JP4263185B2 - Low friction sliding surface - Google Patents

Low friction sliding surface Download PDF

Info

Publication number
JP4263185B2
JP4263185B2 JP2005258390A JP2005258390A JP4263185B2 JP 4263185 B2 JP4263185 B2 JP 4263185B2 JP 2005258390 A JP2005258390 A JP 2005258390A JP 2005258390 A JP2005258390 A JP 2005258390A JP 4263185 B2 JP4263185 B2 JP 4263185B2
Authority
JP
Japan
Prior art keywords
sliding
periodic structure
sliding surface
mirror surface
grating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2005258390A
Other languages
Japanese (ja)
Other versions
JP2007069300A (en
Inventor
博司 沢田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Machinery Inc
Original Assignee
Canon Machinery Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Machinery Inc filed Critical Canon Machinery Inc
Priority to JP2005258390A priority Critical patent/JP4263185B2/en
Publication of JP2007069300A publication Critical patent/JP2007069300A/en
Application granted granted Critical
Publication of JP4263185B2 publication Critical patent/JP4263185B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16JPISTONS; CYLINDERS; SEALINGS
    • F16J15/00Sealings
    • F16J15/16Sealings between relatively-moving surfaces
    • F16J15/34Sealings between relatively-moving surfaces with slip-ring pressed against a more or less radial face on one member
    • F16J15/3404Sealings between relatively-moving surfaces with slip-ring pressed against a more or less radial face on one member and characterised by parts or details relating to lubrication, cooling or venting of the seal
    • F16J15/3408Sealings between relatively-moving surfaces with slip-ring pressed against a more or less radial face on one member and characterised by parts or details relating to lubrication, cooling or venting of the seal at least one ring having an uneven slipping surface
    • F16J15/3424Sealings between relatively-moving surfaces with slip-ring pressed against a more or less radial face on one member and characterised by parts or details relating to lubrication, cooling or venting of the seal at least one ring having an uneven slipping surface with microcavities

Description

本発明は、固体材料表面にレーザー照射で微細な凹凸を周期的に形成して成る低摩擦しゅう動面に関する。 The present invention relates to a low-friction sliding surface formed by the fine irregularities in the laser irradiation periodically formed on the solid material surface.

近年、地球規模での温暖化、環境破壊が大きな問題となっている。なかでも自動車や産業機器におけるしゅう動部の摩擦損失を低減することが重要な課題になっている。そこで、しゅう動部品の表面に溝やディンプルなどの微細な凹凸を形成することで摩擦力の低減や耐焼き付き性の向上を図る研究が行われている。一方、加工閾値近傍のフルエンスで直線偏光のフェムト秒レーザでしゅう動部品表面を走査すると、サブミクロンの周期ピッチと振幅(高低差)を持つグレーティング状の周期構造を自己組織的に形成することができる(例えば、非特許文献1参照)。この加工法を用いると難加工材に対しても容易に微細な周期構造を形成できる上、偏光方向を変化させるだけで周期構造の方向を任意に設定できる。連続回転するしゅう動面に放射状やスパイラル状の周期構造を形成することで、摩擦係数を大きく低減できる(例えば、非特許文献2参照)。   In recent years, global warming and environmental destruction have become major problems. In particular, reducing friction loss of sliding parts in automobiles and industrial equipment has become an important issue. In view of this, research has been conducted to reduce frictional force and improve seizure resistance by forming fine irregularities such as grooves and dimples on the surface of sliding parts. On the other hand, when the surface of a sliding part is scanned with a linearly polarized femtosecond laser at a fluence near the processing threshold, a grating-like periodic structure having a submicron periodic pitch and amplitude (level difference) can be formed in a self-organized manner. (For example, refer nonpatent literature 1). When this processing method is used, a fine periodic structure can be easily formed even on difficult-to-process materials, and the direction of the periodic structure can be arbitrarily set only by changing the polarization direction. By forming a radial or spiral periodic structure on the sliding surface that rotates continuously, the friction coefficient can be greatly reduced (see, for example, Non-Patent Document 2).

図10は、周期構造作成装置の模式図である。レーザ発生装置31からフェムト秒レーザ1をX−Y−θステージ35上の固体材料2の鏡面研磨された表面に照射する。レーザエネルギーは、1/2波長板32と偏光ビームスプリッタ33を用いて調整可能であり、レンズ34で集光されて固体材料2の表面に照射される。   FIG. 10 is a schematic diagram of the periodic structure creation device. The femtosecond laser 1 is irradiated from the laser generator 31 to the mirror-polished surface of the solid material 2 on the XY-θ stage 35. The laser energy can be adjusted using the half-wave plate 32 and the polarization beam splitter 33, and is condensed by the lens 34 and irradiated onto the surface of the solid material 2.

図11は、周期構造形成メカニズムの概略斜視図である。同図において、1ショット1パルスのパルスレーザを固体材料2の表面に照射すると、入射光のp偏光成分と、表面散乱光のp偏光成分との干渉が起こり定在波が生じる。入射光のフルエンスがレーザの閾値近傍の場合、入射光のp偏光成分と表面に沿った散乱光のp偏光成分の干渉部分がアブレーションされる。一旦アブレーションが始まり表面粗さが増加すると、次の1ショットのレーザ照射時には表面散乱光の強度が増加し、さらにアブレーションが進むと共に、1波長λ離れた位置でも干渉が起こる。入射光が直線偏光の場合、レーザ照射を繰り返すと、それによって入射光の波長λとほぼ同じ間隔で干渉が生じることにより、周期構造が自己組織的に作成される。この周期構造の凹凸は、レーザ照射の繰り返しによって波長オーダーまで成長するが、それ以上パルスレーザを照射すると、凹凸が不明瞭になる。したがって、同位置に照射されるショット数を制御し、パルスレーザをオーバーラップさせながら走査させることで、周期構造を固体材料2の表面に広範囲に拡張することができる。   FIG. 11 is a schematic perspective view of the periodic structure forming mechanism. In the figure, when a pulse laser of one shot and one pulse is irradiated on the surface of the solid material 2, interference between the p-polarized component of incident light and the p-polarized component of surface scattered light occurs and a standing wave is generated. When the fluence of incident light is near the laser threshold, the interference portion of the p-polarized component of the incident light and the p-polarized component of the scattered light along the surface is ablated. Once ablation begins and the surface roughness increases, the intensity of the surface scattered light increases during the next one-shot laser irradiation, further ablation proceeds, and interference occurs at a position one wavelength λ away. When the incident light is linearly polarized light, repeated laser irradiation causes interference at approximately the same interval as the wavelength λ of the incident light, thereby creating a periodic structure in a self-organized manner. The irregularities of this periodic structure grow to the wavelength order by repeating laser irradiation, but the irregularities become unclear when pulsed laser is irradiated further. Therefore, the periodic structure can be extended to the surface of the solid material 2 over a wide range by controlling the number of shots irradiated at the same position and performing scanning while overlapping the pulse laser.

このように形成された周期構造は、サブミクロンオーダの周期ピッチと凹凸高低差の振幅を持ち、しゅう動部の摩擦損失の低減に大きく寄与する。例えば、偏光角により周期方向を制御した周期構造を、超硬合金の静止試験片に設け、リングオンディスク試験で摩擦係数の変化を調べた結果、周期構造の形成によって摩擦係数が低減することや、周期方向の制御により、流体潤滑領域や負荷能力・摩擦係数などのトライボロジー特性を、用途に応じて調整できる(例えば、非特許文献2参照)。
沢田博司,川原公介,二宮孝文,黒澤宏,横谷篤至:フェムト秒レーザによる微細周期構造の形成,精密工学科会誌,69,4,(2003)554. 沢田博司,川原公介,二宮孝文,森淳暢,黒澤宏:フェムト秒レーザによる微細周期構造のしゅう動特性に及ぼす影響,精密工学科会誌,70,1(2004)133.
The periodic structure formed in this manner has a submicron order periodic pitch and an uneven height difference, and greatly contributes to reduction of friction loss of the sliding portion. For example, a periodic structure in which the periodic direction is controlled by the polarization angle is provided on a cemented carbide stationary test piece, and the change in the friction coefficient is examined by a ring-on-disk test. By controlling the periodic direction, tribological characteristics such as the fluid lubrication region, load capacity, and friction coefficient can be adjusted according to the application (for example, see Non-Patent Document 2).
Hiroshi Sawada, Kosuke Kawahara, Takafumi Ninomiya, Hiroshi Kurosawa, Atsushi Yokotani: Formation of fine periodic structure by femtosecond laser, Journal of Precision Engineering, 69, 4, (2003) 554. Hiroshi Sawada, Kosuke Kawahara, Takafumi Ninomiya, Satoshi Mori, Hiroshi Kurosawa: Effect of Femtosecond Laser on the Sliding Characteristics, Journal of Precision Engineering, 70, 1 (2004) 133.

しゅう動部品表面に形成した周期構造は、しゅう動部品表面を低摩擦しゅう動面にして自動車や産業機器のしゅう動部の摩擦損失を低減させる優れた効果を有する。しかし、このような効果は、定方向に連続回転する回転体のような連続しゅう動面において発揮できるが、定方向にしゅう動し、一旦停止してから逆方向にしゅう動する動作を繰り返す往復しゅう動面においては、上記効果を発揮させることが難しい。すなわち、しゅう動面の全面にしゅう動方向を横切るように凹凸の周期構造を形成している場合、凹凸の凸部に正対する部分では、しゅう動する2面間の隙間が小さくなり、いわゆるくさび効果による負荷能力が生じ、油膜が形成されるために、しゅう動面の摩擦損失を低減できる。しかし、しゅう動面が往復しゅう動面の場合、凹凸の凹部が両端開口の溝構造であることから、しゅう動が一旦停止したときに凹部の開口端から油膜が流出するといった側方漏れが発生し、周期構造上での油膜保持能力が低減して油膜が減少し、再起動時のしゅう動部の摩擦損失を増大させる。このことは、次の具体的な往復しゅう動試験から明白である。   The periodic structure formed on the sliding part surface has an excellent effect of reducing the friction loss of the sliding part of an automobile or industrial equipment by making the sliding part surface a low friction sliding surface. However, such an effect can be exerted on a continuous sliding surface such as a rotating body that continuously rotates in a fixed direction, but it reciprocates repeatedly moving in a fixed direction, stopping once and then moving in the reverse direction. On the sliding surface, it is difficult to exert the above effect. That is, when the concave and convex periodic structure is formed so as to cross the sliding direction on the entire sliding surface, the gap between the two sliding surfaces becomes small at the portion facing the convex and concave portions, so-called wedges. Since the load capacity due to the effect is generated and the oil film is formed, the friction loss of the sliding surface can be reduced. However, when the sliding surface is a reciprocating sliding surface, the concave / convex recess has a groove structure with openings at both ends, and therefore, side leakage occurs such that the oil film flows out from the opening end of the recess once the sliding stops. However, the oil film holding capacity on the periodic structure is reduced, the oil film is reduced, and the friction loss of the sliding portion at the time of restart is increased. This is evident from the following specific reciprocating sliding test.

図12(A)は、周期構造を形成しない鏡面のみの静止側試験片3aを示す。図13(A)は全面パターンで周期構造4を形成した静止側試験片3bを示す。各静止側試験片3a、3bにはφ20mm(しゅう動方向は2面幅18mmに面取り)の超硬合金を用い、周期構造形成前の表面はRa0.05μm以下とした。図示しない駆動側試験片には50mm×30mmの超硬合金を用い、しゅう動面粗さはRa0.05μm以下とした。しゅう動試験時の荷重は30Nとし、しゅう動面に75mgのタービンオイル(VG32)を供給し、しゅう動長10mm、しゅう動速度1mm/s、しゅう動端停留時間1sで摩擦係数が定常な状態になるまでなじみ運転し、24時間停止後、上記条件で再起動させた際の摩擦係数の変化を調べた。 FIG. 12A shows a mirror-side stationary test piece 3a that does not form a periodic structure. FIG. 13 (A) shows a stationary side test piece 3b in which the periodic structure 4 is formed by a full pattern. Each stationary side test piece 3a, 3b was made of cemented carbide having a diameter of 20 mm (chamfered in a sliding direction with a width of 18 mm), and the surface before forming the periodic structure was set to Ra 0.05 μm or less. A drive side test piece (not shown) was made of a cemented carbide of 50 mm × 30 mm, and the sliding surface roughness was Ra 0.05 μm or less. The load at the time of the sliding test is 30 N, 75 mg of turbine oil (VG32) is supplied to the sliding surface, the sliding coefficient is steady at a sliding length of 10 mm, a sliding speed of 1 mm / s, and a sliding end stop time of 1 s. Familiar operation was carried out until it became, and after 24 hours of stoppage, the change in the friction coefficient when restarted under the above conditions was investigated.

図12(B)に周期構造を形成しない鏡面の試験片3aにおける再起動後1往復目の摩擦係数の変化を定常状態の値と共に示す。鏡面の試験片3aでは、定常時はしゅう動時間に関わらず一定の摩擦係数を示し、しゅう動端での1sの停留では油膜にほとんど影響を与えていない。しかし、再起動直後の摩擦係数低減の応答が悪く、しゅう動2s後(しゅう動距離2mm)での摩擦係数は最大摩擦係数の60%あり、しゅう動8s後(しゅう動距離8mm)以降は摩擦係数の低下傾向が消失している。摩擦係数が0.01になるまでには10往復以上必要である。このような鏡面の試験片3aでは、意図しない試験片のうねりや弾性変形等しか油膜形成に寄与しないため、摩擦係数低減の応答が悪いものと考えられる。   FIG. 12B shows the change of the friction coefficient at the first reciprocation after the restart in the mirror surface test piece 3a not forming the periodic structure together with the steady state value. The mirror-surface test piece 3a shows a constant coefficient of friction regardless of the sliding time in the steady state, and the oil film is hardly affected by the 1s stoppage at the sliding end. However, the response of the reduction of the friction coefficient immediately after the restart is poor, the friction coefficient after the sliding 2s (sliding distance 2mm) is 60% of the maximum friction coefficient, and the friction after the sliding 8s (sliding distance 8mm) The trend of decreasing coefficient disappears. Ten or more reciprocations are required until the friction coefficient reaches 0.01. In such a mirror-shaped test piece 3a, only the unintended waviness or elastic deformation of the test piece contributes to the formation of the oil film, and therefore, it is considered that the response of reducing the friction coefficient is poor.

図13(B)に全面パターンで周期構造4を形成した試験片3bにおける再起動後1往復目の摩擦係数の変化を定常状態の値と共に示す。全面パターンでは定常状態においても鏡面の試験片3aのように一定の摩擦係数を示すことはなく、駆動が掛かった直後には高い摩擦係数を示し、しゅう動時間の増加と共に摩擦係数が低減する。全面パターンはしゅう動時にはくさび効果により負荷能力が生じ、油膜が形成されるが、周期構造4の凹凸における凹部(溝)が側面に開放されているため、停止時の油膜保持能力が低くなり、1sの停留時間を挟むと油膜切れを起こし、10往復しても高い摩擦係数を示す。このような全面パターンの周期構造4は連続的にしゅう動する回転体では優れた特性を示すが、往復しゅう動では致命的な欠陥となる。しかも、側方漏れを起こすため、しゅう動時の摩擦係数低減の応答も悪い。   FIG. 13B shows the change of the friction coefficient at the first reciprocation after the restart in the test piece 3b in which the periodic structure 4 is formed in the entire pattern, together with the steady state value. Even in a steady state, the entire surface pattern does not show a constant coefficient of friction like the mirror-finished test piece 3a, but shows a high coefficient of friction immediately after the drive is applied, and the coefficient of friction decreases as the sliding time increases. The entire surface pattern has a load capacity due to the wedge effect at the time of sliding, and an oil film is formed. However, since the recesses (grooves) in the irregularities of the periodic structure 4 are opened to the side surface, the oil film holding ability at the time of stopping is lowered When a 1 s dwell time is sandwiched, an oil film is cut and a high coefficient of friction is exhibited even after 10 reciprocations. Such a periodic structure 4 having an overall pattern exhibits excellent characteristics in a rotating body that continuously slides, but becomes a fatal defect in reciprocating sliding. Moreover, since side leakage occurs, the response of reducing the friction coefficient during sliding is poor.

本発明の目的とするところは、停止を伴う往復しゅう動特性にも優れるしゅう動面構造を提供することにある。   An object of the present invention is to provide a sliding surface structure that is also excellent in reciprocating sliding characteristics with stopping.

本発明は上記目的を達成するため、固体材料表面を成す鏡面部分の離散的な複数の領域のいずれの領域も全周が前記鏡面部分で囲まれて区分けされ、前記鏡面部分は連続した一面である、前記複数の領域にグレーティング状の周期構造を形成したことを特徴とする。 In order to achieve the above object, the present invention achieves the above object by dividing any region of the plurality of discrete regions of the mirror surface portion forming the solid material surface by being surrounded by the mirror surface portion, and the mirror surface portion is a continuous surface. A grating-like periodic structure is formed in the plurality of regions .

ここで、固体材料表面は超硬合金などの鏡面で、周期構造が形成される離散的な複数の領域と区別するため鏡面部分と称する。周期構造が形成される離散的な複数の領域のおのおのは鏡面部分で区分けされる。離散的とは、複数の領域のいずれもが鏡面部分を介し互いに離隔し、分散していることを意味する。周期構造が形成される複数の領域のおのおのの形状、面積、周期構造の方向は、しゅう動面の形状、面積、用途に対応させて様々に設定される。複数の領域のいずれの領域も鏡面部分で区分けされているため、領域内に形成した周期構造のグレーティング状凹凸の凹部(溝)の端は鏡面部分との境界部分に位置して、溝端の開口が鏡面部分で堰き止められた状態となり、油膜の側方漏れが抑制され、油膜保持能力が高く維持される。   Here, the surface of the solid material is a mirror surface of a cemented carbide or the like, and is referred to as a mirror surface portion so as to be distinguished from a plurality of discrete regions where a periodic structure is formed. Each of the plurality of discrete regions in which the periodic structure is formed is divided by a mirror surface portion. The term “discrete” means that all of the plurality of regions are separated from each other via the mirror surface portion and dispersed. The shape, area, and direction of the periodic structure in each of the plurality of regions in which the periodic structure is formed are variously set according to the shape, area, and application of the sliding surface. Since any of the plurality of regions is divided by the mirror surface portion, the end of the grating-shaped concave / convex concave portion (groove) of the periodic structure formed in the region is located at the boundary portion with the mirror surface portion, and the opening of the groove end Becomes a state of being dammed by the mirror surface portion, side leakage of the oil film is suppressed, and the oil film holding ability is maintained high.

本発明においては、複数の領域のそれぞれが略同一形状、略同一面積であり、各領域の全面に周期構造を形成することができる。ここで、略同一とは、巨視的にみれば同一であるが、微視的にみると許容範囲内で微小な相違があることを意味する。離散パターンで分散する複数の各領域の形状は矩形や扇形、円形などが選択できる。複数の領域の形状、面積を略同一にすることで、各領域での周期構造の形成が容易になり、しゅう動面全体のしゅう動特性を均一にすることができる。   In the present invention, each of the plurality of regions has substantially the same shape and substantially the same area, and a periodic structure can be formed on the entire surface of each region. Here, “substantially the same” means that they are the same when viewed macroscopically, but there are minute differences within an allowable range when viewed microscopically. A rectangular shape, a sector shape, a circular shape, or the like can be selected as the shape of each of the plurality of regions dispersed in a discrete pattern. By making the shape and area of the plurality of regions substantially the same, it is easy to form a periodic structure in each region, and the sliding characteristics of the entire sliding surface can be made uniform.

また、本発明においては、複数の領域に形成される周期構造をしゅう動方向と略平行な方向に揃えることができる。周期構造の方向は、グレーティング状凹凸方向と直交する凸部方向または凹部方向で、この方向がしゅう動方向と平行になるよう周期構造を形成する。このようにすると、周期構造の凹部端からの油膜側方漏れがより確実性よく抑制でき、油膜保持能力に優れたものとなる。   In the present invention, the periodic structures formed in the plurality of regions can be aligned in a direction substantially parallel to the sliding direction. The direction of the periodic structure is a convex portion direction or a concave portion direction orthogonal to the grating-like uneven direction, and the periodic structure is formed so that this direction is parallel to the sliding direction. If it does in this way, the oil film side leakage from the recessed part edge of a periodic structure can be controlled more reliably, and it will become what was excellent in oil film retention capability.

また、本発明においては、周期構造のグレーティング状凹凸の振幅と、グレーティング状凹凸の凹部の鏡面部分からの深さを略同一とし、かつ、グレーティング状凹凸の最大凸部の高さを鏡面部分と面一な高さ以下にする。さらに、本発明においては、周期構造のグレーティング状凹凸の振幅を1μm以下にする。また、周期構造のグレーティング状凹凸の周期ピッチを10μm以下にする。   In the present invention, the amplitude of the grating-like irregularities of the periodic structure and the depth of the concave portions of the grating-like irregularities from the mirror surface portion are substantially the same, and the height of the maximum convex portions of the grating-like irregularities is the mirror surface portion. Keep the level below the level. Furthermore, in the present invention, the amplitude of the grating-like irregularities of the periodic structure is set to 1 μm or less. Further, the periodic pitch of the grating-like irregularities of the periodic structure is made 10 μm or less.

このようなグレーティング状凹凸のいずれかの寸法規制を実施することで、または、全ての寸法規制を実施することで、しゅう動面における周期構造と鏡面部分の協働によるしゅう動性能をより良好で、より安定したものにすることができる。   By implementing any dimensional regulation of such grating-like irregularities, or by implementing all dimensional restrictions, the sliding performance by the cooperation of the periodic structure and the mirror surface portion on the sliding surface can be improved. , Can be more stable.

また、固体材料表面を成す鏡面部分の離散的な複数の領域にグレーティング状の周期構造を形成する方法で、固体材料表面に加工閾値近傍のフルエンスで直線偏光のレーザを照射し、その照射部分をオーバーラップさせながら走査して自己組織的に周期構造を形成すると共に、レーザ照射を間欠的に行うようにして離散的な複数の領域のみに方向の揃った周期構造を形成する。 Further, in a method of forming a grating-like periodic structure into discrete plurality of regions of the mirror portion forming a solid material surface is irradiated with laser linearly polarized light fluence of processing threshold near the solid material surface, irradiated portion thereof the scans while overlapping to form a self-organizing manner periodic structure, that form a periodic structure having a uniform direction only discrete plurality of regions so as to intermittently perform laser irradiation.

ここでの間欠的なレーザ照射は、例えばレーザ発生装置からのレーザ発振のオン/オフ制御で行う、或いは、レーザ発生装置から発振されるレーザの光路に配置した遮光板による遮光制御で行うことができる。このようにレーザ照射を間欠的に行って離散的な複数の領域のみに周期構造を形成することで、各領域に方向の揃った周期構造の形成が容易になる。   The intermittent laser irradiation here is performed, for example, by on / off control of laser oscillation from the laser generator, or by light shielding control by a light shielding plate arranged in the optical path of the laser oscillated from the laser generator. it can. In this way, by periodically performing laser irradiation to form a periodic structure only in a plurality of discrete regions, it is easy to form a periodic structure having a uniform direction in each region.

本発明によれば、しゅう動面に離散的に形成された複数の周期構造のそれぞれが鏡面部分で区分けされているため、各周期構造のグレーティング状凹凸の凹部両端が鏡面部分で堰き止められた形となり、各周期構造における油膜保持能力が増大して、しゅう動後の摩擦係数低下の応答が良くなり、往復しゅう動特性や回転しゅう動特性を一段と向上させることができる。特に、周期構造をしゅう動方向と平行にすることで、しゅう動特性を安定させ、尚一層に向上させることができる。   According to the present invention, since each of the plurality of periodic structures discretely formed on the sliding surface is divided by the mirror surface portion, both ends of the concave portions of the grating-like irregularities of each periodic structure are blocked by the mirror surface portion. As a result, the oil film holding capacity in each periodic structure is increased, the response of the decrease in the coefficient of friction after sliding is improved, and the reciprocating sliding characteristics and rotational sliding characteristics can be further improved. In particular, by making the periodic structure parallel to the sliding direction, the sliding characteristics can be stabilized and further improved.

以下、本発明の実施の形態を、図1〜図4を参照して説明する。また、各種の実施の形態におけるしゅう動面のしゅう動試験結果を図5〜図9を参照して説明する。   Hereinafter, embodiments of the present invention will be described with reference to FIGS. Moreover, the sliding test result of the sliding surface in various embodiment is demonstrated with reference to FIGS.

図1(A)に示す円形のしゅう動面10aは、格子状パターンの鏡面部分11aと、鏡面部分11aで全周が囲まれた離散的な複数の矩形領域12aに形成した周期構造13aで構成される。1つの矩形領域12aは、例えば0.3mm×1.0mmの長方形で、この領域全面に周期構造13aがしゅう動面10aのしゅう動方向Xと平行な方向で形成される。隣接する周期構造13aが例えば0.3mm幅の鏡面部分11aで区画される。鏡面部分11aは、縦横格子状に連続した一面である。このような鏡面部分11aの幅やパターン、周期構造13aの領域サイズや形状は特に限定されるものではない。周期構造13aを形成する前のしゅう動面10aの全面が平坦な鏡面であり、この鏡面の離散した複数の矩形領域12aに加工閾値近傍のフルエンスで直線偏光のレーザを照射し、その照射部分をオーバーラップさせながら走査して自己組織的に周期構造13aを形成する。この周期構造13aの形成は、図10の装置を使って行えばよい。この場合、例えば図10装置のレーザ発生装置31からレーザ発振をオン/オフ制御することで、離散的な複数の矩形領域12aのみに周期構造13aを同じ方向性で形成する。以下、図1のしゅう動面10aを、他の実施の形態と区別するために必要に応じて平行間欠のしゅう動面10aと称する。   A circular sliding surface 10a shown in FIG. 1 (A) includes a mirror surface portion 11a having a lattice pattern and a periodic structure 13a formed in a plurality of discrete rectangular regions 12a surrounded by the mirror surface portion 11a. Is done. One rectangular region 12a is, for example, a rectangle of 0.3 mm × 1.0 mm, and the periodic structure 13a is formed on the entire surface in a direction parallel to the sliding direction X of the sliding surface 10a. Adjacent periodic structures 13a are partitioned by a mirror surface portion 11a having a width of 0.3 mm, for example. The mirror surface portion 11a is one surface that is continuous in a vertical and horizontal grid pattern. The width and pattern of the mirror surface portion 11a and the region size and shape of the periodic structure 13a are not particularly limited. The entire sliding surface 10a before forming the periodic structure 13a is a flat mirror surface, and a plurality of discrete rectangular regions 12a on the mirror surface are irradiated with linearly polarized laser at a fluence near the processing threshold, The periodic structure 13a is formed in a self-organized manner by scanning while overlapping. The periodic structure 13a may be formed using the apparatus shown in FIG. In this case, for example, by performing on / off control of laser oscillation from the laser generator 31 of FIG. 10, the periodic structure 13a is formed in the same direction only in the plurality of discrete rectangular regions 12a. Hereinafter, the sliding surface 10a of FIG. 1 is referred to as a parallel intermittent sliding surface 10a as necessary to distinguish it from other embodiments.

図1(B)は、鏡面部分11aと周期構造13aの部分拡大断面図である。周期構造13aは、グレーティング状凹凸を形成する凸部14と凹部15を有する。グレーティング状凹凸の平均的な振幅hを1μmを超えない大きさにし、凹部15の鏡面部分11aからの深さiと振幅hがほぼ同じになるようにしてある。また、グレーティング状凹凸の最大の凸部14の高さを鏡面部分11aと面一な高さ以下にして、凸部14の頂点が鏡面部分11aより低い位置にあり、鏡面部分11aより上に突出しないようにしてある。さらに、周期構造13aのグレーティング状凹凸の周期ピッチpを10μmを超えない大きさにする。このような寸法規制の理由は、後述のしゅう動試験のところで説明する。なお、前述の寸法規制は、図2〜図4の他の実施の形態においても同様に適用される。   FIG. 1B is a partially enlarged sectional view of the mirror surface portion 11a and the periodic structure 13a. The periodic structure 13a has a convex portion 14 and a concave portion 15 that form grating-like irregularities. The average amplitude h of the grating-like irregularities is set so as not to exceed 1 μm, and the depth i from the mirror surface portion 11a of the concave portion 15 and the amplitude h are substantially the same. Further, the height of the largest convex portion 14 of the grating-like unevenness is set to be equal to or less than the height of the mirror surface portion 11a, and the apex of the convex portion 14 is at a position lower than the mirror surface portion 11a and protrudes above the mirror surface portion 11a. I'm not going to do that. Furthermore, the periodic pitch p of the grating-like irregularities of the periodic structure 13a is set to a size not exceeding 10 μm. The reason for such dimensional regulation will be described in the sliding test described later. It should be noted that the above-described dimensional restrictions are similarly applied to the other embodiments of FIGS.

図2に示す円形のしゅう動面10bは、格子状パターンの鏡面部分11bと、鏡面部分11bで全周が囲まれた離散的な複数の矩形領域12bに形成した周期構造13bで構成される。1つの矩形領域12bは、0.3mm×1.0mmの長方形で、この領域全面に周期構造13bがしゅう動面10bのしゅう動方向Xと直交する方向で形成される。隣接する周期構造13bが0.3mm幅の鏡面部分11bで区画される。この図2のしゅう動面10bは、図1のしゅう動面10aを90°回転させたものに相当し、以下、必要に応じて図2のしゅう動面10bを直交間欠のしゅう動面10bと称する。   A circular sliding surface 10b shown in FIG. 2 includes a mirror surface portion 11b having a lattice pattern and a periodic structure 13b formed in a plurality of discrete rectangular regions 12b surrounded by the mirror surface portion 11b. One rectangular region 12b is a rectangle of 0.3 mm × 1.0 mm, and the periodic structure 13b is formed on the entire surface in a direction orthogonal to the sliding direction X of the sliding surface 10b. Adjacent periodic structures 13b are partitioned by a mirror surface portion 11b having a width of 0.3 mm. The sliding surface 10b shown in FIG. 2 corresponds to the sliding surface 10a shown in FIG. 1 rotated by 90 °. Hereinafter, the sliding surface 10b shown in FIG. Called.

図3に示す円形のしゅう動面10cは、縞状パターンの鏡面部分11cと、隣接する鏡面部分11cの間に形成された縞状パターンの離散的な複数の領域12cに形成した周期構造13cで構成される。鏡面部分11cの幅は約1mmであり、縞状領域12cの幅は約1mmである。この領域全面に周期構造13cがしゅう動面10cのしゅう動方向Xと直交する方向で形成される。以下、必要に応じて図3のしゅう動面10cを直交縞状のしゅう動面10cと称する。   The circular sliding surface 10c shown in FIG. 3 is a periodic structure 13c formed in a plurality of discrete regions 12c of a striped pattern formed between a mirror surface portion 11c of a striped pattern and an adjacent mirror surface portion 11c. Composed. The width of the mirror surface portion 11c is about 1 mm, and the width of the striped region 12c is about 1 mm. The periodic structure 13c is formed on the entire surface in a direction orthogonal to the sliding direction X of the sliding surface 10c. Hereinafter, the sliding surface 10c of FIG. 3 is referred to as an orthogonal striped sliding surface 10c as necessary.

以上の図1〜図の各実施の形態は、停止を伴う往復しゅう動に適する。図4に示す実施の形態の円形しゅう動面10dは、回転しゅう動に適する。この図4のしゅう動面10dは、円形のリング形状をなし、リング状に離散する複数の領域12dにグレーティング状凹凸の周期構造13dを形成している。領域12dは、0.3mm×0.4mmの扇形的な矩形領域で、周囲に0.1mm幅の鏡面部分11dが存在する。このしゅう動面10dのしゅう動方向X’はしゅう動面10dの中心を中心とする周方向で、このしゅう動方向X’に各周期構造13dの方向が揃えてある。 Each embodiment of the above FIGS. 1-2 is suitable for the reciprocating sliding accompanied by a stop. The circular sliding surface 10d of the embodiment shown in FIG. 4 is suitable for rotational sliding. The sliding surface 10d of FIG. 4 has a circular ring shape, and a periodic structure 13d having grating-like irregularities is formed in a plurality of regions 12d that are discrete in a ring shape. The region 12d is a fan-shaped rectangular region of 0.3 mm × 0.4 mm, and a mirror surface portion 11d having a width of 0.1 mm exists around the region 12d. The sliding direction X ′ of the sliding surface 10d is a circumferential direction centered on the center of the sliding surface 10d, and the direction of each periodic structure 13d is aligned with the sliding direction X ′.

次に、図1〜図の各実施の形態の往復しゅう動試験を順に説明し、最後に図4の実施の形態による回転しゅう動試験を説明する。なお、往復しゅう動試験は図12と図13で説明した試験と同様に、加重は30Nとし、しゅう動面に75mgのタービンオイル(VG32)を供給し、しゅう動長10mm、しゅう動速度1mm/s、しゅう動端停留時間1sで摩擦係数が定常な状態になるまでなじみ運転し、24時間停止後、上記の条件で再起動させた際の摩擦係数の変化を調べた。 Next, the reciprocating sliding test of each embodiment of FIGS. 1-2 will be described in order, and finally the rotating sliding test according to the embodiment of FIG. 4 will be described. As in the tests described in FIGS. 12 and 13, the reciprocating sliding test is performed with a load of 30 N, 75 mg of turbine oil (VG32) supplied to the sliding surface, a sliding length of 10 mm, and a sliding speed of 1 mm / s, familiar operation was performed until the friction coefficient reached a steady state at the sliding end stop time of 1 s, and after 24 hours of stoppage, the change of the friction coefficient when restarted under the above conditions was examined.

・[平行間欠しゅう動面10aの往復しゅう動試験]
図5に、平行間欠パターンで周期構造13aを形成したしゅう動面10aを有する試験片における再起動後1往復目の摩擦係数の変化を定常状態の値と共に示す。平行間欠パターンでは周期構造13aの凹部15の端が鏡面部分11aで堰き止められた形になっているため、全面パターンとは異なり、しゅう動端での停留でも油膜が切れにくい。従って、しゅう動端での1sの停留では油膜にほとんど影響を受けず、定常状態では鏡面の試験片と同様に、しゅう動時間に関わらず一定の摩擦係数を示した。また、しゅう動時には周期構造の凹部15に沿って流れる潤滑油が鏡面部分11aで堰き止められ、凹部15と鏡面部分11aの境界部分で大きな圧力が生じることから、しゅう動方向に平行な周期構造でありながらも負荷能力が生じる。さらも幅方向にサブミクロンの間隔で凸部14により仕切られているため、側方漏れがほとんど発生せず効率的に負荷能力が生じることから、再起動後の摩擦係数の応答が極めて早く、しゅう動2s後(しゅう動距離2mm)での摩擦係数は0.02以下まで低減され、しゅう動6s後(しゅう動距離6mm)での摩擦係数はほぼ定常状態と同じになる。2回目以降のしゅう動始めの摩擦係数は0.01と低くなり、10回目となると定常状態と変わらない摩擦係数変化を示す。周期構造13aの凸部14は鏡面部分11aに対し突出させず、かつ、周期構造13aを鏡面部分11aで完全に仕切られた区画に形成することで、停止後の再起動時など油膜が極めて薄い場合には、周期構造13aを形成した区画全体が油溜まりとして作用し、起動直後から負荷能力を生じる機能を併せ持つことになる。
・ [Reciprocating sliding test of parallel intermittent sliding surface 10a]
FIG. 5 shows the change in the friction coefficient at the first reciprocation after the restart in the test piece having the sliding surface 10a in which the periodic structure 13a is formed in the parallel intermittent pattern, together with the steady state value. In the parallel intermittent pattern, since the end of the concave portion 15 of the periodic structure 13a is dammed by the mirror surface portion 11a, the oil film is hardly cut even when the sliding end is stopped, unlike the entire surface pattern. Therefore, the oil film was hardly affected by the 1 s stop at the sliding end, and showed a constant coefficient of friction regardless of the sliding time in the steady state, as in the case of the mirror specimen. Further, during sliding, the lubricating oil flowing along the concave portion 15 of the periodic structure is blocked by the mirror surface portion 11a, and a large pressure is generated at the boundary portion between the concave portion 15 and the mirror surface portion 11a, so the periodic structure parallel to the sliding direction. However, load capacity arises. Furthermore, since it is partitioned by the protrusions 14 at submicron intervals in the width direction, side leakage hardly occurs and load capacity is efficiently generated, so the response of the friction coefficient after restart is extremely fast, The coefficient of friction after the sliding 2s (sliding distance 2 mm) is reduced to 0.02 or less, and the coefficient of friction after the sliding 6s (sliding distance 6 mm) is almost the same as in the steady state. The friction coefficient at the beginning of the second and subsequent sliding is as low as 0.01, and the friction coefficient change that does not change from the steady state is shown at the tenth time. The convex part 14 of the periodic structure 13a does not protrude with respect to the mirror surface part 11a, and the oil film is extremely thin when restarting after stopping by forming the periodic structure 13a in a section completely partitioned by the mirror surface part 11a. In some cases, the entire section in which the periodic structure 13a is formed acts as an oil reservoir, and has a function of generating load capacity immediately after startup.

また、起動や停止時には、鏡面部分11aでしゅう動相手側をしゅう動させることになり、周期構造13aと相手側の間には油膜が介在するのみとなるので、周期構造13aとしゅう動相手側の摩耗が極力抑制される。周期構造13aの凸部14が鏡面部分11aに対し少しでも突出すれば、この突出凸部がしゅう動相手側に当接して油膜保持能力を低下させ、両者間で摩耗が発生し易くなる。また、周期構造13aの凹凸に応じてしゅう動時に形成される油膜の厚さが決まる。油膜が厚くなると剛性の低下や、停止時と起動時の油膜厚変動が大きくなり、しゅう動精度の低下をもたらすため、グレーティング状凹凸の平均的な振幅hを1μmを超えない大きさにする。また、側方漏れを極力低減するためには周期ピッチpが小さい方が望ましく、しゅう動材の意図しないうねりの影響を受けないように、周期ピッチpを10μmを超えない大きさにする。凹部15の鏡面部分11aからの深さiを振幅hの2倍、3倍以上と大きくして、鏡面部分11aから深いところに周期構造13aを形成すると、保持できる油膜量が増大するが、しゅう動時に周期構造13aによる側方漏れ防止効果が低下するため、凹部15の鏡面部分11aからの深さiが振幅hの1〜2倍の範囲となるようにする。   Further, at the time of starting and stopping, the sliding counterpart side is slid by the mirror surface portion 11a, and only an oil film is interposed between the periodic structure 13a and the counterpart side. Wear is suppressed as much as possible. If the convex part 14 of the periodic structure 13a protrudes from the mirror surface part 11a even a little, the protruding convex part comes into contact with the sliding counterpart side to reduce the oil film holding ability, and wear between both tends to occur. Moreover, the thickness of the oil film formed at the time of sliding is determined according to the unevenness of the periodic structure 13a. As the oil film becomes thicker, the rigidity decreases, and the oil film thickness fluctuation at the time of stopping and starting increases, resulting in a decrease in sliding accuracy. Therefore, the average amplitude h of the grating-like irregularities is set to a value not exceeding 1 μm. Further, in order to reduce the side leakage as much as possible, it is desirable that the periodic pitch p is small, and the periodic pitch p is set not to exceed 10 μm so as not to be affected by unintended undulation of the sliding material. If the depth i of the concave portion 15 from the mirror surface portion 11a is increased to twice or three times the amplitude h and the periodic structure 13a is formed deep from the mirror surface portion 11a, the amount of oil film that can be retained increases. Since the effect of preventing side leakage by the periodic structure 13a is lowered during the movement, the depth i of the concave portion 15 from the mirror surface portion 11a is set to be in the range of 1 to 2 times the amplitude h.

・[直交間欠しゅう動面10bの往復しゅう動試験]
図6に、直交間欠パターンを形成したしゅう動面10bにおける再起動後1往復目の摩擦係数の変化を定常状態の値と共に示す。直交間欠パターンでは、幅方向に0.3mm毎に鏡面部分11bで仕切られているため、側方漏れが全面パターンと比較すると大きく低減され、再起動後の摩擦係数低減の応答は平行間欠パターンに次いで早く、しゅう動2s後(しゅう動距離2mm)での摩擦係数は最大摩擦係数の1/3まで低減され、しゅう動端付近では摩擦係数は0.01まで低下した。この場合も、10回目となると定常状態と変わらない摩擦係数変化を示す。
・ [Reciprocal sliding test of orthogonal intermittent sliding surface 10b]
FIG. 6 shows the change of the friction coefficient at the first reciprocation after the restart on the sliding surface 10b on which the orthogonal intermittent pattern is formed, together with the steady state value. In the orthogonal intermittent pattern, the side leakage is greatly reduced as compared with the entire surface pattern because it is partitioned by the mirror surface portion 11b every 0.3 mm in the width direction, and the response of the reduction of the friction coefficient after the restart is next to the parallel intermittent pattern. The friction coefficient after sliding 2s (sliding distance 2 mm) was reduced to 1/3 of the maximum friction coefficient, and the friction coefficient decreased to 0.01 near the sliding end. In this case as well, the friction coefficient change that does not change from the steady state is shown at the 10th time.

・[直交縞状しゅう動面10cの往復しゅう動試験]
図7に縞状パターンを形成したしゅう動面10cにおける再起動後1往復目の摩擦係数の変化を定常状態の値と共に示す。縞状パターンでは1mm毎に残る鏡面部分11cにより側方漏れが低減されるため、しゅう動端での1sの停留では油膜切れを起こすことなく、定常状態では鏡面の試験片と同様に、しゅう動時間に関わらず一定の摩擦係数を示した。また、しゅう動時には周期構造13cによる負荷能力も生じるため、再起動後の摩擦係数はしゅう動時間と共に減少し、しゅう動端付近では摩擦係数は0.015まで低下し、10往復目で摩擦係数は定常状態とほぼ同一になる。縞状パターンの場合は、平行間欠パターンや直交間欠パターンほど摩擦係数低減の応答性は高くないが、簡便に形成できる利点がある。
・ [Reciprocating sliding test of orthogonal stripe sliding surface 10c]
FIG. 7 shows the change in the friction coefficient at the first reciprocation after the restart on the sliding surface 10c on which the striped pattern is formed, together with the steady state value. In the striped pattern, since the side leakage is reduced by the mirror surface portion 11c remaining every 1 mm, the oil film breakage does not occur in the stationary state at the sliding end for 1 s. A constant coefficient of friction was exhibited regardless of time. In addition, since the load capacity due to the periodic structure 13c also occurs during sliding, the friction coefficient after restart decreases with the sliding time, the friction coefficient decreases to 0.015 near the sliding end, and the friction coefficient is steady at the 10th reciprocation. It becomes almost the same as the state. In the case of a striped pattern, the responsiveness of reducing the friction coefficient is not as high as that of the parallel intermittent pattern or the orthogonal intermittent pattern, but there is an advantage that it can be easily formed.

・[図4しゅう動面10dの回転しゅう動試験]
本発明は往復しゅう動に限らず、回転しゅう動にも有効である。図4のしゅう動面10dの回転しゅう動試験は、鏡面およびグレーティング状の周期構造を離散的に形成した10mm、外径16mmのリング形状のしゅう動面10dに対してリング・オン・ディスクしゅう動試験で行った。しゅう動面10dにおいては、周期構造13dが0.3mm×0.4mmの矩形領域で、その周囲に0.1mmの鏡面部分11dが残るように配置している。荷重は10Nで一定とし、純水中でしゅう動速度を1.2m/sから0.15m/sまで1分毎に階段的に減速させた。このときのしゅう動速度の変更パターンを図8に示す。
[Fig. 4 Rotating sliding test of sliding surface 10d]
The present invention is effective not only for reciprocal sliding but also for rotational sliding. In the rotational sliding test of the sliding surface 10d shown in FIG. 4, a ring-on-disk sliding is performed on a ring-shaped sliding surface 10d having a mirror surface and a grating-like periodic structure formed discretely and having an outer diameter of 16 mm. Performed in the test. In the sliding surface 10d, the periodic structure 13d is disposed in a rectangular area of 0.3 mm × 0.4 mm, and a mirror surface portion 11d of 0.1 mm remains around the rectangular area. The load was constant at 10N, and the sliding speed was decelerated step by step from 1.2m / s to 0.15m / s in pure water every minute. The change pattern of the sliding speed at this time is shown in FIG.

離散的に周期構造13dを形成したしゅう動面10dにおいては、図9(A)に示すようにしゅう動速度低下に伴い摩擦係数が減少する流体潤滑領域に特徴的な現象を全領域(1.2m/s〜0.15m/s)で示した。なお、鏡面の試験片を用いた実験では図9(B)に示すように、速度が低下するに従い摩擦係数が増加していく。また、周期構造を離散的にせず全面に形成した場合には、最も広い範囲で流体潤滑を示した放射状の周期構造でも0.35m/s未満では混合潤滑となったことから(非特許文献2参照)、しゅう動面10dのように離散的に周期構造13dを形成することで、しゅう動特性の向上が可能であることが確認された。   In the sliding surface 10d in which the periodic structure 13d is discretely formed, a phenomenon characteristic to the fluid lubrication region in which the friction coefficient decreases as the sliding speed decreases as shown in FIG. / s to 0.15 m / s). In an experiment using a specular test piece, as shown in FIG. 9B, the friction coefficient increases as the speed decreases. Further, when the periodic structure is formed on the entire surface without being discrete, even the radial periodic structure showing fluid lubrication in the widest range is mixed lubrication at less than 0.35 m / s (see Non-Patent Document 2). It was confirmed that the sliding characteristics can be improved by discretely forming the periodic structure 13d as in the sliding surface 10d.

(A)は本発明に係る低摩擦しゅう動面の実施の形態を示す部分拡大図を含む平面図、(B)はしゅう動面の部分拡大断面図である。(A) is a top view including the partial enlarged view which shows embodiment of the low friction sliding surface which concerns on this invention, (B) is the partial expanded sectional view of a sliding surface. 低摩擦しゅう動面の他の実施の形態を示す部分拡大図を含む平面図である。It is a top view including the elements on larger scale showing other embodiments of a low friction sliding surface. 低摩擦しゅう動面の参考例を示す部分拡大図を含む平面図である。It is a top view including the partial enlarged view which shows the reference example of a low friction sliding surface. 低摩擦しゅう動面の他の実施の形態を示す部分拡大図を含む平面図である。It is a top view including the elements on larger scale showing other embodiments of a low friction sliding surface. 図1しゅう動面の往復しゅう動試験を説明するための摩擦係数/しゅう動時間のグラフ図である。1 is a graph of the friction coefficient / sliding time for explaining the reciprocating sliding test of the sliding surface. 図2しゅう動面の往復しゅう動試験を説明するための摩擦係数/しゅう動時間のグラフ図である。2 is a graph of friction coefficient / sliding time for explaining the reciprocating sliding test of the sliding surface. 図3しゅう動面の往復しゅう動試験を説明するための摩擦係数/しゅう動時間のグラフ図である。3 is a graph of friction coefficient / sliding time for explaining the reciprocating sliding test of the sliding surface. 図4しゅう動面の回転しゅう動試験を説明するための速度変更パターン図である。4 is a speed change pattern diagram for explaining the rotational sliding test of the sliding surface. (A)は図4しゅう動面の回転しゅう動試験を説明するための摩擦係数/しゅう動時間のグラフ図、(B)は鏡面における摩擦係数/しゅう動時間のグラフ図である。(A) is a graph of the friction coefficient / sliding time for explaining the rotational sliding test of the sliding surface in FIG. 4, and (B) is a graph of the friction coefficient / sliding time on the mirror surface. 周期構造作成装置の模式図である。It is a schematic diagram of a periodic structure creation apparatus. 周期構造形成メカニズムの原理を説明するための概略斜視図である。It is a schematic perspective view for demonstrating the principle of a periodic structure formation mechanism. (A)は鏡面のしゅう動面平面図、(B)はしゅう動面の往復しゅう動試験を説明するための摩擦係数/しゅう動時間のグラフ図である。(A) is a plan view of the sliding surface of the mirror surface, and (B) is a graph of friction coefficient / sliding time for explaining the reciprocating sliding test of the sliding surface. (A)は全面が周期構造のしゅう動面平面図、(B)はしゅう動面の往復しゅう動試験を説明するための摩擦係数/しゅう動時間のグラフ図である。(A) is a plan view of a sliding surface having a periodic structure on the entire surface, and (B) is a graph of friction coefficient / sliding time for explaining a reciprocating sliding test of the sliding surface.

符号の説明Explanation of symbols

2 固体材料
10a〜10d 低摩擦しゅう動面
11a〜11d 鏡面部分
12a〜12d 離散的な複数の領域
13a〜13d 周期構造
14 凸部
15 凹部
31 レーザ発生装置
32 波長板
33 偏光ビームスプリッタ
34 レンズ
2 Solid materials 10a to 10d Low friction sliding surfaces 11a to 11d Mirror surface portions 12a to 12d Discrete regions 13a to 13d Periodic structure 14 Convex part 15 Concave part 31 Laser generator 32 Wave plate 33 Polarizing beam splitter 34 Lens

Claims (6)

固体材料表面を成す鏡面部分の離散的な複数の領域のいずれの領域も全周が前記鏡面部分で囲まれて区分けされ、前記鏡面部分は連続した一面である、前記複数の領域にグレーティング状の周期構造を形成したことを特徴とする低摩擦しゅう動面。 All regions of the plurality of discrete regions of the mirror surface portion forming the solid material surface are divided by being surrounded by the mirror surface portion, and the mirror surface portion is a continuous surface . A low-friction sliding surface characterized by forming a periodic structure. 前記複数の領域のそれぞれが略同一形状、略同一面積で、当該領域全面に周期構造を形成したことを特徴とする請求項1に記載の低摩擦しゅう動面。   The low friction sliding surface according to claim 1, wherein each of the plurality of regions has substantially the same shape and substantially the same area, and a periodic structure is formed on the entire surface of the region. 前記周期構造をしゅう動方向と略平行な方向に形成したことを特徴とする請求項1または2に記載の低摩擦しゅう動面。   The low friction sliding surface according to claim 1, wherein the periodic structure is formed in a direction substantially parallel to the sliding direction. 前記周期構造のグレーティング状凹凸の振幅と、グレーティング状凹凸の凹部の前記鏡面部分からの深さを略同一とし、かつ、グレーティング状凹凸の最大凸部の高さが前記鏡面部分と面一な高さ以下であることを特徴とする請求項1〜3のいずれかに記載の低摩擦しゅう動面。   The amplitude of the grating-like irregularities of the periodic structure is substantially the same as the depth of the concave portions of the grating-like irregularities from the mirror surface portion, and the height of the largest convex portion of the grating-like irregularities is a height that is flush with the mirror surface portion. The low friction sliding surface according to any one of claims 1 to 3, wherein the sliding surface is low. 前記周期構造のグレーティング状凹凸の振幅が1μm以下であることを特徴とする請求項1〜4のいずれかに記載の低摩擦しゅう動面。   The low friction sliding surface according to any one of claims 1 to 4, wherein the amplitude of the grating-like irregularities of the periodic structure is 1 µm or less. 前記周期構造のグレーティング状凹凸の周期ピッチが10μm以下であることを特徴とする請求項1〜5のいずれかに記載の低摩擦しゅう動面。   The low friction sliding surface according to any one of claims 1 to 5, wherein the periodic pitch of the grating-like irregularities of the periodic structure is 10 µm or less.
JP2005258390A 2005-09-06 2005-09-06 Low friction sliding surface Active JP4263185B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005258390A JP4263185B2 (en) 2005-09-06 2005-09-06 Low friction sliding surface

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005258390A JP4263185B2 (en) 2005-09-06 2005-09-06 Low friction sliding surface

Publications (2)

Publication Number Publication Date
JP2007069300A JP2007069300A (en) 2007-03-22
JP4263185B2 true JP4263185B2 (en) 2009-05-13

Family

ID=37931205

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005258390A Active JP4263185B2 (en) 2005-09-06 2005-09-06 Low friction sliding surface

Country Status (1)

Country Link
JP (1) JP4263185B2 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5111961B2 (en) * 2007-07-09 2013-01-09 キヤノンマシナリー株式会社 Sliding surface structure
JP5066660B2 (en) * 2007-08-29 2012-11-07 エンシュウ株式会社 Periodic structure machining control method and periodic structure machining control apparatus
JP5196301B2 (en) * 2008-06-04 2013-05-15 キヤノンマシナリー株式会社 Tribochemical reaction promoting surface structure
JP5357790B2 (en) * 2010-01-28 2013-12-04 国立大学法人宇都宮大学 Laser processing equipment
KR101513278B1 (en) 2011-08-05 2015-04-17 이구루코교 가부시기가이샤 Mechanical seal
JP2013160338A (en) * 2012-02-07 2013-08-19 Canon Machinery Inc Sliding surface structure, and method for manufacturing the same
CN107654654B (en) 2014-02-24 2019-07-26 伊格尔工业股份有限公司 Slide unit
JP6781652B2 (en) * 2017-03-15 2020-11-04 キヤノンマシナリー株式会社 Sliding members and engine parts
CN111222291B (en) * 2019-12-30 2023-03-10 太原重工股份有限公司 Oil film fluid domain discretization method

Also Published As

Publication number Publication date
JP2007069300A (en) 2007-03-22

Similar Documents

Publication Publication Date Title
JP4263185B2 (en) Low friction sliding surface
US9863473B2 (en) Sliding parts and processing method of sliding parts
JP6763850B2 (en) Manufacturing method of sliding parts and sliding parts
JP5111961B2 (en) Sliding surface structure
JP5278970B2 (en) Mechanical seal sliding material and mechanical seal
US9228660B2 (en) Sliding member
JP6612053B2 (en) Sliding surface structure
JP6964392B2 (en) Sliding surface structure and manufacturing method of sliding surface structure
JP2008089091A (en) Sliding surface structure
JP5538476B2 (en) Sliding surface structure
Morimoto et al. Effect of high-frequency orbital and vertical oscillations of the laser focus position on the quality of the cut surface in a thick plate by laser beam machining
JP5638455B2 (en) Sliding surface structure
JP5496575B2 (en) Sliding surface
KR20120108752A (en) Laser processing method for formation of microspike
JP5726673B2 (en) Sliding surface structure
JP5619937B2 (en) Sliding surface structure
JP7249743B2 (en) thrust plain bearing
JP2009293684A (en) Tribochemical reaction promoting surface structure
JP2016070454A (en) Process of manufacture of slide member
JP6130004B1 (en) Water repellent surface structure
JP6130004B6 (en) Water repellent surface structure
JP2013160338A (en) Sliding surface structure, and method for manufacturing the same
KR100777652B1 (en) Laser apparatus for forming pattern on inside of workpiece
JP6392130B2 (en) Manufacturing method of sliding surface structure

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081117

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090107

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090128

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090210

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120220

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4263185

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130220

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140220

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250