JP2014156927A - Sliding surface structure - Google Patents

Sliding surface structure Download PDF

Info

Publication number
JP2014156927A
JP2014156927A JP2013036980A JP2013036980A JP2014156927A JP 2014156927 A JP2014156927 A JP 2014156927A JP 2013036980 A JP2013036980 A JP 2013036980A JP 2013036980 A JP2013036980 A JP 2013036980A JP 2014156927 A JP2014156927 A JP 2014156927A
Authority
JP
Japan
Prior art keywords
sliding surface
periodic structure
sliding
height
height position
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013036980A
Other languages
Japanese (ja)
Other versions
JP5619937B2 (en
Inventor
Hiroshi Sawada
博司 沢田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Machinery Inc
Original Assignee
Canon Machinery Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Machinery Inc filed Critical Canon Machinery Inc
Priority to JP2013036980A priority Critical patent/JP5619937B2/en
Publication of JP2014156927A publication Critical patent/JP2014156927A/en
Application granted granted Critical
Publication of JP5619937B2 publication Critical patent/JP5619937B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Sliding-Contact Bearings (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a sliding surface structure which has high load capacity and can alleviate aggressiveness of a periodic structure part.SOLUTION: A sliding surface of a first member and a sliding surface of a second member slide relatively under a lubricant, in a sliding surface structure. On at least one sliding surface of either of the first member and the second member, an uneven periodic structure part in a grating shape and a periodic structure unformed part are alternately formed along a sliding direction. A fluid introduction groove is formed on an upstream side in the sliding direction of the periodic structure part. The periodic structure part is communicated with a peripheral edge of the sliding surface. A projection height position of the periodic structure part is set lower than a height position of the unformed part.

Description

本発明は、摺動面構造に関するものである。   The present invention relates to a sliding surface structure.

表面テクスチャリングは流体潤滑領域の拡大や摩擦低減など、摺動特性の改善手法の一つとなっている。サブミクロンの周期ピッチと溝深さをもつグレーティング状の周期構造部はサブミクロンの油膜厚さにおいて、極めて高い負荷能力と剛性をもつことが知られており、往復摺動や回転摺動に利用されている。   Surface texturing is one of the methods for improving sliding characteristics, such as expanding the fluid lubrication area and reducing friction. Grating-like periodic structure with submicron periodic pitch and groove depth is known to have extremely high load capacity and rigidity at submicron oil film thickness, and is used for reciprocating sliding and rotational sliding. Has been.

しかし、起動直後や停止直前など十分な動圧が得られない場面では、周期構造部による攻撃性が問題となる。ここで、周期構造部による攻撃性とは、相手側部材に対する摩耗増大性や損傷性等である。周期構造部の攻撃性を緩和するためには、周期構造部の凸部高さを周期構造未形成部分と面一な高さより低くすることが有効である。   However, in situations where sufficient dynamic pressure cannot be obtained, such as immediately after starting or immediately before stopping, aggression by the periodic structure part becomes a problem. Here, the aggression property by the periodic structure portion is wear increase property or damage property to the counterpart member. In order to reduce the aggressiveness of the periodic structure portion, it is effective to make the height of the convex portion of the periodic structure portion lower than the height flush with the portion where the periodic structure is not formed.

そこで、従来においては、摺動面よりも高さ位置が高位となる凸部を回転中心部に設けたスラスト軸受がある(特許文献1)。このスラスト軸受では、回転停止時において、摺動面(相手側の摺動面に対面する面)の全体がこの相手側の摺動面に接触することなく、凸部の頂点の接触となる。このため、起動時において、凸部の頂点と相手側の摺動面との接触が、回転中心付近に限定され、摩擦による起動トルクへの影響を小さいものとしている。   Therefore, conventionally, there is a thrust bearing in which a convex portion whose height is higher than the sliding surface is provided at the center of rotation (Patent Document 1). In this thrust bearing, when the rotation is stopped, the entire sliding surface (the surface facing the mating sliding surface) is in contact with the apex of the convex portion without contacting the mating sliding surface. For this reason, at the time of start-up, the contact between the apex of the convex portion and the other-side sliding surface is limited to the vicinity of the rotation center, and the influence on the start-up torque due to friction is made small.

特開2001−12456号公報JP 2001-12456 A

特許文献1に記載のものでは、摺動面上に凸部を形成する必要がある。この場合の形成方法として、凸部を別部材として形成した後、この摺動面に接合する方法、又は凸部を残すように切削や研削する方法等がある。このため、いずれの形成方法もその加工工程が多く、生産性に劣るものであった。   In the thing of patent document 1, it is necessary to form a convex part on a sliding surface. As a forming method in this case, there is a method of forming the convex portion as a separate member and then joining the sliding surface, or a method of cutting or grinding so as to leave the convex portion. For this reason, any of the forming methods has many processing steps and is inferior in productivity.

また、凸部を形成することによって、油膜が厚くなる傾向にある。このように、油膜が厚くなると、低負荷容量および低剛性を招くことになる。   In addition, the oil film tends to be thicker by forming the convex portion. Thus, when the oil film becomes thick, low load capacity and low rigidity are caused.

周期構造部の凸部高さを周期構造未形成部分と面一な高さより低くしすぎると負荷容量に悪影響が出る。そのため、負荷容量に影響が出にくいパターニングの開発と適正な高さの設定が望まれている。   If the height of the convex portion of the periodic structure portion is made lower than the height flush with the portion where the periodic structure is not formed, the load capacity is adversely affected. Therefore, it is desired to develop a patterning that does not affect the load capacity and to set an appropriate height.

本発明は、上記課題に鑑みて、負荷容量の低減を抑えながら周期構造部の攻撃性を緩和できる摺動面構造を提供する。   In view of the above problems, the present invention provides a sliding surface structure that can reduce the aggressiveness of a periodic structure part while suppressing a reduction in load capacity.

本発明の摺動面構造は、第1部材の摺動面と第2部材の摺動面とが潤滑剤下で相対的に摺動する摺動面構造であって、第1部材と第2部材との少なくともいずれか一方の摺動面に、摺動面周縁に連通されたグレーティング状凹凸の周期構造部と周期構造未形成部とが摺動方向に沿って交互に形成され、かつ、周期構造部の凸部高さ位置を未形成部の高さ位置よりも低く設定するとともに、前記周期構造未形成部の形状を鋸刃形状としたものである。   The sliding surface structure of the present invention is a sliding surface structure in which the sliding surface of the first member and the sliding surface of the second member slide relative to each other under a lubricant. At least one of the sliding surfaces of the member, the periodic structure portions of the grating-like irregularities communicating with the periphery of the sliding surface and the non-periodic structure forming portions are alternately formed along the sliding direction, and the period The convex portion height position of the structure portion is set lower than the height position of the non-formed portion, and the shape of the periodic structure non-formed portion is a saw blade shape.

本発明の摺動面構造によれば、周期構造部の凸部高さ位置を未形成部の高さ位置よりも低く設定したことによって、2面間の接触がともなう混合潤滑において、周期構造部の摩耗や攻撃性が緩和される。ここで、周期構造部による攻撃性とは、相手側部材に対する摩耗増大性や損傷性等である。また、周期構造部が摺動面周縁に連通されているので、第1部材と第2部材の摺動動作によって、摺動面周縁から潤滑剤を摺動面内方へ導入することができる(この作用を流体導入効果(ポンピング効果)と呼ぶ)。周期構造部と周期構造未形成部とが摺動方向に沿って交互に形成され、しかも、周期構造部の凸部高さ位置を未形成部の高さ位置よりも低く設定することによって、周期構造部と未形成部との境界で圧力が発生し、摺動方向に圧力勾配ができる(この作用をステップ効果と呼ぶ)。ステップ効果による負荷容量はポンピング効果による負荷容量に比べて、段差高さ(周期構造部の凸部高さ位置と未形成部の高さ位置との高低差)による影響が小さいため、負荷容量の低減を低く抑えながら周期構造の摩耗や攻撃性を緩和することができる。このように、周期構造部と未形成部とを設けることによって、周期構造部の凸部高さ位置と未形成部の高さ位置との高低差を大きくしても負荷容量の減少を少なくできる。特に、周期構造未形成部を鋸刃形状としたことによって、摺動面周縁全体から潤滑剤を引き込むことができる。   According to the sliding surface structure of the present invention, the periodic structure portion in the mixed lubrication with the contact between the two surfaces by setting the convex portion height position of the periodic structure portion lower than the height position of the non-formed portion. Wear and aggression are alleviated. Here, the aggression property by the periodic structure portion is wear increase property or damage property to the counterpart member. In addition, since the periodic structure portion communicates with the periphery of the sliding surface, the lubricant can be introduced into the sliding surface from the periphery of the sliding surface by the sliding operation of the first member and the second member ( This action is called a fluid introduction effect (pumping effect). The periodic structure portion and the periodic structure non-formed portion are alternately formed along the sliding direction, and the period height is set by setting the convex portion height position of the periodic structure portion lower than the height position of the non-formed portion. Pressure is generated at the boundary between the structure portion and the unformed portion, and a pressure gradient is generated in the sliding direction (this action is called a step effect). The load capacity due to the step effect is less affected by the step height (height difference between the convex part height position of the periodic structure part and the non-formed part height position) than the load capacity due to the pumping effect. The wear and aggressiveness of the periodic structure can be reduced while keeping the reduction low. Thus, by providing the periodic structure portion and the non-formed portion, the reduction in load capacity can be reduced even if the height difference between the height position of the convex portion of the periodic structure portion and the height position of the non-formed portion is increased. . In particular, by forming the periodic structure-unformed portion into a saw blade shape, the lubricant can be drawn from the entire periphery of the sliding surface.

したがって、本発明の摺動面構造では、流体導入効果とステップ効果とを併せ持つことになる。ステップ効果による負荷容量は流体導入効果の負荷容量に比べて、周期構造部の凸部高さ位置が周期構造未形成部の高さ位置よりも低くなることによる影響が小さい。   Therefore, the sliding surface structure of the present invention has both the fluid introduction effect and the step effect. The load capacity due to the step effect is less affected by the height position of the convex portion of the periodic structure portion being lower than the height position of the portion where the periodic structure is not formed, compared with the load capacity due to the fluid introduction effect.

また、前記周期構造部の摺動方向上流側に、この周期構造部の凹部深さよりも深くポンピング効果を有する流体導入溝を形成するのが好ましい。このように構成することによって、高速・低荷重時において流体導入溝による動圧が効率的に発生する。なお、流体導入溝がない場合、周期構造部の摺動方向上流側に負圧領域が発生するが、流体導入溝を設けることで負圧領域が消滅し、負荷容量を大幅に増加することができる。   Moreover, it is preferable to form a fluid introduction groove having a pumping effect deeper than the depth of the concave portion of the periodic structure portion on the upstream side in the sliding direction of the periodic structure portion. With this configuration, the dynamic pressure by the fluid introduction groove is efficiently generated at high speed and low load. If there is no fluid introduction groove, a negative pressure region is generated upstream in the sliding direction of the periodic structure part. However, the provision of the fluid introduction groove eliminates the negative pressure region and can greatly increase the load capacity. it can.

前記周期構造部の凸部高さ位置と未形成部の高さ位置との高低差を前記摺動面の算術平均粗さ以上とするのが好ましい。また、前記周期構造部の凸部高さ位置と未形成部の高さ位置との高低差を前記摺動面の最大高さ粗さ以下とするのが好ましい。   It is preferable that the height difference between the height position of the convex portion of the periodic structure portion and the height position of the non-formed portion is equal to or greater than the arithmetic average roughness of the sliding surface. Moreover, it is preferable that the height difference between the height position of the convex portion of the periodic structure portion and the height position of the non-formed portion is equal to or less than the maximum height roughness of the sliding surface.

周期構造部の周期ピッチを10μm以下とするのが好ましく、周期構造部の凹部の深さが1μm以下とするのが好ましい。また、周期構造部の全凹部の一方の端部が外部に開口して流体導入口となるのが好ましい。   The periodic pitch of the periodic structure portion is preferably 10 μm or less, and the depth of the concave portion of the periodic structure portion is preferably 1 μm or less. Moreover, it is preferable that one end part of all the recessed parts of a periodic structure part opens outside, and becomes a fluid inlet.

前記流体導入溝の深さを、前記周期構造部の凹部深さの3倍以上100倍以下とするのが好ましい。溝深さが油膜厚さと同程度のとき負荷容量が最大となるため、周期構造部による負荷容量は油膜厚さがミクロンオーダになると急激に低下する。このときポンピング効果を有する流体導入溝の深さをこのように設定することによって、油膜厚さがミクロンオーダになった場合でも、油膜保持に十分な負荷容量を得ることができる。流体導入溝の深さが周期構造部の凹部深さの3倍未満では、高速・低荷重時の摩擦係数低減効果が小さくなり、負圧領域の解消にも支障がでる。また、流体導入溝の深さが周期構造部の凹部深さの100倍を越えると、ミクロンオーダの油膜厚さで負荷容量がほとんど得られなくなる。   It is preferable that the depth of the fluid introduction groove is not less than 3 times and not more than 100 times the recess depth of the periodic structure portion. When the groove depth is about the same as the oil film thickness, the load capacity is maximized. Therefore, the load capacity due to the periodic structure portion rapidly decreases when the oil film thickness is on the order of microns. At this time, by setting the depth of the fluid introduction groove having the pumping effect in this way, a sufficient load capacity for holding the oil film can be obtained even when the oil film thickness is in the micron order. If the depth of the fluid introduction groove is less than three times the depth of the concave portion of the periodic structure portion, the effect of reducing the friction coefficient at high speed and low load becomes small, and the negative pressure region is also obstructed. If the depth of the fluid introduction groove exceeds 100 times the depth of the concave portion of the periodic structure portion, a load capacity can hardly be obtained with an oil film thickness on the order of microns.

周期構造部は、加工閾値近傍の照射強度で直線偏光のレーザを照射し、その照射部分をオーバラップさせながら走査して、自己組織的に形成されているのが好ましい。また、周期構造部と前記高低差とは同時加工により形成されてなるのが好ましい。   The periodic structure portion is preferably formed in a self-organized manner by irradiating a linearly polarized laser beam with an irradiation intensity in the vicinity of the processing threshold and scanning the overlapped portion in an overlapping manner. Moreover, it is preferable that the periodic structure portion and the height difference are formed by simultaneous processing.

本発明の摺動面構造では、周期構造部による攻撃性が緩和され、相手側部材の摩耗増大を防止でき、摺動面構造として長期にわたって安定した機能を発揮することができる。また、流体導入効果(ポンピング効果)とステップ効果とを併せ持つことになり、負荷容量の低減を低く抑えながら周期構造部の攻撃性を有効に緩和でき、高品質の摺動面構造の提供が可能となる。摺動面周縁全体から潤滑剤を引き込むことができ、負圧を発生することなく効率的にポンピング効果とステップ効果による負荷容量を得ることができる。 In the sliding surface structure of the present invention, the aggression by the periodic structure portion is alleviated, an increase in wear of the counterpart member can be prevented, and a stable function can be exhibited over a long period of time as the sliding surface structure. In addition, it has both fluid introduction effect (pumping effect) and step effect, which can effectively reduce the aggressiveness of the periodic structure part while keeping the load capacity reduction low, and can provide a high quality sliding surface structure It becomes. Lubricant can be drawn from the entire periphery of the sliding surface, and a load capacity can be obtained by the pumping effect and the step effect efficiently without generating negative pressure.

特に、周期構造部の摺動方向上流側に、ポンピング効果を有する流体導入溝を設けることによって、優れた流体・混合潤滑特性を備えることになる。しかも、流体導入溝に摩耗粉を回収することができ、摩耗粉による潤滑摺動性の低下を防止できる。   In particular, by providing a fluid introduction groove having a pumping effect on the upstream side in the sliding direction of the periodic structure portion, excellent fluid / mixed lubrication characteristics are provided. In addition, the wear powder can be collected in the fluid introduction groove, and the deterioration of the lubricity sliding property due to the wear powder can be prevented.

周期構造部の凸部高さ位置と未形成部の高さ位置との高低差を前記摺動面の算術平均粗さ以上とすれば、2面間の接触がともなう混合潤滑状態において周期構造がほとんど荷重支持することなく摺動する。このため、周期構造部の攻撃性を大幅に低減することができる。   If the height difference between the height position of the convex portion of the periodic structure portion and the height position of the non-formed portion is equal to or greater than the arithmetic average roughness of the sliding surface, the periodic structure can be obtained in a mixed lubrication state involving contact between the two surfaces. It slides with almost no load support. For this reason, the aggressiveness of a periodic structure part can be reduced significantly.

前記周期構造部の凸部高さ位置と未形成部の高さ位置との高低差を前記摺動面の最大高さ粗さ以下とすれば、負荷容量の大幅な低下を防止することができる。   If the height difference between the height position of the convex portion of the periodic structure portion and the height position of the non-formed portion is set to be equal to or less than the maximum height roughness of the sliding surface, a significant reduction in load capacity can be prevented. .

周期構造部の凹凸ピッチを10μm以下とした場合、摺動面のうねり等に起因する潤滑剤の漏れ(側方漏れ)を冗長的に抑えることができ、効率的に動圧を得ることができる。周期構造部の凹部の深さを1μm以下とした場合、油膜変動が小さく、高い負荷容量と剛性を得ることができる。また、混合潤滑においても固体接触部の荷重を低下させる作用があり、摩擦低減効果を発揮する。周期構造部の全凹部の一方の端部が外部に開口しているものでは、摺動面周縁全体から潤滑剤を引き込むことができる。   When the concavo-convex pitch of the periodic structure portion is 10 μm or less, it is possible to redundantly suppress the leakage of the lubricant (side leakage) due to the waviness of the sliding surface, and to efficiently obtain the dynamic pressure. . When the depth of the concave portion of the periodic structure portion is 1 μm or less, the oil film variation is small and high load capacity and rigidity can be obtained. Also, in mixed lubrication, there is an action of reducing the load of the solid contact portion, and the friction reducing effect is exhibited. In the case where one end portion of all the concave portions of the periodic structure portion is opened to the outside, the lubricant can be drawn from the entire periphery of the sliding surface.

流体導入溝の深さを、前記のように設定することによって、高速・低荷重時の摩擦係数を低減でき、しかも、ミクロンオーダの油膜厚さで負荷容量を得ることができる。   By setting the depth of the fluid introduction groove as described above, the friction coefficient at high speed and low load can be reduced, and the load capacity can be obtained with an oil film thickness on the order of microns.

周期構造部は、加工閾値近傍の照射強度で直線偏光のレーザを照射し、その照射部分をオーバラップさせながら走査して、自己組織的に形成したものでは、機械加工では困難なサブミクロンの周期ピッチと凹凸深さを持つものを容易に形成できる。   The periodic structure is irradiated with a linearly polarized laser beam with an irradiation intensity in the vicinity of the processing threshold, scanned while overlapping the irradiated part, and is formed in a self-organized manner. Those having a pitch and a depth of unevenness can be easily formed.

周期構造部と前記高低差とが同時加工により形成されるものでは、加工時間を短縮できて生産性の向上及び低コスト化を図ることができる。また、同時加工は、レーザの出力を調整することにより可能で安定して高精度に、周期構造形成と同時に周期構造部の凸部高さ位置と未形成部の高さ位置との高低差を摺動面の粗さオーダで形成することができる。   In the case where the periodic structure portion and the height difference are formed by simultaneous processing, the processing time can be shortened, and the productivity can be improved and the cost can be reduced. Simultaneous machining is possible by adjusting the output of the laser, and the height difference between the convex part height position of the periodic structure part and the height position of the non-formed part can be adjusted simultaneously with the formation of the periodic structure. The sliding surface can be formed with a roughness order.

本発明の第1の実施形態を示す摺動面構造の要部拡大断面図である。It is a principal part expanded sectional view of the sliding face structure which shows the 1st Embodiment of this invention. 前記図1に示す摺動面構造の周期構造部を有する摺動面の簡略図である。FIG. 2 is a simplified diagram of a sliding surface having a periodic structure portion of the sliding surface structure shown in FIG. 1. 前記摺動面に形成される周期構造部の拡大図である。It is an enlarged view of the periodic structure part formed in the said sliding surface. 前記周期構造部を形成するためのレーザ表面加工装置の簡略図である。It is a simplification figure of the laser surface processing apparatus for forming the said periodic structure part. 算術平均粗さの定義を説明するためのグラフ図である。It is a graph for demonstrating the definition of arithmetic mean roughness. 最大高さ粗さの定義を説明するためのグラフ図である。It is a graph for demonstrating the definition of maximum height roughness. 摺動面に形成される周期構造部と未形成部との変形例を示し、(a)は未形成部のコーナ部が第1部材の外周縁に一致している簡略図であり、(b)は未形成部にコーナ部が形成されない簡略図である。The modification of the periodic structure part and non-formation part which are formed in a sliding surface is shown, (a) is the simplified figure with which the corner part of a non-formation part corresponds to the outer periphery of the 1st member, (b ) Is a simplified diagram in which a corner portion is not formed in an unformed portion. 本発明の第2の実施形態を示す摺動面構造の要部拡大断面図である。It is a principal part expanded sectional view of the sliding surface structure which shows the 2nd Embodiment of this invention. 前記図8に示す摺動面構造の周期構造部を有する摺動面の簡略図である。FIG. 9 is a simplified view of a sliding surface having a periodic structure portion of the sliding surface structure shown in FIG. 8. 油膜厚さと負荷容量との関係を示すグラフ図である。It is a graph which shows the relationship between an oil film thickness and load capacity. 比較例を示し、(a)はスパイラルパターンの周期構造部が形成された摺動面の模式図であり、(b)はステップパターンの周期構造部が形成された摺動面の模式図である。A comparative example is shown, (a) is a schematic diagram of a sliding surface on which a periodic structure portion of a spiral pattern is formed, and (b) is a schematic diagram of a sliding surface on which a periodic structure portion of a step pattern is formed. . 段差高さと負荷容量との関係を示すグラフ図である。It is a graph which shows the relationship between level | step difference height and load capacity. スパイラルパターンと鋸刃スパイラルパターンとの平均摩擦係数の比較を示すグラフ図である。It is a graph which shows the comparison of the average friction coefficient of a spiral pattern and a saw blade spiral pattern. スパイラルパターンと(溝+鋸刃スパイラル)パターンとの平均摩擦係数の比較を示すグラフ図である。It is a graph which shows the comparison of the average friction coefficient of a spiral pattern and a (groove + saw blade spiral) pattern. 流体導入溝のみ形成した試験片と鋸刃スパイラルパターンと(溝+鋸刃スパイラル)パターンとの平均摩擦係数の比較を示すグラフ図である。It is a graph which shows the comparison of the average friction coefficient of the test piece which formed only the fluid introduction groove | channel, a saw blade spiral pattern, and a (groove + saw blade spiral) pattern.

以下本発明の実施の形態を図1〜図15に基づいて説明する。 Hereinafter, embodiments of the present invention will be described with reference to FIGS.

本発明に係る摺動面構造は、図1に示すように、第1部材1の摺動面1aと第2部材2の摺動面2aとが潤滑剤L下で相対的に摺動するものである。この場合、第1部材1及び第2部材2は、炭素鋼、銅、アルミニウム、白金、超硬合金等であっても、炭化ケイ素や窒化ケイ素等のシリコン系セラミックスであっても、エンジニアプラスチック等であってもよい。また、潤滑剤Lとしても、水やアルコールであっても、さらにはエンジンオイル等の潤滑油等であってもよい。すなわち、第1・第2部材1、2の材質、使用する環境等に応じて種々の潤滑剤を用いることができる。また、第1部材1を例えば図2に示すようにリング体とし、第2部材2を例えば円盤形状体で構成した。   As shown in FIG. 1, the sliding surface structure according to the present invention is such that the sliding surface 1a of the first member 1 and the sliding surface 2a of the second member 2 slide relative to each other under the lubricant L. It is. In this case, the first member 1 and the second member 2 may be carbon steel, copper, aluminum, platinum, cemented carbide, silicon ceramics such as silicon carbide or silicon nitride, engineer plastic, etc. It may be. Further, the lubricant L may be water or alcohol, or may be a lubricating oil such as engine oil. That is, various lubricants can be used depending on the material of the first and second members 1 and 2 and the environment in which they are used. Moreover, the 1st member 1 was made into the ring body as shown, for example in FIG. 2, and the 2nd member 2 was comprised by the disk shaped body, for example.

第1部材1の上面が摺動面1aとなり、第2部材2の下面が摺動面2aとなる。第1部材1の摺動面1aにグレーティング状凹凸の周期構造部3と、周期構造部が形成されない周期構造未形成部8とが設けられる。すなわち、第1部材1の摺動面1aに、複数の前記周期構造部3を有するリング状の周期構造集合部7と、内径側のリング部9と周方向に沿って所定ピッチで配設される複数の周期構造未形成部8とからなる周期構造未形成集合部4とが形成される。この場合、周期構造未形成部8は鋸刃形状としている。すなわち、周期構造未形成部8は、直線状の底辺8aと円弧状の斜辺8bとを備えた複数個の扇形状体からなる。   The upper surface of the first member 1 becomes the sliding surface 1a, and the lower surface of the second member 2 becomes the sliding surface 2a. The sliding surface 1a of the first member 1 is provided with a periodic structure portion 3 having grating-like irregularities and a periodic structure non-formed portion 8 in which the periodic structure portion is not formed. That is, the ring-shaped periodic structure assembly portion 7 having the plurality of periodic structure portions 3 and the inner diameter side ring portion 9 are arranged on the sliding surface 1a of the first member 1 at a predetermined pitch along the circumferential direction. Thus, a periodic structure non-formed aggregate part 4 composed of a plurality of periodic structure non-formed parts 8 is formed. In this case, the periodic structure non-formation part 8 has a saw blade shape. In other words, the periodic structure non-formed portion 8 is composed of a plurality of fan-shaped bodies having a straight base 8a and an arcuate hypotenuse 8b.

周期構造部3は図3に示すように、微小の凹部5と微小の凸部6とが交互に所定ピッチで配設されてなるものである。周期構造部3の凹凸ピッチを10μm以下とし、凹部5の深さを1μm以下とするのが好ましい。この場合、周期構造部3の凹部5は、第1部材1の外周縁(摺動面周縁)1bに連通(開口)している。第1部材1の内周縁1cには開口していない。また、周期構造未形成部8の中心角αを例えば、19degとし、隣合う周期構造未形成部8間の間隔の中心角βを例えば、26degとしている。また、周期構造未形成部8の底辺8aと斜辺8bとのコーナ部8cは、第1部材1の外周縁よりも内径寄りに配置されている。   As shown in FIG. 3, the periodic structure portion 3 is formed by alternately arranging minute concave portions 5 and minute convex portions 6 at a predetermined pitch. It is preferable that the irregular pitch of the periodic structure portion 3 is 10 μm or less and the depth of the concave portion 5 is 1 μm or less. In this case, the concave portion 5 of the periodic structure portion 3 communicates (opens) with the outer peripheral edge (sliding surface peripheral edge) 1 b of the first member 1. There is no opening in the inner peripheral edge 1 c of the first member 1. Further, the central angle α of the periodic structure non-formed portion 8 is set to 19 deg, for example, and the central angle β of the interval between the adjacent periodic structure non-formed portions 8 is set to 26 deg, for example. Further, the corner portion 8 c between the bottom side 8 a and the oblique side 8 b of the periodic structure-unformed portion 8 is disposed closer to the inner diameter than the outer peripheral edge of the first member 1.

周期構造部3の凹部5はスパイラル状に湾曲し、その湾曲方向が未形成部8の斜辺8bの湾曲方向に合わされている。そして、第1部材1と第2部材2との少なくもいずれか一方がその軸心廻りに回転することによって、第1部材1の周期構造部3が、摺動面1aの外周縁側から潤滑剤が第1部材1の内部に導入されるように設定される。この場合、周期構造部3の全凹部5が第1部材1の外周縁1bに開口しているので、摺動面周縁全体から潤滑剤を引き込むことができる。   The concave portion 5 of the periodic structure portion 3 is curved in a spiral shape, and the bending direction thereof is matched with the bending direction of the hypotenuse 8b of the non-formed portion 8. Then, when at least one of the first member 1 and the second member 2 rotates around its axis, the periodic structure portion 3 of the first member 1 is lubricated from the outer peripheral edge side of the sliding surface 1a. Is set to be introduced into the first member 1. In this case, since all the concave portions 5 of the periodic structure portion 3 are open to the outer peripheral edge 1b of the first member 1, the lubricant can be drawn from the entire peripheral edge of the sliding surface.

周期構造部3は、加工閾値近傍の照射強度で直線偏光のレーザを照射し、その照射部分をオーバラップさせながら走査して、自己組織的に形成している。具体的には、図4に示すフェムト秒レーザ表面加工装置を使用する。レーザ発生器11(チタンサファイアフェムト秒レーザ発生器)で発生したレーザ(例えば、パルス幅:120fs、中心波長800nm、繰り返し周波数:1kHz、パルスエネルギー:0.25〜400μJ/pulse)は、ミラー12により加工材料Wに向けて折り返され、メカニカルシャッタ13に導かれる。レーザ照射時はメカニカルシャッタ13を開放し、レーザ照射強度は1/2波長板14と偏光ビームスプリッタ16によって調整可能とし、1/2波長板15によって偏光方向を調整し、集光レンズ(焦点距離:150mm)17によって、XYθステージ19上の加工材料W表面に集光照射する。なお、フェムト秒レーザはフェムト秒(1000兆分の1秒)オーダーという極端に短い時間単位の中にエネルギーを圧縮した光源である。   The periodic structure portion 3 is formed in a self-organized manner by irradiating a linearly polarized laser beam with an irradiation intensity in the vicinity of the processing threshold and scanning the overlapping portions in an overlapping manner. Specifically, the femtosecond laser surface processing apparatus shown in FIG. 4 is used. A laser (eg, pulse width: 120 fs, center wavelength: 800 nm, repetition frequency: 1 kHz, pulse energy: 0.25 to 400 μJ / pulse) generated by a laser generator 11 (titanium sapphire femtosecond laser generator) is reflected by a mirror 12. It is folded back toward the work material W and guided to the mechanical shutter 13. At the time of laser irradiation, the mechanical shutter 13 is opened, the laser irradiation intensity can be adjusted by the half-wave plate 14 and the polarization beam splitter 16, the polarization direction is adjusted by the half-wave plate 15, and the condenser lens (focal length) : 150 mm) 17, the surface of the work material W on the XYθ stage 19 is condensed and irradiated. A femtosecond laser is a light source that compresses energy in an extremely short time unit of the order of femtoseconds (one thousandth of a second).

すなわち、アブレーション閾値近傍のフルエンスで直線偏光のレーザをワーク(加工材料)Wに照射した場合、入射光と加工材料Wの表面に沿った散乱光またはプラズマ波の干渉により、波長オーダのピッチと溝深さを持つグレーティング状の周期構造部を偏光方向に直交して自己組織的に形成する。このとき、フェムト秒レーザをオーバラップさせながら走査させることで、周期構造部を広範囲に拡張することができる。   That is, when a workpiece (working material) W is irradiated with a linearly polarized laser beam at a fluence near the ablation threshold, the pitch and grooves on the order of wavelengths are caused by interference between incident light and scattered light or plasma waves along the surface of the processing material W. A grating-like periodic structure having a depth is formed in a self-organizing manner perpendicular to the polarization direction. At this time, the periodic structure part can be expanded over a wide range by scanning the femtosecond lasers while overlapping them.

レーザのスキャンは、レーザを固定して加工材料Wを支持するXYθステージ19を移動させても、XYθステージ19を固定してレーザを移動させてもよい。あるいは、レーザとXYθステージ19を同時移動させてもよい。なお、前記図3は、前記フェムト秒レーザ表面加工装置にて形成した周期構造部3を電子顕微鏡で撮像した図である。   Laser scanning may be performed by moving the XYθ stage 19 that supports the processing material W while fixing the laser, or may move the laser while fixing the XYθ stage 19. Alternatively, the laser and the XYθ stage 19 may be moved simultaneously. In addition, the said FIG. 3 is the figure which imaged the periodic structure part 3 formed with the said femtosecond laser surface processing apparatus with the electron microscope.

そして、本発明の摺動面構造では、図1に示すように、周期構造部3の凸部高さ位置を未形成部8の高さ位置よりも低く設定している。周期構造部3の凸部高さ位置Aと未形成部8の高さ位置Bとの高低差を摺動面1a(第1部材1の上面における未形成部8及び周期構造部3より内径側の面)の算術平均粗さRa以上としている。また、この高低差を摺動面1aの最大高さ粗さRz以下としている。   And in the sliding surface structure of this invention, as shown in FIG. 1, the convex part height position of the periodic structure part 3 is set lower than the height position of the non-formation part 8. As shown in FIG. The height difference between the convex portion height position A of the periodic structure portion 3 and the height position B of the non-formed portion 8 is determined by the sliding surface 1a (the non-formed portion 8 on the upper surface of the first member 1 and the periodic structure portion 3 on the inner diameter side). Of the average surface roughness Ra). Further, this height difference is set to be equal to or less than the maximum height roughness Rz of the sliding surface 1a.

算術平均粗さRaは、図5に示すように、粗さ曲線からその平均線の方向に基準長さだけを抜き取り、この抜取り部分の平均線mの方向にX軸を、縦倍率の方向にY軸を取り、粗さ曲線をy=f(x)で表したときに、次の数1の式によって求められる値をマイクロメートル(μm)で表したものをいう。
As shown in FIG. 5, the arithmetic average roughness Ra is obtained by extracting only the reference length from the roughness curve in the direction of the average line, the X axis in the direction of the average line m of the extracted portion, and the direction of the vertical magnification. When the Y-axis is taken and the roughness curve is represented by y = f (x), the value obtained by the following equation 1 is represented by micrometers (μm).

また、最大高さ粗さRzは、図6に示すように、粗さ曲線からその平均線mの方向に基準長さだけを抜き取り、この抜取り部分の山頂線と谷底線との間隔を粗さ曲線の縦倍率の方向に測定し、この値をマイクロメートル(μm)で表したものをいう。すなわち、(Rz=Rp+Rv)となる。   Further, as shown in FIG. 6, the maximum height roughness Rz is obtained by extracting only the reference length from the roughness curve in the direction of the average line m, and roughening the distance between the peak line and the valley line of the extracted part. It is measured in the direction of the vertical magnification of the curve, and this value is expressed in micrometers (μm). That is, (Rz = Rp + Rv).

本発明において、図1に示すように、摺動面1aから周期構造部3の凸部高さ位置Aまでを段差高さ(高低差)Tと呼び、周期構造部3の凸部6の高さ(周期構造部3の凹部5の深さ)を周期構造部深さT1と呼び、摺動運動中の摺動面間隙間を平滑部すきまSと呼ぶ。   In the present invention, as shown in FIG. 1, the height from the sliding surface 1 a to the convex portion height position A of the periodic structure portion 3 is referred to as a step height (height difference) T. The depth (depth of the concave portion 5 of the periodic structure portion 3) is called a periodic structure portion depth T1, and the gap between the sliding surfaces during the sliding motion is called a smooth portion clearance S.

また、周期構造部3と前記高低差(段差高さ)Tとは同時加工により形成することができる。すなわち、フェムト秒レーザ表面加工装置において、周期構造部3を形成する際に、レーザの出力を調整することによって、その同時加工が可能となる。   The periodic structure 3 and the height difference (step height) T can be formed by simultaneous processing. That is, in the femtosecond laser surface processing apparatus, when the periodic structure portion 3 is formed, the simultaneous processing can be performed by adjusting the output of the laser.

本発明の摺動面構造では、周期構造部3の凸部高さ位置Aを未形成部8の高さ位置Bよりも低く設定したことによって、2面間の接触がともなう混合潤滑において、周期構造部による攻撃性が緩和される。ここで、周期構造部3による攻撃性とは、相手側部材に対する摩耗増大性や損傷性等である。また、周期構造部3が摺動面周縁1bに連通されているので、第1部材と第2部材の摺動動作によって、摺動面周縁1bから潤滑剤Lを摺動面内方へ導入することができる(この作用を流体導入効果(ポンピング効果)と呼ぶ)。ステップ効果による負荷容量はポンピング効果による負荷容量に比べて、段差高さ(周期構造部の凸部高さ位置と未形成部の高さ位置との高低差)による影響が小さいため、負荷容量の低減を低く抑えながら周期構造の摩耗や攻撃性を緩和することができる。このように、周期構造部3と未形成部8とが摺動方向に沿って交互に形成され、しかも、周期構造部3の凸部高さ位置Aを未形成部8の高さ位置Bよりも低く設定することによって、周期構造部3と未形成部8との境界で圧力が発生し、摺動方向に圧力勾配ができる(この作用をステップ効果と呼ぶ)。このように、周期構造部3と未形成部8とを設けることによって、周期構造部3の凸部高さ位置Aと未形成部8の高さ位置Bとの高低差を大きくしても負荷容量の減少を少なくできる。特に、周期構造未形成部を鋸刃形状としたことによって、摺動面周縁全体から潤滑剤を引き込むことができる。   In the sliding surface structure of the present invention, by setting the convex portion height position A of the periodic structure portion 3 to be lower than the height position B of the non-formed portion 8, in the mixed lubrication with contact between the two surfaces, Aggressiveness by the structure is reduced. Here, the aggression property by the periodic structure part 3 is wear increase property or damage property to the counterpart member. Further, since the periodic structure portion 3 communicates with the sliding surface peripheral edge 1b, the lubricant L is introduced from the sliding surface peripheral edge 1b into the sliding surface inward by the sliding operation of the first member and the second member. (This action is called fluid introduction effect (pumping effect)). The load capacity due to the step effect is less affected by the step height (height difference between the convex part height position of the periodic structure part and the non-formed part height position) than the load capacity due to the pumping effect. The wear and aggressiveness of the periodic structure can be reduced while keeping the reduction low. Thus, the periodic structure portions 3 and the non-formed portions 8 are alternately formed along the sliding direction, and the convex portion height position A of the periodic structure portion 3 is set higher than the height position B of the non-formed portion 8. If the pressure is set too low, pressure is generated at the boundary between the periodic structure portion 3 and the non-formed portion 8, and a pressure gradient is created in the sliding direction (this action is called a step effect). As described above, by providing the periodic structure portion 3 and the non-formed portion 8, even if the height difference between the convex portion height position A of the periodic structure portion 3 and the height position B of the non-formed portion 8 is increased, the load is increased. The decrease in capacity can be reduced. In particular, by forming the periodic structure-unformed portion into a saw blade shape, the lubricant can be drawn from the entire periphery of the sliding surface.

したがって、本発明の摺動面構造では、流体導入効果とステップ効果とを併せ持つことになる。ステップ効果による負荷容量は流体導入効果の負荷容量に比べて、周期構造部3の凸部高さ位置Aが周期構造未形成部8の高さ位置Bよりも低くなることによる影響が小さい。   Therefore, the sliding surface structure of the present invention has both the fluid introduction effect and the step effect. The load capacity due to the step effect is less affected by the fact that the convex height position A of the periodic structure portion 3 is lower than the height position B of the periodic structure-unformed portion 8 as compared with the load capacity due to the fluid introduction effect.

すなわち、本発明の摺動面構造では、周期構造部3による攻撃性が緩和され、相手側部材(この場合、第2部材2)の摩耗増大を防止でき、摺動面構造として長期にわたって安定した機能を発揮することができる。また、流体導入効果(ポンピング効果)とステップ効果とを併せ持つことになり、負荷容量の低減を低く抑えながら周期構造部3の攻撃性を有効に緩和でき、高品質の摺動面構造の提供が可能となる。摺動面周縁全体から潤滑剤を引き込むことができ、負圧を発生することなく効率的にポンピング効果とステップ効果による負荷容量を得ることができる。   That is, in the sliding surface structure of the present invention, the aggression by the periodic structure portion 3 is mitigated, and the wear of the counterpart member (in this case, the second member 2) can be prevented, and the sliding surface structure is stable for a long time. Function can be demonstrated. In addition, it has both a fluid introduction effect (pumping effect) and a step effect, effectively reducing the aggression of the periodic structure 3 while keeping the load capacity low, and providing a high quality sliding surface structure. It becomes possible. Lubricant can be drawn from the entire periphery of the sliding surface, and a load capacity can be obtained by the pumping effect and the step effect efficiently without generating negative pressure.

周期構造部3の凸部高さ位置Aと未形成部8の高さ位置Bとの高低差を前記摺動面の算術平均粗さ以上とすれば、2面間の接触がともなう混合潤滑状態において周期構造がほとんど荷重支持することなく摺動する。このため、周期構造部3の攻撃性を大幅に低減することができる。   If the height difference between the height position A of the convex portion of the periodic structure portion 3 and the height position B of the non-formed portion 8 is equal to or greater than the arithmetic average roughness of the sliding surface, a mixed lubrication state involving contact between the two surfaces The sliding structure slides with almost no load support. For this reason, the aggressiveness of the periodic structure part 3 can be reduced significantly.

前記周期構造部3の凸部高さ位置Aと未形成部8の高さ位置Bとの高低差を摺動面1aの最大高さ粗さ以下とすれば、負荷容量の大幅な低下を防止することができる。   If the height difference between the convex part height position A of the periodic structure part 3 and the height position B of the non-formed part 8 is less than or equal to the maximum height roughness of the sliding surface 1a, a significant reduction in load capacity is prevented. can do.

周期構造部3の凹凸ピッチを10μm以下とした場合、摺動面のうねり等に起因する潤滑剤Lの漏れ(側方漏れ)を冗長的に抑えることができ、効率的に動圧を得ることができる。周期構造部3の凹部5の深さを1μm以下とした場合、油膜変動が小さく、高い負荷容量と剛性を得ることができる。また、混合潤滑においても固体接触部の荷重を低下させる作用があり、摩擦低減効果を発揮する。周期構造部の全凹部の一方の端部が外部に開口しているものでは、摺動面周縁全体から潤滑剤を引き込むことができる。   When the concavo-convex pitch of the periodic structure portion 3 is set to 10 μm or less, the leakage (side leakage) of the lubricant L due to the waviness of the sliding surface can be suppressed redundantly, and the dynamic pressure can be obtained efficiently. Can do. When the depth of the concave portion 5 of the periodic structure portion 3 is 1 μm or less, the oil film variation is small and high load capacity and rigidity can be obtained. Also, in mixed lubrication, there is an action of reducing the load of the solid contact portion, and the friction reducing effect is exhibited. In the case where one end portion of all the concave portions of the periodic structure portion is opened to the outside, the lubricant can be drawn from the entire periphery of the sliding surface.

周期構造部は、加工閾値近傍の照射強度で直線偏光のレーザを照射し、その照射部分をオーバラップさせながら走査して、自己組織的に形成したものでは、機械加工では困難なサブミクロンの周期ピッチと凹凸深さを持つものを容易に形成できる。   The periodic structure is irradiated with a linearly polarized laser beam with an irradiation intensity in the vicinity of the processing threshold, scanned while overlapping the irradiated part, and is formed in a self-organized manner. Those having a pitch and a depth of unevenness can be easily formed.

周期構造部3と前記高低差とは同時加工により形成されるものでは、加工時間を短縮できて生産性の向上及び低コスト化を図ることができる。また、同時加工は、レーザの出力を調整することにより可能で安定して高精度に、周期構造形成と同時に周期構造部の凸部高さ位置と未形成部の高さ位置との高低差を摺動面の粗さオーダで形成することができる。   If the periodic structure portion 3 and the height difference are formed by simultaneous machining, the machining time can be shortened, and the productivity can be improved and the cost can be reduced. Simultaneous machining is possible by adjusting the output of the laser, and the height difference between the convex part height position of the periodic structure part and the height position of the non-formed part can be adjusted simultaneously with the formation of the periodic structure. The sliding surface can be formed with a roughness order.

次に、図7は変形例を示し、図7(a)では、未形成部8の底辺8aと斜辺8bとのコーナ部8cが、第1部材1の外周縁に一致している場合である。また、図7(b)では、未形成部8がエッジ部8cを形成しないものである。つまり、未形成部8の底部8aの外周端20と未形成部8の斜辺8bの外周縁21とが、周方向にずれた状態で、第1部材1の外周縁1bに一致するものである。この図7(a)(b)に示すものであっても、前記図2に示すものと同様の作用効果を奏する。   Next, FIG. 7 shows a modified example, and FIG. 7A shows a case where the corner 8c of the base 8a and the hypotenuse 8b of the non-formed part 8 coincides with the outer periphery of the first member 1. . Moreover, in FIG.7 (b), the non-formation part 8 does not form the edge part 8c. That is, the outer peripheral edge 20 of the bottom 8a of the non-formed part 8 and the outer peripheral edge 21 of the hypotenuse 8b of the non-formed part 8 coincide with the outer peripheral edge 1b of the first member 1 in a state of being shifted in the circumferential direction. . Even if it is what is shown to this Fig.7 (a) (b), there exists an effect similar to what is shown in the said FIG.

次に、図8と図9は摺動面構造の第2の実施形態を示す。この摺動面構造では、周期構造部3が形成された第1部材1に、周期構造部3の摺動方向上流側に流体導入溝30が設けられている。すなわち、流体導入溝30は、未形成部8の円弧状の斜辺8bに沿って形成される円弧状の凹溝であって、第1部材1の外周縁1bに開口し、第1部材1の内周縁1cには開口しない。   Next, FIG. 8 and FIG. 9 show a second embodiment of the sliding surface structure. In this sliding surface structure, the fluid introduction groove 30 is provided on the first member 1 in which the periodic structure portion 3 is formed on the upstream side in the sliding direction of the periodic structure portion 3. That is, the fluid introduction groove 30 is an arc-shaped concave groove formed along the arc-shaped oblique side 8 b of the non-formed portion 8, and opens to the outer peripheral edge 1 b of the first member 1. There is no opening in the inner peripheral edge 1c.

流体導入溝30の深さ寸法dとしては、周期構造部3の凹部深さT1の3倍以上100倍以下としている。例えば、流体導入溝30の幅寸法W1を0.6mm程度、流体導入溝30の深さ寸法dを3μm程度としている。また、流体導入溝30の深さ寸法dとしては、周期構造部3の凸部高さ位置Aと未形成部8の高さ位置Bとの高低差Tの3倍以上100倍以下であってもよい。この場合、凹部深さT1と高低差Tとは、同一であっても、T1>Tであっても、T1<Tであってもよい。   The depth d of the fluid introduction groove 30 is not less than 3 times and not more than 100 times the recess depth T1 of the periodic structure portion 3. For example, the width dimension W1 of the fluid introduction groove 30 is about 0.6 mm, and the depth dimension d of the fluid introduction groove 30 is about 3 μm. Further, the depth d of the fluid introduction groove 30 is not less than 3 times and not more than 100 times the height difference T between the convex portion height position A of the periodic structure portion 3 and the height position B of the non-formed portion 8. Also good. In this case, the recess depth T1 and the height difference T may be the same, T1> T, or T1 <T.

この流体導入溝30を設けることによって、高速・低荷重時において流体導入溝30による動圧が効率的に発生する。なお、流体導入溝30がない場合、周期構造部の摺動方向上流側に負圧領域が発生する場合があるが、流体導入溝30を設けることで負圧領域が消滅し、負荷容量を大幅に増加することができる。このため、流体導入溝30を設けることによって、優れた流体・混合潤滑特性を備えることになる。   By providing the fluid introduction groove 30, the dynamic pressure by the fluid introduction groove 30 is efficiently generated at high speed and low load. If there is no fluid introduction groove 30, a negative pressure region may be generated upstream of the periodic structure in the sliding direction. However, the provision of the fluid introduction groove 30 eliminates the negative pressure region, greatly increasing the load capacity. Can be increased. For this reason, providing the fluid introduction groove 30 provides excellent fluid / mixed lubrication characteristics.

また、流体導入溝30を設けることによって、摺動時等に発生するおそれがある摩耗粉を、この流体導入溝30に回収することができ、摩耗粉による潤滑摺動性の低下を防止できる。   Further, by providing the fluid introduction groove 30, wear powder that may be generated during sliding or the like can be collected in the fluid introduction groove 30, and the deterioration of the lubricity sliding property due to the wear powder can be prevented.

前記流体導入溝30の深さとしては、前記したように、周期構造部3の凹部深さT1の3倍以上100倍以下とするのが好ましい。溝深さが油膜厚さと同程度のとき負荷容量が最大となるため、周期構造部3による負荷容量は油膜厚さがミクロンオーダになると急激に低下する。このときポンピング効果を有する流体導入溝30の深さをこのように設定することによって、油膜厚さがミクロンオーダになった場合でも、油膜保持に十分な負荷容量を得ることができる。流体導入溝30の深さが周期構造部3の凹部深さの3倍未満では、高速・低荷重時の摩擦係数低減効果が小さくなり、負圧領域の解消にも支障がでる。また、流体導入溝30の深さが周期構造部3の凹部深さの100倍を越えると、ミクロンオーダの油膜厚さで負荷容量がほとんど得られなくなる。このため、流体導入溝30の深さを前記した深さに設定すれば、高速・低荷重時の摩擦係数を低減でき、しかも、ミクロンオーダの油膜厚さで負荷容量を得ることができる。   As described above, the depth of the fluid introduction groove 30 is preferably 3 to 100 times the recess depth T1 of the periodic structure portion 3. When the groove depth is about the same as the oil film thickness, the load capacity is maximized. Therefore, the load capacity due to the periodic structure portion 3 rapidly decreases when the oil film thickness is on the order of microns. At this time, by setting the depth of the fluid introduction groove 30 having the pumping effect in this way, even when the oil film thickness is in the micron order, a sufficient load capacity for holding the oil film can be obtained. If the depth of the fluid introduction groove 30 is less than three times the depth of the concave portion of the periodic structure portion 3, the effect of reducing the friction coefficient at high speed and low load is reduced, and the negative pressure region can be eliminated. On the other hand, when the depth of the fluid introduction groove 30 exceeds 100 times the depth of the concave portion of the periodic structure portion 3, load capacity can hardly be obtained with an oil film thickness on the order of microns. For this reason, if the depth of the fluid introduction groove 30 is set to the above-described depth, the friction coefficient at high speed and low load can be reduced, and the load capacity can be obtained with the oil film thickness on the order of microns.

以上、本発明の実施形態につき説明したが、本発明は前記実施形態に限定されることなく種々の変形が可能であって、例えば、前記実施形態では、周期構造部3を第1部材1側に設けていたが、周期構造部3を第2部材2側に形成してもよく、第1部材1及び第2部材2の両側に設けてもよい。また、第1部材1と第2部材2の形状としても、図例のものに限らず、他の種々の形状のものにて構成できる。周期構造部3の大きさや形状、未形成部8の数、大きさ、又は形状等は図2及び図7に限るものではなく、すなわち、未形成部8が三角形状等であってもよく、使用する第1・第2部材の大きさ、材質、潤滑剤の種類、摺動速度等に応じて種々変更することができる。もちろん、図7に示すような周期構造部3を備えた摺動面構造においても、図8に示すような流体導入溝30を設けるのが好ましい。   As mentioned above, although it demonstrated per embodiment of this invention, this invention is not limited to the said embodiment, A various deformation | transformation is possible, for example, in the said embodiment, the periodic structure part 3 is the 1st member 1 side. However, the periodic structure portion 3 may be formed on the second member 2 side or on both sides of the first member 1 and the second member 2. Further, the shapes of the first member 1 and the second member 2 are not limited to those in the illustrated example, and can be configured in other various shapes. The size and shape of the periodic structure portion 3 and the number, size, or shape of the unformed portions 8 are not limited to those shown in FIGS. 2 and 7, that is, the unformed portion 8 may be triangular or the like, Various changes can be made according to the size, material, type of lubricant, sliding speed, etc. of the first and second members used. Of course, it is preferable to provide the fluid introduction groove 30 as shown in FIG. 8 also in the sliding surface structure provided with the periodic structure portion 3 as shown in FIG.

第1部材1と第2部材2の相対的な摺動運動は、第1部材1を固定して第2部材2を摺動(回転)させるものであっても、逆に第2部材2側を固定して、第1部材側を摺動(回転)させるものであってもよい。すなわち、周期構造部3が形成されている方を摺動させても、周期構造部3が形成されない方を摺動(回転)させてもよい。また、第1部材1と第2部材2の双方を摺動(回転)させるものであってもよい。   Even if the relative sliding movement of the first member 1 and the second member 2 is such that the first member 1 is fixed and the second member 2 is slid (rotated), the second member 2 side is reversed. May be fixed, and the first member side may be slid (rotated). That is, the direction in which the periodic structure portion 3 is formed may be slid, or the direction in which the periodic structure portion 3 is not formed may be slid (rotated). Further, both the first member 1 and the second member 2 may be slid (rotated).

また、前記実施形態では、図1等に示す周期構造部3においては、凹部5を第1部材1の内周縁1cに開口させることなく外周縁1bに開口させて、外周側から内周側に潤滑剤を引き込むものとしていたが、逆に、凹部5を外周縁1bに開口させることなく内周縁1cに開口させて、内周側から外周側に潤滑剤を引き込むものであってもよい。   Moreover, in the said embodiment, in the periodic structure part 3 shown in FIG. 1 etc., the recessed part 5 is opened to the outer periphery 1b without opening to the inner periphery 1c of the 1st member 1, and it is made to open from an outer peripheral side to an inner peripheral side. The lubricant is drawn in, but conversely, the recess 5 may be opened in the inner peripheral edge 1c without opening in the outer peripheral edge 1b, and the lubricant may be drawn in from the inner peripheral side to the outer peripheral side.

前記実施形態では、周期構造部3の凹部5はスパイラル状に湾曲し、その湾曲方向が未形成部8の斜辺8bの湾曲方向に合わされているが、合わされない場合であってもよい。すなわち、周期構造部3の湾曲方向が、未形成部8の斜辺8bの湾曲方向に対して、周方向に沿ってねていたり、たっていたりしてもよい。   In the embodiment, the concave portion 5 of the periodic structure portion 3 is curved in a spiral shape, and the bending direction thereof is matched with the bending direction of the hypotenuse 8b of the non-formed portion 8, but it may be a case where they are not matched. That is, the bending direction of the periodic structure portion 3 may be twisted or struck along the circumferential direction with respect to the bending direction of the hypotenuse 8b of the non-formed portion 8.

さらに、未形成部8の中心角αや隣合う未形成部8間の間隔の中心角βも任意に設定できるが、ステップ効果を有効に発揮する上で、α:β=1:2〜1:1程度とするのが好ましい。   Furthermore, although the center angle α of the unformed portion 8 and the center angle β of the interval between the adjacent unformed portions 8 can be arbitrarily set, α: β = 1: 2-1 in order to effectively exhibit the step effect. : About 1 is preferable.

ところで、前記実施形態では、周期構造部3を形成する際に、パルスレーザであるフェムト秒レーザを用いたが、フェムト秒レーザ以外のピコ秒レーザやナノ秒レーザといったパルスレーザを使用することもできる。   By the way, in the said embodiment, when forming the periodic structure part 3, the femtosecond laser which is a pulse laser was used, However, Pulse lasers, such as picosecond lasers and nanosecond lasers other than a femtosecond laser, can also be used. .

本発明の摺動面構造によれば、流体導入効果及びステップ効果を発揮して低摩擦を得ることができる。このため、本発明の摺動面構造は、各種の自動車部品、機械部品、ポンプ等の種々の機器に使用可能である。   According to the sliding surface structure of the present invention, the fluid introduction effect and the step effect can be exhibited and low friction can be obtained. For this reason, the sliding surface structure of the present invention can be used for various devices such as various automobile parts, machine parts, and pumps.

図8と図9に示す摺動面構造では、各流体導入溝30の深さ寸法および幅寸法を同一に設定していたが、深さ寸法や幅寸法が相違する流体導入溝30を有するものであってもよい。相違する流体導入溝30を有する場合、第1部材1と第2部材2とがアンバランスの回転摺動にならないように、相違する流体導入溝30をバランスよく配置するのが好ましい。このように、深さ寸法等が相違する流体導入溝30を配置すれば、相違する流体導入溝30毎に相違するポンピング効果を発揮でき、使用する機器に対して最適機能を発揮させることができる。また、図8と図9に示す摺動面構造では、周期構造部3毎に流体導入溝30が連設されていたが、周期構造部3毎に設けることなく、所望の周期構造部3にものみ流体導入溝30を連設してもよい。   In the sliding surface structure shown in FIG. 8 and FIG. 9, the depth dimension and the width dimension of each fluid introduction groove 30 are set to be the same, but the fluid introduction groove 30 has a different depth dimension and width dimension. It may be. When the different fluid introduction grooves 30 are provided, it is preferable to arrange the different fluid introduction grooves 30 in a balanced manner so that the first member 1 and the second member 2 do not perform unbalanced rotational sliding. Thus, if the fluid introduction grooves 30 having different depth dimensions and the like are arranged, the pumping effect different for each different fluid introduction groove 30 can be exhibited, and the optimum function can be exhibited for the equipment to be used. . Further, in the sliding surface structure shown in FIGS. 8 and 9, the fluid introduction groove 30 is continuously provided for each periodic structure portion 3, but the desired periodic structure portion 3 is not provided for each periodic structure portion 3. Alternatively, the fluid introduction groove 30 may be provided continuously.

周期構造部3の摩耗や相手攻撃性を緩和するめには段差高さT(図1参照)を設け、周期構造部3の凸部高さ位置Aを周期構造未形成部8の高さ位置Bより低くすることが有効である。しかし、段差高さTを大きくすると負荷容量が減少し、油膜の荷重分担率が低下するため、混合潤滑特性にも悪影響が出る。そのため、負荷容量に段差高さの影響が出にくいパターンニングの開発が望まれている。また、同時に流体潤滑時の低摩擦化も強く望まれている。   A step height T (see FIG. 1) is provided to alleviate the wear of the periodic structure portion 3 and the opponent's aggression. It is effective to make it lower. However, when the step height T is increased, the load capacity is reduced and the load sharing ratio of the oil film is lowered, so that the mixed lubrication characteristics are also adversely affected. Therefore, it is desired to develop a patterning that hardly affects the load capacity due to the height of the step. At the same time, low friction during fluid lubrication is also strongly desired.

後述する図11(a)に示すようにスパイラル状の周期構造では、一般的なミクロンサイズの溝深さをもつスパイラルグルーブ軸受よりも薄く高剛性な油膜が形成される。スパイラルパターンの溝深さを200nmおよび6μmとし、相対負荷容量を計算した結果を図10に示す。油膜厚さが薄くなると、溝深さ200nmの方が圧倒的に高負荷容量・高剛性となることがわかる。溝深さ6μmの場合、油膜厚さの減少にともなう負荷容量の増加が少ないため,負荷変動や振動により容易に2面間の接触が生じる。一方、溝深さ200nmの場合、油膜厚さが1μmから0.1μmに減少すると負荷容量は3桁増大するため,平面度の高いしゅう動面では2面間の接触をほぼ回避することができる。   As shown in FIG. 11A to be described later, in the spiral periodic structure, an oil film that is thinner and more rigid than a general spiral groove bearing having a groove depth of micron size is formed. FIG. 10 shows the result of calculating the relative load capacity when the groove depth of the spiral pattern is 200 nm and 6 μm. It can be seen that when the oil film thickness is reduced, the groove depth of 200 nm is overwhelmingly high in load capacity and rigidity. When the groove depth is 6 μm, there is little increase in load capacity as the oil film thickness decreases, so contact between the two surfaces easily occurs due to load fluctuations and vibration. On the other hand, when the groove depth is 200 nm, when the oil film thickness is reduced from 1 μm to 0.1 μm, the load capacity increases by three orders of magnitude, so that contact between the two surfaces can be substantially avoided on the sliding surface with high flatness. .

サブミクロンの周期ピッチと溝深さをもつグレーティング状の周期構造は油膜厚さが数ミクロンまで増加すると負荷容量がほとんど発生しなくなるため、低速・高荷重から高速・低荷重まで油膜厚さの変動が小さく、常に薄い油膜形成が求められるメカニカルシールや工作機械の案内面には好適な特性である。しかしながら、高速・低荷重での摩擦係数は流体潤滑としては比較的高い値となる。そこで、流体潤滑〜混合潤滑にわたる広い摺動条件において優れた潤滑特性が得られる摺動面構造を検討した。   The grating-like periodic structure with submicron periodic pitch and groove depth causes almost no load capacity when the oil film thickness increases to several microns, so the oil film thickness varies from low speed / high load to high speed / low load. Is suitable for a mechanical seal or a guide surface of a machine tool that requires a small oil film formation at all times. However, the friction coefficient at high speed and low load is a relatively high value for fluid lubrication. In view of this, a sliding surface structure capable of obtaining excellent lubrication characteristics under a wide range of sliding conditions ranging from fluid lubrication to mixed lubrication was studied.

試験片(リング試験片)として、図11(a)に示すように周期構造部3がスパイラルパターンであるものと、図11(b)に示すように周期構造部3がステップパターンであるものを使用した。すなわち、図11(b)では、同心円状に周期構造部3(3A)を周方向に沿って所定ピッチで、6個配置したものあり、未周期構造部4は、試験片(リング試験片)の内径側に配設されるリング部4aと、周期構造部3A間に配設される略矩形状の未形成部8(8A)とからなる   As a test piece (ring test piece), the periodic structure portion 3 has a spiral pattern as shown in FIG. 11 (a) and the periodic structure portion 3 has a step pattern as shown in FIG. 11 (b). used. That is, in FIG. 11B, there are six periodic structure portions 3 (3A) arranged concentrically at a predetermined pitch along the circumferential direction, and the non-periodic structure portion 4 is a test piece (ring test piece). Of the ring portion 4a disposed on the inner diameter side of the first and second non-formed portions 8 (8A) having a substantially rectangular shape disposed between the periodic structure portions 3A.

図11(a)の試験片は、周期構造部(ピッチ0.7μm、深さ0.2μm)をスパイラル状に形成したものであり、図11(b)の試験片は同心円状の周期構造部を周方向に沿って間欠的に形成したものである。この図11は各パターンの模式図を示し、各パターン(スパイラルパターン、ステップパターン)の負荷容量を無限溝数理論を用いて計算した。   The test piece of FIG. 11 (a) is a periodic structure part (pitch 0.7 μm, depth 0.2 μm) formed in a spiral shape, and the test piece of FIG. 11 (b) is a concentric periodic structure part. Is formed intermittently along the circumferential direction. FIG. 11 is a schematic diagram of each pattern, and the load capacity of each pattern (spiral pattern, step pattern) was calculated using the infinite groove number theory.

平滑部すきまS(図1参照)を0.2μmとし、スパイラルパターンとステップパターンの周期構造形成領域を最適化した際の段差高さと負荷容量の関係を図12に示す。スパイラルパターンは段差高さ0では大きな負荷容量が得られるが、段差高さの増加に対して負荷容量が指数的に減少する。ステップパターンでは段差高さの増加によって負荷容量が一旦増加した後、緩やかに減少に転じている。ステップパターンの負荷容量はスパイラルパターンと比較して段差高さの影響を受けにくく、段差高さ0.1μmではステップパターンの負荷容量の方がスパイラルパターンより若干大きくなっている。しかし、ステップパターンはポンピング効果を有していない。なお、図12の縦軸は任意単位(a.u.)である。   FIG. 12 shows the relationship between the step height and the load capacity when the smooth portion clearance S (see FIG. 1) is 0.2 μm and the periodic structure forming region of the spiral pattern and step pattern is optimized. The spiral pattern can obtain a large load capacity at a step height of 0, but the load capacity decreases exponentially as the step height increases. In the step pattern, the load capacity once increases due to the increase in the step height, and then gradually decreases. The load capacity of the step pattern is less affected by the step height compared to the spiral pattern, and the load capacity of the step pattern is slightly larger than the spiral pattern at the step height of 0.1 μm. However, the step pattern has no pumping effect. The vertical axis in FIG. 12 is an arbitrary unit (au).

そこで、スパイラル状周期構造が摺動縁全周に連通し,ポンピング効果とステップ効果も併せもつパターニングとして鋸刃スパイラルパターン(図2に示すパターン)を作成した。ポンピング効果とステップ効果を併せもたせることで、負荷容量の低減を低く抑えつつ周期構造の攻撃性を緩和できる摺動面構造とすることができる。   Therefore, a sawtooth spiral pattern (pattern shown in FIG. 2) was created as a pattern in which a spiral periodic structure is connected to the entire periphery of the sliding edge and has a pumping effect and a step effect. By combining the pumping effect and the step effect, it is possible to provide a sliding surface structure that can reduce the aggressiveness of the periodic structure while keeping the load capacity from being reduced.

さらに、ポンピング効果と負圧解消効果を併せもつスパイラル状の流体導入溝と鋸刃スパイラルとを組み合わせた(溝+鋸刃スパイラル)パターン(図9に示すパターン)を作成した。(溝+鋸刃スパイラル)パターンでは,スパイラル溝によって、高速・低荷重時の潤滑特性向上のほかに、混合潤滑時の摩耗粉回収効果、潤滑剤保持効果も期待される。   Furthermore, a (groove + saw blade spiral) pattern (pattern shown in FIG. 9) was created by combining a spiral fluid introduction groove having both a pumping effect and a negative pressure elimination effect and a saw blade spiral. In the (Groove + Saw Blade Spiral) pattern, the spiral groove is expected to improve the lubrication characteristics at high speed and low load, as well as the effect of collecting wear powder and retaining the lubricant during mixed lubrication.

リングオンディスク試験装置を用いて実験を行った。リング試験片を回転側試験片(SUS440C)、ディスク試験片(アルミナ)を固定側試験片とした。各試験片の表面粗さはRa0.02μm以下とした。ディスク試験片は全て鏡面とし、リング試験片(外径16mm、内径10mm)はスパイラル(図11(a)に示すパターン)、鋸刃スパイラル(図2に示す本発明に係るパターン)、および(溝+鋸刃スパイラル)(図9に示すパターン)の3パターンとした。摺動方向に対する周期構造の傾斜角はθ=45°とした。周期構造のピッチは約0.7μm、深さは約0.2μmとし、段差高さは約0.1μmとした。流体導入溝30の幅は0.6mmとし、流体導入溝30の深さを3μmとした。なお、比較のため、流体導入溝30(幅が0.6mm、深さが3μm)のみ形成した試験片も作成した。基本的な潤滑特性を評価するため、潤滑剤には極性を持たず熱的・化学的に安定なPAO4(18.82cP @37℃)を用いた。荷重は40N(0.33MPa)とし、摺動速度を81.5mm/sから3.3mm/sまで段階的に低下させながら、各摺動速度における5minの平均摩擦係数を測定した。なお、鋸刃スパイラルパターンにおいては、未形成部8の中心角αを19degとし、隣合う未形成部8間の間隔の中心角βを26degとしている。   Experiments were performed using a ring-on-disk test apparatus. The ring test piece was a rotating side test piece (SUS440C), and the disk test piece (alumina) was a fixed side test piece. The surface roughness of each test piece was set to Ra 0.02 μm or less. All disk test pieces are mirror surfaces, and ring test pieces (outer diameter 16 mm, inner diameter 10 mm) are spirals (pattern shown in FIG. 11A), saw blade spirals (pattern according to the present invention shown in FIG. 2), and (grooves). + Saw blade spiral) (pattern shown in FIG. 9). The inclination angle of the periodic structure with respect to the sliding direction was θ = 45 °. The pitch of the periodic structure was about 0.7 μm, the depth was about 0.2 μm, and the step height was about 0.1 μm. The width of the fluid introduction groove 30 was 0.6 mm, and the depth of the fluid introduction groove 30 was 3 μm. For comparison, a test piece in which only the fluid introduction groove 30 (width 0.6 mm, depth 3 μm) was formed was also prepared. In order to evaluate basic lubrication characteristics, PAO4 (18.82 cP @ 37 ° C.) having no polarity and being thermally and chemically stable was used as the lubricant. The load was 40 N (0.33 MPa), and the average friction coefficient of 5 min at each sliding speed was measured while the sliding speed was gradually reduced from 81.5 mm / s to 3.3 mm / s. In the sawtooth spiral pattern, the center angle α of the unformed portion 8 is 19 deg, and the center angle β of the interval between the adjacent unformed portions 8 is 26 deg.

スパイラルと鋸刃スパイラルの平均摩擦係数の比較を図13に示す。鋸刃スパイラルは最小油膜厚さとなる鏡面部分がスパイラルより広いにもかかわらず流体潤滑領域の摩擦係数が低下していることから、負荷容量増大に有効なパターンと言える。また、混合潤滑となる低速しゅう動域の摩擦係数の上昇勾配も小さくなった。負荷容量増大の要因として、周期構造に起因するポンピング効果、段差高さに起因するステップ効果に加えて、内周側に行くにつれて先細りしている周期構造形成領域形状に起因する負荷容量が生じている可能性が考えられる。図14は、スパイラルと(溝+鋸刃スパイラル)の平均摩擦係数の比較を示している。流体潤滑域の摩擦係数において、(溝+鋸刃スパイラル)の場合、スパイラルの約1/3に低下する。   A comparison of the average friction coefficient between the spiral and the saw blade spiral is shown in FIG. The saw blade spiral can be said to be an effective pattern for increasing the load capacity because the friction coefficient in the fluid lubrication region is reduced despite the fact that the mirror surface portion with the minimum oil film thickness is wider than the spiral. In addition, the rising gradient of the coefficient of friction in the low-speed sliding region, which is mixed lubrication, is also reduced. In addition to the pumping effect due to the periodic structure and the step effect due to the step height, the load capacity due to the shape of the periodic structure forming region that tapers toward the inner circumference is generated as a factor of the load capacity increase. Possible possibility. FIG. 14 shows a comparison of the average friction coefficient between the spiral and the (groove + saw blade spiral). In the case of (groove + sawtooth spiral), the friction coefficient in the fluid lubrication zone decreases to about 1/3 of the spiral.

また、鋸刃スパイラル、(溝+鋸刃スパイラル)、及び流体導入溝30のみ形成した試験片の平均摩擦係数の比較を図15に示す。深さ3μmの流体導入溝30のみ形成した試験片は、比較的厚い油膜が形成される高速域では鋸刃スパイラルより低摩擦となった。しかし、油膜が薄くなる低速域では負荷容量が小さく、焼き付きを生じた。流体導入溝と鋸刃スパイラルを複合した(溝+鋸刃スパイラル)は両者の中間的な特性ではなく、全ての速度域で最も低摩擦となった。高速域では流体導入溝30のみの特性に漸近し、低速域まで流体潤滑が支配的となった。(溝+鋸刃スパイラル)の3.3mm/sにおける平均摩擦係数0.002から算出した平均等価すきまは86nmであった。このような極めて薄い油膜を介したしゅう動状態は周期構造3の高負荷容量と理想的ななじみの進行によって実現されたと考えられる。平均等価すきまが小さくなるにしたがって、流体導入溝30によるポンピング効果はほとんど無視できるようになるが,流体導入溝30による負圧解消効果、異物のトラップ効果、潤滑剤保持効果が理想的ななじみに寄与したとものと考えられる。   Further, FIG. 15 shows a comparison of average friction coefficients of the test pieces in which only the saw blade spiral (groove + saw blade spiral) and the fluid introduction groove 30 are formed. The test piece in which only the fluid introduction groove 30 having a depth of 3 μm formed a lower friction than the saw blade spiral in a high speed region where a relatively thick oil film was formed. However, the load capacity was small in the low speed region where the oil film was thin, and seizure occurred. Combining the fluid introduction groove and the saw blade spiral (groove + saw blade spiral) was not an intermediate property between the two, and had the lowest friction in all speed ranges. In the high speed range, the characteristics of the fluid introduction groove 30 are asymptotic, and fluid lubrication becomes dominant up to the low speed range. The average equivalent clearance calculated from the average friction coefficient of 0.002 at (groove + sawtooth spiral) at 3.3 mm / s was 86 nm. Such a sliding state through an extremely thin oil film is considered to be realized by the high load capacity of the periodic structure 3 and the progress of ideal familiarity. As the average equivalent clearance becomes smaller, the pumping effect by the fluid introduction groove 30 becomes almost negligible, but the negative pressure elimination effect, foreign matter trapping effect, and lubricant retention effect by the fluid introduction groove 30 are ideally familiar. It is thought that it contributed.

1 第1部材
1a 摺動面
1b 摺動面周縁
1c 内周縁
2 第2部材
2a 摺動面
3 周期構造部
5 凹部
6 凸部
8 周期構造未形成部
30 流体導入溝
DESCRIPTION OF SYMBOLS 1 1st member 1a Sliding surface 1b Sliding surface peripheral edge 1c Inner peripheral edge 2 Second member 2a Sliding surface 3 Periodic structure part 5 Recessed part 6 Convex part 8 Periodic structure non-formation part 30 Fluid introduction groove

本発明の摺動面構造は、第1部材の摺動面と第2部材の摺動面とが潤滑剤下で相対的に摺動する摺動面構造であって、第1部材と第2部材との少なくともいずれか一方の摺動面に、摺動面周縁に連通して摺動面周縁から潤滑剤の摺動面内方への導入を可能とするグレーティング状凹凸の周期構造部と、周期構造部との境界部において摺動方向に圧力勾配を生じさせる周期構造未形成部とが摺動方向に沿って交互に形成され、かつ、周期構造部の凸部高さ位置を未形成部の高さ位置よりも低く設定するとともに、前記周期構造未形成部の形状を鋸刃形状としたものである。 The sliding surface structure of the present invention is a sliding surface structure in which the sliding surface of the first member and the sliding surface of the second member slide relative to each other under a lubricant. on one of the sliding surfaces at least one of the members, and the periodic structure of the grating-like unevenness that would allow for introduction into the sliding surface inwardly of the lubricant from the sliding surface peripheral edge and communicating with the sliding surface periphery, Periodic structure non-formed parts that generate a pressure gradient in the sliding direction at the boundary with the periodic structure part are alternately formed along the sliding direction, and the height of the convex part of the periodic structure part is not formed. And the shape of the periodic structure non-formed part is a saw blade shape.

本発明の摺動面構造は、第1部材の摺動面と第2部材の摺動面とが潤滑剤下で相対的に摺動する摺動面構造であって、第1部材と第2部材との少なくともいずれか一方の摺動面に、摺動面周縁に連通して摺動面周縁から潤滑剤の摺動面内方への導入を可能とするグレーティング状凹凸の周期構造部と、周期構造部との境界部において摺動方向に圧力勾配を生じさせる周期構造未形成部とが摺動方向に沿って交互に形成され、かつ、周期構造部の凸部高さ位置を未形成部の高さ位置よりも低く設定するとともに、前記周期構造未形成部の形状を周期構造部が連通する摺動面周縁全体からの潤滑剤の引き込みを可能とする鋸刃形状としたものである。 The sliding surface structure of the present invention is a sliding surface structure in which the sliding surface of the first member and the sliding surface of the second member slide relative to each other under a lubricant. A periodic structure portion of grating-like irregularities that communicates with the periphery of the sliding surface and allows introduction of the lubricant from the periphery of the sliding surface to the inside of the sliding surface, on at least one of the sliding surfaces of the member; Periodic structure non-formed parts that generate a pressure gradient in the sliding direction at the boundary with the periodic structure part are alternately formed along the sliding direction, and the height of the convex part of the periodic structure part is not formed. In addition, the shape of the portion where the periodic structure is not formed is a saw blade shape that allows the lubricant to be drawn from the entire periphery of the sliding surface with which the periodic structure portion communicates .

Claims (10)

第1部材の摺動面と第2部材の摺動面とが潤滑剤下で相対的に摺動する摺動面構造であって、第1部材と第2部材との少なくともいずれか一方の摺動面に、摺動面周縁に連通されたグレーティング状凹凸の周期構造部と周期構造未形成部とが摺動方向に沿って交互に形成され、かつ、周期構造部の凸部高さ位置を未形成部の高さ位置よりも低く設定するとともに、前記周期構造未形成部の形状を鋸刃形状としたことを特徴とする摺動面構造。 A sliding surface structure in which the sliding surface of the first member and the sliding surface of the second member slide relative to each other under a lubricant, the sliding surface of at least one of the first member and the second member. On the moving surface, the periodic structure portions of the grating-like irregularities communicating with the periphery of the sliding surface are alternately formed along the sliding direction, and the height of the convex portion of the periodic structure portion is determined. A sliding surface structure, wherein the sliding surface structure is set lower than the height position of the non-formed part and the shape of the non-formed periodic structure part is a saw blade shape. 前記周期構造部の摺動方向上流側に、この周期構造部の凹部深さよりも深くポンピング効果を有する流体導入溝を形成したことを特徴とする請求項1に記載の摺動面構造。   The sliding surface structure according to claim 1, wherein a fluid introduction groove having a pumping effect deeper than a depth of the concave portion of the periodic structure portion is formed on the upstream side in the sliding direction of the periodic structure portion. 前記周期構造部の凸部高さ位置と未形成部の高さ位置との高低差を前記摺動面の算術平均粗さ以上としたことを特徴とする請求項1又は請求項2に記載の摺動面構造。   The height difference between the height position of the convex portion of the periodic structure portion and the height position of the non-formed portion is equal to or greater than the arithmetic average roughness of the sliding surface. Sliding surface structure. 前記周期構造部の凸部高さ位置と未形成部の高さ位置との高低差を前記摺動面の最大高さ粗さ以下としたことを特徴とする請求項1〜請求項3のいずれか1項に記載の摺動面構造。   The height difference between the height position of the convex portion of the periodic structure portion and the height position of the non-formed portion is equal to or less than the maximum height roughness of the sliding surface. The sliding surface structure according to claim 1. 周期構造部の周期ピッチが10μm以下であることを特徴とする請求項1〜請求項4のいずれか1項に記載の摺動面構造。   The sliding surface structure according to any one of claims 1 to 4, wherein a periodic pitch of the periodic structure portion is 10 µm or less. 前記周期構造部の凹部の深さが1μm以下であることを特徴とする請求項1〜請求項5のいずれか1項に記載の摺動面構造。   The sliding surface structure according to any one of claims 1 to 5, wherein a depth of the concave portion of the periodic structure portion is 1 µm or less. 前記周期構造部の全凹部の一方の端部が外部に開口して流体導入口となる請求項1〜請求項6のいずれか1項に記載の摺動面構造。   The sliding surface structure according to any one of claims 1 to 6, wherein one end portion of all the concave portions of the periodic structure portion opens to the outside to become a fluid introduction port. 前記流体導入溝の深さを、前記周期構造部の凹部深さの3倍以上100倍以下としたことを特徴とする請求項1〜請求項7のいずれか1項に記載の摺動面構造。   The sliding surface structure according to any one of claims 1 to 7, wherein a depth of the fluid introduction groove is set to be not less than 3 times and not more than 100 times a recess depth of the periodic structure portion. . 前記周期構造部は、加工閾値近傍の照射強度で直線偏光のレーザを照射し、その照射部分をオーバラップさせながら走査して、自己組織的に形成されていることを特徴とする請求項1〜請求項8のいずれか1項に記載の摺動面構造。   The periodic structure part is formed in a self-organized manner by irradiating a linearly polarized laser beam with an irradiation intensity in the vicinity of a processing threshold and scanning the overlapping part in an overlapping manner. The sliding surface structure according to claim 8. 前記周期構造部と前記高低差とは同時加工により形成されてなることを特徴とする請求項9に記載の摺動面構造。   The sliding surface structure according to claim 9, wherein the periodic structure portion and the height difference are formed by simultaneous processing.
JP2013036980A 2013-01-15 2013-02-27 Sliding surface structure Active JP5619937B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013036980A JP5619937B2 (en) 2013-01-15 2013-02-27 Sliding surface structure

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2013004688 2013-01-15
JP2013004688 2013-01-15
JP2013036980A JP5619937B2 (en) 2013-01-15 2013-02-27 Sliding surface structure

Publications (2)

Publication Number Publication Date
JP2014156927A true JP2014156927A (en) 2014-08-28
JP5619937B2 JP5619937B2 (en) 2014-11-05

Family

ID=51577911

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013036980A Active JP5619937B2 (en) 2013-01-15 2013-02-27 Sliding surface structure

Country Status (1)

Country Link
JP (1) JP5619937B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6006830B1 (en) * 2015-04-27 2016-10-12 大同メタル工業株式会社 Sliding member
JP2019049330A (en) * 2017-09-11 2019-03-28 株式会社不二Wpc Slide bearing

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11303858A (en) * 1998-04-17 1999-11-02 Matsushita Electric Ind Co Ltd Porous hydrodynamic bearing
JP2004144205A (en) * 2002-10-24 2004-05-20 Ntn Corp Dynamic pressure bearing device
JP2004245303A (en) * 2003-02-13 2004-09-02 Mitsubishi Heavy Ind Ltd Artificial heart pump
JP2005155894A (en) * 2003-10-31 2005-06-16 Toyota Central Res & Dev Lab Inc Fluid bearing
JP2010196884A (en) * 2009-02-27 2010-09-09 Canon Machinery Inc Plane sliding mechanism

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11303858A (en) * 1998-04-17 1999-11-02 Matsushita Electric Ind Co Ltd Porous hydrodynamic bearing
JP2004144205A (en) * 2002-10-24 2004-05-20 Ntn Corp Dynamic pressure bearing device
JP2004245303A (en) * 2003-02-13 2004-09-02 Mitsubishi Heavy Ind Ltd Artificial heart pump
JP2005155894A (en) * 2003-10-31 2005-06-16 Toyota Central Res & Dev Lab Inc Fluid bearing
JP2010196884A (en) * 2009-02-27 2010-09-09 Canon Machinery Inc Plane sliding mechanism

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6006830B1 (en) * 2015-04-27 2016-10-12 大同メタル工業株式会社 Sliding member
WO2016174910A1 (en) * 2015-04-27 2016-11-03 大同メタル工業株式会社 Sliding member
JP2016205608A (en) * 2015-04-27 2016-12-08 大同メタル工業株式会社 Slide member
US10018222B2 (en) 2015-04-27 2018-07-10 Daido Metal Company Ltd. Sliding member
JP2019049330A (en) * 2017-09-11 2019-03-28 株式会社不二Wpc Slide bearing

Also Published As

Publication number Publication date
JP5619937B2 (en) 2014-11-05

Similar Documents

Publication Publication Date Title
JP5111961B2 (en) Sliding surface structure
CN106029294B (en) Slide unit
JP6763850B2 (en) Manufacturing method of sliding parts and sliding parts
JP6964392B2 (en) Sliding surface structure and manufacturing method of sliding surface structure
WO2009087995A1 (en) Mechanical seal sliding member, and mechanical seal
JP5538476B2 (en) Sliding surface structure
JP6612053B2 (en) Sliding surface structure
JP5619937B2 (en) Sliding surface structure
JP4263185B2 (en) Low friction sliding surface
JP5726673B2 (en) Sliding surface structure
JP4959275B2 (en) Sliding surface structure
JP2019049330A (en) Slide bearing
JP5638455B2 (en) Sliding surface structure
JP2016113926A (en) Internal combustion engine piston and internal combustion engine piston manufacturing method
JP2008173693A (en) Mirror finished surface working method
JP5196301B2 (en) Tribochemical reaction promoting surface structure
JP2013160338A (en) Sliding surface structure, and method for manufacturing the same
JP7249743B2 (en) thrust plain bearing
JP5917646B2 (en) Manufacturing method of sliding member
JP5635151B2 (en) Periodic structure forming method
JP2010196884A (en) Plane sliding mechanism
JP7398932B2 (en) thrust roller bearing
JP4120333B2 (en) Processing method
JP2003205380A (en) Method of machining sliding face and sliding device
KR100777652B1 (en) Laser apparatus for forming pattern on inside of workpiece

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140901

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140917

R150 Certificate of patent or registration of utility model

Ref document number: 5619937

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250