JP5726673B2 - Sliding surface structure - Google Patents

Sliding surface structure Download PDF

Info

Publication number
JP5726673B2
JP5726673B2 JP2011173860A JP2011173860A JP5726673B2 JP 5726673 B2 JP5726673 B2 JP 5726673B2 JP 2011173860 A JP2011173860 A JP 2011173860A JP 2011173860 A JP2011173860 A JP 2011173860A JP 5726673 B2 JP5726673 B2 JP 5726673B2
Authority
JP
Japan
Prior art keywords
periodic structure
sliding surface
sliding
height position
structure portion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2011173860A
Other languages
Japanese (ja)
Other versions
JP2013036561A (en
Inventor
博司 沢田
博司 沢田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Machinery Inc
Original Assignee
Canon Machinery Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Machinery Inc filed Critical Canon Machinery Inc
Priority to JP2011173860A priority Critical patent/JP5726673B2/en
Publication of JP2013036561A publication Critical patent/JP2013036561A/en
Application granted granted Critical
Publication of JP5726673B2 publication Critical patent/JP5726673B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Sliding-Contact Bearings (AREA)

Description

本発明は、摺動面構造に関するものである。   The present invention relates to a sliding surface structure.

表面テクスチャリングは流体潤滑領域の拡大や摩擦低減など、摺動特性の改善手法の一つとなっている。サブミクロンの周期ピッチと溝深さをもつグレーティング状の周期構造部はサブミクロンの油膜厚さにおいて、極めて高い負荷能力と剛性をもつことが知られており、往復摺動や回転摺動に利用されている。   Surface texturing is one of the methods for improving sliding characteristics, such as expanding the fluid lubrication area and reducing friction. Grating-like periodic structure with submicron periodic pitch and groove depth is known to have extremely high load capacity and rigidity at submicron oil film thickness, and is used for reciprocating sliding and rotational sliding. Has been.

しかし、起動直後や停止直前など十分な動圧が得られない場面では、周期構造部による攻撃性が問題となる。ここで、周期構造部による攻撃性とは、相手側部材に対する摩耗増大性や損傷性等である。周期構造部の攻撃性を緩和するためには、周期構造部の凸部高さを周期構造未形成部分と面一な高さより低くすることが有効である。   However, in situations where sufficient dynamic pressure cannot be obtained, such as immediately after starting or immediately before stopping, aggression by the periodic structure part becomes a problem. Here, the aggression property by the periodic structure portion is wear increase property or damage property to the counterpart member. In order to reduce the aggressiveness of the periodic structure portion, it is effective to make the height of the convex portion of the periodic structure portion lower than the height flush with the portion where the periodic structure is not formed.

そこで、従来においては、摺動面に、周期構造部の凸部よりも高さ位置が高位となる凸部を回転中心部に設けたスラスト軸受がある(特許文献1)。このスラスト軸受では、回転停止時において、摺動面(相手側の摺動面に対面する面)の全体がこの相手側の摺動面に接触することなく、凸部の頂点の接触となる。このため、起動時において、凸部の頂点と相手側の摺動面との接触が、回転中心付近に限定され、摩擦による起動トルクへの影響を小さいものとしている。   Therefore, conventionally, there is a thrust bearing in which a convex portion whose height is higher than the convex portion of the periodic structure portion is provided on the rotation center portion on the sliding surface (Patent Document 1). In this thrust bearing, when the rotation is stopped, the entire sliding surface (the surface facing the mating sliding surface) is in contact with the apex of the convex portion without contacting the mating sliding surface. For this reason, at the time of start-up, the contact between the apex of the convex portion and the other-side sliding surface is limited to the vicinity of the rotation center, and the influence on the start-up torque due to friction is made small.

特開2001−12456号公報JP 2001-12456 A

特許文献1に記載のものでは、摺動面上に凸部を形成する必要がある。この場合の形成方法として、凸部を別部材として形成した後、この摺動面に接合する方法、又は凸部を残すように切削や研削する方法等がある。このため、いずれの形成方法もその加工工程が多く、生産性に劣るものであった。   In the thing of patent document 1, it is necessary to form a convex part on a sliding surface. As a forming method in this case, there is a method of forming the convex portion as a separate member and then joining the sliding surface, or a method of cutting or grinding so as to leave the convex portion. For this reason, any of the forming methods has many processing steps and is inferior in productivity.

また、凸部を形成することによって、周期構造部にて形成される油膜が厚くなる傾向にある。このように、油膜が厚くなると、低負荷容量および低剛性を招くことになる。   Moreover, the oil film formed in a periodic structure part tends to become thick by forming a convex part. Thus, when the oil film becomes thick, low load capacity and low rigidity are caused.

周期構造部の凸部高さを周期構造未形成部分と面一な高さより低くしすぎると負荷容量に悪影響が出る。そのため、負荷容量に影響が出にくいパターニングの開発と適正な高さの設定が望まれている。   If the height of the convex portion of the periodic structure portion is made lower than the height flush with the portion where the periodic structure is not formed, the load capacity is adversely affected. Therefore, it is desired to develop a patterning that does not affect the load capacity and to set an appropriate height.

本発明は、上記課題に鑑みて、負荷容量の低減を抑えながら周期構造部の攻撃性を緩和できる摺動面構造を提供する。   In view of the above problems, the present invention provides a sliding surface structure that can reduce the aggressiveness of a periodic structure part while suppressing a reduction in load capacity.

本発明の摺動面構造は、第1部材の摺動面と第2部材の摺動面とが潤滑剤下で相対的に摺動する摺動面構造であって、第1部材と第2部材との少なくともいずれか一方の摺動面に、グレーティング状凹凸の周期構造部と周期構造未形成部とが摺動方向に沿って交互に形成され、かつ、周期構造部の凸部高さ位置を未形成部の高さ位置よりも低く設定して、周期構造部と周期構造未形成部との境界で圧力を発生させるとともに、前記周期構造部は摺動面周縁に連通され、流体を摺動面内方へ導入するものである。 The sliding surface structure of the present invention is a sliding surface structure in which the sliding surface of the first member and the sliding surface of the second member slide relative to each other under a lubricant. On the sliding surface of at least one of the members, the periodic structure portions of the grating-like unevenness and the non-periodic structure forming portions are alternately formed along the sliding direction, and the convex portion height position of the periodic structure portion the set lower than the height position of the unformed portions, Rutotomoni to generate pressure at the interface between the periodic structure portion and the periodic structure unformed portion, the periodic structure portion is communicated with the sliding surface periphery, the fluid Introduced inside the sliding surface .

本発明の摺動面構造によれば、周期構造部の凸部高さ位置を未形成部の高さ位置よりも低く設定したことによって、摺動起動時及び摺動停止時における周期構造部による攻撃性が緩和される。ここで、周期構造部による攻撃性とは、相手側部材に対する摩耗増大性や損傷性等である。また、周期構造部が摺動面周縁に連通されているので、第1部材と第2部材の摺動動作によって、摺動面周縁から潤滑剤を摺動面内方へ導入することができる(この作用を流体導入効果と呼ぶ)。周期構造部と周期構造未形成部とが摺動方向に沿って交互に形成され、しかも、周期構造部の凸部高さ位置を未形成部の高さ位置よりも低く設定することによって、周期構造部と未形成部との境界で圧力が発生し、摺動方向に圧力勾配ができる(この作用をステップ効果と呼ぶ)。このように、周期構造部と未形成部とを設けることによって、周期構造部の凸部高さ位置と未形成部の高さ位置との高低差を大きくしても負荷容量の減少を少なくできる。   According to the sliding surface structure of the present invention, by setting the convex portion height position of the periodic structure portion to be lower than the height position of the non-formed portion, the periodic structure portion is activated at the time of sliding start and at the time of sliding stop. Aggression is reduced. Here, the aggression property by the periodic structure portion is wear increase property or damage property to the counterpart member. In addition, since the periodic structure portion communicates with the periphery of the sliding surface, the lubricant can be introduced into the sliding surface from the periphery of the sliding surface by the sliding operation of the first member and the second member ( This action is called a fluid introduction effect). The periodic structure portion and the periodic structure non-formed portion are alternately formed along the sliding direction, and the period height is set by setting the convex portion height position of the periodic structure portion lower than the height position of the non-formed portion. Pressure is generated at the boundary between the structure portion and the unformed portion, and a pressure gradient is generated in the sliding direction (this action is called a step effect). Thus, by providing the periodic structure portion and the non-formed portion, the reduction in load capacity can be reduced even if the height difference between the height position of the convex portion of the periodic structure portion and the height position of the non-formed portion is increased. .

したがって、本発明の摺動面構造では、流体導入効果とステップ効果とを併せ持つことになる。ステップ効果による負荷容量は流体導入効果の負荷容量に比べて、周期構造部の凸部高さ位置が周期構造未形成部の高さ位置よりも低くなることによる影響が小さい。   Therefore, the sliding surface structure of the present invention has both the fluid introduction effect and the step effect. The load capacity due to the step effect is less affected by the height position of the convex portion of the periodic structure portion being lower than the height position of the portion where the periodic structure is not formed, compared with the load capacity due to the fluid introduction effect.

前記周期構造部の凸部高さ位置と未形成部の高さ位置との高低差を前記摺動面の算術平均粗さ以上とするのが好ましい。また、前記周期構造部の凸部高さ位置と未形成部の高さ位置との高低差を前記摺動面の最大高さ粗さ以下とするのが好ましい。   It is preferable that the height difference between the height position of the convex portion of the periodic structure portion and the height position of the non-formed portion is equal to or greater than the arithmetic average roughness of the sliding surface. Moreover, it is preferable that the height difference between the height position of the convex portion of the periodic structure portion and the height position of the non-formed portion is equal to or less than the maximum height roughness of the sliding surface.

周期構造部の周期ピッチを10μm以下とするのが好ましく、周期構造部の凹部の深さが1μm以下とするのが好ましい。   The periodic pitch of the periodic structure portion is preferably 10 μm or less, and the depth of the concave portion of the periodic structure portion is preferably 1 μm or less.

周期構造部は、加工閾値近傍の照射強度で直線偏光のレーザを照射し、その照射部分をオーバラップさせながら走査して、自己組織的に形成されているのが好ましい。また、周期構造部と前記高低差とは同時加工により形成されてなるのが好ましい。   The periodic structure portion is preferably formed in a self-organized manner by irradiating a linearly polarized laser beam with an irradiation intensity in the vicinity of the processing threshold and scanning the overlapped portion in an overlapping manner. Moreover, it is preferable that the periodic structure portion and the height difference are formed by simultaneous processing.

本発明の摺動面構造では、摺動起動時及び摺動停止時における周期構造部による攻撃性が緩和され、相手側部材の摩耗増大を防止でき、摺動面構造として長期にわたって安定した機能を発揮することができる。また、流体導入効果とステップ効果とを併せ持つことになり、負荷容量の低減を低く抑えながら周期構造部の攻撃性を有効に緩和でき、高品質の摺動面構造の提供が可能となる。   In the sliding surface structure of the present invention, the aggression by the periodic structure portion at the time of sliding start and stop is mitigated, the increase in wear of the mating member can be prevented, and the sliding surface structure has a stable function over a long period of time. It can be demonstrated. In addition, since the fluid introduction effect and the step effect are combined, the aggressiveness of the periodic structure portion can be effectively mitigated while keeping the load capacity from being reduced, and a high quality sliding surface structure can be provided.

周期構造部の凸部高さ位置と未形成部の高さ位置との高低差を前記摺動面の算術平均粗さ以上とすれば、起動直後や停止直前など十分な動圧が得られない場面でも周期構造部がほとんど荷重支持することなく摺動することになる。このため、周期構造部の攻撃性を大幅に低減することができる。   If the height difference between the convex part height position of the periodic structure part and the height position of the non-formed part is equal to or greater than the arithmetic average roughness of the sliding surface, sufficient dynamic pressure cannot be obtained immediately after starting or immediately before stopping. Even in a scene, the periodic structure part slides with almost no load support. For this reason, the aggressiveness of a periodic structure part can be reduced significantly.

前記周期構造部の凸部高さ位置と未形成部の高さ位置との高低差を前記摺動面の最大高さ粗さ以下とすれば、負荷容量の大幅な低下を防止することができる。   If the height difference between the height position of the convex portion of the periodic structure portion and the height position of the non-formed portion is set to be equal to or less than the maximum height roughness of the sliding surface, a significant reduction in load capacity can be prevented. .

周期構造部の凹凸ピッチを10μm以下とした場合、潤滑剤の漏れ(側方漏れ)を冗長的に抑えることができ、効率的に動圧を得ることができる。周期構造部の凹部の深さを1μm以下とした場合、動圧発生時の浮上量の変動を減少でき、剛性向上に寄与する。   When the concavo-convex pitch of the periodic structure portion is 10 μm or less, the leakage of the lubricant (side leakage) can be suppressed redundantly, and the dynamic pressure can be obtained efficiently. When the depth of the concave portion of the periodic structure portion is 1 μm or less, variation in the flying height when dynamic pressure is generated can be reduced, which contributes to improvement in rigidity.

周期構造部は、加工閾値近傍の照射強度で直線偏光のレーザを照射し、その照射部分をオーバラップさせながら走査して、自己組織的に形成したものでは、機械加工では困難なサブミクロンの周期ピッチと凹凸深さを持つものを容易に形成できる。   The periodic structure is irradiated with a linearly polarized laser beam with an irradiation intensity in the vicinity of the processing threshold, scanned while overlapping the irradiated part, and formed by self-organization. Those having a pitch and a depth of unevenness can be easily formed.

周期構造部と前記高低差とが同時加工により形成されるものでは、加工時間を短縮できて生産性の向上及び低コスト化を図ることができる。また、同時加工は、レーザの出力を調整することにより可能で安定して高精度に、周期構造部と前記高低差を形成することができる。   In the case where the periodic structure portion and the height difference are formed by simultaneous processing, the processing time can be shortened, and the productivity can be improved and the cost can be reduced. Simultaneous processing is possible by adjusting the output of the laser, and the height difference can be formed with the periodic structure portion with high accuracy and stability.

本発明の実施形態を示す摺動面構造の要部拡大断面図である。It is a principal part expanded sectional view of the sliding surface structure which shows embodiment of this invention. 前記図1に示す摺動面構造の周期構造部を有する摺動面の簡略図である。FIG. 2 is a simplified diagram of a sliding surface having a periodic structure portion of the sliding surface structure shown in FIG. 1. 前記摺動面に形成される周期構造部の拡大図である。It is an enlarged view of the periodic structure part formed in the said sliding surface. 前記周期構造部を形成するためのレーザ表面加工装置の簡略図である。It is a simplification figure of the laser surface processing apparatus for forming the said periodic structure part. 周期構造部の溝方向が摺動方向に沿って交互に相反する方向とされた摺動面の簡略図である。FIG. 6 is a simplified view of a sliding surface in which the groove direction of the periodic structure portion is a direction that is alternately opposed along the sliding direction. 往復動摺動パターンの周期構造部が形成された摺動面の簡略図である。It is a simplified view of a sliding surface on which a periodic structure portion of a reciprocating sliding pattern is formed. スパイラルパターンの周期構造部が形成された摺動面の簡略図である。It is a simplified diagram of a sliding surface on which a periodic structure part of a spiral pattern is formed. ステップパターンの周期構造部が形成された摺動面の簡略図である。It is a simplified diagram of a sliding surface on which a periodic structure portion of a step pattern is formed. 掘り下げ深さと負荷容量との関係を示すグラフ図である。It is a graph which shows the relationship between digging depth and load capacity. 掘り下げ深さと負荷容量との関係を示すグラフ図である。It is a graph which shows the relationship between digging depth and load capacity. すべり速度と摩擦係数との関係を示すグラフ図である。It is a graph which shows the relationship between a sliding speed and a friction coefficient. 算術平均粗さの定義を説明するためのグラフ図である。It is a graph for demonstrating the definition of arithmetic mean roughness. 最大高さ粗さの定義を説明するためのグラフ図である。It is a graph for demonstrating the definition of maximum height roughness.

以下本発明の実施の形態を図1〜図13に基づいて説明する。   Hereinafter, embodiments of the present invention will be described with reference to FIGS.

本発明に係る摺動面構造は、図1に示すように、第1部材1の摺動面1aと第2部材2の摺動面2aとが潤滑剤L下で相対的に摺動するものである。この場合、第1部材1及び第2部材2は、炭素鋼、銅、アルミニウム、白金、超硬合金等であっても、炭化ケイ素や窒化ケイ素等のシリコン系セラミックスであっても、エンジニアプラスチック等であってもよい。また、潤滑剤Lとしても、水やアルコールであっても、さらにはエンジンオイル等の潤滑油等であってもよい。すなわち、第1・第2部材1、2の材質、使用する環境等に応じて種々の潤滑剤を用いることができる。また、第1部材1を例えば図2に示すようにリング体とし、第2部材2を例えば円盤形状体で構成した。   As shown in FIG. 1, the sliding surface structure according to the present invention is such that the sliding surface 1a of the first member 1 and the sliding surface 2a of the second member 2 slide relative to each other under the lubricant L. It is. In this case, the first member 1 and the second member 2 may be carbon steel, copper, aluminum, platinum, cemented carbide, silicon ceramics such as silicon carbide or silicon nitride, engineer plastic, etc. It may be. Further, the lubricant L may be water or alcohol, or may be a lubricating oil such as engine oil. That is, various lubricants can be used depending on the material of the first and second members 1 and 2 and the environment in which they are used. Moreover, the 1st member 1 was made into the ring body as shown, for example in FIG. 2, and the 2nd member 2 was comprised by the disk shaped body, for example.

第1部材1の上面が摺動面1aとなり、第2部材2の下面が摺動面2aとなる。第1部材1の摺動面1aにグレーティング状凹凸の周期構造部3が周方向に所定ピッチで複数個形成される。すなわち、グレーティング状凹凸の周期構造部3と周期構造未形成部4とが摺動方向に沿って交互に形成される。   The upper surface of the first member 1 becomes the sliding surface 1a, and the lower surface of the second member 2 becomes the sliding surface 2a. A plurality of grating-like irregular periodic structures 3 are formed on the sliding surface 1a of the first member 1 at a predetermined pitch in the circumferential direction. That is, the periodic structure portions 3 and the non-periodic structure portion 4 having grating-like irregularities are alternately formed along the sliding direction.

周期構造部3は図3に示すように、微小の凹部5と微小の凸部6とが交互に所定ピッチで配設されてなるものである。周期構造部3の凹凸ピッチを10μm以下とし、凹部5の深さを1μm以下とするのが好ましい。この場合、周期構造部3の凹部5は、第1部材1の外周縁(摺動面周縁)1bに連通(開口)している。第1部材1の内周縁1cには開口していない。   As shown in FIG. 3, the periodic structure portion 3 is formed by alternately arranging minute concave portions 5 and minute convex portions 6 at a predetermined pitch. It is preferable that the irregular pitch of the periodic structure portion 3 is 10 μm or less and the depth of the concave portion 5 is 1 μm or less. In this case, the concave portion 5 of the periodic structure portion 3 communicates (opens) with the outer peripheral edge (sliding surface peripheral edge) 1 b of the first member 1. There is no opening in the inner peripheral edge 1 c of the first member 1.

周期構造部3はスパイラル状に湾曲し、各周期構造部3の湾曲方向が同一に設定され、第1部材1と第2部材2との少なくもいずれか一方がその軸心廻りに回転することによって、第1部材1の周期構造部3が、摺動面1aの外周縁側から潤滑剤が第1部材1の内部に導入されるように設定される。   The periodic structure portion 3 is curved in a spiral shape, the bending direction of each periodic structure portion 3 is set to be the same, and at least one of the first member 1 and the second member 2 rotates about its axis. Thus, the periodic structure portion 3 of the first member 1 is set such that the lubricant is introduced into the first member 1 from the outer peripheral side of the sliding surface 1a.

周期構造部3は、加工閾値近傍の照射強度で直線偏光のレーザを照射し、その照射部分をオーバラップさせながら走査して、自己組織的に形成している。具体的には、図4に示すフェムト秒レーザ表面加工装置を使用する。レーザ発生器11(チタンサファイアフェムト秒レーザ発生器)で発生したレーザ(例えば、パルス幅:120fs、中心波長800nm、繰り返し周波数:1kHz、パルスエネルギー:0.25〜400μJ/pulse)は、ミラー12により加工材料Wに向けて折り返され、メカニカルシャッタ13に導かれる。レーザ照射時はメカニカルシャッタ13を開放し、レーザ照射強度は1/2波長板14と偏光ビームスプリッタ16によって調整可能とし、1/2波長板15によって偏光方向を調整し、集光レンズ(焦点距離:150mm)17によって、XYθステージ19上の加工材料W表面に集光照射する。なお、フェムト秒レーザはフェムト秒(1000兆分の1秒)オーダーという極端に短い時間単位の中にエネルギーを圧縮した光源である。   The periodic structure portion 3 is formed in a self-organized manner by irradiating a linearly polarized laser beam with an irradiation intensity in the vicinity of the processing threshold and scanning the overlapping portions in an overlapping manner. Specifically, the femtosecond laser surface processing apparatus shown in FIG. 4 is used. A laser (eg, pulse width: 120 fs, center wavelength: 800 nm, repetition frequency: 1 kHz, pulse energy: 0.25 to 400 μJ / pulse) generated by a laser generator 11 (titanium sapphire femtosecond laser generator) is reflected by a mirror 12. It is folded back toward the work material W and guided to the mechanical shutter 13. At the time of laser irradiation, the mechanical shutter 13 is opened, the laser irradiation intensity can be adjusted by the half-wave plate 14 and the polarization beam splitter 16, the polarization direction is adjusted by the half-wave plate 15, and the condenser lens (focal length) : 150 mm) 17, the surface of the work material W on the XYθ stage 19 is condensed and irradiated. A femtosecond laser is a light source that compresses energy in an extremely short time unit of the order of femtoseconds (one thousandth of a second).

すなわち、アブレーション閾値近傍のフルエンスで直線偏光のレーザをワーク(加工材料)Wに照射した場合、入射光と加工材料Wの表面に沿った散乱光またはプラズマ波の干渉により、波長オーダのピッチと溝深さを持つグレーティング状の周期構造部を偏光方向に直交して自己組織的に形成する。このとき、フェムト秒レーザをオーバラップさせながら走査させることで、周期構造部を広範囲に拡張することができる。   That is, when a workpiece (working material) W is irradiated with a linearly polarized laser beam at a fluence near the ablation threshold, the pitch and grooves on the order of wavelengths are caused by interference between incident light and scattered light or plasma waves along the surface of the processing material W. A grating-like periodic structure having a depth is formed in a self-organizing manner perpendicular to the polarization direction. At this time, the periodic structure part can be expanded over a wide range by scanning the femtosecond lasers while overlapping them.

レーザのスキャンは、レーザを固定して加工材料Wを支持するXYθステージ19を移動させても、XYθステージ19を固定してレーザを移動させてもよい。あるいは、レーザとXYθステージ19を同時移動させてもよい。なお、前記図3は、前記フェムト秒レーザ表面加工装置にて形成した周期構造部3を電子顕微鏡で撮像した図である。   Laser scanning may be performed by moving the XYθ stage 19 that supports the processing material W while fixing the laser, or may move the laser while fixing the XYθ stage 19. Alternatively, the laser and the XYθ stage 19 may be moved simultaneously. In addition, the said FIG. 3 is the figure which imaged the periodic structure part 3 formed with the said femtosecond laser surface processing apparatus with the electron microscope.

そして、本発明の摺動面構造では、図1に示すように、周期構造部3の凸部高さ位置を未形成部4の高さ位置よりも低く設定している。周期構造部3の凸部高さ位置10と未形成部4の高さ位置11との高低差を摺動面1a(第1部材1の上面における未形成部4及び周期構造部3より内径側の面)の算術平均粗さRa以上としている。また、この高低差を摺動面1aの最大高さ粗さRz以下としている。   And in the sliding surface structure of this invention, as shown in FIG. 1, the convex part height position of the periodic structure part 3 is set lower than the height position of the non-formation part 4. As shown in FIG. The height difference between the convex portion height position 10 of the periodic structure portion 3 and the height position 11 of the non-formed portion 4 is defined as the sliding surface 1a (the inner diameter side of the non-formed portion 4 and the periodic structure portion 3 on the upper surface of the first member 1). Of the average surface roughness Ra). Further, this height difference is set to be equal to or less than the maximum height roughness Rz of the sliding surface 1a.

算術平均粗さRaは、図12に示すように、粗さ曲線からその平均線の方向に基準長さだけを抜き取り、この抜取り部分の平均線mの方向にX軸を、縦倍率の方向にY軸を取り、粗さ曲線をy=f(x)で表したときに、次の数1の式によって求められる値をマイクロメートル(μm)で表したものをいう。
As shown in FIG. 12, the arithmetic average roughness Ra is obtained by extracting only the reference length from the roughness curve in the direction of the average line, the X axis in the direction of the average line m of the extracted portion, and the direction of the vertical magnification. When the Y-axis is taken and the roughness curve is represented by y = f (x), the value obtained by the following equation 1 is represented by micrometers (μm).

また、最大高さ粗さRzは、図13に示すように、粗さ曲線からその平均線mの方向に基準長さだけを抜き取り、この抜取り部分の山頂線と谷底線との間隔を粗さ曲線の縦倍率の方向に測定し、この値をマイクロメートル(μm)で表したものをいう。すなわち、(Rz=Rp+Rv)となる。   Further, as shown in FIG. 13, the maximum height roughness Rz is obtained by extracting only the reference length from the roughness curve in the direction of the average line m, and roughening the interval between the peak line and the valley line of the extracted part. It is measured in the direction of the vertical magnification of the curve, and this value is expressed in micrometers (μm). That is, (Rz = Rp + Rv).

本発明において、図1に示すように、摺動面1aから周期構造部3の凸部高さ位置10までを掘り下げ深さ(高低差)Tと呼び、周期構造部3の凸部6の高さ(周期構造部3の凹部5の深さ)を周期構造部深さT1と呼び、摺動運動中の摺動面間隙間を平滑部すきまSと呼ぶ。   In the present invention, as shown in FIG. 1, the digging depth (height difference) T from the sliding surface 1 a to the convex portion height position 10 of the periodic structure portion 3 is referred to as the height of the convex portion 6 of the periodic structure portion 3. The depth (depth of the concave portion 5 of the periodic structure portion 3) is called a periodic structure portion depth T1, and the gap between the sliding surfaces during the sliding motion is called a smooth portion clearance S.

また、周期構造部3と前記高低差(掘り下げ深さ)Tとは同時加工により形成することができる。すなわち、フェムト秒レーザ表面加工装置において、周期構造部3を形成する際に、レーザの出力を調整することによって、その同時加工が可能となる。   The periodic structure portion 3 and the height difference (digging depth) T can be formed by simultaneous processing. That is, in the femtosecond laser surface processing apparatus, when the periodic structure portion 3 is formed, the simultaneous processing can be performed by adjusting the output of the laser.

本発明の摺動面構造では、周期構造部3の凸部高さ位置10を未形成部4の高さ位置11よりも低く設定したことによって、摺動起動時及び摺動停止時における周期構造部による攻撃性が緩和される。ここで、周期構造部3による攻撃性とは、相手側部材に対する摩耗増大性や損傷性等である。また、周期構造部3が摺動面周縁1bに連通されているので、第1部材と第2部材の摺動動作によって、摺動面周縁1bから潤滑剤Lを摺動面内方へ導入することができる(この作用を流体導入効果と呼ぶ)。周期構造部3と未形成部4とが摺動方向に沿って交互に形成され、しかも、周期構造部3の凸部高さ位置10を未形成部4の高さ位置11よりも低く設定することによって、周期構造部3と未形成部4との境界で圧力が発生し、摺動方向に圧力勾配ができる(この作用をステップ効果と呼ぶ)。このように、周期構造部3と未形成部4とを設けることによって、周期構造部3の凸部高さ位置10と未形成部4の高さ位置11との高低差を大きくしても負荷容量の減少を少なくできる。   In the sliding surface structure of the present invention, the convex structure height position 10 of the periodic structure portion 3 is set lower than the height position 11 of the non-formed portion 4, so that the periodic structure at the time of sliding start and at the time of sliding stop is set. The aggression by the part is reduced. Here, the aggression property by the periodic structure part 3 is wear increase property or damage property to the counterpart member. Further, since the periodic structure portion 3 communicates with the sliding surface peripheral edge 1b, the lubricant L is introduced from the sliding surface peripheral edge 1b into the sliding surface inward by the sliding operation of the first member and the second member. (This action is called the fluid introduction effect). The periodic structure portions 3 and the non-formed portions 4 are alternately formed along the sliding direction, and the convex portion height position 10 of the periodic structure portion 3 is set lower than the height position 11 of the non-formed portion 4. Thus, pressure is generated at the boundary between the periodic structure portion 3 and the non-formed portion 4, and a pressure gradient is generated in the sliding direction (this action is called a step effect). As described above, by providing the periodic structure portion 3 and the non-formed portion 4, even if the height difference between the convex portion height position 10 of the periodic structure portion 3 and the height position 11 of the non-formed portion 4 is increased, the load is increased. The decrease in capacity can be reduced.

したがって、本発明の摺動面構造では、流体導入効果とステップ効果とを併せ持つことになる。ステップ効果による負荷容量は流体導入効果の負荷容量に比べて、周期構造部3の凸部高さ位置10が周期構造未形成部4の高さ位置11よりも低くなることによる影響が小さい。   Therefore, the sliding surface structure of the present invention has both the fluid introduction effect and the step effect. The load capacity due to the step effect is less affected by the fact that the convex height position 10 of the periodic structure portion 3 is lower than the height position 11 of the periodic structure-unformed portion 4 compared to the load capacity due to the fluid introduction effect.

すなわち、本発明の摺動面構造では、摺動起動時及び摺動停止時における周期構造部3による攻撃性が緩和され、相手側部材(この場合、第2部材2)の摩耗増大を防止でき、摺動面構造として長期にわたって安定した機能を発揮することができる。また、流体導入効果とステップ効果とを併せ持つことになり、負荷容量の低減を低く抑えながら周期構造部3の攻撃性を有効に緩和でき、高品質の摺動面構造の提供が可能となる。   That is, in the sliding surface structure of the present invention, the aggression by the periodic structure portion 3 at the time of starting and stopping the sliding is mitigated, and increase in wear of the counterpart member (in this case, the second member 2) can be prevented. As a sliding surface structure, a stable function can be exhibited over a long period of time. In addition, since the fluid introduction effect and the step effect are combined, the aggressiveness of the periodic structure portion 3 can be effectively mitigated while suppressing the reduction of the load capacity, and a high quality sliding surface structure can be provided.

周期構造部3の凸部高さ位置10と未形成部4の高さ位置11との高低差を前記摺動面の算術平均粗さ以上とすれば、起動直後や停止直前など十分な動圧が得られない場面でも周期構造部3がほとんど荷重支持することなく摺動するため、周期構造部3の攻撃性を大幅に低減することができる。   If the height difference between the height position 10 of the convex portion 3 of the periodic structure portion 3 and the height position 11 of the non-formed portion 4 is equal to or greater than the arithmetic average roughness of the sliding surface, sufficient dynamic pressure such as immediately after starting or immediately before stopping. Since the periodic structure portion 3 slides with almost no load support even in a situation where the above cannot be obtained, the aggressiveness of the periodic structure portion 3 can be greatly reduced.

前記周期構造部3の凸部高さ位置10と未形成部4の高さ位置11との高低差を摺動面1aの最大高さ粗さ以下とすれば、負荷容量の大幅な低下を防止することができる。   If the height difference between the convex part height position 10 of the periodic structure part 3 and the height position 11 of the non-formed part 4 is less than or equal to the maximum height roughness of the sliding surface 1a, a significant reduction in load capacity is prevented. can do.

周期構造部3の凹凸ピッチを10μm以下とした場合、潤滑剤Lの漏れ(側方漏れ)を冗長的に抑えることができ、効率的に動圧を得ることができる。周期構造部3の凹部5の深さを1μm以下とした場合、動圧発生時の浮上量の変動を減少でき、剛性向上に寄与する。   When the concavo-convex pitch of the periodic structure portion 3 is 10 μm or less, leakage of the lubricant L (side leakage) can be suppressed redundantly, and dynamic pressure can be obtained efficiently. When the depth of the concave portion 5 of the periodic structure portion 3 is 1 μm or less, variation in the flying height when dynamic pressure is generated can be reduced, which contributes to improvement in rigidity.

周期構造部は、加工閾値近傍の照射強度で直線偏光のレーザを照射し、その照射部分をオーバラップさせながら走査して、自己組織的に形成したものでは、機械加工では困難なサブミクロンの周期ピッチと凹凸深さを持つものを容易に形成できる。   The periodic structure is irradiated with a linearly polarized laser beam with an irradiation intensity in the vicinity of the processing threshold, scanned while overlapping the irradiated part, and formed by self-organization. Those having a pitch and a depth of unevenness can be easily formed.

周期構造部3と前記高低差とは同時加工により形成されるものでは、加工時間を短縮できて生産性の向上及び低コスト化を図ることができる。また、同時加工は、レーザの出力を調整することにより可能で安定して高精度に、周期構造部3と前記高低差を形成することができる。   If the periodic structure portion 3 and the height difference are formed by simultaneous machining, the machining time can be shortened, and the productivity can be improved and the cost can be reduced. Simultaneous machining is possible by adjusting the output of the laser, and the height difference can be formed with the periodic structure portion 3 stably and with high accuracy.

次に、図5は周方向に隣り合う周期構造部3において、対称形としている。すなわち、例えば、第2部材2の回転方向が時計まわり方向(矢印A方向)であれば、3aの周期構造部において、潤滑剤Lが内部に導入される潤滑剤導入効果が発揮される。このため、この場合であっても、流体導入効果とステップ効果とを併せ持つことになる。なお、3a、3a間の3bの周期構造部3においては、潤滑剤Lが内部から周縁1bに排出される。   Next, FIG. 5 shows a symmetrical shape in the periodic structure portion 3 adjacent in the circumferential direction. That is, for example, if the rotation direction of the second member 2 is the clockwise direction (arrow A direction), the lubricant introduction effect of introducing the lubricant L into the inside of the periodic structure portion 3a is exhibited. For this reason, even in this case, the fluid introduction effect and the step effect are combined. In addition, in the periodic structure part 3b between 3a and 3a, the lubricant L is discharged from the inside to the peripheral edge 1b.

図5に示す摺動面構造において、第2部材2の回転方向が反時計まわり方向(矢印B方向)であれば、3bの周期構造部において、潤滑剤Lが内部に導入される潤滑剤導入効果が発揮される。このため、この場合であっても、流体導入効果とステップ効果とを併せ持つことになる。なお、3b、3b間の3aの周期構造部においては、潤滑剤Lが内部から周縁1bに排出される。   In the sliding surface structure shown in FIG. 5, if the rotation direction of the second member 2 is the counterclockwise direction (arrow B direction), the lubricant introduction into which the lubricant L is introduced into the periodic structure portion 3b is provided. The effect is demonstrated. For this reason, even in this case, the fluid introduction effect and the step effect are combined. In addition, in the periodic structure part 3a between 3b and 3b, the lubricant L is discharged from the inside to the peripheral edge 1b.

前記各実施形態では、摺動方向が回転方向であったが、図6では摺動方向が直線方向である摺動面構造の摺動面1aを示している。この場合、摺動方向に沿って、周期構造部3と周期構造未形成部4とが交互に形成されている。   In each of the embodiments described above, the sliding direction is the rotational direction, but FIG. 6 shows a sliding surface 1a having a sliding surface structure in which the sliding direction is a linear direction. In this case, the periodic structure portions 3 and the periodic structure non-formed portions 4 are alternately formed along the sliding direction.

また、摺動方向に沿って隣り合う周期構造部3の向きを対称となるように形成している。すなわち、第2部材2の摺動方向が矢印C方向である場合、3cの周期構造部は潤滑剤Lを矢印Eのように内部に導入する潤滑剤導入効果を発揮し、3dの周期構造部は潤滑剤Lを矢印Fのように外部へ排出する潤滑剤排出効果を発揮する。また、第2部材2の摺動方向が矢印D方向である場合、3dの周期構造部は潤滑剤Lを内部に導入する潤滑剤導入効果を発揮し、3cの周期構造部は潤滑剤Lを外部へ排出する潤滑剤排出効果を発揮する。従って、この場合であっても、流体導入効果とステップ効果とを併せ持つことになる。   Moreover, it forms so that the direction of the periodic structure part 3 adjacent along a sliding direction may become symmetrical. That is, when the sliding direction of the second member 2 is the arrow C direction, the periodic structure portion 3c exhibits the lubricant introduction effect of introducing the lubricant L into the interior as indicated by the arrow E, and the periodic structure portion 3d. Exhibits the lubricant discharging effect of discharging the lubricant L to the outside as indicated by the arrow F. Further, when the sliding direction of the second member 2 is the direction of the arrow D, the 3d periodic structure portion exhibits a lubricant introduction effect of introducing the lubricant L therein, and the 3c periodic structure portion applies the lubricant L. Demonstrates the effect of discharging the lubricant discharged to the outside. Therefore, even in this case, both the fluid introduction effect and the step effect are provided.

以上、本発明の実施形態につき説明したが、本発明は前記実施形態に限定されることなく種々の変形が可能であって、例えば、前記実施形態では、周期構造部3を第2部材2側に形成してもよく、第1部材1及び第2部材2の両側に設けてもよい。また、第1部材1と第2部材2の形状としても、図例のものに限らず、他の種々の形状のものにて構成できる。周期構造部3の大きさ、配設ピッチ等は、使用する第1・第2部材の大きさ、材質、潤滑剤の種類、摺動速度等に応じて種々変更することができる。   As mentioned above, although it demonstrated per embodiment of this invention, this invention is not limited to the said embodiment, A various deformation | transformation is possible, for example, in the said embodiment, the periodic structure part 3 is set to the 2nd member 2 side. It may be formed on both sides of the first member 1 and the second member 2. Further, the shapes of the first member 1 and the second member 2 are not limited to those in the illustrated example, and can be configured in other various shapes. The size, arrangement pitch, and the like of the periodic structure portion 3 can be variously changed according to the size, material, lubricant type, sliding speed, and the like of the first and second members to be used.

第1部材1と第2部材2の相対的な摺動運動は、第1部材1を固定して第2部材2を往復動させるものであっても、逆に第2部材2側を固定して、第1部材側を摺動させるものであってもよい。すなわち、周期構造部3が形成されている方を摺動させても、周期構造部3が形成されない方を摺動させてもよい。また、第1部材1と第2部材2の双方を摺動させるものであってもよい。   Even if the relative sliding movement between the first member 1 and the second member 2 fixes the first member 1 and reciprocates the second member 2, the second member 2 side is fixed on the contrary. The first member side may be slid. That is, the direction where the periodic structure part 3 is formed may be slid, or the direction where the periodic structure part 3 is not formed may be slid. Further, both the first member 1 and the second member 2 may be slid.

図2と図5に示す実施形態においては、周期構造部3が6個であり、未形成部4が6個であり、図6に示す実施形態においても、摺動方向に沿って周期構造部3が6個配設されたものであったが、これらに限るものではなく、周期構造部3の増減は任意である。また、一の周期構造部3及び未形成部4の周方向長さや径方向長さ等も任意に設定できる。しかし、ステップ効果は周期構造部3及び未形成部4の周方向長さや径方向長さに影響を受けるため、周期構造部3の周方向長さは径方向長さの1〜5倍程度にすることが好ましい。また、未形成部4の周方向長さは周期構造部3の周方向長さの0.2〜2.0倍程度にするのが好ましい。   In the embodiment shown in FIGS. 2 and 5, the number of the periodic structure portions 3 is six and the number of the unformed portions 4 is six. Also in the embodiment shown in FIG. 6, the periodic structure portions are arranged along the sliding direction. However, the present invention is not limited to these, and the periodic structure portion 3 can be arbitrarily increased or decreased. Moreover, the circumferential direction length, radial direction length, etc. of the one periodic structure part 3 and the non-formation part 4 can also be set arbitrarily. However, since the step effect is affected by the circumferential length and radial length of the periodic structure portion 3 and the non-formed portion 4, the circumferential length of the periodic structure portion 3 is about 1 to 5 times the radial length. It is preferable to do. The circumferential length of the non-formed portion 4 is preferably about 0.2 to 2.0 times the circumferential length of the periodic structure portion 3.

ところで、前記実施形態では、周期構造部3を形成する際に、パルスレーザであるフェムト秒レーザを用いたが、フェムト秒レーザ以外のピコ秒レーザやナノ秒レーザといったパルスレーザを使用することもできる。   By the way, in the said embodiment, when forming the periodic structure part 3, the femtosecond laser which is a pulse laser was used, However, Pulse lasers, such as picosecond lasers and nanosecond lasers other than a femtosecond laser, can also be used. .

本発明の摺動面構造によれば、流体導入効果及びステップ効果を発揮して低摩擦を得ることができる。このため、本発明の摺動面構造は、各種の自動車部品、機械部品、ポンプ等の種々の機器に使用可能である。   According to the sliding surface structure of the present invention, the fluid introduction effect and the step effect can be exhibited and low friction can be obtained. For this reason, the sliding surface structure of the present invention can be used for various devices such as various automobile parts, machine parts, and pumps.

掘り下げ深さTの負荷容量に及ぼす影響について調べた。まず、周期構造部(ピッチ0.7μm、深さ0.2μm)をスパスイラル状に形成したスパイラルパターン(図7)と同心円状の周期構造部3を間欠的に形成したステップパターン(図8)の負荷容量を無限溝数理論を用いて計算した。すなわち、図8では、周方向に沿って形成される周期構造部3(3e)と、この周期構造部3e間に周期構造部3が形成されない未形成部4とが、周方向に交互に配設されたものである。この場合、周期構造部3は摺動面周縁1bに連通されていない。   The influence of the drilling depth T on the load capacity was investigated. First, a spiral pattern (FIG. 7) in which a periodic structure (pitch 0.7 μm, depth 0.2 μm) is formed in a spatial shape and a step pattern (FIG. 8) in which a concentric periodic structure 3 is intermittently formed. The load capacity was calculated using infinite groove number theory. That is, in FIG. 8, the periodic structure portions 3 (3e) formed along the circumferential direction and the non-formed portions 4 where the periodic structure portions 3 are not formed are alternately arranged in the circumferential direction between the periodic structure portions 3e. It was established. In this case, the periodic structure portion 3 is not communicated with the sliding surface peripheral edge 1b.

図7に示すスパイラルパターンを形成した摺動面構造では主に周期構造部3の流体導入効果によるポンピング作用で負荷容量が発生する。このとき半径方向に大きな圧力勾配が生じるが、円周方向(摺動方向)には周期構造部の間隔が微細であるため、ほとんど圧力勾配は生じない。一方、図8に示すステップパターンを形成した摺動面構造では円周方向に配置された周期構造部と未形成部の境界で圧力が発生するため、円周方向(摺動方向)に大きな圧力勾配が生じる。しかしながら、周期構造部3は摺動面周縁1bに連通されていないので、流体導入効果を有さない。   In the sliding surface structure in which the spiral pattern shown in FIG. 7 is formed, a load capacity is generated mainly by the pumping action by the fluid introduction effect of the periodic structure portion 3. At this time, a large pressure gradient is generated in the radial direction, but almost no pressure gradient is generated in the circumferential direction (sliding direction) because the interval between the periodic structures is fine. On the other hand, in the sliding surface structure in which the step pattern shown in FIG. 8 is formed, pressure is generated at the boundary between the periodic structure portion arranged in the circumferential direction and the non-formed portion, so that a large pressure in the circumferential direction (sliding direction). A gradient occurs. However, since the periodic structure portion 3 is not communicated with the sliding surface peripheral edge 1b, it does not have a fluid introduction effect.

平滑部すきまSを0.2μmとし、両パターンの周期構造部形成領域を最適化した際の掘り下げ深さTと負荷容量の関係を図9に示す。図7に示すスパイラルパターンを形成した摺動面構造では掘り下げ深さTが0では大きな負荷容量が得られるが、掘り下げ深さTの増加に対して負荷容量が指数的に減少する。また、図8に示すステップパターンを形成した摺動面構造では掘り下げ深さの増加によって負荷容量が一旦増加した後、緩やかに減少に転じている。すなわち、ステップパターンの負荷容量はスパイラルパターンと比較して掘り下げ深さTの影響を受けにくく、掘り下げ深さTが0.1μmではステップパターンの負荷容量の方がスパイラルパターンより若干大きくなっている。   FIG. 9 shows the relationship between the digging depth T and the load capacity when the smooth portion clearance S is 0.2 μm and the periodic structure portion forming regions of both patterns are optimized. In the sliding surface structure in which the spiral pattern shown in FIG. 7 is formed, a large load capacity is obtained when the digging depth T is 0, but the load capacity decreases exponentially as the digging depth T increases. Further, in the sliding surface structure in which the step pattern shown in FIG. 8 is formed, the load capacity once increases due to the increase in the digging depth and then gradually decreases. That is, the load capacity of the step pattern is less affected by the digging depth T compared to the spiral pattern, and when the digging depth T is 0.1 μm, the load capacity of the step pattern is slightly larger than the spiral pattern.

これに対して、図2に示す間欠スパイラルパターン(本発明のパターン)のように、摺動面周縁1bに連通した周期構造部3と未形成部4を摺動方向に沿って交互に配置したものでは、流体導入効果とステップ効果を併せもたせることで、負荷容量の低減を低く抑えつつ周期構造部3の攻撃性を緩和できる摺動面構造とすることができる。   On the other hand, as in the intermittent spiral pattern (pattern of the present invention) shown in FIG. 2, the periodic structure portions 3 and the unformed portions 4 communicating with the sliding surface peripheral edge 1b are alternately arranged along the sliding direction. However, by combining the fluid introduction effect and the step effect, it is possible to provide a sliding surface structure that can reduce the aggression of the periodic structure portion 3 while keeping the load capacity from being reduced.

図10は図9に間欠スパイラルパターンの負荷容量の計算結果を追加したものである。間欠スパイラルパターンはスパイラルパターンとステップパターンの特性を併せもち、全領域でステップパターンを上回る負荷容量が得られている。なお、図9と図10の縦軸は任意単位(a.u.)である。   FIG. 10 is obtained by adding the calculation result of the load capacity of the intermittent spiral pattern to FIG. The intermittent spiral pattern has characteristics of a spiral pattern and a step pattern, and a load capacity exceeding the step pattern is obtained in all regions. 9 and 10 is an arbitrary unit (au).

次に、リングオンディスク試験装置を用いた実験を行った。第2部材2を構成するディスク試験片を固定側試験片とし、第1部材1を構成するリング試験片を回転側試験片とした。各試験片は表面粗さRa0.02μm、Rz0.15μm程度に仕上げた。ディスク試験片は全て鏡面とし、リング試験片(外径16mm、内径10mm)はスパイラルパターン(図7)と間欠スパイラルパターン(図2)(本発明品)の2種類とした。各周期構造部3のピッチは約0.7μm、深さは約0.2μmとした。また本発明品での掘り下げ深さTは約0.1μmとした。潤滑剤には純水を用いた。荷重を10Nで固定し、静止状態からすべり速度1.2m/sで起動させた後、5分毎にすべり速度を0.15m/sまで段階的に低下させながら摩擦係数を測定し、各すべり速度における平均摩擦係数を算出した。   Next, an experiment using a ring-on-disk test apparatus was performed. The disk test piece constituting the second member 2 was used as a stationary test piece, and the ring test piece constituting the first member 1 was used as a rotation side test piece. Each test piece was finished to have a surface roughness Ra of 0.02 μm and Rz of 0.15 μm. The disk test pieces were all mirror surfaces, and the ring test pieces (outer diameter 16 mm, inner diameter 10 mm) were of two types: spiral pattern (FIG. 7) and intermittent spiral pattern (FIG. 2) (product of the present invention). The pitch of each periodic structure portion 3 was about 0.7 μm and the depth was about 0.2 μm. Further, the digging depth T in the present invention product was about 0.1 μm. Pure water was used as the lubricant. After fixing the load at 10N and starting from a static state at a sliding speed of 1.2m / s, measure the friction coefficient while gradually reducing the sliding speed to 0.15m / s every 5 minutes. The average coefficient of friction at speed was calculated.

各すべり速度における摩擦係数の実験結果を図11に示す。高すべり速度領域ではスパイラルパターン、間欠スパイラルパターンともにすべり速度の低下に対して摩擦係数が減少する流体潤滑状態となった。スパイラルパターンはすべり速度が0.35m/s以下になると摩擦係数が上昇し、混合潤滑に移行した。一方、流体導入効果とステップ効果を併せもつ間欠スパイラルパターン(本発明品)は0.24m/sまで流体潤滑を維持しており、スパイラルパターンより高い負荷容量を得られることが確認された。   The experimental results of the friction coefficient at each sliding speed are shown in FIG. In the high slip rate region, both the spiral pattern and the intermittent spiral pattern were in a fluid lubrication state in which the friction coefficient decreased as the slip rate decreased. When the sliding speed of the spiral pattern was 0.35 m / s or less, the friction coefficient increased, and mixed lubrication was started. On the other hand, the intermittent spiral pattern (product of the present invention) having both the fluid introduction effect and the step effect maintains fluid lubrication up to 0.24 m / s, and it has been confirmed that a higher load capacity than the spiral pattern can be obtained.

1 第1部材
1b 周縁
1a、2a 摺動面
2 第2部材
3a、3b、3c、3d、3e 周期構造部
4 周期構造未形成部
5 凹部
6 凸部
10、11 高さ位置
DESCRIPTION OF SYMBOLS 1 1st member 1b Perimeter 1a, 2a Sliding surface 2 2nd member 3a, 3b, 3c, 3d, 3e Periodic structure part 4 Periodic structure non-formation part 5 Concave part 6 Protrusion part 10, 11 Height position

Claims (7)

第1部材の摺動面と第2部材の摺動面とが潤滑剤下で相対的に摺動する摺動面構造であって、第1部材と第2部材との少なくともいずれか一方の摺動面に、グレーティング状凹凸の周期構造部と周期構造未形成部とが摺動方向に沿って交互に形成され、かつ、周期構造部の凸部高さ位置を未形成部の高さ位置よりも低く設定して、周期構造部と周期構造未形成部との境界で圧力を発生させるとともに、前記周期構造部は摺動面周縁に連通され、流体を摺動面内方へ導入することを特徴とする摺動面構造。 A sliding surface structure in which the sliding surface of the first member and the sliding surface of the second member slide relative to each other under a lubricant, the sliding surface of at least one of the first member and the second member. On the moving surface, periodic structure parts of grating-like irregularities and non-periodic structure forming parts are alternately formed along the sliding direction, and the convex part height position of the periodic structure part is higher than the height position of the non-forming part. set is low, Rutotomoni to generate pressure at the interface between the periodic structure portion and the periodic structure unformed portion, the periodic structure portion is communicated with the sliding surface peripheral edge, introducing a fluid into the sliding face inwardly Sliding surface structure characterized by 前記周期構造部の凸部高さ位置と未形成部の高さ位置との高低差を前記摺動面の算術平均粗さ以上としたことを特徴とする請求項1に記載の摺動面構造。   2. The sliding surface structure according to claim 1, wherein a height difference between a height position of the convex portion of the periodic structure portion and a height position of the non-formed portion is equal to or greater than an arithmetic average roughness of the sliding surface. . 前記周期構造部の凸部高さ位置と未形成部の高さ位置との高低差を前記摺動面の最大高さ粗さ以下としたことを特徴とする請求項1又は請求項2に記載の摺動面構造。   3. The height difference between the height position of the convex portion of the periodic structure portion and the height position of the non-formed portion is equal to or less than the maximum height roughness of the sliding surface. Sliding surface structure. 周期構造部の周期ピッチが10μm以下であることを特徴とする請求項1〜請求項3のいずれか1項に記載の摺動面構造。   The sliding surface structure according to any one of claims 1 to 3, wherein a periodic pitch of the periodic structure portion is 10 µm or less. 前記周期構造部の凹部の深さが1μm以下であることを特徴とする請求項1〜請求項4のいずれか1項に記載の摺動面構造。   The sliding surface structure according to any one of claims 1 to 4, wherein a depth of the concave portion of the periodic structure portion is 1 µm or less. 前記周期構造部は、加工閾値近傍の照射強度で直線偏光のレーザを照射し、その照射部分をオーバラップさせながら走査して、自己組織的に形成されていることを特徴とする請求項1〜請求項5のいずれか1項に記載の摺動面構造。   The periodic structure part is formed in a self-organized manner by irradiating a linearly polarized laser beam with an irradiation intensity in the vicinity of a processing threshold and scanning the overlapping part in an overlapping manner. The sliding surface structure according to claim 5. 前記周期構造部と前記高低差とは同時加工により形成されてなることを特徴とする請求項6に記載の摺動面構造。   The sliding surface structure according to claim 6, wherein the periodic structure portion and the height difference are formed by simultaneous processing.
JP2011173860A 2011-08-09 2011-08-09 Sliding surface structure Active JP5726673B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011173860A JP5726673B2 (en) 2011-08-09 2011-08-09 Sliding surface structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011173860A JP5726673B2 (en) 2011-08-09 2011-08-09 Sliding surface structure

Publications (2)

Publication Number Publication Date
JP2013036561A JP2013036561A (en) 2013-02-21
JP5726673B2 true JP5726673B2 (en) 2015-06-03

Family

ID=47886357

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011173860A Active JP5726673B2 (en) 2011-08-09 2011-08-09 Sliding surface structure

Country Status (1)

Country Link
JP (1) JP5726673B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015075145A (en) * 2013-10-07 2015-04-20 日本精工株式会社 Roller bearing, method of manufacturing roller bearing, apparatus for manufacturing roller bearing
JP6612053B2 (en) * 2015-04-13 2019-11-27 キヤノンマシナリー株式会社 Sliding surface structure
JP7249743B2 (en) * 2018-07-30 2023-03-31 キヤノンマシナリー株式会社 thrust plain bearing

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3066021D1 (en) * 1979-11-22 1984-02-02 Smiths Industries Plc Gas-lubricated bearings and method of manufacture
DE4125165A1 (en) * 1991-07-30 1993-02-04 Hoechst Ceram Tec Ag BURNED, CERAMIC PRODUCT WITH A STRUCTURED SURFACE AND METHOD FOR THE PRODUCTION THEREOF
JPH0932849A (en) * 1995-07-21 1997-02-04 Ntn Corp Dynamic pressure type bearing and manufacture thereof
JP4803733B2 (en) * 2006-08-03 2011-10-26 学校法人東海大学 Grooved dynamic pressure thrust gas bearing and method of manufacturing the same
JP2008173693A (en) * 2007-01-16 2008-07-31 Canon Machinery Inc Mirror finished surface working method
JP5196301B2 (en) * 2008-06-04 2013-05-15 キヤノンマシナリー株式会社 Tribochemical reaction promoting surface structure
JP5259455B2 (en) * 2009-02-27 2013-08-07 キヤノンマシナリー株式会社 Flat sliding mechanism

Also Published As

Publication number Publication date
JP2013036561A (en) 2013-02-21

Similar Documents

Publication Publication Date Title
JP6572203B2 (en) Sliding parts
JP5111961B2 (en) Sliding surface structure
JP6763850B2 (en) Manufacturing method of sliding parts and sliding parts
JP6964392B2 (en) Sliding surface structure and manufacturing method of sliding surface structure
JP6612053B2 (en) Sliding surface structure
JP5538476B2 (en) Sliding surface structure
JP5726673B2 (en) Sliding surface structure
JP4263185B2 (en) Low friction sliding surface
KR20160046805A (en) Sliding surface
JP5619937B2 (en) Sliding surface structure
JP4959275B2 (en) Sliding surface structure
JP6476817B2 (en) Piston for internal combustion engine and method for manufacturing piston for internal combustion engine
JP5638455B2 (en) Sliding surface structure
JP2008173693A (en) Mirror finished surface working method
JP2013160338A (en) Sliding surface structure, and method for manufacturing the same
JP5196301B2 (en) Tribochemical reaction promoting surface structure
JP5635151B2 (en) Periodic structure forming method
JP2010196884A (en) Plane sliding mechanism
JP7249743B2 (en) thrust plain bearing
Ezhilmaran et al. Femtosecond laser assisted generation of micro-dimples on moly-chrome film for improving its tribology
JP2020023063A (en) Joining member and creation method of joining member
JP2003205380A (en) Method of machining sliding face and sliding device
JP2007290052A (en) Surface machining method
JP2015075145A (en) Roller bearing, method of manufacturing roller bearing, apparatus for manufacturing roller bearing
JP2016016052A (en) Artificial hip joint

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140204

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140904

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140908

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150316

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150401

R150 Certificate of patent or registration of utility model

Ref document number: 5726673

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250