A (en) 1999-03-05
JP3647008B2 JP3647008B2 (en) 2005-05-11

Family

ID=17104089

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24345197A Expired - Fee Related JP3647008B2 (en) 1997-08-25 1997-08-25 Method for producing sintered oil-impregnated bearing

Country Status (1)

Country Link
JP (1) JP3647008B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL1014457C2 (en) * 1999-02-24 2001-06-06 Ntn Toyo Bearing Co Ltd Sintered oil bearing and method of manufacturing it and spindle motor for information equipment.
JP2015055312A (en) * 2013-09-12 2015-03-23 Ntn株式会社 Fluid dynamic pressure bearing device, and inner member manufacturing method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL1014457C2 (en) * 1999-02-24 2001-06-06 Ntn Toyo Bearing Co Ltd Sintered oil bearing and method of manufacturing it and spindle motor for information equipment.
JP2015055312A (en) * 2013-09-12 2015-03-23 Ntn株式会社 Fluid dynamic pressure bearing device, and inner member manufacturing method

Also Published As

Publication number Publication date
JP3647008B2 (en) 2005-05-11

Similar Documents

Publication Publication Date Title
KR100951630B1 (en) Hydrodynamic bearing device
JP5674495B2 (en) Fluid dynamic bearing device
JPH1137156A (en) Manufacture of dynamic type oil-containing porous bearing
WO2018037822A1 (en) Dynamic pressure bearing and method for manufacturing same
JPH1046212A (en) Sintered oilless bearing and its manufacture
JP2004144205A (en) Dynamic pressure bearing device
JP4573349B2 (en) Manufacturing method of hydrodynamic bearing
JPH1162969A (en) Sintered oil retaining bearing and manufacture thereof
JP2006226398A (en) Bearing device and manufacturing method of bearing device
JP2850135B2 (en) Manufacturing method of hydrodynamic groove bearing
US20070292059A1 (en) Fluid Dynamic Bearing Apparatus
JP2006292161A (en) Bearing unit and production method therefor
JP3377681B2 (en) Sintered oil-impregnated bearing and its manufacturing method
JP3818626B2 (en) Method for producing sintered oil-impregnated bearing
JP3650972B2 (en) Motor case bearing support part press molding method
JP4141280B2 (en) Method for producing sintered oil-impregnated bearing
JPH1122731A (en) Porous composite bearing and manufacture thereof
WO2024057868A1 (en) Hydrodynamic bearing, hydrodynamic bearing device, and motor
JP3784690B2 (en) Dynamic pressure type porous oil-impregnated bearing and manufacturing method thereof
JPS5834684B2 (en) Multi-arc sliding bearing device
JP2001020956A (en) Manufacture method of bearing
JP2000240639A (en) Oil-impregnated sintered bearing and manufacture thereof
JP3578297B2 (en) Manufacturing method of bearings with internal groove
JP3620817B2 (en) Sintered oil-impregnated bearing
JP2001059106A (en) Manufacture of bearing

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20031201

A131 Notification of reasons for refusal

Effective date: 20031205

Free format text: JAPANESE INTERMEDIATE CODE: A131

A521 Written amendment

Effective date: 20040127

Free format text: JAPANESE INTERMEDIATE CODE: A523

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040218

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040812

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040819

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050207

A61 First payment of annual fees (during grant procedure)

Effective date: 20050207

Free format text: JAPANESE INTERMEDIATE CODE: A61

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 3

Free format text: PAYMENT UNTIL: 20080218

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090218

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 4

Free format text: PAYMENT UNTIL: 20090218

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 5

Free format text: PAYMENT UNTIL: 20100218

LAPS Cancellation because of no payment of annual fees