JPH1122731A - Porous composite bearing and manufacture thereof - Google Patents

Porous composite bearing and manufacture thereof

Info

Publication number
JPH1122731A
JPH1122731A JP18920797A JP18920797A JPH1122731A JP H1122731 A JPH1122731 A JP H1122731A JP 18920797 A JP18920797 A JP 18920797A JP 18920797 A JP18920797 A JP 18920797A JP H1122731 A JPH1122731 A JP H1122731A
Authority
JP
Japan
Prior art keywords
bearing
opening
closed
concave portion
porous composite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP18920797A
Other languages
Japanese (ja)
Other versions
JP3620814B2 (en
Inventor
Motohiro Miyasaka
元博 宮坂
Makoto Kondo
近藤  誠
Shigeru Otsuka
茂 大塚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Corp
Original Assignee
Hitachi Powdered Metals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Powdered Metals Co Ltd filed Critical Hitachi Powdered Metals Co Ltd
Priority to JP18920797A priority Critical patent/JP3620814B2/en
Publication of JPH1122731A publication Critical patent/JPH1122731A/en
Application granted granted Critical
Publication of JP3620814B2 publication Critical patent/JP3620814B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Sliding-Contact Bearings (AREA)
  • Powder Metallurgy (AREA)

Abstract

PROBLEM TO BE SOLVED: To improve bearing performance by a method wherein a dynamic pressure is apt to be generated and the dynamic pressure is increased to a high value. SOLUTION: Two bearing bodies 10 and 20 made of a sintered alloy are axially joined together for combination such that bearing holes 13 and 23 in which a rotary shaft is inserted are continuously interconnected. Opening recessed parts 15 and 25 in a triangle shape opened to joints 11 and 21 are formed in both the inner peripheral surfaces 14 and 24 of bearing bodies 10 and 20. When the bearing bodies are joined together, the opening recessed parts 15 and 15 are mated together to form a triangular closed recessed part 4 in the inner peripheral surface 3 of the whole of a bearing 1. The closed recessed part 4 has a sectional area gradually decreased in the rotation direction of the rotary shaft. By concentrating lubrication oil to an end part, a high dynamic pressure is always generated.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、回転軸を支持する
多孔質複合軸受に係り、特に、情報機器や音響映像機器
等に組み込まれるスピンドルモータ用軸受等の、比較的
高速で回転する回転軸を高精度で支持するのに好適な多
孔質複合軸受に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a porous composite bearing for supporting a rotary shaft, and more particularly to a rotary shaft rotating at a relatively high speed, such as a bearing for a spindle motor incorporated in information equipment, audio-visual equipment, and the like. The present invention relates to a porous composite bearing which is suitable for supporting the bearing with high accuracy.

【0002】[0002]

【従来の技術】回転軸を支持する軸受にあっては、回転
軸との摺動による摩擦発生に伴って騒音や振動が起こる
が、特に、上記スピンドルモータ用軸受等の比較的高速
で回転する回転軸を高精度で支持する場合には、騒音や
振動を極力抑える必要が生じてくる。そのような軸受と
しては、(1)内周面に周方向に延びる複数の溝を形成
して摩擦抵抗の低減を図ったもの、がある。この軸受は
多孔質材である含油焼結合金からなり、溝内に溜まった
潤滑油が回転軸の回転に伴い摺動面に供給されて油膜が
形成される。この油膜形成作用と、溝が形成されたこと
による摩擦面積の減少とが相まって、摩擦抵抗が低減し
騒音や振動が抑えられる。
2. Description of the Related Art In a bearing for supporting a rotary shaft, noise and vibration are generated due to friction generated by sliding with the rotary shaft. In particular, the bearing such as the spindle motor bearing described above rotates at a relatively high speed. When the rotating shaft is supported with high precision, it is necessary to minimize noise and vibration. As such a bearing, there is (1) one in which a plurality of grooves extending in the circumferential direction are formed on an inner peripheral surface to reduce frictional resistance. This bearing is made of an oil-impregnated sintered alloy that is a porous material, and lubricating oil accumulated in the groove is supplied to the sliding surface with the rotation of the rotating shaft to form an oil film. This oil film forming action and the reduction of the friction area due to the formation of the groove are combined, so that the frictional resistance is reduced, and noise and vibration are suppressed.

【0003】このように、多孔質である焼結合金からな
り、その内周面に溝を形成して溝内の潤滑油を効果的に
流動させることにより摩擦抵抗の低減を図る軸受として
は、例えば、(2)溝を螺旋状として回転軸の回転に伴
い潤滑油を軸受の内方に導くもの、(3)螺旋状の溝の
一端が端面に開口し、閉塞した他端方向に向けて潤滑油
を流動させるもの、(4)溝を内周面の展開形状がV字
状となるようにして潤滑油を軸受の軸線方向中央部に集
中させるもの、等がある。
[0003] As described above, a bearing made of a porous sintered alloy, having a groove formed in the inner peripheral surface thereof and effectively reducing the frictional resistance by effectively flowing the lubricating oil in the groove, includes: For example, (2) a groove having a spiral shape to guide lubricating oil inward of the bearing with the rotation of the rotating shaft; (3) one end of the spiral groove is open at the end face and is directed toward the closed other end. And (4) a groove in which the developed shape of the inner peripheral surface is V-shaped so that the lubricating oil is concentrated at the center of the bearing in the axial direction.

【0004】[0004]

【発明が解決しようとする課題】ところで、上記のよう
な軸受は、回転軸が回転して溝内にある潤滑油が流動す
るに伴い、その潤滑油の圧力が高まっていわゆる動圧が
発生し、その動圧によって回転軸の荷重の一部を支持す
る作用が働くものである。このような動圧軸受は動圧が
高ければ高いほど軸受としての剛性が向上するものであ
るが、焼結合金製の軸受にあっては、多孔質ゆえに潤滑
油が漏出して動圧が上昇しにくく、大きな動圧が得られ
にくいといった特性がある。そこで、動圧を確保するた
めに潤滑油が溜まる溝の形態が重要となってくるわけで
あるが、上記の(1),(2),(3)のような溝は、
両端が軸受の端面に開口しているので、潤滑油の圧力が
高まってもすぐに開口側すなわち低圧側の端部方向に圧
力がリークしてしまい、十分な動圧が得られない。前述
した(4)のV字状の溝の場合は、溝の屈曲部へ潤滑油
が集中するので動圧が生じやすい。しかしながら、V字
状溝を形成する場合には金型成形では困難なので、焼結
後に、その焼結体に切削や転造による後加工を施す必要
が生じる。焼結品はこのような後加工を必要としないか
らコストダウンが図れるという点が大きな長所であるに
もかかわらず、後加工を要するということは、焼結で製
造する意味が薄れ、コストの上昇を招く。
However, in the above-described bearing, as the rotating shaft rotates and the lubricating oil in the groove flows, the pressure of the lubricating oil increases and so-called dynamic pressure is generated. The dynamic pressure acts to support a part of the load on the rotating shaft. In such a dynamic pressure bearing, the higher the dynamic pressure, the higher the rigidity of the bearing.However, in the case of a sintered alloy bearing, the lubricating oil leaks due to the porosity, and the dynamic pressure increases. And it is difficult to obtain a large dynamic pressure. Therefore, the shape of the groove in which the lubricating oil accumulates becomes important in order to secure the dynamic pressure. However, the grooves such as (1), (2), and (3) above are
Since both ends are open to the end face of the bearing, even if the pressure of the lubricating oil increases, the pressure leaks immediately on the opening side, that is, toward the end on the low pressure side, and a sufficient dynamic pressure cannot be obtained. In the case of the V-shaped groove described in (4) above, the lubricating oil concentrates on the bent portion of the groove, so that dynamic pressure is easily generated. However, in the case of forming a V-shaped groove, it is difficult to mold the die, so that after sintering, the sintered body needs to be subjected to post-processing by cutting or rolling. Although sintered products do not require such post-processing, they have the major advantage that they can reduce costs.However, the need for post-processing reduces the meaning of manufacturing by sintering and increases costs. Invite.

【0005】一方、、溝の縦断面形状としては、例え
ば、周方向に沿った溝の深さが回転軸の回転方向に向か
うにしたがい漸次浅くなり、その先端が内周面になだら
かに連続するくさび状の形状も考えられる。しかしなが
ら、この場合には、高い動圧が得られるものの、その溝
は両端が内周面内で閉塞するので、前述のように金型成
形法では形成しづらく、後加工に頼らざるを得ない。
On the other hand, as for the longitudinal cross-sectional shape of the groove, for example, the depth of the groove along the circumferential direction becomes gradually shallower in the direction of rotation of the rotating shaft, and its tip smoothly continues to the inner peripheral surface. Wedge-shaped shapes are also conceivable. However, in this case, although a high dynamic pressure can be obtained, since the groove is closed at both ends in the inner peripheral surface, it is difficult to form the groove by the die molding method as described above, and it is necessary to rely on post-processing. .

【0006】なお、いわゆる「中膨らまし」と呼ばれる
内径を拡大させる技術では、端面に開口していない溝あ
るいは凹所が内周面に形成され得るが、これは回転軸と
の摺動面積を減少させたり同軸精度を上げたりといった
ことを目的とするもので、動圧はほとんど発生しない。
[0006] In the technique of enlarging the inner diameter, so-called "medium inflation", a groove or a recess which is not open at the end face can be formed on the inner peripheral face, but this reduces the sliding area with the rotating shaft. The purpose is to increase the coaxial accuracy and to increase the coaxial accuracy, and almost no dynamic pressure is generated.

【0007】したがって、本発明は、摩擦抵抗が低減し
て騒音や振動が抑制されるのはもちろんのこと、多孔質
でありながら動圧が発生しやすく、かつその動圧が大き
いものとなって軸受として剛性の向上が図られる多孔質
複合軸受およびその製造方法を提供することを目的とし
ている。
Therefore, according to the present invention, not only the frictional resistance is reduced and noise and vibration are suppressed, but also dynamic pressure is easily generated while being porous, and the dynamic pressure is large. It is an object of the present invention to provide a porous composite bearing whose rigidity is improved as a bearing and a method of manufacturing the same.

【0008】[0008]

【課題を解決するための手段】本発明の多孔質複合軸受
は、流体潤滑剤を含有した少なくとも2つ以上の多孔質
軸受体が、互いに連続する状態で軸方向に接合されるこ
とにより組み合わされてなり、互いに接合される前記軸
受体のうちの少なくとも一つの軸受内周面に、少なくと
も一方の端面側接合面に開口する開口凹部が形成される
ことにより、組み合わされた軸受全体の内周面内におい
て回転方向に周縁が閉塞された閉塞凹部が形成されてい
ることを特徴としている。この多孔質複合軸受にあって
は、一つの軸受体の内周面にのみ開口凹部が形成されて
いる場合には、その開口凹部は接合面に開口しているの
で、軸受体を加圧成形する際にその開口凹部の形状の自
由度が高く、かつその開口凹部を容易に形成することが
できる。軸受体を接合して軸受としたときに、開口凹部
は、開口凹部が形成されていない軸受体の接合面により
開口が閉じられ、したがって開口凹部は閉塞凹部とな
る。閉塞凹部に供給された潤滑油は逃げ場がなくなるか
ら動圧が発生しやすく、軸受としての剛性が向上する。
A porous composite bearing according to the present invention is assembled by joining at least two or more porous bearing bodies containing a fluid lubricant in an axial direction so as to be continuous with each other. An inner peripheral surface of at least one of the bearing bodies joined to each other is formed with an opening recessed at at least one end surface side joining surface, thereby forming an inner peripheral surface of the entire combined bearing. It is characterized in that a closed recess whose peripheral edge is closed in the rotation direction is formed in the inside. In the case of this porous composite bearing, when an opening recess is formed only on the inner peripheral surface of one bearing body, the opening recess is open to the joint surface, so that the bearing body is pressure molded. In this case, the degree of freedom of the shape of the opening concave portion is high, and the opening concave portion can be easily formed. When the bearing body is joined to form a bearing, the opening of the opening recess is closed by the joint surface of the bearing body where the opening recess is not formed, so that the opening recess becomes a closed recess. Since the lubricating oil supplied to the closed recess has no escape area, dynamic pressure is easily generated, and the rigidity of the bearing is improved.

【0009】ここで、上記開口凹部を、互いに接合され
る双方の軸受体の内周面にそれぞれ形成しておき、これ
ら開口凹部の開口を突き合わせることによっても閉塞凹
部を形成することができる。一つの軸受体にのみ開口凹
部を形成した場合にはその開口凹部がそのまま閉塞凹部
となるが、双方の開口凹部を組み合わせることで、閉塞
凹部の形状の自由度がさらに高まる。また、開口凹部が
軸方向に貫通して両端接合面に開口している場合は、開
口量の大きい接合面側を突き合わせることにより、同様
の効果が得られる。また、閉塞凹部の縦断面積を、回転
軸の回転方向に向かうにしたがって幅を狭くしたり深さ
を浅くしたりして変化させると、断面積が小さくなった
側がくさび状の隙間となるので、高い動圧が速やかに発
生し、特に回転軸の初期起動時においても安定した軸支
持作用が発揮される。また、各軸受体の通気度および/
または気孔率を異ならせると、通気度および/または気
孔率が小さい方へ潤滑剤が毛細管力により移動するの
で、その移動側に厳しい条件となる軸受部分を設定する
ことにより、全体として長寿命化が図られる。
Here, it is also possible to form the closed recesses by forming the open recesses on the inner peripheral surfaces of the two bearing bodies joined to each other, and abutting the openings of these open recesses. When the opening recess is formed in only one bearing body, the opening recess becomes the closing recess as it is. By combining both the opening recesses, the degree of freedom of the shape of the closing recess is further increased. In the case where the opening recess penetrates in the axial direction and opens at the joint surfaces at both ends, the same effect can be obtained by abutting the joint surfaces having a large opening amount. Also, if the longitudinal cross-sectional area of the closed recess is changed by decreasing the width or decreasing the depth toward the rotation direction of the rotating shaft, the side with the reduced cross-sectional area becomes a wedge-shaped gap, A high dynamic pressure is quickly generated, and a stable shaft supporting action is exhibited, especially at the initial startup of the rotating shaft. In addition, the air permeability of each bearing body and / or
Alternatively, if the porosity is made different, the lubricant moves by capillary force to the smaller air permeability and / or porosity. Therefore, by setting a bearing portion, which is a severe condition, on the moving side, the overall life is extended. Is achieved.

【0010】また、少なくとも一つの軸受体内周面の接
合面側に、開口凹部よりも深い逃げ凹部を形成しておく
と、この逃げ凹部から常に閉塞凹部に潤滑剤が供給さ
れ、潤滑作用が維持される。このように、潤滑油の供給
を積極的に行う手段としては、例えば、軸受内径を異な
らせ、より小径側に潤滑剤が供給されるようにすれば、
含有潤滑剤が有効に活用されて長寿命化が図られる。ま
た、荷重が高い側の軸受内径および軸の外径を大きく形
成すれば、摺動面にかかる面圧を下げることができる。
また、閉塞凹部の内面を他の部分よりも高密度とするこ
とにより、動圧のリークが抑制されて高い動圧が保持さ
れる。さらに、開口凹部側の接合面に軸方向に突出する
凸部を予め形成しておき、この凸部を再圧縮時に加圧す
ることにより軸受体どうしを密着させた構成とすると、
閉塞凹部の接合部が高密度化して境界部からの動圧のリ
ークが抑制される。
Further, when a clearance recess deeper than the opening recess is formed on at least one joint surface of the inner circumferential surface of the bearing, lubricant is always supplied from the clearance recess to the closing recess, and the lubricating action is maintained. Is done. In this way, as means for positively supplying the lubricating oil, for example, if the bearing inner diameter is changed so that the lubricant is supplied to the smaller diameter side,
The contained lubricant is used effectively to extend the life. If the inner diameter of the bearing and the outer diameter of the shaft on the side where the load is high are made large, the surface pressure applied to the sliding surface can be reduced.
Further, by making the inner surface of the closed concave portion higher in density than the other portions, the leakage of the dynamic pressure is suppressed, and the high dynamic pressure is held. Furthermore, if a convex portion protruding in the axial direction is formed in advance on the joint surface on the side of the opening concave portion, and the convex portions are pressurized at the time of recompression, the bearing bodies are brought into close contact with each other,
The density of the joints of the closed recesses is increased, and the leakage of dynamic pressure from the boundary is suppressed.

【0011】また、本発明は、上記多孔質複合軸受の製
造方法として、多孔質材料により前記各軸受体を成形
し、次いで、これら軸受体を連続させた状態で接合面ど
うしを合わせて再圧縮し、この再圧縮時に、各軸受体を
軸線方向に加圧して互いに密着させるとともに、閉塞凹
部を形成することを特徴としている。この製造方法によ
り、内周面内において完全に、もしくは一部が閉塞する
閉塞凹部を有する多孔質複合軸受を容易に製造すること
ができる。また、開口凹部側の接合面に軸方向に突出す
る凸部を予め形成しておき、この凸部を、前記再圧縮時
に加圧することにより軸受体どうしを密着させると、閉
塞凹部の接合部が高密度化して境界部からの動圧のリー
クが抑制される。さらに、閉塞凹部の加工代を大きくと
ってこの閉塞凹部の内面の密度を高くすれば、加工度が
高くなることにより通気度および/または気孔率が小さ
くなって動圧のリークが抑制され、いっそう大きな動圧
が保持される。
Further, the present invention provides a method of manufacturing the above-mentioned porous composite bearing, in which each of the above-mentioned bearing bodies is formed from a porous material, and then the bearing surfaces are joined together in a state where these bearing bodies are continuous to be recompressed. At the time of the recompression, each of the bearing bodies is pressurized in the axial direction so as to be closely adhered to each other, and a closed recess is formed. According to this manufacturing method, a porous composite bearing having a closed concave portion that is completely or partially closed in the inner peripheral surface can be easily manufactured. In addition, a convex portion projecting in the axial direction is formed in advance on the joint surface on the side of the opening concave portion, and the convex portion is pressurized at the time of the recompression to bring the bearing bodies into close contact with each other. The density is increased and the leakage of dynamic pressure from the boundary is suppressed. Furthermore, if the processing allowance of the closed concave portion is increased to increase the density of the inner surface of the closed concave portion, the degree of processing is increased, whereby the air permeability and / or the porosity is reduced, and the leakage of the dynamic pressure is suppressed. Large dynamic pressure is maintained.

【0012】[0012]

【発明の実施の形態】(1)第1の実施形態 以下、図面を参照して本発明の第1の実施形態について
説明する。図1は、第1の実施形態の軸受1を径方向に
縦に割った状態を示しており、この軸受1は、軸方向を
分割する第1,第2の軸受体10,20が組み合わされ
て構成されている。各軸受体10,20は多孔質体であ
る焼結合金製であり、これは、まず原料粉末を成形金型
で加圧成形して圧粉体を成形し、次いでこの圧粉体を焼
結することで得る。そして、これら2つの軸受体10,
20を再圧縮(サイジング)工程において軸方向に加圧
し、両者を接合させて軸受1を得る。なお、この第1の
実施形態のみならず、以下に説明する各実施形態の軸受
すべてが、焼結合金製の複数の軸受体を軸方向に接合し
てなるもので、その都度の説明は省略する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS (1) First Embodiment Hereinafter, a first embodiment of the present invention will be described with reference to the drawings. FIG. 1 shows a state in which the bearing 1 of the first embodiment is split vertically in the radial direction. This bearing 1 is composed of first and second bearing bodies 10 and 20 that divide the axial direction. It is configured. Each of the bearing bodies 10 and 20 is made of a sintered alloy which is a porous body. First, a raw material powder is pressed and molded by a molding die to form a green compact, and then the green compact is sintered. You get by doing. And these two bearing bodies 10,
20 is pressed in the axial direction in a recompression (sizing) step, and the two are joined to obtain the bearing 1. In addition, not only the first embodiment but also all the bearings of each embodiment described below are formed by joining a plurality of bearing bodies made of a sintered alloy in the axial direction. I do.

【0013】さて、第1,第2の軸受体10,20は、
いずれもリング状に形成されたもので、互いの接合面1
1,21には、互いに嵌合する段部12,22が形成さ
れている。これら段部12,22の嵌合により、両者が
確実に結合される。また、これら軸受体10,20の軸
受孔13,23の内周面14,24には、直角三角形状
の複数(図では1つのみ示す)の開口凹部15,25が
周方向にバランスよく形成されている。これら開口凹部
15,25は、直角をなす辺部の一方が接合面11,2
1に開口し、他の辺部は軸方向に延在している。これら
開口凹部15,25は、圧粉体成形時に予め形成されて
いる。圧粉体の成形に際しては、外周面に開口凹部15
(25)の形状に合致した凸部を有するコアを使用する
が、開口凹部15(25)が軸方向へ向けて開口してい
るので、成形用の下パンチをダイスおよびコアに対して
上方へ相対移動させるだけで圧粉体を金型から取り出す
ことができる。また、各開口凹部15,25の径方向に
沿った断面形状は、図2に示すように、周方向中央がも
っとも深く、周方向両端に向かうにしたがって漸次浅く
なり、なだらかに内周面14,24に連続するような谷
型となっている。そして、これら各軸受体10,20
は、段部12,22どうしが嵌合され、かつ接合面1
1,21どうしが密着されて軸受1に組み立てられる。
軸受1とされた状態で、各軸受体10,20の軸受孔1
3,23は同軸的に連続し、さらに、開口凹部15,2
5が合体されて、軸受1全体の軸受孔2の内周面3内に
おいて周縁が閉塞する複数の三角形状の閉塞凹部4が、
周方向にバランスよく形成されている。なお、閉塞凹部
4すなわち開口凹部15,25の断面は、図3のよう
に、周方向の一方側(図中右側)に向かうにしたがって
漸次浅くなる形状であってもよい。
The first and second bearing bodies 10 and 20 are
Each of them is formed in a ring shape and has a joint surface 1
Step parts 12 and 22 which fit each other are formed in 1 and 21. The fitting of these steps 12, 22 ensures that they are connected. In addition, a plurality (only one is shown in the figure) of a right-angled triangular opening concave portion 15, 25 is formed in the inner peripheral surfaces 14, 24 of the bearing holes 13, 23 of these bearing bodies 10, 20 with good balance in the circumferential direction. Have been. One of the right-angled sides of each of the opening concave portions 15 and 25 has a joint surface 11 or 2.
1 and the other side extends in the axial direction. These opening concave portions 15 and 25 are formed in advance at the time of compacting. When molding the green compact, the opening recess 15 is formed on the outer peripheral surface.
A core having a convex portion conforming to the shape of (25) is used, but since the opening concave portion 15 (25) is open in the axial direction, the lower punch for molding is moved upward with respect to the die and the core. The green compact can be taken out of the mold simply by moving it relatively. As shown in FIG. 2, the cross-sectional shape of each of the opening recesses 15 and 25 in the radial direction is deepest at the center in the circumferential direction, gradually becomes shallower toward both ends in the circumferential direction, and gradually becomes smaller. It has a valley shape that continues to 24. And, each of these bearing bodies 10, 20
Means that the step portions 12 and 22 are fitted together and the joining surface 1
The bearings 1 and 21 are brought into close contact with each other and assembled into the bearing 1.
In the state where the bearing 1 is used, the bearing holes 1 of the bearing bodies 10 and 20 are formed.
3, 23 are coaxially continuous, and furthermore, the opening recesses 15, 2
5, a plurality of triangular closing recesses 4 whose peripheral edges are closed in the inner peripheral surface 3 of the bearing hole 2 of the entire bearing 1,
It is formed with good balance in the circumferential direction. Note that the cross section of the closed concave portion 4, that is, the open concave portions 15 and 25 may have a shape that gradually becomes shallower toward one side (right side in the figure) in the circumferential direction as shown in FIG.

【0014】図4および図5は、上記第1の実施形態の
変形例を示している。図4に示すように、第1の軸受体
10の接合面11における内周側に、さらに周凸条16
が形成されている。また、段部12,22の外周側の対
向面12a,22aには、互いに噛み合う位置決め用の
凹凸部(図示略)が形成されている。第1,第2の軸受
体10,20を接合させるときには、これら凹凸部を噛
み合わせることにより開口凹部15,25どうしの位置
決めがなされる。第1,第2の軸受体10,20を接合
する際には、第1の軸受体10の周凸条16を大きく塑
性変形させてつぶし、図5に示す軸受1を得る。これに
よって接合部分が高密度となり、接合部における境界部
からの動圧のリークが抑制されて動圧がさらに高くな
り、軸受性能が向上する。
FIGS. 4 and 5 show a modification of the first embodiment. As shown in FIG. 4, on the inner peripheral side of the joint surface 11 of the first bearing body 10, a circumferential ridge 16 is further provided.
Are formed. In addition, concave and convex portions (not shown) for positioning that mesh with each other are formed on the opposing surfaces 12a and 22a on the outer peripheral side of the step portions 12 and 22. When the first and second bearing bodies 10 and 20 are joined, the concave portions 15 and 25 are positioned by engaging these concave and convex portions. When the first and second bearing bodies 10 and 20 are joined, the circumferential ridge 16 of the first bearing body 10 is largely plastically deformed and crushed to obtain the bearing 1 shown in FIG. As a result, the joint portion has a high density, the leakage of the dynamic pressure from the boundary at the joint portion is suppressed, the dynamic pressure further increases, and the bearing performance is improved.

【0015】次に、軸受孔内周面に形成される閉塞凹部
の形状を変えた第2〜第4の実施形態を説明する。これ
ら各実施形態では、第1,第2の軸受体10,20を接
合する点において、上記第1の実施形態と同様である。
Next, second to fourth embodiments in which the shape of the closed recess formed on the inner peripheral surface of the bearing hole is changed will be described. These embodiments are the same as the first embodiment in that the first and second bearing bodies 10 and 20 are joined.

【0016】(2)第2の実施形態 図6に示す第2の実施形態の軸受1においては、第1,
第2の軸受体10,20の内周面14,24に、接合面
11,21に開口する短い螺旋溝状の複数(図では1つ
のみ示す)の開口凹部15,25が、それぞれバランス
よく形成されている。そして、各軸受体10,20が接
合されて開口凹部15,25の開口が互いに突き合わさ
れることにより、V字状の複数の閉塞凹部4が周方向に
バランスよく形成されている。開口凹部15,25の径
方向に沿った断面形状は、図7に示すように矩形状であ
って、深さはほぼ均一である。なお、その深さは、周方
向両端に向かって浅くなるような不均一であってもよ
い。この軸受1の圧粉体の成形に際しても、外周面に開
口凹部15(25)の形状に合致した凸部を有するコア
を使用するが、開口凹部15(25)が軸方向へ向けて
螺旋状をなしているので、はすば歯車を成形する場合と
同様に成形用の下パンチをダイスおよびコアに対して上
方へ相対移動させると同時に、コアを開口凹部15(2
5)に沿って回転させることにより、圧粉体を金型から
取り出すことができる。
(2) Second Embodiment In the bearing 1 of the second embodiment shown in FIG.
A plurality of (only one is shown in the figure) short recesses 15 and 25 in the form of short helical grooves are formed on the inner peripheral surfaces 14 and 24 of the second bearing bodies 10 and 20, respectively, in the joint surfaces 11 and 21 with good balance. Is formed. Each of the bearing bodies 10 and 20 is joined, and the openings of the opening recesses 15 and 25 abut against each other, so that a plurality of V-shaped closing recesses 4 are formed in a circumferential direction with good balance. The cross-sectional shape along the radial direction of the opening concave portions 15 and 25 is rectangular as shown in FIG. 7, and the depth is substantially uniform. Note that the depth may be non-uniform such that the depth decreases toward both ends in the circumferential direction. When the green compact of the bearing 1 is formed, a core having a convex portion conforming to the shape of the opening concave portion 15 (25) is used on the outer peripheral surface, but the opening concave portion 15 (25) is spirally formed in the axial direction. The lower punch for forming is relatively moved upward with respect to the die and the core as in the case of forming the helical gear, and at the same time, the core is opened.
The green compact can be taken out of the mold by rotating along 5).

【0017】(3)第3の実施形態 図8に示す第3の実施形態の軸受1においては、第1、
第2の軸受体10,20の内周面14,24に、接合面
11,21に開口する直角三角形状の複数の開口凹部1
5,25が、それぞれ周方向にバランスよく形成されて
いる。これら開口凹部15,25は、開口側の底辺部に
直交する辺部が軸方向に沿っている。そして、各軸受体
10,20が接合されて開口凹部15,25が合体され
ることにより、軸受1全体の内周面3内において周縁が
閉塞した複数の閉塞凹部4が、周方向にバランスよく形
成されている。これら閉塞凹部4は、斜辺部どうし並び
に辺部どうしが平行で点対称をなし、軸方向の長さが一
定の平行四辺形状である。この形状の場合、回転軸の回
転に伴う閉塞凹部4の動圧効果が、正逆いずれの回転方
向であってもほぼ同様に発揮され、適用自由度が広が
る。
(3) Third Embodiment In the bearing 1 according to a third embodiment shown in FIG.
In the inner peripheral surfaces 14 and 24 of the second bearing bodies 10 and 20, a plurality of right-angled triangular opening recesses 1 opening to the joint surfaces 11 and 21.
5, 25 are formed in the circumferential direction with good balance. In these opening concave portions 15 and 25, sides orthogonal to the bottom side on the opening side are along the axial direction. When the bearings 10 and 20 are joined and the opening recesses 15 and 25 are united, a plurality of closed recesses 4 whose peripheral edges are closed in the inner peripheral surface 3 of the entire bearing 1 are balanced in the circumferential direction. Is formed. These closed recesses 4 are parallelograms in which the oblique sides and the sides are parallel and symmetric with respect to a point, and have a constant axial length. In the case of this shape, the dynamic pressure effect of the closed concave portion 4 accompanying the rotation of the rotating shaft is exerted in substantially the same manner in either the forward or reverse rotation direction, and the degree of freedom of application is increased.

【0018】(4)第4の実施形態 図9に示す第4の実施形態の軸受1においては、第1の
軸受体10の内周面14に、上記第3の実施形態と同様
の複数の開口凹部15が周方向にバランスよく形成さ
れ、一方、第2の軸受体20の内周面24には、上底部
および下底部が軸方向と平行な台形状の複数の開口凹部
25が、周方向にバランスよく形成されている。そし
て、各軸受体10,20が接合されて開口凹部15,2
5が合体されることにより、軸受1全体の内周面3内に
おいて周縁が閉塞した複数の閉塞凹部4が、周方向にバ
ランスよく形成されている。これら閉塞凹部4は、矢印
Aで示す周方向に向かうにしたがって軸方向長さが短く
なる台形状である。
(4) Fourth Embodiment In a bearing 1 according to a fourth embodiment shown in FIG. 9, a plurality of parts similar to those of the third embodiment are provided on an inner peripheral surface 14 of a first bearing body 10. The opening recess 15 is formed in the circumferential direction with good balance, while a plurality of trapezoidal opening recesses 25 whose upper and lower bottoms are parallel to the axial direction are formed on the inner peripheral surface 24 of the second bearing body 20. It is formed in a well-balanced direction. Then, the bearing bodies 10 and 20 are joined to form the opening recesses 15 and 2.
As a result, the closed recesses 4 whose peripheral edges are closed in the inner peripheral surface 3 of the entire bearing 1 are formed in the circumferential direction with good balance. These closed recesses 4 have a trapezoidal shape whose axial length becomes shorter as going in the circumferential direction indicated by arrow A.

【0019】さて、上記第1〜第4の実施形態の各軸受
1にあっては、軸受1を構成する第1,第2の軸受体1
0,20にそれぞれ形成された開口凹部15,25が接
合面11,21に開口しているので、軸受体10,20
を圧粉体として加圧成形する際にその開口凹部15,2
5を容易に形成することができる。そして、これら開口
凹部15,25を合体させることにより、軸受1全体の
内周面3内において閉塞する閉塞凹部4を容易に形成す
ることが可能となる。軸受1が使用される際には潤滑油
が含浸されるが、閉塞凹部4に浸潤して供給された潤滑
油は逃げ場がなくなり、したがって動圧が発生しやす
く、軸受としての剛性が向上する。また、各軸受体1
0,20に開口凹部15,25を形成し、これらを合体
させるので、閉塞凹部4の形状の自由度が高まる。ま
た、特に第1,第2および第3の実施形態の場合、閉塞
凹部4の断面積が回転軸の回転方向に向かうにしたがっ
て漸次小さくなって端部側がくさび状の隙間となるの
で、高い動圧が速やかに発生し、特に回転軸の初期起動
時においても安定した軸支持作用が発揮される。また、
第1の実施形態の図2に示した閉塞凹部4は、周方向の
両方がくさび状の隙間となるので、正逆いずれの回転方
向にも有効に対応する。
Now, in each of the bearings 1 of the first to fourth embodiments, the first and second bearing bodies 1 constituting the bearing 1 are described.
The opening recesses 15 and 25 formed in the bearing bodies 10 and 20 are formed in the joining surfaces 11 and 21 respectively.
Of the opening recesses 15 and 2 when the
5 can be easily formed. Then, by combining these opening concave portions 15 and 25, it is possible to easily form the closed concave portion 4 that closes in the inner peripheral surface 3 of the entire bearing 1. When the bearing 1 is used, the lubricating oil is impregnated. However, the lubricating oil supplied by infiltrating the closed concave portion 4 has no escape area, and therefore dynamic pressure is easily generated, and the rigidity of the bearing is improved. In addition, each bearing body 1
Since the opening recesses 15 and 25 are formed at 0 and 20 and they are united, the degree of freedom of the shape of the closing recess 4 is increased. In particular, in the case of the first, second, and third embodiments, the cross-sectional area of the closed recess 4 gradually decreases as it goes in the direction of rotation of the rotating shaft, and the end side becomes a wedge-shaped gap. The pressure is quickly generated, and a stable shaft supporting action is exhibited, especially at the time of initial startup of the rotating shaft. Also,
Since the closed concave portion 4 of the first embodiment shown in FIG. 2 has a wedge-shaped gap in both circumferential directions, it effectively corresponds to both forward and reverse rotational directions.

【0020】さらに、図5に示した第1の実施形態の変
形例の軸受1の場合、接合部が高密度となっているの
で、前述の如く各軸受体10,20の境界部からの動圧
のリークが抑制されることに加え、閉塞凹部4の内面の
通気度や気孔率が小さくなり、より高圧側で潤滑油が軸
受内にしみ込み難い状態が得られるから、より高い動圧
が保持される。また、第4の実施形態のように閉塞凹部
4が台形状である場合、潤滑油が上底側(図9で左側)
に集中して高い動圧が発生するが、この部分が一方の軸
受体20側にずれているので、接合部における境界部か
らの動圧のリークが少なくなり、高い動圧が得られて軸
受性能の向上が図られる。また、下底側へ回転軸が回転
すると潤滑油の集中度は下がるが、接合部近傍で動圧は
上下にバランスよく発生する。この下底側には実質的に
もっとも負荷がかかるので、発生する動圧によって回転
軸は高精度で支持される。
Further, in the case of the bearing 1 of the modified example of the first embodiment shown in FIG. 5, since the joints have a high density, the movement from the boundary between the bearing bodies 10, 20 as described above. In addition to suppressing the pressure leakage, the air permeability and the porosity of the inner surface of the closed concave portion 4 are reduced, and a state in which the lubricating oil hardly permeates into the bearing on the higher pressure side is obtained. Will be retained. Further, when the closed concave portion 4 has a trapezoidal shape as in the fourth embodiment, the lubricating oil is on the upper bottom side (left side in FIG. 9).
However, since this portion is shifted toward one bearing body 20, the leakage of the dynamic pressure from the boundary at the joint is reduced, and a high dynamic pressure is obtained. The performance is improved. Further, when the rotating shaft rotates toward the lower bottom, the concentration of the lubricating oil decreases, but the dynamic pressure is generated in a well-balanced manner in the vicinity of the joint. Since the lower bottom side is substantially subjected to the most load, the rotating shaft is supported with high precision by the generated dynamic pressure.

【0021】なお、第1,第2の軸受体10,20にお
ける開口凹部15,25の形状、開口凹部15,25の
合体による閉塞凹部4の形状もしくは合体のパターンは
任意であり、その例を図10および図11の展開図に示
す。図10(a)の場合は開口凹部15,25が三角形
状あるいは台形状、図10(b)は細い三角形状、図1
0(c)は異形状、図11は短い螺旋状である。また、
開口凹部15,25の断面形状も任意であり、その例を
図12(a)〜(d)に示す。図12で矢印Aは、回転
軸の回転方向の一例を示している。図13は、開口凹部
15,25の形状パターンのいくつかをさらに示してい
るが、この場合、開口凹部15,25を軸受体10,2
0の露出側端面にも開口させている。このように露出側
端面にも開口凹部15,25を開口させることにより、
閉塞凹部4へ外部から潤滑油を供給することができ、少
ない潤滑油量でも安定した動圧を得ることができる。ま
た、上記第1〜第4の実施形態において、接合部分の形
状に伴う第1,第2の軸受体10,20の組立パターン
は任意であり、図14(a)は接合面11,21の全面
を密着させた例、図14(b)は第1,第2の軸受体1
0,20の径方向の境界部の間に潤滑油を溜めるリング
状のチャンバー5を設けた例、図14(c)は第1の軸
受体10の軸受孔13に形成された大径部16内に第2
の軸受体20を収納した例である。
The shape of the opening recesses 15 and 25 in the first and second bearing bodies 10 and 20 and the shape or the pattern of the closing recess 4 formed by combining the opening recesses 15 and 25 are arbitrary. This is shown in the development views of FIG. 10 and FIG. In the case of FIG. 10A, the opening concave portions 15 and 25 are triangular or trapezoidal, and FIG. 10B is a thin triangular shape.
0 (c) is an irregular shape, and FIG. 11 is a short spiral shape. Also,
The sectional shapes of the opening concave portions 15 and 25 are also arbitrary, and examples thereof are shown in FIGS. In FIG. 12, an arrow A indicates an example of the rotation direction of the rotation shaft. FIG. 13 further shows some of the shape patterns of the opening recesses 15 and 25. In this case, the opening recesses 15 and 25 are connected to the bearing bodies 10 and 2 respectively.
Also, an opening is provided on the end surface of the exposed side of No. 0. In this manner, by opening the opening concave portions 15 and 25 also on the exposed side end surface,
Lubricating oil can be supplied to the closed recess 4 from the outside, and a stable dynamic pressure can be obtained even with a small amount of lubricating oil. In the first to fourth embodiments, the assembling pattern of the first and second bearing bodies 10 and 20 according to the shape of the joint portion is arbitrary, and FIG. FIG. 14B shows an example in which the entire surface is brought into close contact with the first and second bearing bodies 1.
FIG. 14C shows an example in which a ring-shaped chamber 5 for storing lubricating oil is provided between radial boundaries of 0 and 20. FIG. 14C shows a large-diameter portion 16 formed in a bearing hole 13 of the first bearing body 10. Second in
This is an example in which the bearing body 20 of FIG.

【0022】(5)第5の実施形態 次いで、本発明に係る第5の実施形態を、図15および
図16を参照して説明する。図15に示す第5の実施形
態の軸受1は、軸受孔13,23を有するリング状の第
1,第2の軸受体10,20が互いに接合されるととも
に、リング状の第3の軸受体30が、第1,第2の軸受
体10,20の外周面における境界部にまたがって接合
されたものである。第1,第2の軸受体10,20の内
周面14,24には、底辺部が接合面11,21に開口
する二等辺三角形状の複数(図では1つのみ示す)の開
口凹部15,25が、周方向にバランスよく形成されて
いる。これら開口凹部15,25の径方向に沿った断面
は、図16に示すように、周方向中央がもっとも深く、
周方向両端に向かうにしたがって漸次浅くなり、なだら
かに内周面14,24に連続する湾曲型に形成されてい
る。また、第1,第2の軸受体10,20の外周面にお
ける接合面11,21側の端縁には、周方向に沿った凹
段部17,27がそれぞれ形成されている。そして、第
1,第2の軸受体10,20が接合されて開口凹部1
5,25が合体され、さらに、双方の凹段部17,27
によって形成された溝部6に第3の軸受体30が接合さ
れて軸受1に組み立てられる。この軸受1全体の内周面
3には、開口凹部15,25の合体により、内周面3内
において周縁が閉塞した複数の閉塞凹部4が、周方向に
バランスよく形成されている。これら閉塞凹部4は、周
方向両端側に向かうにしたがって軸方向長さが縮小する
菱形状であり、正逆いずれの回転方向にも対応できる形
状となっている。
(5) Fifth Embodiment Next, a fifth embodiment according to the present invention will be described with reference to FIGS. In a bearing 1 according to a fifth embodiment shown in FIG. 15, ring-shaped first and second bearing bodies 10 and 20 having bearing holes 13 and 23 are joined to each other, and a ring-shaped third bearing body. Reference numeral 30 denotes a joint that extends across the boundary on the outer peripheral surfaces of the first and second bearing bodies 10 and 20. In the inner peripheral surfaces 14 and 24 of the first and second bearing bodies 10 and 20, a plurality of isosceles triangular (only one is shown in the figure) opening recesses 15 whose bases are open to the joining surfaces 11 and 21 are shown. , 25 are formed in the circumferential direction with good balance. As shown in FIG. 16, the cross section of the opening concave portions 15 and 25 along the radial direction is deepest at the center in the circumferential direction.
It gradually becomes shallower toward the both ends in the circumferential direction, and is formed in a curved shape that smoothly continues to the inner peripheral surfaces 14 and 24. In addition, concave steps 17 and 27 are formed along the circumferential direction at the edges of the outer peripheral surfaces of the first and second bearing bodies 10 and 20 on the joint surfaces 11 and 21 side, respectively. Then, the first and second bearing bodies 10 and 20 are joined to form the opening recess 1.
5 and 25 are combined, and both concave steps 17 and 27 are combined.
The third bearing body 30 is joined to the groove 6 formed by the step (1), and the bearing 1 is assembled. On the inner peripheral surface 3 of the entire bearing 1, a plurality of closed concave portions 4 whose peripheral edges are closed in the inner peripheral surface 3 are formed in the inner peripheral surface 3 in a well-balanced manner by combining the open concave portions 15 and 25. These closed recesses 4 have a rhombic shape whose axial length is reduced toward both ends in the circumferential direction, and have a shape that can cope with both forward and reverse rotation directions.

【0023】上記第5の実施形態の軸受1にあっても、
開口凹部15,25が合体されることで閉塞凹部4が容
易に形成され、その閉塞凹部4における潤滑油は逃げ場
がないことから、動圧が発生しやすいものとなってい
る。さらに、閉塞凹部4は、周方向の両端部がくさび状
の隙間となるので高い動圧が得られるとともに、回転軸
が正逆いずれの方向に回転しても、高い動圧が得られ
る。
In the bearing 1 of the fifth embodiment,
The closed recesses 4 are easily formed by combining the open recesses 15 and 25, and the lubricating oil in the closed recess 4 has no escape area, so that dynamic pressure is easily generated. Furthermore, since the closed concave portion 4 has wedge-shaped gaps at both ends in the circumferential direction, a high dynamic pressure can be obtained, and a high dynamic pressure can be obtained even if the rotating shaft rotates in either the forward or reverse direction.

【0024】(6)第6の実施形態 次いで、本発明に係る第6の実施形態を、図21を参照
して説明する。第6の実施形態の軸受1は、軸方向中央
部の第1の軸受体10を挟んでその両側に第2,第3の
軸受体20,30が接合されたものである。第1の軸受
体10の接合面11と、この接合面11に密着される第
2,第3の軸受体20,30の接合面21,31には、
互いに嵌合する段部12,22,32がそれぞれ形成さ
れている。第1の軸受体10の軸受孔13の内周面14
には、両側の接合面11に開口する短い螺旋状の複数の
開口凹部15が、周方向にバランスよく形成されてい
る。これら開口凹部15は、図中矢印Aで示す回転軸の
回転方向に向かって斜めに延びている。一方、第2,第
3の軸受体20,30の軸受孔23,33の内周面2
3,34には、接合面21,31に開口する開口凹部2
5,35がそれぞれ形成されている。これら開口凹部2
5,35は、接合面21,31に開口する周溝(逃げ凹
部)25a,35aと、この周溝25a,35aから複
数分岐する短い螺旋溝25b,35bとが合体されたも
ので、螺旋溝25b,35bは、回転軸の回転方向に向
かって斜めに延びている。各周溝25a,35aの深さ
は、螺旋溝25b,35bよりも深くなっている。
(6) Sixth Embodiment Next, a sixth embodiment according to the present invention will be described with reference to FIG. In the bearing 1 of the sixth embodiment, the first and second bearing bodies 20 and 30 are joined to both sides of the first bearing body 10 at the center in the axial direction. The joint surface 11 of the first bearing body 10 and the joint surfaces 21 and 31 of the second and third bearing bodies 20 and 30 that are in close contact with the joint surface 11 have:
Step portions 12, 22, 32 to be fitted to each other are formed. Inner peripheral surface 14 of bearing hole 13 of first bearing body 10
In this example, a plurality of short spiral-shaped opening recesses 15 that open to the joint surfaces 11 on both sides are formed with good balance in the circumferential direction. These opening recesses 15 extend obliquely in the direction of rotation of the rotation shaft indicated by arrow A in the figure. On the other hand, the inner peripheral surface 2 of the bearing holes 23, 33 of the second and third bearing bodies 20, 30
3 and 34 have opening recesses 2 that open to the joint surfaces 21 and 31.
5, 35 are formed respectively. These opening recesses 2
Reference numerals 5 and 35 denote a combination of peripheral grooves (escape recesses) 25a and 35a opened on the joint surfaces 21 and 31 and short spiral grooves 25b and 35b branched from the peripheral grooves 25a and 35a. 25b and 35b extend obliquely in the rotation direction of the rotation shaft. The depth of each circumferential groove 25a, 35a is deeper than the spiral grooves 25b, 35b.

【0025】この軸受1は、第1の軸受体10の両側の
段部12に、第2,第3の軸受体20,30の段部2
2,32をそれぞれ嵌合して接合することにより得られ
る。この軸受1にあっては、第1の軸受体20の開口凹
部15と第2,第3の軸受体20,30の周溝25a,
35aが合体されることにより、軸受1の内周面3に、
周溝25a,35aの両側から開口凹部15と螺旋溝2
5b,35bが回転軸の回転方向に向かって斜めに分岐
する閉塞凹部4が形成されている。この閉塞凹部4は、
軸受1全体の内周面3内において周縁が閉塞している。
The bearing 1 has a stepped portion 12 on both sides of a first bearing body 10 and a stepped portion 2 of second and third bearing bodies 20 and 30.
It is obtained by fitting and joining the members 2 and 32 respectively. In this bearing 1, the opening recess 15 of the first bearing body 20 and the circumferential grooves 25 a of the second and third bearing bodies 20 and 30,
35a is united with the inner peripheral surface 3 of the bearing 1,
Opening recess 15 and spiral groove 2 from both sides of circumferential grooves 25a, 35a
A closed recess 4 is formed in which 5b and 35b branch obliquely in the rotation direction of the rotation shaft. This closed recess 4 is
The peripheral edge is closed in the inner peripheral surface 3 of the entire bearing 1.

【0026】次に、上記第6の実施形態と同様に軸方向
に3分割される第1〜第3の軸受体10,20,30が
軸方向に接合されて軸受が構成される第7〜第9の実施
形態を説明する。(7)第7の実施形態 図22は、第7の実施形態の軸受1が分割された状態を
示している。この場合第1の軸受体10の内周面14に
は、両側の接合面11に開口する2種類の開口凹部すな
わち第1,第2の開口凹部15A,15Bが、複数形成
されている。第1の開口凹部15Aは略4分の1円弧状
で、その円弧部は、矢印Aで示す回転軸の回転方向に向
いている。また、第2の開口凹部15Bは、第1の開口
凹部15Aの円弧部に沿って延びる短い螺旋状である。
これら第1,第2の開口凹部15A,15Bは、周方向
に沿って交互に、かつバランスよく配されている。一
方、第2,第3の軸受体20,30の内周面24,34
には、第1の軸受体10に接合された状態で、第1の軸
受体10の各開口凹部15A,15Bと対称をなす同様
の第1の開口凹部25A,35Aおよび第2の開口凹部
25B,35Bが形成されている。そして、第1の軸受
体10を挟んで第2,第3の軸受体20,30が接合さ
れることにより、第1の軸受体10の第1の開口凹部1
5Aと第2,第3の軸受体20,30の第1の開口凹部
25A,35Aが合体され、第1の軸受体10の第2の
開口凹部15Bと第2,第3の軸受体20,30の第2
の開口凹部25B,35Bが合体されることにより、軸
受1の内周面3内において閉塞する半円弧状およびV字
状の閉塞凹部が形成される。
Next, similarly to the sixth embodiment, the first to third bearing bodies 10, 20, 30 divided into three in the axial direction are joined in the axial direction to form the seventh to seventh bearings. A ninth embodiment will be described. (7) Seventh Embodiment FIG. 22 shows a state where the bearing 1 of the seventh embodiment is divided. In this case, the inner peripheral surface 14 of the first bearing body 10 is formed with a plurality of two types of opening recesses, that is, first and second opening recesses 15A and 15B that open to the joint surfaces 11 on both sides. The first opening recess 15A has a substantially quarter-arc shape, and the arc portion is oriented in the direction of rotation of the rotation shaft indicated by arrow A. The second opening recess 15B has a short spiral shape extending along the arc of the first opening recess 15A.
These first and second opening recesses 15A and 15B are arranged alternately and in a well-balanced manner along the circumferential direction. On the other hand, the inner peripheral surfaces 24, 34 of the second and third bearing bodies 20, 30
In the state of being joined to the first bearing body 10, the first opening recesses 25A, 35A and the second opening recess 25B, which are symmetrical with the respective opening recesses 15A, 15B of the first bearing body 10, are provided. , 35B are formed. Then, the first and second bearing members 20 and 30 are joined together with the first bearing member 10 interposed therebetween, so that the first opening recess 1 of the first bearing member 10 is formed.
5A and the first opening recesses 25A and 35A of the second and third bearing bodies 20 and 30 are combined, and the second opening recess 15B of the first bearing body 10 and the second and third bearing bodies 20 and 30 are combined. 30 second
The opening concave portions 25B and 35B are combined to form a semicircular and V-shaped closed concave portion that is closed in the inner peripheral surface 3 of the bearing 1.

【0027】なお、各第2の開口凹部15B,25B,
35Bは、図22の破線で示すように逆向きに形成され
ていてもよく、両者を両立させてもよい。その場合、1
回の圧粉成形では型抜きの関係から形成できないので、
第1の開口凹部15A,25A,35Aと型抜き方向が
同じ側の第2の開口凹部15B,25B,35Bを同時
に形成し、その後、再圧時に他方の第2の開口凹部15
B,25B,35Bを形成するか、あるいはこの逆の手
法を採るなど、2回の工程で形成する。
Each of the second opening recesses 15B, 25B,
35B may be formed in the opposite direction as shown by the broken line in FIG. 22, or both may be compatible. In that case, 1
Since it cannot be formed by the die cutting in the green compaction of one time,
The second opening recesses 15B, 25B, 35B on the same side as the first opening recesses 15A, 25A, 35A in the same die-cutting direction are formed at the same time.
B, 25B, and 35B are formed in two steps, for example, or the reverse method is adopted.

【0028】図23は上記第7の実施形態の変形例を示
しており、この実施形態においては、第1の軸受体10
の軸受孔13の内径が互いに同軸な大径部13aと小径
部13bとにより構成されている。そして、第2の軸受
体20の軸受孔23が大径部13aに、また、第3の軸
受体30の軸受孔33の内径が小径部13bにそれぞれ
対応する寸法に形成されている。この場合、回転軸は、
実質的には第1の軸受体10の小径部13bおよび第3
の軸受体30の軸受孔33の内周面34により支持され
る。
FIG. 23 shows a modification of the seventh embodiment. In this embodiment, the first bearing 10
The inner diameter of the bearing hole 13 is composed of a large diameter portion 13a and a small diameter portion 13b which are coaxial with each other. The bearing hole 23 of the second bearing body 20 is formed in the large diameter portion 13a, and the inner diameter of the bearing hole 33 of the third bearing body 30 is formed in the size corresponding to the small diameter portion 13b. In this case, the rotation axis is
Substantially, the small-diameter portion 13b of the first bearing body 10 and the third
The bearing body 30 is supported by the inner peripheral surface 34 of the bearing hole 33.

【0029】(8)第8の実施形態 図17に示す第8の実施形態の軸受1においては、軸方
向に接合された第1,第2の軸受体10,20が、第3
の軸受体30の内部に収納されて接合されている。第3
の軸受体30の内周面34には、一方の端面に開口する
大径部36が形成されており、この大径部36内に第
1,第2の軸受体10,20が収納されている。各軸受
体10,20,30の軸受孔13,23,33は同径で
あるが、第1の軸受体10の軸受孔13の内周面14に
は、周方向の一方側に向かうにしたがって漸次浅くな
り、かつ両側の接合面11に開口する開口凹部15が形
成されている。この開口凹部15は、第2,第3の軸受
体20,30が接合されることにより、周縁が軸受1全
体の内周面14内において閉塞する閉塞凹部4となる。
なお、第3の軸受体30の内周面34に、端面から閉塞
凹部4の深い方に連通する透孔7を設け、この透孔7か
ら閉塞凹部4に潤滑油を供給することができるようにし
てもよい。
(8) Eighth Embodiment In the bearing 1 of the eighth embodiment shown in FIG. 17, the first and second bearing bodies 10 and 20 joined in the axial direction are the third bearing body.
Are housed and joined inside the bearing body 30. Third
The inner peripheral surface 34 of the bearing body 30 is formed with a large-diameter portion 36 that opens to one end face, and the first and second bearing bodies 10 and 20 are housed in the large-diameter portion 36. I have. Although the bearing holes 13, 23, and 33 of the bearing bodies 10, 20, and 30 have the same diameter, the inner peripheral surface 14 of the bearing hole 13 of the first bearing body 10 has a shape that is closer to one side in the circumferential direction. Open recesses 15 which become gradually shallower and open to the joint surfaces 11 on both sides are formed. The opening concave portion 15 becomes the closed concave portion 4 whose peripheral edge is closed in the inner peripheral surface 14 of the entire bearing 1 by joining the second and third bearing bodies 20 and 30.
In addition, a through-hole 7 is provided in the inner peripheral surface 34 of the third bearing body 30 so as to communicate from the end face to the deeper side of the closed recess 4, and lubricating oil can be supplied from the through hole 7 to the closed recess 4. It may be.

【0030】(9)第9の実施形態 図18に示す第9の実施形態の軸受1においては、第1
の軸受体10を間に挟んで第2,第3の軸受体20,3
0が段部12,22,32を嵌合されて接合されてい
る。第1の軸受体10の内周面14には、上記第6の実
施形態と同様の接合面11に開口する開口凹部15が形
成されており、これに加え、第2,第3の軸受体20,
30の内周面には、接合面21,22に開口する開口凹
部25,35がそれぞれ形成されている。これら開口凹
部25,35は、周方向の一方側に向かうにしたがって
軸方向長さが漸次小さくなる細長い三角形状に形成され
ている。そして、各軸受体10,20,30が接合され
軸受1に組み立てられると、開口凹部15と開口凹部2
5,35とが合体され、軸受1全体の内周面3内におい
て周縁が閉塞する閉塞凹部4が形成されている。
(9) Ninth Embodiment In the bearing 1 of the ninth embodiment shown in FIG.
The second and third bearing bodies 20, 3 with the bearing body 10 interposed therebetween.
Reference numeral 0 indicates that the steps 12, 22, and 32 are fitted and joined. On the inner peripheral surface 14 of the first bearing body 10, there is formed an opening recess 15 which opens to the same joint surface 11 as in the sixth embodiment. In addition to this, the second and third bearing bodies are provided. 20,
Opening recesses 25 and 35 that open to the joint surfaces 21 and 22 are respectively formed on the inner peripheral surface of 30. The opening concave portions 25 and 35 are formed in an elongated triangular shape whose axial length gradually decreases toward one side in the circumferential direction. When the bearing bodies 10, 20, 30 are joined and assembled into the bearing 1, the opening recess 15 and the opening recess 2 are formed.
5 and 35 are combined to form a closed recess 4 whose peripheral edge is closed in the inner peripheral surface 3 of the entire bearing 1.

【0031】上記第6,7および第9の実施形態の軸受
1にあっては、第1の軸受体10の開口凹部15(15
A,15B)と第2,第3の軸受体20,30の開口凹
部25,35(25A,25B,35A,35B)が合
体されることにより、閉塞凹部4が容易に形成される。
また、第8の実施形態の軸受1にあっては、第1の軸受
体10の開口凹部15が、第2,第3の軸受体20,3
0が接合されることにより閉塞され、容易に閉塞凹部4
が形成される。これら閉塞凹部4が形成された軸受1に
おいては、供給された潤滑油の逃げ場がないことから、
動圧が発生しやすい。また、中央の第1の軸受体10の
密度を両側の第2,第3の軸受体20,30よりも高く
することにより、軸受内の気孔径の差に伴って両側の第
2,第3の軸受体20,30から第1の軸受体10に潤
滑油が循環する作用が働き、潤滑性の向上が図られる。
また、動圧発生部分の気孔径が小さいことにより、動圧
のリークが抑制される。
In the bearings 1 of the sixth, seventh and ninth embodiments, the opening recess 15 (15) of the first bearing body 10 is provided.
A, 15B) and the opening recesses 25, 35 (25A, 25B, 35A, 35B) of the second and third bearing bodies 20, 30 are united, whereby the closed recess 4 is easily formed.
Further, in the bearing 1 according to the eighth embodiment, the opening concave portion 15 of the first bearing body 10 is provided with the second and third bearing bodies 20 and 3.
0 is closed by joining, and the closed recess 4 is easily formed.
Is formed. In the bearing 1 in which these closed concave portions 4 are formed, there is no escape for the supplied lubricating oil.
Dynamic pressure is easily generated. In addition, by making the density of the first bearing body 10 at the center higher than that of the second and third bearing bodies 20 and 30 on both sides, the second and third bearing bodies on both sides are increased in accordance with the difference in pore diameter in the bearing. The lubricating oil circulates from the bearing members 20 and 30 to the first bearing member 10 to improve lubricity.
Further, since the pore diameter of the portion where the dynamic pressure is generated is small, the leakage of the dynamic pressure is suppressed.

【0032】また、第6の実施形態では、周溝25a,
35aが螺旋溝25b,35bよりも深くなっていて潤
滑油の供給量が増大するので、摩擦損失の低減や同軸精
度の向上が図られるとともに、周溝25a,35aの底
部に貯えられる潤滑油が閉塞凹部4に供給されて動圧が
より発生しやすい。なお、このように周溝25a,35
aを深くして逃げ凹部とすることに代えて、螺旋溝25
b,35bの一部に深い逃げ凹部を形成すれば、動圧発
生に寄与するとともに、高い動圧を得ることが可能とな
る。また、その逃げ凹部は、軸方向に沿って形成されて
いると動圧発生の点で効果的である。
In the sixth embodiment, the circumferential grooves 25a,
Since 35a is deeper than the spiral grooves 25b and 35b and the supply amount of lubricating oil increases, friction loss is reduced and coaxial accuracy is improved, and lubricating oil stored at the bottom of the circumferential grooves 25a and 35a is reduced. The dynamic pressure is more easily generated by being supplied to the closing recess 4. In addition, as described above, the circumferential grooves 25a, 35
a instead of deepening a to form the escape recess,
If a deep relief recess is formed in a part of the b and 35b, it is possible to contribute to the generation of the dynamic pressure and to obtain a high dynamic pressure. In addition, if the relief recess is formed along the axial direction, it is effective in generating dynamic pressure.

【0033】また、第7の実施形態の場合、閉塞凹部4
は、回転軸の回転方向側の端部に潤滑油が集中するの
で、高い動圧が得られる。また、第8の実施形態の場
合、回転軸の回転方向を矢印A方向とすれば、同様の理
由で高い動圧が得られる。ここで、動圧の発生は、軸受
内における2カ所の接合部で最大となるので、高い精度
で回転軸が支持される。また、第7の実施形態の変形例
の場合、図中上下の軸受内周面の摩擦損失が異なるの
で、使用条件(上側の面圧が高いときには大径として面
圧を下げるなど)に合わせて任意に内径寸法を設定する
ことにより、軸受としての設計の自由度が高まる。
In the case of the seventh embodiment, the closed recess 4
Since the lubricating oil concentrates on the end of the rotating shaft on the rotation direction side, a high dynamic pressure can be obtained. In the case of the eighth embodiment, if the direction of rotation of the rotating shaft is the direction of arrow A, a high dynamic pressure can be obtained for the same reason. Here, since the generation of the dynamic pressure becomes maximum at two joints in the bearing, the rotating shaft is supported with high accuracy. Further, in the case of the modification of the seventh embodiment, since the friction loss of the upper and lower bearing inner peripheral surfaces in the figure is different, it is adjusted according to the use condition (such as lowering the surface pressure by using a large diameter when the upper surface pressure is high). By arbitrarily setting the inner diameter, the degree of freedom in designing the bearing is increased.

【0034】なお、上記第6〜第9の実施形態におい
て、開口凹部15,25,35および開口凹部15,2
5,35の合体による閉塞凹部4の形状、もしくは合体
のパターンは任意であり、その例を図19の展開図に示
す。さらに、開口凹部15,25,35の断面形状も、
図12と同様に任意とされる。
In the sixth to ninth embodiments, the opening recesses 15, 25, 35 and the opening recesses 15, 2
The shape of the closed concave portion 4 or the pattern of the united portions 5 and 35 formed by the uniting are arbitrary, and an example thereof is shown in a developed view of FIG. Further, the cross-sectional shapes of the opening concave portions 15, 25, 35 are also
It is optional as in FIG.

【0035】以上、本発明に係る第1〜第9の実施形態
を説明してきたが、本発明は、これら実施形態に加え
て、次のような特徴が付加されたものを含むものであ
る。閉塞凹部を、軸受体の再圧縮時に形成する。これ
は、例えば図20に示すようなコア40a,40b,4
0cを軸受孔に挿入し、軸受体を軸方向に加圧し、内周
面をコアに圧接させてコアに応じた閉塞凹所を形成する
などの方法が採られる。この方法によれば、コアの凸部
によって加工された部分すなわち閉塞凹所は加工度が高
く、したがって他の部分より高密度かつ低気孔率とな
り、発生する動圧のリークが抑制される。また、閉塞凹
部の加工代を大きくとれば閉塞凹部の内面の密度がさら
に高くなり、動圧リークの抑制効果が大幅に向上する。
さらに、圧粉体の成形時に開口凹部を形成する必要がな
くなるとともに、製造工程が単純化する。
While the first to ninth embodiments according to the present invention have been described above, the present invention includes those in which the following features are added to these embodiments. The closing recess is formed when the bearing body is recompressed. This corresponds to, for example, the cores 40a, 40b, 4 as shown in FIG.
0c is inserted into the bearing hole, the bearing body is pressed in the axial direction, and the inner peripheral surface is pressed against the core to form a closed recess corresponding to the core. According to this method, the portion processed by the convex portion of the core, that is, the closed concave portion has a high degree of processing, and therefore has a higher density and a lower porosity than the other portions, and the generated dynamic pressure leakage is suppressed. In addition, if the machining allowance for the closed concave portion is increased, the density of the inner surface of the closed concave portion is further increased, and the effect of suppressing the dynamic pressure leak is greatly improved.
Further, it is not necessary to form the opening concave portion when molding the green compact, and the manufacturing process is simplified.

【0036】なお、上記各実施形態では、多孔質材とし
て焼結合金が用いられているが、本発明はこれに限定さ
れず、樹脂、セラミックス、サーメット等の単独材料も
しくはこれらを2つ以上を組み合わせた複合材料を多孔
質材として用いてもよい。また、含有される潤滑剤も、
その材質に応じたものとされ、潤滑油の他には水、空気
等の流体が適宜に使用される。
In each of the above embodiments, a sintered alloy is used as the porous material. However, the present invention is not limited to this, and a single material such as resin, ceramics, cermet, or two or more of these may be used. The combined composite material may be used as a porous material. Also, the contained lubricant,
A fluid such as water or air is used as appropriate in addition to the lubricating oil.

【0037】[0037]

【発明の効果】以上説明したように、本発明の多孔質複
合軸受では、軸受内周面内において閉塞する閉塞凹所を
容易に形成することができ、その閉塞凹所での動圧が発
生しやすく、かつ発生する動圧のリークが抑制されて軸
受性能が向上する。また、本発明の多孔質複合軸受の製
造方法では、内周面内において閉塞する閉塞凹部を有す
る軸受を容易に製造することができる。
As described above, in the porous composite bearing of the present invention, a closed recess that closes in the inner peripheral surface of the bearing can be easily formed, and dynamic pressure is generated in the closed recess. The bearing performance is improved by suppressing the leakage of the generated dynamic pressure. Further, according to the method for manufacturing a porous composite bearing of the present invention, a bearing having a closed concave portion closed in the inner peripheral surface can be easily manufactured.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明の第1の実施形態に係る軸受を縦に割
った状態の斜視図である。
FIG. 1 is a perspective view showing a state in which a bearing according to a first embodiment of the present invention is vertically split.

【図2】 本発明の第1の実施形態に係る軸受の開口凹
部の断面図である。
FIG. 2 is a sectional view of an opening concave portion of the bearing according to the first embodiment of the present invention.

【図3】 本発明の第1の実施形態に係る軸受の開口凹
部の別形態を示す断面図である。
FIG. 3 is a cross-sectional view showing another form of the opening concave portion of the bearing according to the first embodiment of the present invention.

【図4】 本発明の第1の実施形態に係る軸受の変形例
であって、この軸受を構成する第1,第2の軸受体を縦
に割った状態の斜視図である。
FIG. 4 is a perspective view of a modified example of the bearing according to the first embodiment of the present invention, showing a state in which first and second bearing bodies constituting the bearing are vertically divided.

【図5】 本発明の第1の実施形態に係る変形例の軸受
を縦に割った状態の斜視図である。
FIG. 5 is a perspective view of a state in which a bearing according to a modification according to the first embodiment of the present invention is vertically split.

【図6】 本発明の第2の実施形態に係る軸受を縦に割
った状態の斜視図である。
FIG. 6 is a perspective view of a state in which a bearing according to a second embodiment of the present invention is vertically split.

【図7】 本発明の第2の実施形態に係る軸受の開口凹
部の断面図である。
FIG. 7 is a sectional view of an opening concave portion of a bearing according to a second embodiment of the present invention.

【図8】 本発明の第3の実施形態に係る軸受を縦に割
った状態の斜視図である。
FIG. 8 is a perspective view of a state in which a bearing according to a third embodiment of the present invention is vertically split.

【図9】 本発明の第4の実施形態に係る軸受を縦に割
った状態の斜視図である。
FIG. 9 is a perspective view showing a state in which a bearing according to a fourth embodiment of the present invention is vertically split.

【図10】本発明の第1〜第4の実施形態に係る軸受の
開口凹部の各種形状パターンを示す展開図である。
FIG. 10 is a development view showing various shape patterns of an opening concave portion of the bearing according to the first to fourth embodiments of the present invention.

【図11】本発明の第1〜第4の実施形態に係る軸受の
開口凹部の他の形状パターンを示す展開図である。
FIG. 11 is a developed view showing another shape pattern of the opening concave portion of the bearing according to the first to fourth embodiments of the present invention.

【図12】本発明の第1〜第4の実施形態に係る軸受の
開口凹部の断面形状のパターンを示す断面図である。
FIG. 12 is a cross-sectional view showing a pattern of a cross-sectional shape of an opening concave portion of the bearing according to the first to fourth embodiments of the present invention.

【図13】本発明の第1〜第4の実施形態に係る軸受の
開口凹部の他の形状パターンを示す展開図である。
FIG. 13 is a developed view showing another shape pattern of the opening concave portion of the bearing according to the first to fourth embodiments of the present invention.

【図14】本発明の第1〜第4の実施形態に係る軸受の
組立パターンを示す断面図である。
FIG. 14 is a sectional view showing an assembly pattern of the bearing according to the first to fourth embodiments of the present invention.

【図15】本発明の第5の実施形態に係る軸受を縦に割
った状態の斜視図である。
FIG. 15 is a perspective view showing a state in which a bearing according to a fifth embodiment of the present invention is vertically split.

【図16】本発明の第5の実施形態に係る軸受の開口凹
部の断面図である。
FIG. 16 is a cross-sectional view of an opening concave portion of a bearing according to a fifth embodiment of the present invention.

【図17】本発明の第8の実施形態に係る軸受を縦に割
った状態の斜視図である。
FIG. 17 is a perspective view showing a state in which a bearing according to an eighth embodiment of the present invention is vertically split.

【図18】本発明の第9の実施形態に係る軸受を縦に割
った状態の斜視図である。
FIG. 18 is a perspective view showing a state in which a bearing according to a ninth embodiment of the present invention is vertically split.

【図19】本発明の第6〜第9の実施形態に係る軸受の
開口凹部の形状パターンを示す展開図である。
FIG. 19 is a developed view showing a shape pattern of an opening concave portion of the bearing according to the sixth to ninth embodiments of the present invention.

【図20】本発明に係る軸受の閉塞凹部を再圧縮で形成
する場合に用いるコアの形態を示す斜視図である。
FIG. 20 is a perspective view showing a form of a core used when the closed recess of the bearing according to the present invention is formed by recompression.

【図21】本発明の第6の実施形態に係る軸受を縦に割
った状態の平面図である。
FIG. 21 is a plan view showing a state in which a bearing according to a sixth embodiment of the present invention is vertically split.

【図22】本発明の第7の実施形態に係る軸受を縦に割
った状態の平面図である。
FIG. 22 is a plan view showing a state in which a bearing according to a seventh embodiment of the present invention is vertically split.

【図23】本発明の第7の実施形態に係る軸受の変形例
を示し、その軸受を縦に割った状態の平面図である。
FIG. 23 is a plan view showing a modification of the bearing according to the seventh embodiment of the present invention, in which the bearing is split vertically.

【符号の説明】[Explanation of symbols]

1…軸受、 2…軸受の軸受孔、 3…軸受の内周面、 4…閉塞凹部、 10…第1の軸受体、 11,21,31…接合面、 13,23,33…軸受体の軸受孔、 14,24,34…軸受体の内周面、 15,15A,15B,25,25A,25B,35,
35A,35B…開口凹部、 20…第2の軸受体、 25a,35a…周溝(逃げ凹部)、 30…第3の軸受体。
DESCRIPTION OF SYMBOLS 1 ... Bearing, 2 ... Bearing hole of bearing, 3 ... Inner peripheral surface of bearing, 4 ... Closed recessed part, 10 ... 1st bearing body, 11, 21, 31 ... Joint surface, 13, 23, 33 ... Bearing body Bearing holes, 14, 24, 34 ... inner peripheral surface of bearing body, 15, 15A, 15B, 25, 25A, 25B, 35,
35A, 35B: Open recess, 20: Second bearing body, 25a, 35a: circumferential groove (relieving recess), 30: Third bearing body.

Claims (11)

【特許請求の範囲】[Claims] 【請求項1】 流体潤滑剤を含有した少なくとも2つ以
上の多孔質軸受体が互いに連続する状態で軸方向に接合
されることにより組み合わされてなり、 互いに接合される前記軸受体のうちの少なくとも一つの
軸受内周面に、少なくとも一方の端面側接合面に開口す
る開口凹部が形成されることにより、組み合わされた軸
受全体の内周面内において回転方向に周縁が閉塞された
閉塞凹部が形成されていることを特徴とする多孔質複合
軸受。
At least two or more porous bearing bodies containing a fluid lubricant are combined by being joined in an axial direction so as to be continuous with each other, and at least one of the bearing bodies joined to each other is provided. By forming an opening concave portion that opens to at least one end surface side joining surface on one bearing inner peripheral surface, a closed concave portion whose peripheral edge is closed in the rotational direction is formed in the inner peripheral surface of the entire combined bearing. A porous composite bearing characterized by being made.
【請求項2】 互いに接合される前記軸受体双方の前記
内周面に、前記接合面に開口する開口凹部がそれぞれ形
成され、これら開口凹部の開口どうしが突き合わされて
前記閉塞凹部が形成されていることを特徴とする請求項
1に記載の多孔質複合軸受。
2. An opening recessed to the joint surface is formed on each of the inner peripheral surfaces of both of the bearing bodies joined to each other, and the openings of the opening recesses abut each other to form the closed recess. The porous composite bearing according to claim 1, wherein:
【請求項3】 前記閉塞凹部の縦断面積が、前記回転軸
の回転方向に向かうにしたがって変化していることを特
徴とする請求項1または2に記載の多孔質複合軸受。
3. The porous composite bearing according to claim 1, wherein a vertical cross-sectional area of the closed concave portion changes in a direction of rotation of the rotating shaft.
【請求項4】 前記各軸受体の通気度および/または気
孔率が異なっていることを特徴とする請求項1〜3のい
ずれかに記載の多孔質複合軸受。
4. The porous composite bearing according to claim 1, wherein said bearings have different air permeability and / or porosity.
【請求項5】 少なくとも一つの前記軸受体内周面の前
記接合面側に、前記開口凹部よりも深い逃げ凹部が形成
されていることを特徴とする請求項1〜4のいずれかに
記載の多孔質複合軸受。
5. The perforated hole according to claim 1, wherein a relief recess deeper than the opening recess is formed on the joining surface side of at least one peripheral surface of the bearing body. Quality composite bearing.
【請求項6】 軸受内径が軸方向途中において変化して
いることを特徴とする請求項1〜5のいずれかに記載の
多孔質複合軸受。
6. The porous composite bearing according to claim 1, wherein the inner diameter of the bearing changes in the axial direction.
【請求項7】 前記閉塞凹部の内面が、他の部分よりも
高密度となっていることを特徴とする請求項1〜6のい
ずれかに記載の多孔質複合軸受。
7. The porous composite bearing according to claim 1, wherein an inner surface of the closed concave portion has a higher density than other portions.
【請求項8】 前記開口凹部側の接合面に軸方向に突出
する凸部を予め形成しておき、この凸部を、前記再圧縮
時に加圧することにより軸受体どうしが密着させられて
いることを特徴とする請求項1〜7に記載の多孔質複合
軸受。
8. An axially projecting convex portion is formed in advance on the joint surface on the side of the opening concave portion, and the bearing body is brought into close contact by pressing the convex portion at the time of the recompression. The porous composite bearing according to claim 1, wherein:
【請求項9】 請求項1〜8のいずれかに記載の多孔質
複合軸受を製造する方法であって、 多孔質材料により前記各軸受体を成形し、 次いで、これら軸受体を連続させた状態で前記接合面ど
うしを合わせて再圧縮し、この再圧縮時に、各軸受体を
軸線方向に加圧して互いに密着させるとともに、前記閉
塞凹部を形成することを特徴とする多孔質複合軸受の製
造方法。
9. The method for producing a porous composite bearing according to claim 1, wherein each of the bearing bodies is formed of a porous material, and then the bearing bodies are connected. The method of manufacturing a porous composite bearing, wherein the joint surfaces are combined together and recompressed, and at the time of the recompression, the respective bearing bodies are pressed in the axial direction so as to adhere to each other and the closed concave portion is formed. .
【請求項10】前記開口凹部側の接合面に軸方向に突出
する凸部を予め形成しておき、この凸部を、前記再圧縮
時に加圧することにより軸受体どうしを密着させること
を特徴とする請求項9に記載の多孔質複合軸受の製造方
法。
10. An axially projecting convex portion is formed in advance on the joint surface on the side of the opening concave portion, and the bearing body is brought into close contact by pressing the convex portion during the recompression. The method for manufacturing a porous composite bearing according to claim 9.
【請求項11】前記閉塞凹部の加工代を大きくとってこ
の閉塞凹部の内面の密度を高くすることを特徴とする請
求項9または10に記載の多孔質複合軸受の製造方法。
11. The method for manufacturing a porous composite bearing according to claim 9, wherein a machining allowance for said closed concave portion is increased to increase the density of the inner surface of said closed concave portion.
JP18920797A 1997-06-30 1997-06-30 Porous composite bearing Expired - Fee Related JP3620814B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18920797A JP3620814B2 (en) 1997-06-30 1997-06-30 Porous composite bearing

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18920797A JP3620814B2 (en) 1997-06-30 1997-06-30 Porous composite bearing

Publications (2)

Publication Number Publication Date
JPH1122731A true JPH1122731A (en) 1999-01-26
JP3620814B2 JP3620814B2 (en) 2005-02-16

Family

ID=16237338

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18920797A Expired - Fee Related JP3620814B2 (en) 1997-06-30 1997-06-30 Porous composite bearing

Country Status (1)

Country Link
JP (1) JP3620814B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100422584C (en) * 2003-06-20 2008-10-01 日立粉末冶金株式会社 Oil-impregnated sintered bearing
JP2008267394A (en) * 2007-04-16 2008-11-06 Hitachi Powdered Metals Co Ltd Method of manufacturing bearing unit
CN106523528A (en) * 2017-01-16 2017-03-22 江苏汇创机电科技股份有限公司 Oil-containing bearing used for brushless direct current motor
CN106939918A (en) * 2015-11-05 2017-07-11 祥莹有限公司 Sliding bearing assembly

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100422584C (en) * 2003-06-20 2008-10-01 日立粉末冶金株式会社 Oil-impregnated sintered bearing
JP2008267394A (en) * 2007-04-16 2008-11-06 Hitachi Powdered Metals Co Ltd Method of manufacturing bearing unit
CN106939918A (en) * 2015-11-05 2017-07-11 祥莹有限公司 Sliding bearing assembly
CN106523528A (en) * 2017-01-16 2017-03-22 江苏汇创机电科技股份有限公司 Oil-containing bearing used for brushless direct current motor

Also Published As

Publication number Publication date
JP3620814B2 (en) 2005-02-16

Similar Documents

Publication Publication Date Title
JPH09242748A (en) Dynamic pressure thrust porous bearing
JP3511553B2 (en) Method for producing sintered oil-impregnated bearing
JP3607492B2 (en) Dynamic pressure type porous oil-impregnated bearing and manufacturing method thereof
US6120188A (en) Bearing unit manufacturing method bearing unit and motor using the bearing unit
JP3620814B2 (en) Porous composite bearing
JP4573349B2 (en) Manufacturing method of hydrodynamic bearing
CA2519005C (en) Sintered plain bearing with continual variation of the bore densification
JP2003232353A (en) Dynamic pressure type bearing device
JP2003035310A (en) Structure of dynamic pressure sleeve bearing
CN1961160B (en) Hydrodynamic bearing device
JP2006226398A (en) Bearing device and manufacturing method of bearing device
JPH10113832A (en) Manufacture of dynamic pressure fluid beaking
JP3818626B2 (en) Method for producing sintered oil-impregnated bearing
JPH05180229A (en) Manufacture of oil-impregnated sintered bearing
JPH11303858A (en) Porous hydrodynamic bearing
JP4420339B2 (en) Manufacturing method of hydrodynamic bearing
JP2006329391A (en) Dynamic pressure bearing arrangement
JP3856363B2 (en) Manufacturing method of bearing
JP3647008B2 (en) Method for producing sintered oil-impregnated bearing
JP2001020956A (en) Manufacture method of bearing
JPH11132233A (en) Manufacture of bearing device, bearing device, and motor using the bearing device
JP2000320539A (en) Dynamic pressure bearing device
JP2001059106A (en) Manufacture of bearing
JP2001032839A (en) Manufacture of bearing
JP2001248635A (en) Dynamic pressure fluid bearing device

Legal Events

Date Code Title Description
A977 Report on retrieval

Effective date: 20040205

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040210

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040402

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Effective date: 20041112

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Effective date: 20041115

Free format text: JAPANESE INTERMEDIATE CODE: A61

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071126

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081126

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081126

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 5

Free format text: PAYMENT UNTIL: 20091126

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 6

Free format text: PAYMENT UNTIL: 20101126

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 7

Free format text: PAYMENT UNTIL: 20111126

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111126

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121126

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees