JP2001248635A - Dynamic pressure fluid bearing device - Google Patents

Dynamic pressure fluid bearing device

Info

Publication number
JP2001248635A
JP2001248635A JP2000058058A JP2000058058A JP2001248635A JP 2001248635 A JP2001248635 A JP 2001248635A JP 2000058058 A JP2000058058 A JP 2000058058A JP 2000058058 A JP2000058058 A JP 2000058058A JP 2001248635 A JP2001248635 A JP 2001248635A
Authority
JP
Japan
Prior art keywords
dynamic pressure
bearing
pressure generating
thrust
groove
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000058058A
Other languages
Japanese (ja)
Other versions
JP4338281B2 (en
Inventor
Taizo Ikegawa
泰造 池川
Fusatoshi Okamoto
房俊 岡本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2000058058A priority Critical patent/JP4338281B2/en
Publication of JP2001248635A publication Critical patent/JP2001248635A/en
Application granted granted Critical
Publication of JP4338281B2 publication Critical patent/JP4338281B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Sliding-Contact Bearings (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a dynamic pressure fluid bearing device capable of suppressing the generation of a negative pressure and preventing the reduction of bearing rigidity. SOLUTION: A radial bearing part is provided by forming a dynamic pressure generation groove 9a on at least any face on a side of a shaft body 4 and a bearing body 5 opposing to the shaft body 4. A thrust bearing part is provided by forming a dynamic pressure generation groove 9b on at least any face on a side of a thrust flange 3 provided on the side of the shaft body 4 and a bearing body 7 opposing to the thrust flange 3. A fluid 8 is filled between the shaft body 4 and the bearing body 7. Annular cutout spaces 11a to 11c are formed in a sleeve 5 on a side of a shaft 2, the thrust flange 3, and the bearing body 7 in a connection part 10 of the radial bearing part and the thrust bearing part.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は動圧流体軸受装置に
関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a hydrodynamic bearing device.

【0002】[0002]

【従来の技術】ハードディスク等の高速スピンドルモー
タには、一方が他方に対して回転自在に支持された軸体
と軸受体との間に流体を充填した動圧流体軸受装置が使
用されている。
2. Description of the Related Art A high-speed spindle motor such as a hard disk uses a hydrodynamic fluid bearing device in which a fluid is filled between a shaft body and a bearing body, one of which is rotatably supported with respect to the other.

【0003】図15は、従来の動圧流体軸受装置1eを
示す。シャフト2にスラストフランジ3が固定されて軸
体4が形成され、固定軸としてのシャフト2に回転自在
に支持されたスリーブ5の一端側にはスラストプレート
6が取り付けられ軸受体7が形成されている。
FIG. 15 shows a conventional hydrodynamic bearing device 1e. A thrust flange 3 is fixed to the shaft 2 to form a shaft 4, and a thrust plate 6 is attached to one end of a sleeve 5 rotatably supported by the shaft 2 as a fixed shaft, and a bearing 7 is formed. I have.

【0004】シャフト2とスリーブ5の内周面との間
隙、スリーブ5とスラストフランジ3およびスラストプ
レート6との間隙には潤滑油8が充填されている。シャ
フト2の外周面には上側とスラストフランジ3の側にへ
リングボーン形状の動圧発生溝9aが形成され、ラジア
ル軸受部が構成される。また、スラストフランジ3の両
面にはへリングボーン形状の動圧発生溝9bが形成さ
れ、スラスト軸受部が構成される。
A gap between the shaft 2 and the inner peripheral surface of the sleeve 5 and a gap between the sleeve 5 and the thrust flange 3 and the thrust plate 6 are filled with a lubricating oil 8. On the outer peripheral surface of the shaft 2, a herringbone-shaped dynamic pressure generating groove 9a is formed on the upper side and on the side of the thrust flange 3, and a radial bearing portion is configured. A herringbone-shaped dynamic pressure generating groove 9b is formed on both surfaces of the thrust flange 3 to constitute a thrust bearing portion.

【0005】この動圧流体軸受装置1eでは、軸受体7
が回転すると動圧発生溝9a,9bが潤滑油8をポンピ
ングするため圧力が高まり、軸体4と軸受体7とが非接
触で支持されラジアル軸受とスラスト軸受の機能が付与
される。
In the hydrodynamic bearing device 1e, the bearing body 7
When the rotor rotates, the dynamic pressure generating grooves 9a and 9b pump the lubricating oil 8 to increase the pressure, and the shaft body 4 and the bearing body 7 are supported in a non-contact manner, thereby providing the function of a radial bearing and a thrust bearing.

【0006】[0006]

【発明が解決しようとする課題】しかしながら上記のよ
うな動圧流体軸受装置1eでは、ラジアル軸受部とスラ
スト軸受部の連結部10において、潤滑油8がラジアル
軸受部のへリングボーン溝9aとスラスト軸受部のへリ
ングボーン溝9bのポンピング作用により引っ張られる
ため負圧が発生する。その結果、ラジアル軸受部とスラ
スト軸受部に発生する動圧力が低くなり、圧力損失が発
生する。
However, in the above-described hydrodynamic bearing device 1e, in the connecting portion 10 between the radial bearing portion and the thrust bearing portion, the lubricating oil 8 is supplied to the herringbone groove 9a of the radial bearing portion and the thrust. Negative pressure is generated because the bearing portion is pulled by the pumping action of the herringbone groove 9b. As a result, the dynamic pressure generated in the radial bearing portion and the thrust bearing portion decreases, and a pressure loss occurs.

【0007】また、軸体4や軸受体7の偏心や傾き等に
よるラジアル軸受部とスラスト軸受部の圧力変動が互い
に影響し合い、スラストフランジ3が不安定になるとい
う問題がある。
Further, there is a problem that pressure fluctuations in the radial bearing portion and the thrust bearing portion due to eccentricity and inclination of the shaft body 4 and the bearing body 7 affect each other, and the thrust flange 3 becomes unstable.

【0008】さらに、スラストフランジ3に形成された
動圧発生溝9bの外周側あるいは内周側ではポンピング
作用により負圧が発生して軸受剛性が低下し、軸受の損
失となるという問題がある。
Further, there is a problem that a negative pressure is generated due to the pumping action on the outer peripheral side or the inner peripheral side of the dynamic pressure generating groove 9b formed in the thrust flange 3 and the rigidity of the bearing is reduced, resulting in loss of the bearing.

【0009】本発明は前記問題点を解決し、負圧の発生
を抑え、軸受剛性の低下を低減できる動圧流体軸受装置
を提供することを目的とする。
SUMMARY OF THE INVENTION It is an object of the present invention to solve the above-mentioned problems and to provide a hydrodynamic bearing device capable of suppressing generation of a negative pressure and reducing a decrease in bearing rigidity.

【0010】[0010]

【課題を解決するための手段】本発明の動圧流体軸受装
置は、負圧の発生を低減する環状の切り欠き空間を設け
たことを特徴とする。
The hydrodynamic bearing device according to the present invention is characterized in that an annular cut-out space for reducing generation of negative pressure is provided.

【0011】この本発明によると、負圧の発生による動
圧軸受の損失を緩和できる。
According to the present invention, the loss of the dynamic pressure bearing due to the generation of the negative pressure can be reduced.

【0012】[0012]

【発明の実施の形態】本発明の請求項1記載の動圧流体
軸受装置は、一方が他方に対して回転自在に支持された
軸体と軸受体との間に流体を充填した動圧流体軸受装置
であって、軸体とこの軸体と対向する前記軸受体の側の
少なくとも何れかの面に動圧発生溝を形成してラジアル
軸受部を設け、軸体の側に設けられたスラストフランジ
とこのスラストフランジと対向する前記軸受体の側の面
の少なくともいずれかに動圧発生溝を形成してスラスト
軸受部を設けるとともに、前記ラジアル軸受部と前記ス
ラスト軸受部との連結部分の軸体側に環状の切り欠き空
間を形成したことを特徴とする。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS A hydrodynamic bearing device according to a first aspect of the present invention is a hydrodynamic fluid in which a fluid is filled between a shaft body and a bearing body, one of which is rotatably supported with respect to the other. A bearing device, wherein a radial bearing portion is provided by forming a dynamic pressure generating groove on at least one surface of a shaft body and the bearing body facing the shaft body, and a thrust provided on a shaft body side. A thrust bearing portion is provided by forming a dynamic pressure generating groove in at least one of a flange and a surface of the bearing body facing the thrust flange, and a shaft of a connection portion between the radial bearing portion and the thrust bearing portion is provided. An annular cutout space is formed on the body side.

【0013】この構成によると、ラジアル軸受部とスラ
スト軸受部の連結部において、ラジアル軸受部のへリン
グボーン溝と、スラスト軸受部のへリングボーン溝のポ
ンピング作用により発生する負圧を緩和して動圧軸受の
損失を低減できるとともに、圧力変動によるラジアル軸
受部とスラスト軸受部の互いの影響を抑制できる。
According to this structure, at the connecting portion between the radial bearing and the thrust bearing, the negative pressure generated by the pumping action of the herringbone groove of the radial bearing and the herringbone groove of the thrust bearing is reduced. The loss of the dynamic pressure bearing can be reduced, and the mutual influence of the radial bearing and the thrust bearing due to pressure fluctuation can be suppressed.

【0014】本発明の請求項2記載の動圧流体軸受装置
は、請求項1において、前記環状の切り欠き空間を軸体
と軸受体の両方の側に形成したことを特徴とする。本発
明の請求項3記載の動圧流体軸受装置は、請求項1また
は請求項2において、前記環状の切り欠き空間を軸と前
記スラストフランジの少なくとも一方に形成したことを
特徴とする。
According to a second aspect of the present invention, in the hydrodynamic bearing device according to the first aspect, the annular cutout space is formed on both sides of the shaft body and the bearing body. According to a third aspect of the present invention, in the hydrodynamic bearing device according to the first or second aspect, the annular cutout space is formed in at least one of a shaft and the thrust flange.

【0015】本発明の請求項4記載の動圧流体軸受装置
は、請求項1〜請求項3の何れかにおいて、ラジアル軸
受部の動圧発生溝がヘリングボーン溝またはラジアル方
向に隣接する溝角度が逆方向になるよう配置されたスパ
イラル溝であることを特徴とする。
According to a fourth aspect of the present invention, in the hydrodynamic bearing device according to any one of the first to third aspects, the dynamic pressure generating groove of the radial bearing portion is a herringbone groove or a groove angle adjacent in the radial direction. Are spiral grooves arranged in the opposite direction.

【0016】本発明の請求項5記載の動圧流体軸受装置
は、請求項1〜請求項3の何れかにおいて、スラスト軸
受部の動圧発生溝がヘリングボーン溝またはポンプイン
タイプのスパイラル溝であることを特徴とする。
According to a fifth aspect of the present invention, in the hydrodynamic bearing device according to any one of the first to third aspects, the dynamic pressure generating groove of the thrust bearing portion is a herringbone groove or a pump-in type spiral groove. There is a feature.

【0017】本発明の請求項6記載の動圧流体軸受装置
は、請求項1〜請求項5のいずれかにおいて、ラジアル
方向に沿った断面における前記環状の切り欠き空間の占
める合計面積aと軸体の軸半径rとがa≧0.01×r
2であることを特徴とする。
According to a sixth aspect of the present invention, there is provided a hydrodynamic bearing device according to any one of the first to fifth aspects, wherein a total area a occupied by the annular cutout space and a shaft in a cross section along a radial direction are provided. The body's axial radius r is a ≧ 0.01 × r
It is characterized by being 2 .

【0018】この構成によると、ラジアル軸受部とスラ
スト軸受部の連結部に発生する負圧を10%以上解消し
て動圧軸受の損失を低減でき、ラジアル軸受部とスラス
ト軸受部の圧力変動が互いに影響し合うのを防止でき
る。
According to this configuration, the negative pressure generated at the connecting portion between the radial bearing portion and the thrust bearing portion can be eliminated by 10% or more to reduce the loss of the dynamic pressure bearing, and the pressure fluctuation between the radial bearing portion and the thrust bearing portion can be reduced. They can be prevented from affecting each other.

【0019】本発明の請求項7記載の動圧流体軸受装置
は、請求項1〜請求項5のいずれかにおいて、前記環状
の切り欠き空間と動圧発生溝が軸体または軸受体の側に
あり、前記環状の切り欠き空間の最大深さが前記動圧発
生溝の溝深さより深く、前記動圧発生溝の端部に前記環
状の切り欠き空間が当接して前記動圧発生溝と前記環状
の切り欠き空間とが連結し、ラジアル方向に沿った断面
における前記環状の切り欠き空間の占める合計面積aと
軸体の軸半径rとがa≧0.005×r2であることを
特徴とする。
According to a seventh aspect of the present invention, in the hydrodynamic bearing device according to any one of the first to fifth aspects, the annular cutout space and the dynamic pressure generating groove are provided on a shaft body or a bearing body side. The maximum depth of the annular notch space is deeper than the groove depth of the dynamic pressure generating groove, and the annular notch space abuts on an end of the dynamic pressure generating groove, and the dynamic pressure generating groove and An annular notch space is connected, and a total area a occupied by the annular notch space in a cross section along the radial direction and a shaft radius r of the shaft body are a ≧ 0.005 × r 2. And

【0020】この構成によると、ラジアル軸受部とスラ
スト軸受部の連結部に発生する負圧を50%以上低減し
て動圧軸受の損失を少なくでき、ラジアル軸受部とスラ
スト軸受部の圧力変動が互いに影響し合うのを低減でき
る。
According to this structure, the negative pressure generated at the connecting portion between the radial bearing portion and the thrust bearing portion can be reduced by 50% or more to reduce the loss of the dynamic pressure bearing, and the pressure fluctuation between the radial bearing portion and the thrust bearing portion can be reduced. The influence of each other can be reduced.

【0021】本発明の請求項8記載の動圧流体軸受装置
は、一方が他方に対して回転自在に支持されたスラスト
フランジと軸受体との間に潤滑流体を充填した動圧流体
軸受装置であって、スラストフランジと軸受体の少なく
とも何れかに形成された動圧発生溝の外周半径が前記ス
ラストスラストフランジの外周半径よりも小さい場合
に、前記動圧発生溝の外周端部に当接した環状の切り欠
き空間を形成し、前記環状の切り欠き空間の最大深さを
前記動圧発生溝よりも深くするとともに、ラジアル方向
に沿った断面における前記環状の切り欠き空間の占める
合計面積aと前記動圧発生溝の外周半径rとがa≧0.
0025×r2であることを特徴とする。
A hydrodynamic bearing device according to claim 8 of the present invention is a hydrodynamic bearing device in which lubricating fluid is filled between a bearing and a thrust flange rotatably supported on one side with respect to the other. When the outer peripheral radius of the dynamic pressure generating groove formed on at least one of the thrust flange and the bearing body is smaller than the outer peripheral radius of the thrust thrust flange, the dynamic pressure generating groove abuts on the outer peripheral end of the dynamic pressure generating groove. An annular notch space is formed, the maximum depth of the annular notch space is made deeper than the dynamic pressure generating groove, and the total area a occupied by the annular notch space in a cross section along the radial direction is When the outer peripheral radius r of the dynamic pressure generating groove is a ≧ 0.
0025 × r 2 .

【0022】この構成によると、へリングボーン溝の外
周端部に発生する負圧を70%以上解消して動圧軸受の
損失を低減できる。本発明の請求項9記載の動圧流体軸
受装置は、一方が他方に対して回転自在に支持されたス
ラストフランジと軸受体との間に潤滑流体を充填した動
圧流体軸受装置であって、スラストフランジと軸受体の
少なくとも何れかに形成された動圧発生溝の内周周端部
に当接した環状の切り欠き空間を形成し、前記環状の切
り欠き空間の最大深さを前記動圧発生溝の深さよりも深
くするとともに、ラジアル方向に沿った断面における前
記環状の切り欠き空間の占める合計面積aと前記動圧発
生溝の内周半径rとがa≧0.0025×r2であるこ
とを特徴とする。
According to this configuration, the negative pressure generated at the outer peripheral end of the herringbone groove is eliminated by 70% or more, and the loss of the dynamic pressure bearing can be reduced. The hydrodynamic bearing device according to claim 9 of the present invention is a hydrodynamic bearing device in which lubricating fluid is filled between a bearing body and a thrust flange rotatably supported on one side, An annular notch space is formed in contact with the inner peripheral end of a dynamic pressure generating groove formed in at least one of the thrust flange and the bearing body, and the maximum depth of the annular notch space is determined by the dynamic pressure. While the depth is greater than the depth of the generation groove, the total area a occupied by the annular cutout space in the cross section along the radial direction and the inner peripheral radius r of the dynamic pressure generation groove are a ≧ 0.0025 × r 2 . There is a feature.

【0023】この構成によると、スパイラル溝の内周端
部に発生する負圧を70%以上解消できる。本発明の請
求項10記載の動圧流体軸受装置は、請求項8または請
求項9において、動圧発生溝がヘリングボーン溝または
ポンプインタイプのスパイラル溝であることを特徴とす
る。
According to this configuration, the negative pressure generated at the inner peripheral end of the spiral groove can be eliminated by 70% or more. According to a tenth aspect of the present invention, in the hydrodynamic bearing device according to the eighth or ninth aspect, the dynamic pressure generating groove is a herringbone groove or a pump-in type spiral groove.

【0024】以下、本発明の実施例について、図1〜図
14を用いて説明する。 (実施の形態1)図1〜図8は、本発明の(実施の形態
1)を示す。
An embodiment of the present invention will be described below with reference to FIGS. (Embodiment 1) FIGS. 1 to 8 show (Embodiment 1) of the present invention.

【0025】この(実施の形態1)では、図1に示す動
圧流体軸受装置1aに、ラジアル軸受部とスラスト軸受
部の連結部10の負圧の発生を低減する環状の切り欠き
空間11a〜11cを設けた点で従来例とは異なる。
In this (Embodiment 1), in the hydrodynamic bearing device 1a shown in FIG. 1, annular cut-out spaces 11a to 11g for reducing generation of negative pressure in the connecting portion 10 between the radial bearing portion and the thrust bearing portion. 11c is different from the conventional example in that it is provided.

【0026】詳細には、動圧流体軸受装置1aは、シャ
フト2にスラストフランジ3が固定された軸体4によっ
てスリーブ5とスラストプレート6とからなる軸受体7
が回転自在に支持されている。スラストフランジ3は圧
入等によって固定軸としてのシャフト2の外周部に固定
され、スラストプレート6は接着等によりスリーブ5の
下端部に固定されている。
More specifically, the hydrodynamic bearing device 1a comprises a bearing member 7 composed of a sleeve 5 and a thrust plate 6 by a shaft 4 having a thrust flange 3 fixed to a shaft 2.
Are rotatably supported. The thrust flange 3 is fixed to the outer peripheral portion of the shaft 2 as a fixed shaft by press fitting or the like, and the thrust plate 6 is fixed to the lower end of the sleeve 5 by bonding or the like.

【0027】シャフト2とスリーブ5の内周面との間
隙、スリーブ5とスラストフランジ3およびスラストプ
レート6との間隙には、流体として潤滑油8が充填され
ている。
The gap between the shaft 2 and the inner peripheral surface of the sleeve 5 and the gap between the sleeve 5 and the thrust flange 3 and the thrust plate 6 are filled with lubricating oil 8 as a fluid.

【0028】スリーブ5の内周面にはヘリングボーン形
状の動圧発生溝9aが形成されてラジアル軸受部が構成
される。一方、円板状のスラストフランジ3には、スリ
ーブ5およびスラストプレート6に対向する面に、図2
に示すようにヘリングボーン形状の動圧発生溝9bが形
成され、スラスト軸受部が構成される。動圧発生溝9b
の内周部にある環状の溝は、スラストフランジ3に形成
された環状の切り欠き空間11cである。
On the inner peripheral surface of the sleeve 5, a herringbone-shaped dynamic pressure generating groove 9a is formed to constitute a radial bearing portion. On the other hand, the disk-shaped thrust flange 3 has a surface facing the sleeve 5 and the thrust plate 6 as shown in FIG.
The herringbone-shaped dynamic pressure generating groove 9b is formed as shown in FIG. Dynamic pressure generating groove 9b
An annular groove formed in the inner peripheral portion of the groove is an annular cutout space 11c formed in the thrust flange 3.

【0029】ラジアル軸受部とスラスト軸受部との連結
部10には、軸体4側であるシャフト2とスラストフラ
ンジ3、また軸受体7側のスリーブ5の内周面の全周に
わたって環状の切り欠き空間11a〜11cが形成され
ている。
In the connecting portion 10 between the radial bearing portion and the thrust bearing portion, an annular cut is formed over the entire circumference of the shaft 2 and the thrust flange 3 on the shaft body 4 side and the inner peripheral surface of the sleeve 5 on the bearing body 7 side. Notched spaces 11a to 11c are formed.

【0030】このように構成された動圧流体軸受装置1
aでは、軸体4に対して軸受体7が回転するとヘリング
ボーン形状の動圧発生溝9a,9bによって動圧が発生
し、軸体4と軸受体7とが非接触で支持される。このと
きラジアル軸受部とスラスト軸受部との連結部10に
は、上述のように環状の切り欠き空間11a〜11cが
形成されているため、連結部10に発生する負圧を緩和
して動圧の損失を抑制できる。
The hydrodynamic bearing device 1 thus configured
In a, when the bearing 7 rotates with respect to the shaft 4, dynamic pressure is generated by the herringbone-shaped dynamic pressure generating grooves 9a and 9b, and the shaft 4 and the bearing 7 are supported in a non-contact manner. At this time, the annular cutout spaces 11a to 11c are formed in the connecting portion 10 between the radial bearing portion and the thrust bearing portion as described above, so that the negative pressure generated in the connecting portion 10 is relieved and the dynamic pressure is reduced. Loss can be suppressed.

【0031】以下、具体例に基づき環状の切り欠き空間
11a〜11cとラジアル軸受部とスラスト軸受部との
連結部10に発生する負圧との関係を説明する。上記の
ように構成された動圧流体発生装置1aにおいて、シャ
フト2の半径を0.5mmから3mm、スラストフラン
ジ3の半径をシャフト2の半径の2倍から3倍、ラジア
ル軸受部におけるシャフト2とスリーブ5内周面との間
隙を3μmから10μm、スラスト軸受部のスリーブ5
とスラストフランジ3との間隙を3μmから10μmに
変化させるとともに、動圧発生溝9a,9bの溝角度、
偏心率を変化させ、それぞれの場合における環状の切り
欠き空間11a〜11cの断面積と断面形状を変化させ
た。なお、断面形状は四角形と三角形に変化させた。
Hereinafter, the relationship between the annular cut-out spaces 11a to 11c and the negative pressure generated in the connecting portion 10 between the radial bearing portion and the thrust bearing portion will be described based on a specific example. In the hydrodynamic fluid generator 1a configured as described above, the radius of the shaft 2 is 0.5 mm to 3 mm, the radius of the thrust flange 3 is 2 to 3 times the radius of the shaft 2, and the shaft 2 in the radial bearing portion. The gap between the inner peripheral surface of the sleeve 5 and the sleeve 5 of the thrust bearing portion is 3 μm to 10 μm.
Of the gap between the dynamic pressure generating grooves 9a and 9b,
The eccentricity was changed, and the cross-sectional areas and cross-sectional shapes of the annular cutout spaces 11a to 11c in each case were changed. The cross-sectional shape was changed into a square and a triangle.

【0032】そして、ラジアル方向に沿った断面におけ
る環状の切り欠き空間11a〜11cの占める断面積の
合計面積をa、シャフト2の半径をrとしたときのa/
2と、負圧の減少比との関係を求めた。
The total area of the cross-sectional areas occupied by the annular cutout spaces 11a to 11c in the cross section along the radial direction is represented by a, and when the radius of the shaft 2 is represented by r, a /
The relationship between r 2 and the negative pressure reduction ratio was determined.

【0033】なお、負圧の減少比とは、環状の切り欠き
空間11a〜11cが形成されていない場合、すなわち
a/r2=0のときのラジアル軸受部とスラスト軸受部
の連結部10の負圧を1として、環状の切り欠き空間1
1a〜11cが形成された場合の負圧の減少を求めたも
のである。
The reduction ratio of the negative pressure means that the annular cut-out spaces 11a to 11c are not formed, that is, the connecting portion 10 of the radial bearing and the thrust bearing when a / r 2 = 0. Assuming that the negative pressure is 1, the annular cutout space 1
This is to determine a decrease in negative pressure when 1a to 11c are formed.

【0034】得られた解析結果を図3に示す。a/r2
の値の変化に応じて、負圧はほぼ斜線部Aの範囲で変化
した。ところで、上記のようにラジアル軸受部とスラス
ト軸受部の連結部10に環状の切り欠き空間11a〜1
1cが形成されていない場合には、例えばスリーブ5が
偏心するとラジアル軸受部に圧力変動が生じる。ラジア
ル軸受部の圧力変動が生じると、スラスト軸受部にも影
響を与えスラスト軸受部にも圧力変動が生じる。
FIG. 3 shows the obtained analysis results. a / r 2
The negative pressure changed substantially in the range of the hatched area A in accordance with the change in the value of. By the way, as described above, the annular cut-out spaces 11a to 11a are formed in the connection portion 10 between the radial bearing portion and the thrust bearing portion.
When 1c is not formed, for example, when the sleeve 5 is eccentric, pressure fluctuation occurs in the radial bearing portion. When the pressure fluctuation of the radial bearing part occurs, it also affects the thrust bearing part, and the pressure fluctuation also occurs in the thrust bearing part.

【0035】そこで、ラジアル軸受部、例えばスリーブ
5に偏心が生じた際の圧力変動がスラスト軸受部へ与え
る影響を調べるために、環状の切り欠き空間11a〜1
1cの形状、および軸受形状を上記と同様に変化させて
解析を行った。
Therefore, in order to examine the effect of pressure fluctuations on the radial bearing portion, for example, the sleeve 5 when eccentricity occurs, on the thrust bearing portion, the annular cut-out spaces 11a to 11a-1 are formed.
The analysis was performed by changing the shape of 1c and the bearing shape in the same manner as described above.

【0036】ここでは、環状の切り欠き空間11a〜1
1cが形成されていない場合すなわちa/r2=0のと
きにラジアル軸受部が偏心した場合に、スラスト軸受部
の最大圧力と最小圧力の差を1とし、偏心していない場
合の最大圧力と最小圧力の差を0として、環状の切り欠
き空間11a〜11cが形成された場合の圧力差を求め
た。
Here, the annular cutout spaces 11a to 11a
When 1c is not formed, that is, when the radial bearing is eccentric when a / r 2 = 0, the difference between the maximum pressure and the minimum pressure of the thrust bearing is set to 1, and the maximum pressure and the minimum when the eccentric is not eccentric. Assuming that the pressure difference is 0, the pressure difference when the annular cutout spaces 11a to 11c were formed was obtained.

【0037】得られた解析結果を図4に示す。このとき
の圧力の影響は、ほぼ斜線部Cの範囲で変化した。以
上、図3,図4より、ラジアル方向に沿った断面におけ
る環状の切り欠き空間の占める合計面積aと軸体の軸半
径rとをa≧0.01×r2と設定することで、負圧を
10%以上解消でき、さらに、ラジアル軸受部とスラス
ト軸受部の圧力変動が互いに影響する度合いを15%以
下にできる。
FIG. 4 shows the obtained analysis results. The influence of the pressure at this time changed substantially in the range of the hatched portion C. As described above, according to FIGS. 3 and 4, by setting the total area a occupied by the annular cutout space and the axial radius r of the shaft body in the cross section along the radial direction as a ≧ 0.01 × r 2 , the negative value is obtained. The pressure can be reduced by 10% or more, and the degree to which the pressure fluctuations of the radial bearing and the thrust bearing affect each other can be reduced to 15% or less.

【0038】また、図5に示すように、上記と同様に構
成された動圧流体軸受装置1bにおいて、環状の切り欠
き空間11aと動圧発生溝9cの下端とを当接させ、動
圧発生溝9cと環状の切り欠き空間11a〜11cを連
結させた形状とするとともに、環状の切り欠き空間11
a〜11cの最大深さを動圧発生溝9cよりも深くする
よう構成すると、さらにラジアル軸受部とスラスト軸受
部の連結部10における負圧の発生を低減できる。
As shown in FIG. 5, in the hydrodynamic bearing device 1b having the same structure as described above, the annular cutout space 11a and the lower end of the hydrodynamic groove 9c are brought into contact with each other to generate the hydrodynamic pressure. The groove 9c is connected to the annular cutout spaces 11a to 11c, and the annular cutout space 11a is formed.
When the maximum depth of a to 11c is set to be greater than the dynamic pressure generating groove 9c, the generation of negative pressure in the connecting portion 10 between the radial bearing portion and the thrust bearing portion can be further reduced.

【0039】ここでは、動圧発生溝9cの深さを10μ
m、環状の切り欠き空間11aの最大の深さを10μm
〜100μmまで変化させて、上記と同様にa/r2
値と負圧の減少比とを測定した。
Here, the depth of the dynamic pressure generating groove 9c is set to 10 μm.
m, the maximum depth of the annular cutout space 11a is 10 μm
The value of a / r 2 and the decrease ratio of the negative pressure were measured in the same manner as described above, while changing the thickness to 100 μm.

【0040】この動圧流体発生装置1bによるa/r2
の値の変化に応じて負圧は、ほぼ斜線部Bの範囲で変化
した。また、a/r2の値の変化と最大圧力と最小圧力
の差は、上記図4とほぼ同様になった。
A / r 2 by the dynamic pressure fluid generator 1b
The negative pressure changed substantially in the range of the hatched portion B in accordance with the change in the value of. The change in the value of a / r 2 and the difference between the maximum pressure and the minimum pressure were almost the same as in FIG.

【0041】図3の斜線部B、図4の解析結果より、a
≧0.005×r2に設定すると、負圧が50%以上解
消できる。このように、ラジアル軸受部とスラスト軸受
部の連結部10に環状の切り欠き空間11a〜11cを
設けることで、ラジアル軸受部とスラスト軸受部の連結
部に発生する負圧を低減でき、また、軸の偏心や傾きな
どによるラジアル軸受部とスラスト軸受部の互いの圧力
変動の影響を低減して、軸受剛性の低下を低減できる。
From the hatched portion B in FIG. 3 and the analysis result in FIG.
By setting ≧ 0.005 × r 2 , the negative pressure can be eliminated by 50% or more. As described above, by providing the annular cutout spaces 11a to 11c in the connecting portion 10 between the radial bearing portion and the thrust bearing portion, the negative pressure generated in the connecting portion between the radial bearing portion and the thrust bearing portion can be reduced. The effect of mutual pressure fluctuations of the radial bearing portion and the thrust bearing portion due to the eccentricity or inclination of the shaft can be reduced, and a decrease in bearing rigidity can be reduced.

【0042】なお、上記説明では、環状の切り欠き空間
11a〜11cを、ラジアル軸受部とスラスト軸受部の
連結部10の軸体4と軸受体7の両方の側に形成した
が、いずれか一方のみに形成してもよい。また、シャフ
ト2とスラストフランジ3の両方の側に環状の切り欠き
空間を形成したが、いずれか一方であってもよい。ま
た、環状の切り欠き空間のラジアル軸方向への断面形状
も特に限定されるものではなく、任意の形状でよい。
In the above description, the annular cutout spaces 11a to 11c are formed on both the shaft 4 and the bearing 7 of the connecting portion 10 between the radial bearing and the thrust bearing. It may be formed only. In addition, although the annular cutout space is formed on both sides of the shaft 2 and the thrust flange 3, either one may be provided. Further, the cross-sectional shape of the annular cutout space in the radial axis direction is not particularly limited, and may be any shape.

【0043】また、上記説明では、ラジアル軸受部の動
圧発生溝9a,9cをヘリングボーン形状としたが、図
6に示すようにラジアル方向に隣接する溝角度が逆方向
になるよう配置された一対のスパイラル溝12a,12
bを対向させたものであっても同様の効果が得られる。
In the above description, the dynamic pressure generating grooves 9a and 9c of the radial bearing portion have a herringbone shape. However, as shown in FIG. 6, the grooves are arranged so that adjacent groove angles in the radial direction are opposite to each other. A pair of spiral grooves 12a, 12
The same effect can be obtained even when b faces each other.

【0044】また、上記説明では、スラスト軸受部の動
圧発生溝9bの形状をヘリングボーン形状としたが、図
7に示すように、ポンプインタイプのスパイラル溝13
としても同様の効果が得られる。なお、この図7では、
スラストフランジ3のスパイラル溝13の外周部に環状
の切り欠き空間11dが形成された例を示している。こ
のように、スラストフランジ3に形成される環状の切り
欠き空間は動圧発生溝の内周部、外周部のいずれに形成
されてもよく、両方の側に形成されてもよい。
Further, in the above description, the shape of the dynamic pressure generating groove 9b of the thrust bearing portion is a herringbone shape. However, as shown in FIG.
The same effect can be obtained. In FIG. 7,
An example in which an annular cutout space 11d is formed in the outer peripheral portion of the spiral groove 13 of the thrust flange 3 is shown. As described above, the annular cutout space formed in the thrust flange 3 may be formed on either the inner peripheral portion or the outer peripheral portion of the dynamic pressure generating groove, or may be formed on both sides.

【0045】また、シャフト2の下側にスラストフラン
ジ3が形成された動圧発生装置1a,1bだけでなく、
図8に示すように、シャフト2aの上端に動圧発生溝9
eが形成されたスラストフランジ3aが固定された動圧
流体発生装置1cであっても同様の効果が得られる。こ
こで、5aはスリーブ、6aはスラストプレート、9d
はヘリングボーン形状の動圧発生溝である。
In addition to the dynamic pressure generators 1a and 1b in which the thrust flange 3 is formed below the shaft 2,
As shown in FIG. 8, a dynamic pressure generating groove 9 is formed at the upper end of the shaft 2a.
The same effect can be obtained even with the hydrodynamic fluid generator 1c in which the thrust flange 3a on which e is formed is fixed. Here, 5a is a sleeve, 6a is a thrust plate, 9d
Is a herringbone-shaped dynamic pressure generating groove.

【0046】(実施の形態2)図9〜図14は、本発明
の(実施の形態2)を示す。この(実施の形態2)で
は、スラスト軸受部の構成について説明する。
(Embodiment 2) FIGS. 9 to 14 show (Embodiment 2) of the present invention. In this (Embodiment 2), the configuration of the thrust bearing will be described.

【0047】図9に示すように、一方が他方に対して回
転自在に支持されたスラスト軸受部を有する動圧流体軸
受装置1dにおいて、スラストプレート6bにスリーブ
5bが接着等により固定されて構成された軸受体と、ス
ラストフランジ3bとが対向して配置されている。
As shown in FIG. 9, in a hydrodynamic bearing device 1d having a thrust bearing portion rotatably supported on one side with respect to the other, a sleeve 5b is fixed to a thrust plate 6b by bonding or the like. The bearing body and the thrust flange 3b are arranged to face each other.

【0048】スラストフランジ3bとスリーブ5bおよ
びスラストプレート6bとの間には、潤滑油8が充填さ
れている。スラストフランジ3bのスラストプレート6
bとの対向面には、図10に示すように、ヘリングボー
ン形状の動圧発生溝9eが形成されており、動圧発生溝
9eの外周端部に接するように環状の切り欠き空間11
eが形成され、動圧発生溝9eと環状の切り欠き空間1
1eとが連結されている。
The space between the thrust flange 3b, the sleeve 5b and the thrust plate 6b is filled with lubricating oil 8. Thrust plate 6 of thrust flange 3b
As shown in FIG. 10, a herringbone-shaped dynamic pressure generating groove 9 e is formed on the surface opposing the groove b, and an annular cutout space 11 is formed so as to contact the outer peripheral end of the dynamic pressure generating groove 9 e.
e is formed, and the dynamic pressure generating groove 9e and the annular cutout space 1 are formed.
1e.

【0049】ここで、環状の切り欠き空間11eの最大
深さは動圧発生溝9eの深さよりも深くすることが好ま
しい。また、この環状の切り欠き空間77eの断面形状
は特に限定されるものではなく任意の形状でよい。
Here, it is preferable that the maximum depth of the annular cutout space 11e is larger than the depth of the dynamic pressure generating groove 9e. The sectional shape of the annular cutout space 77e is not particularly limited, and may be any shape.

【0050】このように構成された動圧流体軸受装置1
dでは、スラストフランジ3bに対して軸受体が回転す
るとヘリングボーン形状の動圧発生溝9eによって動圧
が発生し、スラストフランジ3bと軸受体とが非接触で
支持される。このとき、スラストフランジ3bには環状
の切り欠き空間11eが形成されているため、スラスト
軸受部における負圧を緩和して動圧の損失を緩和でき
る。
The hydrodynamic bearing device 1 thus configured
In d, when the bearing rotates with respect to the thrust flange 3b, a dynamic pressure is generated by the herringbone-shaped dynamic pressure generating groove 9e, and the thrust flange 3b and the bearing are supported in a non-contact manner. At this time, since the annular cutout space 11e is formed in the thrust flange 3b, the negative pressure in the thrust bearing portion can be reduced, and the loss of dynamic pressure can be reduced.

【0051】以下、具体例に基づき環状の切り欠き空間
11eと負圧との関係を説明する。上記のように構成さ
れた動圧流体発生装置1dにおいて、ラジアル方向に沿
った環状の切り欠き空間11eの占める断面積の合計面
積をa、へリングボーン形状の動圧発生溝11eの外側
半径をrとしたときのa/r2と負圧の減少比との関係
を、さまざまな軸受形状、環状の切り欠き空間の形状を
変化させて解析を行った。
Hereinafter, the relationship between the annular notch space 11e and the negative pressure will be described based on a specific example. In the hydrodynamic fluid generator 1d configured as described above, the total area of the cross-sectional area occupied by the annular cutout space 11e along the radial direction is a, and the outer radius of the herringbone-shaped hydrodynamic groove 11e is The relationship between a / r 2 and the reduction ratio of the negative pressure when r was analyzed by changing various bearing shapes and the shape of the annular cutout space.

【0052】ここでの負圧の減少比とは、環状の切り欠
き空間11eが形成されていない場合すなわちa/r2
=0のときの負圧を1として、環状の切り欠き空間11
eが形成された場合の負圧の減少を求めたものである。
Here, the negative pressure reduction ratio means that the annular notch space 11e is not formed, that is, a / r 2
Assuming that the negative pressure when = 0 is 1, the annular cutout space 11
This is to determine a decrease in negative pressure when e is formed.

【0053】得られた解析結果を図12に示す。a/r
2の値の変化に応じた負圧は、ほぼ斜線部Dの範囲で変
化した。また、a≧0.0025×r2に設定すること
で負圧を70%以上解消し、動圧軸受の損失を少なくで
きる。
FIG. 12 shows the obtained analysis results. a / r
The negative pressure corresponding to the change in the value of 2 changed almost in the range of the hatched portion D. Further, by setting a ≧ 0.0025 × r 2 , the negative pressure can be eliminated by 70% or more, and the loss of the dynamic pressure bearing can be reduced.

【0054】なお、上記説明では動圧発生溝9eをヘリ
ングボーン形状としたが、図11に示すように、ポンプ
インタイプのスパイラル溝13aとしてもよい。また、
図13,14に示すように、動圧発生溝9eの内周端部
に接するように環状の切り欠き空間11fを形成しても
よい。
Although the dynamic pressure generating groove 9e has a herringbone shape in the above description, it may be a pump-in type spiral groove 13a as shown in FIG. Also,
As shown in FIGS. 13 and 14, an annular cutout space 11f may be formed so as to be in contact with the inner peripheral end of the dynamic pressure generating groove 9e.

【0055】この場合についても上記と同様に環状の切
り欠き空間45の断面積をaとし、へリングボーン溝5
4の内側半径をrとしたて負圧の変化を測定したとこ
ろ、図12の斜線部Dとほぼ同様に変化した。
Also in this case, the sectional area of the annular cutout space 45 is set to a, and the herringbone groove 5 is formed.
When the change in negative pressure was measured with the inside radius of r being r, the change was almost the same as the shaded area D in FIG.

【0056】従って、動圧発生溝9eの内周端部に接す
るように環状の切り欠き空間11fを形成した場合にお
いても、a≧0.0025×r2と設定することで負圧
を70%以上解消でき、動圧軸受の損失を少なくでき
る。
Therefore, even when the annular cutout space 11f is formed so as to be in contact with the inner peripheral end of the dynamic pressure generating groove 9e, by setting a ≧ 0.0025 × r 2 , the negative pressure is reduced by 70%. Thus, the loss of the dynamic pressure bearing can be reduced.

【0057】また、上記各実施の形態では、流体として
潤滑油を用いたが、本発明はこれに限定されるものでは
なく、流体として気体、具体的には空気を用いてもよ
い。このような構成とすると、潤滑油を使用する必要が
なくなり、コストダウンが図れる。
In each of the above embodiments, lubricating oil is used as the fluid. However, the present invention is not limited to this, and a gas, specifically, air may be used as the fluid. With such a configuration, it is not necessary to use a lubricating oil, and cost can be reduced.

【0058】[0058]

【発明の効果】以上のように、本発明の動圧流体軸受装
置によれば、ラジアル軸受部とスラスト軸受部の連結部
に環状の切り欠き空間を設けることで、連結部に発生す
る負圧を緩和し、動圧流体軸受の損失を少なくするとと
もに、ラジアル軸受部とスラスト軸受部の圧力変動が互
いに影響し合うのを防止できる。
As described above, according to the hydrodynamic bearing device of the present invention, by providing an annular cutout space at the connecting portion between the radial bearing portion and the thrust bearing portion, the negative pressure generated at the connecting portion is reduced. And the loss of the hydrodynamic bearing can be reduced, and the pressure fluctuations of the radial bearing and the thrust bearing can be prevented from affecting each other.

【0059】また、環状の切り欠き空間を設けること
で、軸体の偏心や傾き等によるラジアル軸受部とスラス
ト軸受部の圧力変動が互いに影響し合うことを低減でき
る。
Further, by providing the annular cutout space, it is possible to reduce the influence of the pressure fluctuations of the radial bearing and the thrust bearing caused by the eccentricity or inclination of the shaft body.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の(実施の形態1)における動圧流体軸
受装置の断面図
FIG. 1 is a sectional view of a hydrodynamic bearing device according to a first embodiment of the present invention.

【図2】図1のスラスト軸受部の平面図FIG. 2 is a plan view of the thrust bearing portion of FIG. 1;

【図3】本発明の(実施の形態1)における環状の切り
欠き空間と負圧の減少比との関係を示すグラフ
FIG. 3 is a graph showing a relationship between an annular cutout space and a negative pressure reduction ratio according to the first embodiment of the present invention.

【図4】本発明の(実施の形態1)における環状の切り
欠き空間と最大圧力と最小圧力の差との関係を示すグラ
FIG. 4 is a graph showing a relationship between an annular cutout space and a difference between a maximum pressure and a minimum pressure according to the first embodiment of the present invention.

【図5】本発明の(実施の形態1)における図1とは別
の動圧流体軸受装置の断面図
FIG. 5 is a sectional view of a hydrodynamic bearing device different from FIG. 1 according to (Embodiment 1) of the present invention;

【図6】本発明の(実施の形態1)における図2とは別
のスラスト軸受部の平面図
FIG. 6 is a plan view of a thrust bearing different from FIG. 2 according to the first embodiment of the present invention.

【図7】本発明の(実施の形態1)における図1,図5
とは別の動圧流体軸受装置の断面図
FIGS. 1 and 5 in (Embodiment 1) of the present invention.
Sectional view of another hydrodynamic bearing device

【図8】本発明の(実施の形態1)における図1,図5
とは別の動圧流体軸受装置の断面図
8 and FIG. 5 in (Embodiment 1) of the present invention.
Sectional view of another hydrodynamic bearing device

【図9】本発明の(実施の形態2)におけるスラスト軸
受部の断面図
FIG. 9 is a cross-sectional view of a thrust bearing according to the second embodiment of the present invention.

【図10】図9のスラストフランジの平面図FIG. 10 is a plan view of the thrust flange of FIG. 9;

【図11】図9とは別の形状の動圧発生溝を示す平面図FIG. 11 is a plan view showing a dynamic pressure generating groove having a shape different from that of FIG. 9;

【図12】本発明の(実施の形態2)における環状の切
り欠き空間と最大圧力と最小圧力の差との関係を示すグ
ラフ
FIG. 12 is a graph showing a relationship between an annular cut-out space and a difference between a maximum pressure and a minimum pressure according to the second embodiment of the present invention.

【図13】図9とは別の例を示すスラスト軸受部の断面
FIG. 13 is a sectional view of a thrust bearing portion showing another example different from FIG. 9;

【図14】図9のスラストフランジの平面図FIG. 14 is a plan view of the thrust flange of FIG. 9;

【図15】従来の動圧流体軸受装置の断面図FIG. 15 is a sectional view of a conventional hydrodynamic bearing device.

【符号の説明】[Explanation of symbols]

1a〜1d 動圧流体発生装置 2 スリーブ 3 スラストフランジ 4 軸体 5 スリーブ 6 スラストプレート 7 軸受体 8 潤滑油 9a〜9d 動圧発生溝 10 連結部 11a〜11f 環状の切り欠き空間 1a to 1d Dynamic pressure fluid generating device 2 Sleeve 3 Thrust flange 4 Shaft 5 Sleeve 6 Thrust plate 7 Bearing 8 Lubricating oil 9a to 9d Dynamic pressure generating groove 10 Connecting portion 11a to 11f Annular notched space

Claims (10)

【特許請求の範囲】[Claims] 【請求項1】一方が他方に対して回転自在に支持された
軸体と軸受体との間に流体を充填した動圧流体軸受装置
であって、 軸体とこの軸体と対向する前記軸受体の側の少なくとも
何れかの面に動圧発生溝を形成してラジアル軸受部を設
け、 軸体の側に設けられたスラストフランジとこのスラスト
フランジと対向する前記軸受体の側の面の少なくともい
ずれかに動圧発生溝を形成してスラスト軸受部を設ける
とともに、 前記ラジアル軸受部と前記スラスト軸受部との連結部分
の軸体側に環状の切り欠き空間を形成した動圧流体軸受
装置。
1. A hydrodynamic bearing device in which a fluid is filled between a shaft body rotatably supported on one side and a bearing body, wherein the shaft body and the bearing opposed to the shaft body. A dynamic pressure generating groove is formed on at least one surface on the body side to provide a radial bearing portion, and at least a thrust flange provided on the shaft body side and a surface on the bearing body side facing the thrust flange. A hydrodynamic fluid bearing device in which a thrust bearing portion is provided by forming a dynamic pressure generating groove in one of the grooves and an annular cutout space is formed on a shaft body side of a connection portion between the radial bearing portion and the thrust bearing portion.
【請求項2】前記環状の切り欠き空間を軸体と軸受体の
両方の側に形成した請求項1記載の動圧流体軸受装置。
2. The hydrodynamic bearing device according to claim 1, wherein said annular cut-out space is formed on both sides of the shaft body and the bearing body.
【請求項3】前記環状の切り欠き空間を軸と前記スラス
トフランジの少なくとも一方に形成した請求項1または
請求項2記載の動圧流体軸受装置。
3. The hydrodynamic bearing device according to claim 1, wherein the annular cutout space is formed in at least one of a shaft and the thrust flange.
【請求項4】ラジアル軸受部の動圧発生溝がヘリングボ
ーン溝またはラジアル方向に隣接する溝角度が逆方向に
なるよう配置されたスパイラル溝である請求項1〜請求
項3の何れかに記載の動圧流体軸受装置。
4. The dynamic pressure generating groove of the radial bearing portion is a herringbone groove or a spiral groove arranged such that adjacent groove angles in the radial direction are opposite to each other. Hydrodynamic bearing device.
【請求項5】スラスト軸受部の動圧発生溝がヘリングボ
ーン溝またはポンプインタイプのスパイラル溝である請
求項1〜請求項3の何れかに記載の動圧流体軸受装置。
5. The hydrodynamic bearing device according to claim 1, wherein the dynamic pressure generating groove of the thrust bearing portion is a herringbone groove or a pump-in type spiral groove.
【請求項6】ラジアル方向に沿った断面における前記環
状の切り欠き空間の占める合計面積aと軸体の軸半径r
とがa≧0.01×r2である請求項1〜請求項5のい
ずれかに記載の動圧流体軸受装置。
6. A total area a occupied by said annular cutout space in a cross section along a radial direction and a shaft radius r of a shaft body.
The hydrodynamic bearing device according to claim 1, wherein a ≧ 0.01 × r 2 .
【請求項7】前記環状の切り欠き空間と動圧発生溝が軸
体または軸受体の側にあり、 前記環状の切り欠き空間の最大深さが前記動圧発生溝の
溝深さより深く、前記動圧発生溝の端部に前記環状の切
り欠き空間が当接して前記動圧発生溝と前記環状の切り
欠き空間とが連結し、 ラジアル方向に沿った断面における前記環状の切り欠き
空間の占める合計面積aと軸体の軸半径rとがa≧0.
005×r2である請求項1〜請求項5のいずれかに記
載の動圧流体軸受装置。
7. The annular cut-out space and the dynamic pressure generating groove are on the side of a shaft or a bearing body, and a maximum depth of the annular cut-out space is deeper than a groove depth of the dynamic pressure generating groove. The annular notch space abuts on the end of the dynamic pressure generating groove, connects the dynamic pressure generating groove and the annular notch space, and occupies the annular notch space in a cross section along the radial direction. When the total area a and the shaft radius r of the shaft body are a ≧ 0.
The hydrodynamic bearing device according to claim 1, wherein 005 × r 2 .
【請求項8】一方が他方に対して回転自在に支持された
スラストフランジと軸受体との間に潤滑流体を充填した
動圧流体軸受装置であって、 スラストフランジと軸受体の少なくとも何れかに形成さ
れた動圧発生溝の外周半径が前記スラストスラストフラ
ンジの外周半径よりも小さい場合に、前記動圧発生溝の
外周端部に当接した環状の切り欠き空間を形成し、 前記環状の切り欠き空間の最大深さを前記動圧発生溝よ
りも深くするとともに、 ラジアル方向に沿った断面における前記環状の切り欠き
空間の占める合計面積aと前記動圧発生溝の外周半径r
とがa≧0.0025×r2である動圧流体軸受装置。
8. A hydrodynamic bearing device in which a lubricating fluid is filled between a thrust flange rotatably supported on one side and a bearing body, wherein at least one of the thrust flange and the bearing body. When the outer peripheral radius of the formed dynamic pressure generating groove is smaller than the outer peripheral radius of the thrust thrust flange, an annular notch space is formed in contact with the outer peripheral end of the dynamic pressure generating groove, and the annular notch is formed. The maximum depth of the notched space is made deeper than the dynamic pressure generating groove, and the total area a occupied by the annular cutout space in the cross section along the radial direction and the outer radius r of the dynamic pressure generating groove
Wherein a ≧ 0.0025 × r 2 .
【請求項9】一方が他方に対して回転自在に支持された
スラストフランジと軸受体との間に潤滑流体を充填した
動圧流体軸受装置であって、 スラストフランジと軸受体の少なくとも何れかに形成さ
れた動圧発生溝の内周周端部に当接した環状の切り欠き
空間を形成し、 前記環状の切り欠き空間の最大深さを前記動圧発生溝の
深さよりも深くするとともに、 ラジアル方向に沿った断面における前記環状の切り欠き
空間の占める合計面積aと前記動圧発生溝の内周半径r
とがa≧0.0025×r2である動圧流体軸受装置。
9. A hydrodynamic bearing device in which a lubricating fluid is filled between a thrust flange rotatably supported on one side and a bearing body, wherein at least one of the thrust flange and the bearing body. Forming an annular notch space in contact with the inner peripheral end of the formed dynamic pressure generating groove, and making the maximum depth of the annular notch space deeper than the depth of the dynamic pressure generating groove, The total area a occupied by the annular cutout space in the cross section along the radial direction and the inner peripheral radius r of the dynamic pressure generating groove
Wherein a ≧ 0.0025 × r 2 .
【請求項10】動圧発生溝がヘリングボーン溝またはポ
ンプインタイプのスパイラル溝である請求項8または請
求項9記載の動圧流体軸受装置。
10. The hydrodynamic bearing device according to claim 8, wherein the dynamic pressure generating groove is a herringbone groove or a pump-in type spiral groove.
JP2000058058A 2000-03-03 2000-03-03 Hydrodynamic bearing device Expired - Lifetime JP4338281B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000058058A JP4338281B2 (en) 2000-03-03 2000-03-03 Hydrodynamic bearing device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000058058A JP4338281B2 (en) 2000-03-03 2000-03-03 Hydrodynamic bearing device

Publications (2)

Publication Number Publication Date
JP2001248635A true JP2001248635A (en) 2001-09-14
JP4338281B2 JP4338281B2 (en) 2009-10-07

Family

ID=18578709

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000058058A Expired - Lifetime JP4338281B2 (en) 2000-03-03 2000-03-03 Hydrodynamic bearing device

Country Status (1)

Country Link
JP (1) JP4338281B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004081399A1 (en) * 2003-03-14 2004-09-23 Seiko Instruments Inc. Hydrodynamic bearing, motor, and recording medium drive device
JP2005048951A (en) * 2004-07-28 2005-02-24 Ntn Corp Dynamic pressure type bearing unit
JP2008038989A (en) * 2006-08-03 2008-02-21 Tokai Univ Grooved hydrodynamic thrust gas bearing and its manufacturing method
KR101291296B1 (en) 2006-07-10 2013-07-30 볼보 컨스트럭션 이큅먼트 에이비 Bearing pre-load structure for swing gear box of heavy construction equipment

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004081399A1 (en) * 2003-03-14 2004-09-23 Seiko Instruments Inc. Hydrodynamic bearing, motor, and recording medium drive device
JP2005048951A (en) * 2004-07-28 2005-02-24 Ntn Corp Dynamic pressure type bearing unit
KR101291296B1 (en) 2006-07-10 2013-07-30 볼보 컨스트럭션 이큅먼트 에이비 Bearing pre-load structure for swing gear box of heavy construction equipment
JP2008038989A (en) * 2006-08-03 2008-02-21 Tokai Univ Grooved hydrodynamic thrust gas bearing and its manufacturing method

Also Published As

Publication number Publication date
JP4338281B2 (en) 2009-10-07

Similar Documents

Publication Publication Date Title
USRE39613E1 (en) Half bearing with grooves preventing leakage of lubricating oil
KR100708924B1 (en) Foil hydrodynamic journal bearing and method of manufacturing the same
JP4159332B2 (en) Hydrodynamic bearing device
JP2516967B2 (en) Bearing device
US5932946A (en) Porous bearing system having internal grooves and electric motor provided with the same
US5704718A (en) Sintered oil-impregnated bearing and method for manufacturing same
KR19980014962A (en) Sintered bearing
JP2002349548A (en) Hydrodynamic fluid bearing device
JP3774080B2 (en) Hydrodynamic bearing unit
JP4245897B2 (en) Method for manufacturing hydrodynamic bearing device
JPH1182487A (en) Porous bearing
JP2001248635A (en) Dynamic pressure fluid bearing device
US8506167B2 (en) Dynamic bearing device having a thrust bearing portion
JP2003232353A (en) Dynamic pressure type bearing device
JP3983435B2 (en) Hydrodynamic bearing unit
JPH05215128A (en) Bering device
JP2003194045A (en) Dynamic pressure bearing device
JPH02278007A (en) Thrust bearing
JP3842499B2 (en) Hydrodynamic bearing unit
JP2003074543A (en) Hydrodynamic fluid bearing unit and motor with the same
JP3620814B2 (en) Porous composite bearing
JP3892995B2 (en) Hydrodynamic bearing unit
JP2006329391A (en) Dynamic pressure bearing arrangement
JP2005127524A (en) Dynamic-pressure bearing device
JP2004108549A (en) Hydrodynamic bearing device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070122

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081008

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081014

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081215

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090127

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090303

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090602

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090630

R151 Written notification of patent or utility model registration

Ref document number: 4338281

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120710

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120710

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130710

Year of fee payment: 4

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term