JPH11303858A - Porous hydrodynamic bearing - Google Patents

Porous hydrodynamic bearing

Info

Publication number
JPH11303858A
JPH11303858A JP10760298A JP10760298A JPH11303858A JP H11303858 A JPH11303858 A JP H11303858A JP 10760298 A JP10760298 A JP 10760298A JP 10760298 A JP10760298 A JP 10760298A JP H11303858 A JPH11303858 A JP H11303858A
Authority
JP
Japan
Prior art keywords
bearing
concave portion
inclined surface
oil
porous
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10760298A
Other languages
Japanese (ja)
Inventor
Hiroyasu Fujinaka
広康 藤中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP10760298A priority Critical patent/JPH11303858A/en
Publication of JPH11303858A publication Critical patent/JPH11303858A/en
Pending legal-status Critical Current

Links

Landscapes

  • Sliding-Contact Bearings (AREA)

Abstract

PROBLEM TO BE SOLVED: To enhance the lubricity of a porous bearing used in information equipment, imaging equipment, acoustic equipment of the like. SOLUTION: Recesses 2 for producing dynamic pressure are formed the inner peripheral surface or the end face of a bearing 1, and a negative pressure side inclined surface 3 of each of the recess 2 is in a zigzag shape so as to be longer than the line of a positive pressure side inclined surface 4 thereof. With this arrangement, the pumping function of the bearing can be maximumly exhibited so as to promote the formation of a stable oil film, thereby it is possible to enhance the rotational accuracy and the reliability of the bearing 1.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、ラジアル方向ある
いはスラスト方向の荷重を多孔質軸受で受ける構造とな
っているモータ等の軸受装置に関わるものであり、長寿
命、低軸摩擦損失、低振動、低騒音もしくは軸振れの低
減等の特性を要求されるスピンドルモータ等の軸受に関
するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a bearing device such as a motor having a structure in which a load in a radial direction or a thrust direction is received by a porous bearing, and has a long life, low shaft friction loss, and low vibration. The present invention relates to a bearing such as a spindle motor which is required to have characteristics such as low noise or reduction of shaft runout.

【0002】[0002]

【従来の技術】近年情報機器、映像・音響機器は、DV
D(デジタルビデオディスク)に代表されるように、機
器の高密度記録化が進むに伴い、これらの機器に使用さ
れる軸受装置についても、より高い回転精度が要求され
るようになってきている。
2. Description of the Related Art In recent years, information equipment and video / audio equipment
As represented by D (Digital Video Disk), as the recording density of devices has increased, bearing devices used in these devices have also been required to have higher rotational accuracy. .

【0003】従来の焼結含油軸受を用いた軸受装置にお
いて、軸のラジアル負荷を支える機構としては、内径が
真円に加工された軸受と、真円のシャフトが回転摺動す
る、いわゆるジャーナル軸受として構成されているもの
が大半である。焼結含油軸受はシャフトが偏心した状態
で回転すると、ポンプ作用と呼ばれる油の循環作用や油
のくさび効果により良好な摺動特性を示すものの、ジャ
ーナル軸受は、軸が偏心した状態でないと半径方向の圧
力が発生しないという構造上の問題により、シャフトの
振れ回りが大きくなり、回転精度の確保が難しいという
基本的な問題点を有していた。
[0003] In a conventional bearing device using a sintered oil-impregnated bearing, as a mechanism for supporting a radial load on a shaft, a bearing having an inner diameter processed into a perfect circle and a so-called journal bearing in which a perfect-circular shaft rotates and slides are used. Most are configured as: When a sintered oil-impregnated bearing rotates with its shaft eccentric, it exhibits good sliding characteristics due to the oil circulation and wedge effect called pump action.However, journal bearings have a radial direction unless the shaft is eccentric. Due to the structural problem that no pressure is generated, the whirling of the shaft becomes large, and there is a basic problem that it is difficult to ensure the rotational accuracy.

【0004】このような焼結含油軸受の問題点を改良す
るものとして、実開昭61−101124号公報に記載
されているように、軸受内径部にスパイラル状の溝を形
成し、軸回転に伴い内側へ潤滑剤を導くことにより、高
度の回転精度を達成し、かつエネルギー損失を低減する
と共に、軸受が焼結金属であるため溝形状の加工が容易
であり、かつ低廉となるものがある。さらに、特開昭6
2−167921号公報および特開昭62−16792
2号公報には、軸受内周面に軸芯を中心とする円弧面よ
り大きい曲率の円弧面の3面以上の組み合わせ、および
その円弧面が平面状である内径面を有する軸受であっ
て、軸との接触が線接触となるため摩擦損失を低減でき
るものが記載されている。また、特開平5−11514
6号公報に記載された軸受は、内径面に実質的に矩形状
の溝部が複数個ある焼結含油軸受であり、簡単な構造に
よって動圧機能の向上と低ノイズおよび低摩耗化を達成
するものである。
To improve the problem of such a sintered oil-impregnated bearing, as described in Japanese Utility Model Laid-Open Publication No. 61-101124, a spiral groove is formed in the inner diameter of the bearing so that the shaft can be rotated. In addition, by introducing the lubricant to the inside, a high degree of rotation accuracy is achieved, energy loss is reduced, and because the bearing is made of sintered metal, machining of the groove shape is easy and inexpensive. . Further, Japanese Unexamined Patent Publication No.
2-167921 and JP-A-62-16792.
Japanese Patent Application Publication No. 2 (1995) -195566 discloses a bearing having a combination of three or more arcuate surfaces having a curvature larger than an arcuate surface centered on an axis on an inner peripheral surface of the bearing, and an inner surface in which the arcuate surface is planar, It describes that the contact with the shaft is a line contact, so that the friction loss can be reduced. Also, Japanese Patent Application Laid-Open No. H5-111514
The bearing described in Japanese Patent Publication No. 6 is a sintered oil-impregnated bearing having a plurality of substantially rectangular grooves on the inner diameter surface, and achieves improved dynamic pressure function and reduced noise and wear by a simple structure. Things.

【0005】上記のように、既に開示されている技術
は、クリアランスの低減や回転数の増大に伴う流体潤滑
剤の流体抵抗の増大に対し、いずれも軸受内径溝を形成
し、軸支持するクリアランスを大きくすることなく流体
抵抗を低減しようとするものである。また、それに伴う
溝部における動圧効果により、軸支持部の軸受剛性を高
め、回転精度を高めようとするものである。
[0005] As described above, any of the techniques disclosed in the prior art has a clearance for forming a bearing inner diameter groove and supporting the shaft in response to an increase in the fluid resistance of the fluid lubricant accompanying a reduction in the clearance and an increase in the rotational speed. It is intended to reduce the fluid resistance without increasing the pressure. Also, the bearing rigidity of the shaft supporting portion is increased by the dynamic pressure effect in the groove portion, thereby improving the rotation accuracy.

【0006】一方、従来の焼結含油軸受を用いた軸受装
置において、スラスト方向の摺動に関しては油の供給や
油圧発生の機構もなく十分な摺動特性を実現することが
できなかった。
[0006] On the other hand, in a conventional bearing device using a sintered oil-impregnated bearing, sufficient sliding characteristics cannot be realized in the thrust direction sliding without a mechanism for supplying oil or generating hydraulic pressure.

【0007】このような焼結含油軸受の問題点を改良す
るものとして、特開平1−12121号公報は、焼結含
油粕受喘面に少なくとも3ヶ所以上の、周方向および径
方向に、山頂を有する3次元的凹凸をウェーブ状につけ
た形状とし、その凸部にてスラスト荷重を支え、凸部と
凹部の高低差により潤滑油に正圧、負圧を発生させ、摺
動面の油膜形成および摺動面への油供給を行い、スラス
ト方向の荷重を受けようとするものである。
To improve the problem of such a sintered oil-impregnated bearing, Japanese Patent Laid-Open Publication No. 1-12121 discloses at least three or more peaks in a circumferential direction and a radial direction on a surface of a sintered oil-impregnated cake receiving surface. The three-dimensional irregularities having a wavy shape are used to support the thrust load at the convex part, and a positive or negative pressure is generated in the lubricating oil by the height difference between the convex part and the concave part to form an oil film on the sliding surface. In addition, oil is supplied to the sliding surface to receive a load in the thrust direction.

【0008】同様に焼結含油軸受の端面にてスラスト方
向荷重を受ける目的で、動圧発生を期待して凹凸部を形
成したものとして他に、実開昭57−63121号公報
がある。これは、端面に任意の個数の浅い凹部を設け、
この凹部は直線にて形成される2次元的傾斜面であり、
その軸方向傾斜角度は20°以内、最大深さも0.3mm
以下とするもので、この凹部を油供給部とすると共に、
油膜のくさび効果により動圧を発生させ摺動条件を改善
しようとするものである。
Similarly, Japanese Unexamined Utility Model Publication No. Sho 57-63121 discloses a method of forming a concavo-convex portion on the end surface of a sintered oil-impregnated bearing in order to generate a dynamic pressure in order to receive a load in the thrust direction. This provides an arbitrary number of shallow recesses on the end face,
This recess is a two-dimensional inclined surface formed by a straight line,
Its axial inclination angle is within 20 ° and the maximum depth is 0.3mm
In the following, this concave portion is used as an oil supply portion,
It is intended to improve the sliding conditions by generating dynamic pressure by the wedge effect of the oil film.

【0009】さらに焼結含油軸受の端面にてスラスト方
向荷重を受ける目的で、積極的な動圧発生を期待した形
状を形成する方法としては、特開平4−15311号公
報がある。これは軸受端面またはワッシャの対向面の一
方に、相対回転により内周側が高圧となる動圧発生溝を
設け、簡単で安価な手段により潤滑油の飛散を防止し、
耐久性の向上を図るものである。
Japanese Patent Application Laid-Open No. 4-15311 discloses a method of forming a shape in which positive dynamic pressure is expected to be applied to the end face of a sintered oil-impregnated bearing in the thrust direction. This is to provide a dynamic pressure generating groove on one of the bearing end face or the opposed face of the washer where the inner circumference side becomes high pressure by relative rotation, to prevent the scattering of lubricating oil by simple and inexpensive means,
It is intended to improve durability.

【0010】以上の技術は、スラスト摺動に対しては、
端面部に凹凸部やテーパ部を形成し、端面部に存在する
油を有効的にスラスト方向潤滑に寄与させるため、動圧
を発生させるべく考案された機構である。
[0010] The above-mentioned technology is applied to thrust sliding.
This mechanism is designed to generate a dynamic pressure in order to form an uneven portion or a tapered portion on an end face portion and to effectively contribute oil existing in the end face portion to thrust lubrication.

【0011】[0011]

【発明が解決しようとする課題】しかしながら、上記従
来の技術は、焼結含油軸受のコストの安さ、あるいは加
工の容易さというメリットはあるものの、焼結含油軸受
の圧力が発生すると潤滑油が軸受内部に浸透するという
特性上、発生する圧力は、溶製材を用いた動圧軸受に比
較して低く、溶製材を用いた動圧軸受より負荷容量が小
さい、あるいは、回転精度が低い等の問題点を有してい
た。
However, the above-mentioned prior art has the merit of low cost of the sintered oil-impregnated bearing or easiness of processing, but when the pressure of the sintered oil-impregnated bearing is generated, the lubricating oil is applied to the bearing. Due to the property of penetrating inside, the pressure generated is lower than that of a hydrodynamic bearing using ingot material, and the load capacity is smaller than that of a hydrodynamic bearing using ingot material, or the rotational accuracy is low. Had a point.

【0012】また、上記に示した焼結含油軸受を用いた
動圧発生機構は、溶製材を用いた動圧軸受の構成を焼結
体に適用したものが殆どで、焼結含油軸受の特徴である
ポンプ作用と呼ばれる油の循環作用による潤滑効果を十
分に引き出したものではなく、焼結含油軸受が本来もっ
ている優れた潤滑特性を生かし切れていないものが殆ど
であった。
Most of the dynamic pressure generating mechanisms using the above-described sintered oil-impregnated bearings apply the structure of a hydrodynamic bearing using a molten material to a sintered body. However, most of the lubrication effects obtained by the oil circulation action referred to as the pump action are not fully utilized, and most of the sintered oil-impregnated bearings do not fully utilize the excellent lubrication characteristics inherent in the oil-impregnated bearing.

【0013】本発明は、焼結含油軸受に代表される多孔
質体軸受の、圧力が発生すると潤滑油が軸受内部に浸透
するという特性による圧力低下を最小限に抑え、さらに
焼結含油軸受のポンプ作用と呼ばれる油の循環作用によ
る潤滑効果を最大限に引き出し、最適な動圧発生と、優
れた潤滑性能を提供し、回転精度を高め、信頼性の面に
おいても優れた軸受を提供することを目的としている。
The present invention minimizes the pressure drop of a porous bearing typified by a sintered oil-impregnated bearing due to the characteristic that lubricating oil permeates into the bearing when pressure is generated. To maximize the lubrication effect by the oil circulation function called pump action, provide optimal dynamic pressure and provide excellent lubrication performance, improve rotational accuracy, and provide bearings with excellent reliability. It is an object.

【0014】[0014]

【課題を解決するための手段】上記課題を解決するため
に本発明は、多孔質体により形成された軸受本体に、シ
ャフトと摺動する内径部が形成された多孔質軸受におい
て、前記軸受内周部に動圧発生のための凹部を有し、前
記凹部の負圧側傾斜面の形状を、ジグザグ状に形成する
ことにより、前記凹部の正圧側傾斜面の線の長さより長
くしたものである。
SUMMARY OF THE INVENTION In order to solve the above-mentioned problems, the present invention relates to a porous bearing in which an inner diameter portion which slides on a shaft is formed in a bearing body formed of a porous body. The peripheral portion has a concave portion for generating dynamic pressure, and the shape of the negative pressure side inclined surface of the concave portion is formed in a zigzag shape so as to be longer than the line length of the positive pressure side inclined surface of the concave portion. .

【0015】これにより、多孔質体軸受のポンプ作用と
呼ばれる油の循環作用による潤滑効果を最大限に引き出
し、最適な動圧発生と、優れた潤滑性能を提供すること
ができる。
As a result, it is possible to maximize the lubricating effect by the oil circulating action called the pump action of the porous body bearing, and to provide optimal dynamic pressure generation and excellent lubricating performance.

【0016】[0016]

【発明の実施の形態】本発明の請求項1に記載の発明
は、多孔質体により形成された軸受本体に、シャフトと
摺動する内径部が形成された多孔質軸受において、前記
軸受内周部に動圧発生のための凹部を有し、前記凹部の
負圧側傾斜面の形状を、ジグザグ状に形成することによ
り、前記凹部の正圧側傾斜面の線の長さより長くしたも
のであり、軸受のポンプ作用と呼ばれる油の循環作用に
よる潤滑効果を最大限に引き出し、最適な動圧発生と、
優れた潤滑性能を提供することができる。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The invention according to claim 1 of the present invention is directed to a porous bearing in which a bearing body formed of a porous body is formed with an inner diameter portion that slides with a shaft. A concave portion for generating dynamic pressure in the portion, the shape of the negative pressure side inclined surface of the concave portion is formed in a zigzag shape, longer than the line length of the positive pressure side inclined surface of the concave portion, Maximize the lubrication effect by the oil circulation function called the pump action of the bearing, and generate the optimal dynamic pressure,
Excellent lubrication performance can be provided.

【0017】請求項2に記載の発明は、多孔質体により
構成された略円筒体端面部でスラスト荷重を受ける多孔
質軸受において、前記軸受端面に動圧発生のための凹部
を有し、前記凹部の負圧側傾斜面の形状を、ジグザグ状
に形成することにより、前記凹部の正圧傾斜面の線の長
さより長くしたものであり、軸受のポンプ作用と呼ばれ
る油の循環作用による潤滑効果を最大限に引き出し、最
適な動圧発生と、優れた潤滑性能を提供することができ
る。
According to a second aspect of the present invention, there is provided a porous bearing which receives a thrust load at an end face of a substantially cylindrical body formed of a porous body, wherein the end face of the bearing has a concave portion for generating dynamic pressure. By forming the shape of the negative pressure side inclined surface of the concave portion in a zigzag shape, it is made longer than the length of the line of the positive pressure inclined surface of the concave portion, and the lubrication effect by the oil circulation action called pumping action of the bearing. Pulling out to the maximum, optimal dynamic pressure generation and excellent lubrication performance can be provided.

【0018】[0018]

【実施例】(実施例1)図1は、本実施例の軸受を示し
ている。図1において、軸受1は鉄、銅等の金属粉末
を、金型で圧粉成形したものを高温の炉内で焼結後、さ
らにサイジング処理されて構成されている。サイジング
処理された軸受内径部には、さらに転造加工により3ヶ
の内径凹部2が形成されている。
(Embodiment 1) FIG. 1 shows a bearing of this embodiment. In FIG. 1, a bearing 1 is formed by sintering a metal powder such as iron, copper or the like in a high-temperature furnace, followed by sizing. In the bearing inner diameter portion subjected to the sizing processing, three inner diameter concave portions 2 are further formed by rolling.

【0019】図1において内径に設けられた凹部2は、
シャフトが矢印方向に回転した場合に動圧を発生するの
に適したように軸受内周側から見て、ストレートの凹部
が複数並んだ形状をしており、前記凹部の回転方向上流
側の負圧側傾斜面3をジグザグ線で形成し、負圧側傾斜
面3の面積を、負圧側傾斜面3を滑らかな曲線で形成し
た場合より面積が大きくなるようにしている。また軸受
内径の上下端は、凹部2内の油が軸受1端面に漏れ出す
のを抑えるために、真円摺動部5が残され形成されてい
る。
In FIG. 1, the concave portion 2 provided on the inner diameter
When viewed from the bearing inner peripheral side, the shaft has a shape in which a plurality of straight concave portions are arranged so as to be suitable for generating dynamic pressure when the shaft rotates in the direction of the arrow, and the negative portion on the upstream side in the rotation direction of the concave portion is formed. The compression-side inclined surface 3 is formed by a zigzag line, and the area of the suction-side inclined surface 3 is made larger than that of the case where the suction-side inclined surface 3 is formed by a smooth curve. Further, at the upper and lower ends of the bearing inner diameter, a perfect circular sliding portion 5 is formed in order to prevent oil in the concave portion 2 from leaking to the end face of the bearing 1.

【0020】図2は、軸受内径部の潤滑機構を示したも
のである。図2において、軸受内径部に置かれたシャフ
ト6が回転すると、回転方向に凹部の深さが変わること
により、油のくさび作用による圧力が発生する。発生す
る圧力は、図2に示したとおり、凹部深さが徐々に深く
なる回転方向上流側の負圧傾斜面3では負の圧力、凹部
深さが徐々に浅くなる回転方向下流側の正圧側傾斜面4
では正の圧力が発生する。
FIG. 2 shows a lubrication mechanism for the inner diameter portion of the bearing. In FIG. 2, when the shaft 6 placed on the inner diameter of the bearing rotates, the depth of the concave portion changes in the rotating direction, so that a pressure is generated by the wedge action of the oil. As shown in FIG. 2, the generated pressure is a negative pressure on the negative pressure inclined surface 3 on the upstream side in the rotation direction where the depth of the recess gradually increases, and a positive pressure side on the downstream side in the rotation direction where the depth of the recess gradually decreases. Slope 4
Then a positive pressure is generated.

【0021】正の圧力が発生する回転方向下流側の正圧
側傾斜面4では、図に示したように油が軸受内部に浸透
し圧力が低下する。一方、負の圧力が発生する回転方向
上流側の負圧側傾斜面3では、前記回転方向下流側の正
圧側傾斜面4で軸受内部に浸透した油が染み出し再び摺
動面に供給される。この作用は多孔質体独特のポンプ作
用と呼ばれる潤滑作用であり、油が軸受全体に十分に満
たされていない状態でも、安定した摺動を提供する作用
がある。
On the positive pressure side inclined surface 4 on the downstream side in the rotation direction where the positive pressure is generated, as shown in the figure, oil permeates into the bearing and the pressure decreases. On the other hand, on the negative pressure side inclined surface 3 on the upstream side in the rotation direction where a negative pressure is generated, the oil that has permeated inside the bearing on the positive pressure side inclined surface 4 on the downstream side in the rotational direction seeps out and is supplied again to the sliding surface. This action is a lubrication action called a pump action peculiar to the porous body, and has an action of providing stable sliding even when the entire bearing is not sufficiently filled with oil.

【0022】この際正圧側傾斜面4では、軸受表面の空
孔率をできる限り小さくし、油の浸透を少なくした方
が、軸受面の圧力を高くすることができ、軸の回転精度
を高める上で有利となる。逆に負圧側傾斜面3では、軸
受表面の空孔率を小さくしてしまうと、油が軸受面に殆
ど染み出さなくなってしまうため、軸受摺動面への油の
供給が追いつかなくなり、金属接触を引き起こす状態に
陥り、回転精度はもちろん、信頼性を確保することも難
しくなる。従って理想的には、正圧側傾斜面4では、軸
受表面の空孔率をできる限り小さくして、圧力低下を防
ぎ、負圧側傾斜面3では、軸受表面の空孔率を大きくし
て、油が軸受表面に染み出しやすい状態にすることが望
ましい。
At this time, in the positive pressure side inclined surface 4, the porosity of the bearing surface is made as small as possible, and the permeation of oil is reduced, so that the pressure on the bearing surface can be increased and the rotational accuracy of the shaft can be increased. The above is advantageous. Conversely, on the negative pressure side inclined surface 3, if the porosity of the bearing surface is reduced, oil hardly seeps into the bearing surface, so that the supply of oil to the bearing sliding surface cannot catch up, and metal contact And it becomes difficult to ensure not only rotational accuracy but also reliability. Therefore, ideally, the porosity of the bearing surface is made as small as possible on the positive pressure side inclined surface 4 to prevent a pressure drop, and the porosity of the bearing surface is made large on the negative pressure side However, it is desirable to make the state easily ooze out on the bearing surface.

【0023】しかしながら、軸受内径の空孔率のコント
ロールは、全周にわたって空孔率をほぼ一定にする加工
は可能であるが、凹部の表面の空孔率を場所により変化
させるといった加工は、実際上非常に難しく現実的な加
工方法が殆ど無いのが現状である。
However, the porosity of the inner diameter of the bearing can be controlled by making the porosity almost constant over the entire circumference. However, the processing of changing the porosity of the surface of the concave portion depending on the location is practical. At present, there is almost no practical processing method that is very difficult.

【0024】そこで、本発明の軸受は、内径の空孔率を
ほぼ一定に加工した軸受に、転造加工により凹部を形成
すると共に、凹部の負圧側傾斜面3をジグザグ線で形成
することにより、負圧側傾斜面3の面積を大きくし、負
圧側傾斜面3の空孔率が大きくなった場合と同様に、油
が染み出しやすい状態を作り出している。
Therefore, the bearing of the present invention is obtained by forming a concave portion by rolling and forming a negative-pressure-side inclined surface 3 of the concave portion with a zigzag line in a bearing in which the porosity of the inner diameter is substantially constant. The area of the negative pressure side inclined surface 3 is increased to create a state in which oil easily seeps out, as in the case where the porosity of the negative pressure side inclined surface 3 is increased.

【0025】この構成により、軸受内径の空孔率を正圧
側傾斜面4に合わせて全体の空孔率がある程度小さい状
態にコントロールすることで、軸受内径での圧力の低下
を小さくし、負圧側傾斜面3をジグザグ線で形成し面積
を大きくすることにより、油を染み出しやすくすること
により、軸受のポンプ作用を最大限に引き出し、染み出
した潤滑油が正圧側傾斜面4に供給されることにより、
安定した油膜の形成を促して、回転精度が高く、信頼性
の面でも優れた軸受装置が提供できる。
With this configuration, the porosity of the bearing inner diameter is controlled to a state where the overall porosity is somewhat small in accordance with the pressure side inclined surface 4, so that the pressure drop at the bearing inner diameter is reduced and the negative pressure side is reduced. By forming the inclined surface 3 with a zigzag line and enlarging the area, oil is easily exuded, so that the pumping action of the bearing is maximized, and the exuded lubricating oil is supplied to the positive pressure side inclined surface 4. By doing
It is possible to provide a bearing device that promotes formation of a stable oil film, has high rotational accuracy, and is excellent in reliability.

【0026】なお、上記実施例の凹部形状は、内径側か
ら見た形状がストレート状の場合を示しているが、図3
に示すような矢羽根状の凹部を並べたいわゆるへリング
ボーン形状、あるいは図4に示すような凹部が軸方向に
対して傾いて形成された形状等その他いずれの形状に適
用しても同様の効果がある。
The concave shape of the above embodiment is a case where the shape viewed from the inner diameter side is a straight shape.
The same applies when applied to any other shape, such as a so-called herringbone shape in which arrow-shaped concave portions are arranged as shown in FIG. 4, or a shape in which concave portions are formed to be inclined with respect to the axial direction as shown in FIG. effective.

【0027】(実施例2)上記実施例1は、軸受内径部
とシャフトが摺動するラジアル動圧軸受に関するもので
あるが、同様の形態を軸受端面で荷重を支持するスラス
ト動圧軸受に適用することも可能である。
(Embodiment 2) The above-described embodiment 1 relates to a radial dynamic pressure bearing in which the shaft slides on the inner diameter of the bearing, and the same form is applied to a thrust dynamic pressure bearing that supports a load at the bearing end face. It is also possible.

【0028】図5は、本実施例の軸受7を示している。
図5において、軸受7は鉄、銅等の金属粉末を、金型で
圧粉成形したものを高温の炉内で焼結後、サイジング処
理、端面の空孔調整処理後、さらに転写加工により複数
の動圧凹部8が端面に形成されている。本実施例の凹部
8の形状は、回転方向に漸近的に半径方向の寸法が小さ
くなる形状である。さらに前記凹部8の回転方向上流側
の負圧側傾斜面9をジグザグ線で形成し、負圧側傾斜面
9の面積を、負圧側傾斜面9を滑らかな曲線で形成した
場合より面積が大きくなるようにしている。
FIG. 5 shows the bearing 7 of this embodiment.
In FIG. 5, the bearing 7 is obtained by sintering a metal powder such as iron, copper or the like in a high-temperature furnace after sintering in a high-temperature furnace, sizing, adjusting the porosity of the end face, and further performing a transfer process. Are formed on the end face. The shape of the concave portion 8 in this embodiment is a shape in which the dimension in the radial direction is asymptotically reduced in the rotation direction. Further, the suction side inclined surface 9 on the upstream side in the rotation direction of the concave portion 8 is formed by a zigzag line, and the area of the suction side inclined surface 9 is made larger than that when the suction side inclined surface 9 is formed by a smooth curve. I have to.

【0029】また、軸受端面外周側には平面部を残すこ
とにより、軸受端面の油が軸受外周方向に漏れ出すのを
抑えている。
Further, by leaving a flat portion on the outer peripheral side of the bearing end face, oil on the bearing end face is suppressed from leaking in the outer peripheral direction of the bearing.

【0030】図6は、軸受7のA−A’断面での潤滑機
構を示したものである。図6において、スラスト受板1
1が回転すると、回転方向に凹部の深さが変わることに
より、油のくさび作用による圧力が発生する。発生する
圧力は、図2に示したとおり、凹部深さが徐々に深くな
る回転方向上流側の負圧側傾斜面9では負の圧力、凹部
深さが徐々に浅くなる回転方向下流側の正圧側傾斜面1
0では正の圧力が発生する。
FIG. 6 shows a lubrication mechanism in the section AA 'of the bearing 7. As shown in FIG. In FIG. 6, the thrust receiving plate 1
When 1 rotates, the depth of the concave portion changes in the rotating direction, thereby generating a pressure due to the wedge action of the oil. As shown in FIG. 2, the generated pressure is a negative pressure on the suction side inclined surface 9 on the upstream side in the rotation direction where the depth of the recess gradually increases, and a positive pressure side on the downstream side in the rotation direction where the depth of the recess gradually decreases. Slope 1
At zero, a positive pressure is generated.

【0031】また、本実施例では凹部の正圧側傾斜面1
0は角度を2段に切り替え、スラスト受板11方向に凸
な面で形成することにより、正圧側傾斜面10で発生す
る圧力の勾配を小さくし、広い面積で圧力を発生するこ
とにより、圧力の発生を安定化している。
In this embodiment, the pressure-side inclined surface 1 of the concave portion is used.
0 changes the angle to two steps and forms a convex surface in the direction of the thrust receiving plate 11, thereby reducing the pressure gradient generated on the pressure-side inclined surface 10 and generating pressure over a wide area. Stabilization of the occurrence.

【0032】この構成により、上記実施例1に示したラ
ジアル動圧軸受の場合と同様、軸受のポンプ作用を最大
限に引き出すことによって、安定した油膜の形成を促し
て、軸受のスラスト支持剛性が高く、信頼性にも優れた
軸受装置を提供することができる。
With this configuration, as in the case of the radial dynamic pressure bearing described in the first embodiment, the pumping action of the bearing is maximized to promote the formation of a stable oil film, and the thrust supporting rigidity of the bearing is reduced. A high-reliability bearing device can be provided.

【0033】なお、上記実施例の凹部はポンプイン形状
の場合を示しているが、図7に示すようなへリングボー
ン形状、あるいは図8に示すテーパドランド形状等その
他いずれの形状に適用しても同様の効果がある。
Although the concave portion in the above embodiment shows a pump-in shape, it can be applied to any other shape such as a herringbone shape as shown in FIG. 7 or a tapered land shape as shown in FIG. There is a similar effect.

【0034】また、上記実施例1、2は焼結含油軸受の
場合を示しているが、多孔質の樹脂軸受等、軸受材質に
他の多孔質材を使用した場合も同様の効果があることは
いうまでもない。
Although the first and second embodiments show the case of a sintered oil-impregnated bearing, the same effect can be obtained when another porous material is used as the bearing material, such as a porous resin bearing. Needless to say.

【0035】[0035]

【発明の効果】上記実施例の記載から明らかなように、
請求項1記載の発明によれば、多孔質ラジアル動圧軸受
のポンプ作用を最大限に引き出し、回転精度が高く、信
頼性の面でも優れた軸受が提供できる。
As is clear from the description of the above embodiment,
According to the first aspect of the present invention, it is possible to provide a bearing that maximizes the pumping action of the porous radial dynamic pressure bearing, has high rotational accuracy, and is excellent in reliability.

【0036】また、請求項2記載の発明によれば、多孔
質スラスト動圧軸受のポンプ作用を最大限に引き出し、
回転精度が高く、信頼性の面でも優れた軸受が提供でき
る。
According to the second aspect of the present invention, the pumping action of the porous thrust dynamic bearing is maximized.
A bearing with high rotation accuracy and excellent reliability can be provided.

【図面の簡単な説明】[Brief description of the drawings]

【図1】(a)本発明の実施例1による軸受の断面斜視
図 (b)同断面図
FIG. 1A is a sectional perspective view of a bearing according to a first embodiment of the present invention, and FIG.

【図2】本発明の実施例1における軸受の潤滑機構を示
した図
FIG. 2 is a diagram showing a bearing lubrication mechanism according to the first embodiment of the present invention.

【図3】(a)本発明の実施例1におけるもう1例の軸
受の断面斜視図 (b)同断面図
FIG. 3A is a sectional perspective view of another example of the bearing according to the first embodiment of the present invention. FIG.

【図4】(a)本発明の実施例1におけるもう1例の軸
受の断面斜視図 (b)同断面図
FIG. 4A is a sectional perspective view of another example of the bearing according to the first embodiment of the present invention; FIG.

【図5】本発明の実施例2による軸受の図FIG. 5 is a view of a bearing according to Embodiment 2 of the present invention.

【図6】本発明の実施例2における軸受の潤滑機構を示
した図
FIG. 6 is a diagram showing a bearing lubrication mechanism according to a second embodiment of the present invention.

【図7】本発明の実施例2におけるもう1例の軸受の断
面図
FIG. 7 is a sectional view of another example of the bearing according to the second embodiment of the present invention.

【図8】本発明の実施例2におけるもう1例の軸受の断
面図
FIG. 8 is a sectional view of another example of the bearing according to the second embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1、7 軸受 2、8 凹部 3、9 負圧側傾斜面 4、10 正圧側傾斜面 5 真円摺動部 6 シャフト 11 スラスト受板 1, 7 bearing 2, 8 recess 3, 9 negative pressure side inclined surface 4, 10 positive pressure side inclined surface 5 perfect circular sliding part 6 shaft 11 thrust receiving plate

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 多孔質体により形成された軸受本体に、
シャフトと摺動する内径部が形成された多孔質軸受にお
いて、前記軸受内周部に動圧発生のための凹部を有し、
前記凹部の負圧側傾斜面の形状を、ジグザグ状に形成す
ることにより、前記凹部の正圧側傾斜面の線の長さより
長くしたことを特徴とする動圧ラジアル多孔質軸受。
1. A bearing body formed of a porous body,
In a porous bearing having an inner diameter portion that slides with a shaft, the bearing inner peripheral portion has a concave portion for generating dynamic pressure,
A dynamic pressure radial porous bearing, wherein the shape of the negative pressure side inclined surface of the concave portion is formed in a zigzag shape so as to be longer than the length of the line of the positive pressure side inclined surface of the concave portion.
【請求項2】 多孔質体により構成された略円筒体端面
部でスラスト荷重を受ける多孔質軸受において、前記軸
受端面に動圧発生のための凹部を有し、前記凹部の負圧
側傾斜面の形状を、ジグザグ状に形成することにより、
前記凹部の正圧傾斜面の線の長さより長くしたことを特
徴とする動圧スラスト多孔質軸受。
2. A porous bearing which receives a thrust load at an end surface of a substantially cylindrical body formed of a porous body, wherein the end surface of the bearing has a concave portion for generating a dynamic pressure, and a concave portion of the concave portion on a negative pressure side of the concave portion. By forming the shape in a zigzag shape,
A hydrodynamic thrust porous bearing, wherein the length of the positive pressure inclined surface of the concave portion is longer than the length of the line.
JP10760298A 1998-04-17 1998-04-17 Porous hydrodynamic bearing Pending JPH11303858A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10760298A JPH11303858A (en) 1998-04-17 1998-04-17 Porous hydrodynamic bearing

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10760298A JPH11303858A (en) 1998-04-17 1998-04-17 Porous hydrodynamic bearing

Publications (1)

Publication Number Publication Date
JPH11303858A true JPH11303858A (en) 1999-11-02

Family

ID=14463340

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10760298A Pending JPH11303858A (en) 1998-04-17 1998-04-17 Porous hydrodynamic bearing

Country Status (1)

Country Link
JP (1) JPH11303858A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002349549A (en) * 2001-05-28 2002-12-04 Nippon Densan Corp Hydrodynamic bearing motor
JP2014156927A (en) * 2013-01-15 2014-08-28 Canon Machinery Inc Sliding surface structure
WO2022009770A1 (en) * 2020-07-06 2022-01-13 イーグル工業株式会社 Sliding component
US11913454B2 (en) 2020-07-06 2024-02-27 Eagle Industry Co., Ltd. Sliding component
US11933303B2 (en) 2020-07-06 2024-03-19 Eagle Industry Co., Ltd. Sliding component

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002349549A (en) * 2001-05-28 2002-12-04 Nippon Densan Corp Hydrodynamic bearing motor
JP4617606B2 (en) * 2001-05-28 2011-01-26 日本電産株式会社 Hydrodynamic bearing motor
JP2014156927A (en) * 2013-01-15 2014-08-28 Canon Machinery Inc Sliding surface structure
WO2022009770A1 (en) * 2020-07-06 2022-01-13 イーグル工業株式会社 Sliding component
US11913454B2 (en) 2020-07-06 2024-02-27 Eagle Industry Co., Ltd. Sliding component
US11933303B2 (en) 2020-07-06 2024-03-19 Eagle Industry Co., Ltd. Sliding component

Similar Documents

Publication Publication Date Title
JP3599886B2 (en) Hydrodynamic thrust porous bearing
US7090401B2 (en) Grooving pattern for grooved fluid bearing
CN1260485C (en) Dyamic bearing device and motor with the dynamic bearing device
US5007747A (en) Radial roller bearing
US4747705A (en) Power shaped multipad hydrodynamic journal bearing
WO2013141205A1 (en) Sintered metal bearing
US20050135714A1 (en) Grooves on both the moving and the stationary mating fluid dynamic bearing surfaces for performance enhancement
JP3620815B2 (en) Porous bearing
US6120188A (en) Bearing unit manufacturing method bearing unit and motor using the bearing unit
JPH11303858A (en) Porous hydrodynamic bearing
JPS59197614A (en) Bearing construction
JP2003035310A (en) Structure of dynamic pressure sleeve bearing
JP4052730B2 (en) Manufacturing method of bearing device, bearing device, and motor using the same
JPS624565B2 (en)
CN1961160B (en) Hydrodynamic bearing device
JP4338281B2 (en) Hydrodynamic bearing device
JPH033805B2 (en)
JP3620814B2 (en) Porous composite bearing
JPS5917018A (en) Fluid bearing device utilizing dynamic pressure type lubricating oil
JP3602325B2 (en) Dynamic pressure type porous oil-impregnated bearing
JPH0791448A (en) Bearing device and manufacture thereof
JP4152707B2 (en) Hydrodynamic bearing device
JP2006329391A (en) Dynamic pressure bearing arrangement
JP3936527B2 (en) Manufacturing method of hydrodynamic bearing device
JPH0419404B2 (en)