JP7398932B2 - thrust roller bearing - Google Patents

thrust roller bearing Download PDF

Info

Publication number
JP7398932B2
JP7398932B2 JP2019208661A JP2019208661A JP7398932B2 JP 7398932 B2 JP7398932 B2 JP 7398932B2 JP 2019208661 A JP2019208661 A JP 2019208661A JP 2019208661 A JP2019208661 A JP 2019208661A JP 7398932 B2 JP7398932 B2 JP 7398932B2
Authority
JP
Japan
Prior art keywords
periodic structure
roller
bearing
passage area
contact passage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019208661A
Other languages
Japanese (ja)
Other versions
JP2021080999A (en
Inventor
博司 沢田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Machinery Inc
Original Assignee
Canon Machinery Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Machinery Inc filed Critical Canon Machinery Inc
Priority to JP2019208661A priority Critical patent/JP7398932B2/en
Publication of JP2021080999A publication Critical patent/JP2021080999A/en
Application granted granted Critical
Publication of JP7398932B2 publication Critical patent/JP7398932B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Rolling Contact Bearings (AREA)

Description

本発明は、スラストころ軸受に関する。 The present invention relates to thrust roller bearings.

スラストころ軸受は、針状ころ又は円筒ころが保持器に放射状に組込まれたスラスト保持器付きころと円板状の軌道輪とを組合わせた軸受である。すなわち、スラストころ軸受(スラスト針ころ軸受)は、図17と図18とに示すように、軸方向に互いに対向する一対の軌道輪1、2と、この軌道輪1、2の間に径方向に沿った状態で放射状に配設される複数個のころ3と、軌道輪1、2の間に介在されて複数個のころ3を保持する保持器4とを備える。 A thrust roller bearing is a bearing that combines a roller with a thrust cage, in which needle rollers or cylindrical rollers are radially incorporated into a cage, and a disc-shaped bearing ring. That is, as shown in FIGS. 17 and 18, thrust roller bearings (thrust needle roller bearings) include a pair of bearing rings 1 and 2 that face each other in the axial direction, and a radial space between these bearing rings 1 and 2. It is provided with a plurality of rollers 3 arranged radially along the radial direction, and a retainer 4 interposed between bearing rings 1 and 2 to hold the plurality of rollers 3.

環境保護の観点から、しゅう動部の摩擦低減と同時に潤滑油の使用量削減が重要な課題となっている。そのため、自動車や産業機器では潤滑油供給を必要最小量とした低摩擦運転が望まれている。また、潤滑油の消費が少ないグリース潤滑の適用拡大も検討されている。 From the perspective of environmental protection, reducing friction in sliding parts and reducing the amount of lubricant used are important issues. Therefore, in automobiles and industrial equipment, low-friction operation with the minimum amount of lubricant required is desired. Additionally, expansion of the application of grease lubrication, which consumes less lubricating oil, is also being considered.

各種機器のしゅう動部に数多く使用されているスラスト針状ころ軸受では、図19に示すように内径側と外径側において、周速差が生じる。この周速差に起因する差動すべりが生じる。すなわち、図19に示すように、ころ3が矢印A方向に公転すると、内径側が矢印A1のように進み、外径側が矢印A2のうように遅れ、ころ3が矢印B方向に公転すると、内径側が矢印B1のように進み、外径側が矢印B2のうように遅れる。このように、差動すべりが生じた場合、潤滑油が不足すると比較的大きなトルクと摩耗とが発生するため、枯渇潤滑下での摩擦・摩耗特性の向上が求められている。 In thrust needle roller bearings that are widely used in sliding parts of various types of equipment, a difference in circumferential speed occurs between the inner diameter side and the outer diameter side, as shown in FIG. Differential slip occurs due to this circumferential speed difference. That is, as shown in FIG. 19, when the rollers 3 revolve in the direction of arrow A, the inner diameter side advances as shown by arrow A1, and the outer diameter side lags as shown by arrow A2. When the rollers 3 revolve in the direction of arrow B, the inner diameter The side advances as shown by arrow B1, and the outer diameter side lags as shown by arrow B2. As described above, when differential slip occurs, relatively large torque and wear occur if lubricating oil is insufficient, so there is a need to improve friction and wear characteristics under depleted lubrication.

そこで、従来では、特許文献1に記載のように、ころ3に、図20に示すように、両端部のその外径寸法を軸方向端部側に向かって縮径するクラニング6、6を形成して、軌道輪1、2ところの接触面積を減少させて、差動すべりを低減させたものがある。 Therefore, conventionally, as described in Patent Document 1, the roller 3 is provided with crannings 6, 6 whose outer diameters at both ends are reduced toward the axial ends, as shown in FIG. There is one in which the contact area between the bearing rings 1 and 2 is reduced to reduce differential slip.

また、図21に示すように、ころ3の外径面を円筒面として、軌道輪1、2のころ対応面を膨出させ、この膨出部7、8ところ3の外径面を摺接させるように構成したものがある(特許文献2)。この場合も、軌道輪1、2ところ3の接触面積を減少させて、差動すべりを低減させている。 Further, as shown in FIG. 21, the outer diameter surface of the roller 3 is made into a cylindrical surface, and the roller corresponding surfaces of the bearing rings 1 and 2 are bulged, and the outer diameter surface of the roller 3 is brought into sliding contact with the bulged portions 7 and 8. There is a device configured to do so (Patent Document 2). In this case as well, the contact area between the bearing rings 1, 2 and 3 is reduced to reduce differential slip.

特開2006-258298号公報JP2006-258298A 特開2015-017690号公報Japanese Patent Application Publication No. 2015-017690

しかしながら、ころ3にクラウニング6を形成したり、軌道輪側に膨出部7、8を形成して、差動すべりを低減させたとしても、差動すべりそのものの摩擦を低減できない。すなわち、枯渇潤滑下での摩擦・摩耗効果は乏しいものである。ところで、ころ3にクラウニング6,6を設ける場合、使用される全ころ3に対して設ける必要があり、また、軌道輪側に膨出部7、8を形成する場合、各膨出部の膨出量を精度よく構成する必要があり、これらにおいては生産性に劣り、コスト高となる。 However, even if the differential slip is reduced by forming the crowning 6 on the roller 3 or by forming the bulges 7 and 8 on the bearing ring side, the friction of the differential slip itself cannot be reduced. In other words, the friction and wear effects are poor under depleted lubrication. By the way, when providing crownings 6, 6 on rollers 3, it is necessary to provide them on all rollers 3 used, and when forming bulging portions 7, 8 on the raceway side, bulging portions of each bulging portion need to be provided. It is necessary to configure the output amount with high precision, which results in poor productivity and high costs.

本発明は、上記課題に鑑みて、枯渇潤滑下での焼き付きを有効に防止することができるスラストころ軸受を提供する。 In view of the above problems, the present invention provides a thrust roller bearing that can effectively prevent seizure under depleted lubrication.

本発明のスラストころ軸受は、軸方向に互いに対向する一対の軌道輪と、この軌道輪の間に径方向に沿った状態で放射状に配設される複数個のころとを備えたスラストころ軸受であって、少なくともいずれか一方の軌道輪におけるころの接触通過領域と、ころの外周面との少なくともいずれか一方に、複数の微細溝で構成されるグレーティング状凹凸の周期構造を設けたものである。 A thrust roller bearing according to the present invention includes a pair of bearing rings facing each other in the axial direction, and a plurality of rollers arranged radially between the bearing rings in a radial direction. A periodic structure of grating-like unevenness composed of a plurality of fine grooves is provided in at least one of the contact passage area of the roller in at least one of the bearing rings and the outer circumferential surface of the roller. be.

本発明のスラストころ軸受によれば、ころの外周面と、少なくともいずれか一方における軌道輪のころの接触通過領域との少なくともいずれか一方に、グレーティング状凹凸の周期構造を設けたことによって、周期構造の潤滑油保持や摩耗粉トラップ効果により差動すべりに起因する摩擦が抑制される。さらにグリース潤滑下においては、周期構造のグリース保持や摩耗粉トラップ効果に加えて、油分に対して高い濡れ性を示す周期構造が基油分離を促進することで増ちょう剤が高濃度化され、増ちょう剤由来の保護膜形成が促進されることで差動すべりに起因する摩耗が抑制される。 According to the thrust roller bearing of the present invention, the periodic structure of grating-like unevenness is provided on at least one of the outer circumferential surface of the roller and the contact passage area of the roller of the bearing ring on at least either one. Friction caused by differential slip is suppressed by the structure's lubricating oil retention and wear debris trapping effects. Furthermore, under grease lubrication, in addition to the periodic structure's ability to retain grease and trap wear debris, the periodic structure, which exhibits high wettability to oil, promotes base oil separation, increasing the concentration of the thickener. Wear caused by differential slip is suppressed by promoting the formation of a protective film derived from the thickener.

前記グレーティング状凹凸の周期構造が軌道輪におけるころの接触通過領域の外周側と内周側との少なくともいずれか一方に設けられているものであればよい。この場合であっても、グレーティング状凹凸の周期構造を設けたことに起因する作用効果を発揮することができる。 It is sufficient that the periodic structure of the grating-like unevenness is provided on at least one of the outer circumferential side and the inner circumferential side of the contact passage area of the roller in the bearing ring. Even in this case, the effects resulting from the provision of the periodic structure of grating-like unevenness can be exhibited.

外周側に設けられたグレーティング状凹凸の周期構造は、接触通過領域の外周縁よりも外径側にはみ出していても、内周側に設けられたグレーティング状凹凸の周期構造は、接触通過領域の内周縁よりも内径側にはみ出していてもよい。このように、接触通過領域外まで周期構造を設けることによって、周期構造の油分に対する高い濡れ性によって、ころの接触通過領域外に排出された潤滑油やグリースの基油成分が、ころの接触通過領域内に再流入することで枯渇潤滑下での摩擦・摩耗を抑制することができる。 Even if the periodic structure of grating-like unevenness provided on the outer circumferential side protrudes beyond the outer circumferential edge of the contact passage area, the periodic structure of grating-like unevenness provided on the inner circumference side extends beyond the outer circumferential edge of the contact passage area. It may protrude radially inward from the inner peripheral edge. In this way, by providing the periodic structure outside the contact passage area, the base oil components of lubricating oil and grease discharged outside the roller contact passage area are absorbed by the roller contact passage due to the high wettability of the periodic structure to oil. Friction and wear under depleted lubrication can be suppressed by re-flowing into the region.

接触通過領域の中心線上は差動すべりが生じない。そこで、接触通過領域の中心線上に周期構造を形成しないことで、弾性流体潤滑油膜の形成を阻害せず、良好な油膜形成と差動すべりに起因する摩擦抑制を両立することができる。 No differential slip occurs on the center line of the contact passing area. Therefore, by not forming a periodic structure on the center line of the contact passage area, the formation of an elastohydrodynamic lubricating oil film is not inhibited, and it is possible to achieve both good oil film formation and friction suppression due to differential slip.

前記グレーティング状凹凸の周期構造が、前記軌道輪の円周方向に沿って配向しているのが好ましい。このように構成することによって、ころの接触通過領域外に潤滑油やグリースが排出されにくく、周期構造に沿って保持されるため、潤滑油やグリースの担持性が向上し、さらには、摩耗粉のトラップ効果も向上する。 It is preferable that the periodic structure of the grating-like unevenness is oriented along the circumferential direction of the bearing ring. With this configuration, lubricating oil and grease are not easily discharged outside the contact passage area of the rollers, and are retained along the periodic structure, which improves lubricating oil and grease retention, and further improves the ability to carry wear particles. The trap effect will also be improved.

前記グレーティング状凹凸の周期構造の凹凸が50nm以上10μm以下かつ周期ピッチが10μm以下であるのが好ましい。このように構成することによって、油分の保持性、移動性を向上することができる。すなわち、周期構造の凹凸が50nm未満では十分な量の油分やグリースを担持できず、凹凸および周期ピッチが10μmを超えると油分やグリースが周期構造の凹凸から流出するおそれがある。 It is preferable that the periodic structure of the grating-like unevenness has an unevenness of 50 nm or more and 10 μm or less, and a periodic pitch of 10 μm or less. With this configuration, oil retention and mobility can be improved. That is, if the irregularities of the periodic structure are less than 50 nm, a sufficient amount of oil or grease cannot be supported, and if the irregularities and the periodic pitch exceed 10 μm, oil or grease may flow out from the irregularities of the periodic structure.

前記グレーティング状凹凸の周期構造は、凸部頂点が非平坦面となって連続的に高さが変化するのが好ましい。このように構成することによって、開口部が広くなり、潤滑油やグリースを効率的に取り込むことができる。 It is preferable that the periodic structure of the grating-like unevenness has a height that changes continuously with the apexes of the protrusions being non-flat surfaces. With this configuration, the opening becomes wide and lubricating oil and grease can be taken in efficiently.

本発明では、差動すべりに起因する摩擦・摩耗の低減を図ることができ、しかも、良好な油膜形成を図ることができる。このため、摺動部の摩擦低減と同時に潤滑油の使用量削減が可能なスラストころ軸受を提供できる。 According to the present invention, it is possible to reduce friction and wear caused by differential slip, and also to form a good oil film. Therefore, it is possible to provide a thrust roller bearing that can reduce the amount of lubricating oil used at the same time as reducing the friction of the sliding portion.

本発明のスラストころ軸受の要部拡大断面図である。FIG. 1 is an enlarged sectional view of a main part of a thrust roller bearing of the present invention. 軌道輪の簡略図である。It is a simplified diagram of a bearing ring. 軌道輪に設けられた周期構造を示し、(a)は拡大図であり、(b)は断面プロファイルである。The periodic structure provided in the bearing ring is shown, (a) is an enlarged view, and (b) is a cross-sectional profile. ころと周期構造との関係を示す簡略図である。FIG. 3 is a simplified diagram showing the relationship between rollers and a periodic structure. 本発明のスラストころ軸受のころを示し、(a)は周期構造が軸方向中央部に有さないころの簡略図であり、(b)は周期構造がほぼ全周に設けられたころの簡略図である。The rollers of the thrust roller bearing of the present invention are shown, in which (a) is a simplified diagram of a roller that does not have a periodic structure in the center in the axial direction, and (b) is a simplified diagram of a roller that has a periodic structure provided almost on the entire circumference. It is a diagram. 周期構造を形成するためのレーザ表面加工装置の簡略図である。FIG. 2 is a simplified diagram of a laser surface processing apparatus for forming a periodic structure. 親水性表面での接触角を示し、(a)が平坦面の場合の説明図であり、(b)が粗い面の場合の説明図である。It is an explanatory diagram showing the contact angle on a hydrophilic surface, (a) is an explanatory diagram in the case of a flat surface, and (b) is an explanatory diagram in the case of a rough surface. 回転トルク測定に用いた試験機の簡略図である。FIG. 2 is a simplified diagram of a testing machine used to measure rotational torque. 潤滑剤にPAO(ポリアルファオレフィン)を用いた場合の定速なじみ時の摩擦係数を示し、(a)は周期構造を有さないスラスト針状ころ軸受の場合を示すグラフ図であり、(b)は両軌道輪の外周側及び内周側に周期構造を設けたスラスト針状ころ軸受のグラフ図である。FIG. 3 is a graph showing the coefficient of friction during constant speed break-in when PAO (polyalphaolefin) is used as a lubricant; (a) is a graph showing the case of a thrust needle roller bearing without a periodic structure; ) is a graph diagram of a thrust needle roller bearing in which a periodic structure is provided on the outer and inner circumferential sides of both bearing rings. 潤滑剤にPAO(ポリアルファオレフィン)を用いた場合の洗浄回数と摩擦特性の関係を示し、(a)は周期構造を有さないスラスト針状ころ軸受の場合を示すグラフ図であり、(b)は両軌道輪の外周側及び内周側に周期構造を設けたスラスト針状ころ軸受のグラフ図である。1 is a graph showing the relationship between the number of cleaning times and friction characteristics when PAO (polyalphaolefin) is used as a lubricant, (a) is a graph diagram showing the case of a thrust needle roller bearing without a periodic structure, (b) ) is a graph diagram of a thrust needle roller bearing in which a periodic structure is provided on the outer and inner circumferential sides of both bearing rings. 潤滑剤にPAO(ポリアルファオレフィン)を用いた場合の試験後のニードル表面(ころ表面)を示し、(a)は周期構造を有さないスラスト針状ころ軸受のころにおける外端面から1150μm付近の拡大図であり、(b)は両軌道輪の外周側及び内周側に周期構造を設けたスラスト針状ころ軸受のころにおける外端面から1150μm付近の拡大図である。The needle surface (roller surface) after the test when PAO (polyalphaolefin) was used as the lubricant is shown. It is an enlarged view, and (b) is an enlarged view of the vicinity of 1150 μm from the outer end surface of the rollers of a thrust needle roller bearing in which periodic structures are provided on the outer and inner circumferential sides of both bearing rings. 潤滑剤にPAO(ポリアルファオレフィン)を用いた場合の試験後のニードル表面(ころ表面)を示し、(a)は周期構造を有さないスラスト針状ころ軸受のころにおける中央部付近の拡大図であり、(b)は両軌道輪の外周側及び内周側に周期構造を設けたスラスト針状ころ軸受のころにおける中央部付近の拡大図である。Showing the needle surface (roller surface) after the test when PAO (polyalphaolefin) was used as the lubricant, (a) is an enlarged view of the central part of the roller of a thrust needle roller bearing that does not have a periodic structure. (b) is an enlarged view of the vicinity of the center of the rollers of a thrust needle roller bearing in which periodic structures are provided on the outer and inner circumferential sides of both bearing rings. 潤滑剤にU-3P(脂肪族ウレアグリース)を用いた場合の定速なじみ時の摩擦係数を示し、(a)は周期構造を有さないスラスト針状ころ軸受の場合を示すグラフ図であり、(b)は両軌道輪の外周側及び内周側に周期構造を設けたスラスト針状ころ軸受のグラフ図である。Fig. 2 shows the coefficient of friction during constant speed break-in when U-3P (aliphatic urea grease) is used as the lubricant, and (a) is a graph showing the case of a thrust needle roller bearing without a periodic structure. , (b) is a graph diagram of a thrust needle roller bearing in which a periodic structure is provided on the outer circumferential side and the inner circumferential side of both bearing rings. 潤滑剤にU-3P(脂肪族ウレアグリース)を用いた場合の洗浄回数と摩擦特性の関係を示し、(a)は周期構造を有さないスラスト針状ころ軸受の場合を示すグラフ図であり、(b)は両軌道輪の外周側及び内周側に周期構造を設けたスラスト針状ころ軸受のグラフ図である。Fig. 2 shows the relationship between the number of cleanings and friction characteristics when U-3P (aliphatic urea grease) is used as a lubricant, and (a) is a graph showing the case of a thrust needle roller bearing without a periodic structure. , (b) is a graph diagram of a thrust needle roller bearing in which a periodic structure is provided on the outer circumferential side and the inner circumferential side of both bearing rings. 潤滑剤にU-3P(脂肪族ウレアグリース)を用いた場合の試験後のニードル表面(ころ表面)を示し、(a)は周期構造を有さないスラスト針状ころ軸受のころにおける外端面から1150μm付近の拡大図であり、(b)は両軌道輪の外周側及び内周側に周期構造を設けたスラスト針状ころ軸受のころにおける外端面から1150μm付近の拡大図である。The needle surface (roller surface) after the test when U-3P (aliphatic urea grease) was used as the lubricant is shown. It is an enlarged view of around 1150 μm, and (b) is an enlarged view of around 1150 μm from the outer end surface of the roller of a thrust needle roller bearing in which periodic structures are provided on the outer and inner peripheral sides of both bearing rings. 潤滑剤にU-3P(脂肪族ウレアグリース)を用いた場合の試験後のニードル表面(ころ表面)を示し、(a)は周期構造を有さないスラスト針状ころ軸受のころにおける中央部付近の拡大図であり、(b)は両軌道輪の外周側及び内周側に周期構造を設けたスラスト針状ころ軸受のころにおける中央部付近の拡大図である。Showing the needle surface (roller surface) after the test when U-3P (aliphatic urea grease) was used as the lubricant, (a) is near the center of the roller of a thrust needle roller bearing that does not have a periodic structure. (b) is an enlarged view of the vicinity of the center of the rollers of a thrust needle roller bearing in which periodic structures are provided on the outer and inner circumferential sides of both bearing rings. 従来のスラストころ軸受の断面図である。FIG. 2 is a cross-sectional view of a conventional thrust roller bearing. 図17に示すスラストころ軸受のころと保持器とを示す簡略図である。18 is a simplified diagram showing rollers and a cage of the thrust roller bearing shown in FIG. 17. FIG. 差動すべりを説明する簡略図である。It is a simplified diagram explaining differential slip. クラウニングが形成されたころの簡略図である。It is a simplified diagram of the time when crowning is formed. 従来の他のスラストころ軸受の断面図である。FIG. 3 is a sectional view of another conventional thrust roller bearing.

以下本発明の実施の形態を図1~図16に基づいて説明する。 Embodiments of the present invention will be described below based on FIGS. 1 to 16.

図1は本発明に係るスラストころ軸受50を示す。スラストころ軸受50は、針状ころ又は円筒ころが保持器に放射状に組込まれたスラスト保持器付きころと円板状の軌道輪とを組合わせた軸受である。この場合の軸受50は、軸方向に互いに対向する一対の軌道輪11、12と、この軌道輪11、12の間に径方向に沿った状態で放射状に配設される複数個のころ13と、軌道輪11、12の間に介在されて複数個のころ13を保持する保持器14とを備える。 FIG. 1 shows a thrust roller bearing 50 according to the present invention. The thrust roller bearing 50 is a bearing that combines a roller with a thrust cage, in which needle rollers or cylindrical rollers are radially incorporated into the cage, and a disc-shaped bearing ring. The bearing 50 in this case includes a pair of bearing rings 11 and 12 facing each other in the axial direction, and a plurality of rollers 13 arranged radially between the bearing rings 11 and 12 along the radial direction. , and a retainer 14 that is interposed between the bearing rings 11 and 12 and holds a plurality of rollers 13.

軌道輪11、12は、図2に示すよう、中心孔11a、12aが設けられたリング状平板体からなる。そして、一方の軌道輪11の他の軌道輪12に対向する面(内面)11bにころ転動面(摺動面)15が形成され、他方の軌道輪12の一方の軌道輪11に対向する面(内面)12bがころ転動面(摺動面)16とされる。この場合、軌道輪11、12は、炭素鋼、銅、アルミニウム、白金、超硬合金等であっても、炭化ケイ素や窒化ケイ素等のシリコン系セラミックスであっても、エンジニアプラスチック等であってもよい。 As shown in FIG. 2, the bearing rings 11 and 12 are ring-shaped flat plates provided with center holes 11a and 12a. A roller rolling surface (sliding surface) 15 is formed on a surface (inner surface) 11b of one bearing ring 11 facing the other bearing ring 12, and a roller rolling surface (sliding surface) 15 is formed on the surface (inner surface) 11b of one bearing ring 11 facing the other bearing ring 12. The surface (inner surface) 12b is the roller rolling surface (sliding surface) 16. In this case, the bearing rings 11 and 12 may be made of carbon steel, copper, aluminum, platinum, cemented carbide, etc., silicon-based ceramics such as silicon carbide or silicon nitride, or engineered plastic. good.

また、潤滑剤としては、PAO6(ポリアルファオレフィン)やU-3P(脂肪族ウレアグリース)等を使用できる。PAO6は、合成炭化水素は鉱油に近い組成ながら、高粘度指数で低流動点を有し、低温から高温まで使用温度領域が広いという特長を持っている。また、粘度指数が高く、高温においても厚い油膜の保持が可能である点、ワックス分を含まないので、流動点が非常に低く、低温粘度特性が良好なため、内燃機関などの低温始動性や暖気運転時間の短縮が可能である点、および、添加剤の添加効果が高く、熱酸化安定性が良好で、高温での使用、および長寿命化が可能である点等の利点がある。 Further, as the lubricant, PAO6 (polyalphaolefin), U-3P (aliphatic urea grease), etc. can be used. Although PAO6 is a synthetic hydrocarbon with a composition similar to that of mineral oil, it has a high viscosity index, a low pour point, and has a wide operating temperature range from low to high temperatures. In addition, it has a high viscosity index and can maintain a thick oil film even at high temperatures, and since it does not contain wax, it has a very low pour point and good low-temperature viscosity characteristics, so it is suitable for low-temperature startability of internal combustion engines, etc. It has advantages such as being able to shorten the warm-up operation time, being highly effective in adding additives, having good thermal oxidation stability, being able to be used at high temperatures, and having a long life.

また、ウレアグリースとは、ウレア基(-NH-CO-NH-)を2個以上有する有機化合物を増ちょう剤としたグリースである。また、ウレアグリースには、脂肪族ウレアと、脂環式ウレアと、芳香族ウレアとがある。脂肪族ウレアは、長鎖アルキル基を両末端に用いると耐熱性がリチウム石けんグリース並となる点、短鎖アルキル基を用いると耐熱性が向上する点、脂環式および芳香族ウレアに比べ寿命が短い点の特徴を有する。脂環式ウレアは、増ちょう効果が優れている点、比較的耐熱性に優れている点、せん断安定性に優れている点、寿命が長い点の特徴を有する。芳香族ウレアは、増ちょう効果が脂肪族ウレアや脂環式ウレアよりも劣る点、耐熱性に優れている点、寿命が長い点の特徴を有する。 Further, urea grease is a grease that uses an organic compound having two or more urea groups (-NH-CO-NH-) as a thickener. Further, urea grease includes aliphatic urea, alicyclic urea, and aromatic urea. Aliphatic ureas have heat resistance comparable to that of lithium soap grease when long chain alkyl groups are used at both ends, heat resistance is improved when short chain alkyl groups are used, and they have a longer lifespan than alicyclic and aromatic ureas. It is characterized by a short point. Alicyclic urea has the characteristics of excellent thickening effect, relatively excellent heat resistance, excellent shear stability, and long life. Aromatic ureas are characterized by having a thickening effect inferior to that of aliphatic ureas and alicyclic ureas, superior heat resistance, and long life.

各軌道輪11、12の内面には、図2に示すように、それぞれ、外周側及び内周側に複数の微細溝で構成さされるグレーティング状凹凸の周期構造20(20A、20B)が設けられている。この場合、図4に示すように、外周側の周期構造20Aは、ころ13の接触通過領域Rの外周縁よりも外径側にはみ出し、内周側の周期構造20Bは、ころ13の接触通過領域Rの内周縁よりも内径側にはみ出している。 As shown in FIG. 2, the inner surface of each bearing ring 11, 12 is provided with a periodic structure 20 (20A, 20B) of grating-like irregularities, which is composed of a plurality of micro grooves on the outer and inner circumferential sides, respectively. ing. In this case, as shown in FIG. 4, the periodic structure 20A on the outer circumferential side protrudes outward from the outer circumferential edge of the contact passage area R of the roller 13, and the periodic structure 20B on the inner circumference side protrudes beyond the outer circumferential edge of the contact passage area R of the roller 13. It protrudes radially inward from the inner peripheral edge of region R.

また、外周側の周期構造20Aと、内周側の周期構造20Bとの間には、周期構造20を有さない未加工部21が形成されている。すなわち、この未加工部21は接触通過領域Rの中心線(ピッチ円)P上に配設され、未加工部21の範囲としては、その軸方向長さH2として、ころの軸方向全長H1の1/3程度とされる。このため、各周期構造20A、20Bの幅寸法は、(1-1/3)/2となる。また、外周側の周期構造20Aの接触通過領域Rのはみ出し量T1としては、例えば、0.5mm~5.0mm程度とし、内周側の周期構造20Bの接触通過領域Rのはみ出し量T2としては、例えば、0.5mm~5.0mm程度としている。 Furthermore, an unprocessed portion 21 that does not have the periodic structure 20 is formed between the periodic structure 20A on the outer circumferential side and the periodic structure 20B on the inner circumferential side. That is, this unprocessed portion 21 is arranged on the center line (pitch circle) P of the contact passage area R, and the range of the unprocessed portion 21 is defined as its axial length H2, which is equal to the total axial length H1 of the roller. It is said to be about 1/3. Therefore, the width dimension of each periodic structure 20A, 20B is (1-1/3)/2. Further, the protrusion amount T1 of the contact passing region R of the periodic structure 20A on the outer circumference side is, for example, approximately 0.5 mm to 5.0 mm, and the protrusion amount T2 of the contact passage region R of the periodic structure 20B on the inner circumference side is, for example, approximately 0.5 mm to 5.0 mm. , for example, about 0.5 mm to 5.0 mm.

周期構造20は、配向方向が周方向であり、図3に示すように、微小の凹部22と微小の凸部23とが交互に所定ピッチで配設されてなるものである。周期構造20の凹凸の高低差(凹部22の底部から凸部23の頂点までの高さ)が50nm以上10μm以下とするのが好ましい。また、周期構造20の周期ピッチを10μm以下とするのが好ましい。図3(a)は周期構造20の拡大図を示し、図3(b)は断面プロファイルを示している。このように、周期構造20は、凸部頂点が非平坦面となって連続的に高さが変化するグレーティング状凹凸の周期構造20である。 The periodic structure 20 is oriented in the circumferential direction, and as shown in FIG. 3, minute recesses 22 and minute protrusions 23 are arranged alternately at a predetermined pitch. It is preferable that the height difference between the irregularities of the periodic structure 20 (the height from the bottom of the recess 22 to the top of the convex part 23) is 50 nm or more and 10 μm or less. Further, it is preferable that the periodic pitch of the periodic structure 20 is 10 μm or less. FIG. 3(a) shows an enlarged view of the periodic structure 20, and FIG. 3(b) shows a cross-sectional profile. In this way, the periodic structure 20 is a grating-like uneven periodic structure 20 in which the apex of the convex portion becomes a non-flat surface and the height changes continuously.

周期構造20は、加工閾値近傍の照射強度で直線偏光のレーザを照射し、その照射部分をオーバラップさせながら走査して、自己組織的に形成している。具体的には、図6に示すフェムト秒レーザ表面加工装置を使用する。レーザ発生器31(フェムト秒レーザ発生器)で発生したレーザ(例えば、パルス幅:900fs、中心波長1030nm、繰り返し周波数:1~1000kHz、パルスエネルギー:0.25~400μJ/pulse)は、ミラー32により加工材料Wに向けて折り返され、メカニカルシャッタ33に導かれる。レーザ照射時はメカニカルシャッタ33を開放し、レーザ照射強度は1/2波長板34と偏光ビームスプリッタ36によって調整可能とし、1/2波長版35によって偏光方向を調整し、集光レンズ(焦点距離:150mm)37によって、XYθステージ39上の加工材料W表面に集光照射する。なお、フェムト秒レーザはフェムト秒(1000兆分の1秒)オーダーという極端に短い時間単位の中にエネルギーを圧縮した光源である。 The periodic structure 20 is formed in a self-organized manner by irradiating linearly polarized laser with an irradiation intensity near the processing threshold and scanning the irradiated portions while overlapping each other. Specifically, a femtosecond laser surface processing apparatus shown in FIG. 6 is used. A laser (for example, pulse width: 900 fs, center wavelength 1030 nm, repetition frequency: 1 to 1000 kHz, pulse energy: 0.25 to 400 μJ/pulse) generated by the laser generator 31 (femtosecond laser generator) is transmitted by the mirror 32. It is folded back toward the workpiece W and guided to the mechanical shutter 33. During laser irradiation, the mechanical shutter 33 is opened, the laser irradiation intensity can be adjusted by the 1/2 wavelength plate 34 and the polarizing beam splitter 36, the polarization direction is adjusted by the 1/2 wavelength plate 35, and the focusing lens (focal length :150mm) 37, the surface of the workpiece W on the XYθ stage 39 is irradiated with condensed light. Note that a femtosecond laser is a light source that compresses energy into an extremely short time unit on the order of a femtosecond (1/1000 trillionth of a second).

ところで、固体表面に液滴が接触すると、接触角が形成される。そして、液体Sの濡れ性は、以下のWenzelの式(数1)で表される。ここで、θwは粗い面での接触角を示し、θeは同じ材質で平坦面(平滑面)での接触角を示す。rは表面積倍率(平面に対する粗面の面積比)を示す。

Figure 0007398932000001
By the way, when a droplet contacts a solid surface, a contact angle is formed. The wettability of the liquid S is expressed by Wenzel's equation (Equation 1) below. Here, θw indicates the contact angle on a rough surface, and θe indicates the contact angle on a flat surface (smooth surface) made of the same material. r indicates the surface area magnification (area ratio of the rough surface to the flat surface).
Figure 0007398932000001

平坦面(平滑面)において、θe<90°であれば、粗い面ではθw<θeとなる。すなわち、表面積倍率rが大きいほど油の接触角が低減する。このため、表面粗さの導入により潤滑油の濡れ性向上が可能となる。 If θe<90° on a flat surface (smooth surface), θw<θe on a rough surface. That is, the contact angle of oil decreases as the surface area magnification r increases. Therefore, the wettability of lubricating oil can be improved by introducing surface roughness.

本発明のスラストころ軸受によれば、グレーティング状凹凸の周期構造20を設けたことによって、周期構造20の潤滑油保持や摩耗粉トラップ効果により差動すべりに起因する摩擦が抑制される。さらにグリース潤滑下においては、周期構造20のグリース保持や摩耗粉トラップ効果に加えて、油分に対して高い濡れ性を示す周期構造20が基油分離を促進することで増ちょう剤が高濃度化され、増ちょう剤由来の保護膜形成が促進されることで差動すべりに起因する摩耗が抑制される。 According to the thrust roller bearing of the present invention, by providing the periodic structure 20 having grating-like irregularities, friction caused by differential sliding is suppressed by the lubricating oil retention and wear powder trapping effects of the periodic structure 20. Furthermore, under grease lubrication, in addition to the grease retention and wear debris trapping effects of the periodic structure 20, the periodic structure 20, which exhibits high wettability to oil, promotes base oil separation, resulting in a high concentration of thickener. This promotes the formation of a protective film derived from the thickener, thereby suppressing wear caused by differential slip.

このため、本発明では、差動すべりに起因する摩擦・摩耗の低減を図ることができ、しかも、良好な油膜形成を図ることができ、摺動部の摩擦低減と同時に潤滑油の使用量削減が可能なスラストころ軸受を提供できる。しかも、本発明に係るスラストころ軸受として、従来のように、ころ13にクラウニング6を設けたり、軌道輪11,12に膨出部7,8を設ける必要がなくなる。これらを形成するための加工を行う必要がなく、生産性に劣ったり、コスト高となったりすることがない。 Therefore, in the present invention, it is possible to reduce the friction and wear caused by differential sliding, and also to form a good oil film, thereby reducing the amount of lubricating oil used at the same time as reducing the friction of the sliding parts. We can provide thrust roller bearings that are capable of Furthermore, the thrust roller bearing according to the present invention eliminates the need to provide the crowning 6 on the roller 13 or the bulges 7 and 8 on the bearing rings 11 and 12 as in the conventional case. There is no need to perform processing to form these, and there is no problem of poor productivity or high cost.

また、前記実施形態では、両軌道輪11、12の内面の外周側と内周側とに周期構造20を設けているが、いずれか一方の軌道輪11(12)のみに設けても、外周側と内周側とのいずれか一方のみであってもよい。すなわち、いずれか一方の軌道輪11(12)のみに設ける場合、外周側と内周側と両方に周期構造20を設けても、外周側にのみ設けたり、内周側にのみに設けたりでき、両軌道輪11、12も設ける場合、実施形態のように、外周側と内周側と両方に周期構造20を設けても、外周側にのみ設けたり、内周側にのみに設けたりできる。 Further, in the above embodiment, the periodic structure 20 is provided on the outer circumferential side and the inner circumferential side of the inner surfaces of both the bearing rings 11 and 12, but even if it is provided only on one of the bearing rings 11 (12), It may be only one of the side and the inner peripheral side. That is, when provided only on one of the bearing rings 11 (12), even if the periodic structure 20 is provided on both the outer and inner circumferential sides, it cannot be provided only on the outer circumferential side or only on the inner circumferential side. , when both bearing rings 11 and 12 are also provided, even if the periodic structure 20 is provided on both the outer circumferential side and the inner circumferential side as in the embodiment, it can be provided only on the outer circumferential side or only on the inner circumferential side. .

未加工部21を設けないもの、すなわち、外周側の周期構造20Aと内周側周期構造20Bとの間にも周期構造20を設けるものであってもよい。 The unprocessed portion 21 may not be provided, that is, the periodic structure 20 may also be provided between the outer periodic structure 20A and the inner periodic structure 20B.

これらのように、いずれか一方の軌道輪11(12)のみに設けても、外周側と内周側とのいずれか一方のみに設けた構成であっても、未加工部21を設けないもの等であっても、周期構造20を設けたことに起因する作用効果を発揮することができる。 Like these, even if it is provided only on one of the bearing rings 11 (12) or only on either the outer circumferential side or the inner circumferential side, the unprocessed part 21 is not provided. etc., the effects resulting from the provision of the periodic structure 20 can be exhibited.

また、周期構造20を、接触通過領域R外まで周期構造を設けることによって、周期構造の油分に対する高い濡れ性によって、ころ13の接触通過領域R外に排出された潤滑油やグリースの基油成分が、ころ13の接触通過領域内に再流入することで枯渇潤滑下での摩擦・摩耗を抑制することができる。 In addition, by providing the periodic structure 20 to the outside of the contact passage area R, the base oil components of lubricating oil and grease discharged outside the contact passage area R of the rollers 13 due to the high wettability of the periodic structure to oil. However, by re-flowing into the contact passage area of the rollers 13, friction and wear under depleted lubrication can be suppressed.

接触通過領域Rの中心線P上は差動すべりが生じない。そこで、接触通過領域Rの中心線P上に周期構造20を形成しないことで、弾性流体潤滑油膜の形成を阻害せず、良好な油膜形成と差動すべりに起因する摩擦抑制を両立することができる。 No differential slip occurs on the center line P of the contact passing region R. Therefore, by not forming the periodic structure 20 on the center line P of the contact passing region R, it is possible to achieve both good oil film formation and friction suppression due to differential slip without inhibiting the formation of the elastohydrodynamic lubricating oil film. can.

周期構造20が、軌道輪11(12)の円周方向に沿って配向しているのが好ましい。このように構成することによって、ころ13の接触通過領域R外に潤滑油やグリースが排出されにくく、周期構造20に沿って保持されるため、潤滑油やグリースの担持性が向上し、さらには、摩耗粉のトラップ効果も向上する。 It is preferable that the periodic structure 20 is oriented along the circumferential direction of the bearing ring 11 (12). With this configuration, the lubricating oil and grease are not easily discharged outside the contact passage area R of the rollers 13 and are retained along the periodic structure 20, so that the lubricating oil and grease can be carried better. , the effect of trapping wear particles is also improved.

周期構造20の凹凸が50nm以上10μm以下かつ周期ピッチが10μm以下であるのが好ましい。このように構成することによって、油分の保持性、移動性を向上することができる。すなわち、周期構造20の凹凸が50nm未満では十分な量の油分やグリースを担持できず、凹凸および周期ピッチが10μmを超えると油分やグリースが周期構造の凹凸から流出するおそれがある。 It is preferable that the periodic structure 20 has irregularities of 50 nm or more and 10 μm or less and a periodic pitch of 10 μm or less. With this configuration, oil retention and mobility can be improved. That is, if the irregularities of the periodic structure 20 are less than 50 nm, a sufficient amount of oil or grease cannot be supported, and if the irregularities and the periodic pitch exceed 10 μm, oil or grease may flow out from the irregularities of the periodic structure.

周期構造20は、凸部頂点が非平坦面となって連続的に高さが変化するのが好ましい。このように構成することによって、開口部が広くなり、潤滑油やグリースを効率的に取り込むことができる。 It is preferable that the periodic structure 20 has a convex apex that is a non-flat surface so that the height changes continuously. With this configuration, the opening becomes wide and lubricating oil and grease can be taken in efficiently.

ところで、前記実施形態では、軌道輪11(12)に周期構造を設けたものであったが、図5(a)(b)に示すように、ころ13側に周期構造20を設けてもよい。この場合の周期構造20は、ころ13の円周方向に沿って配向している。 By the way, in the embodiment described above, the periodic structure was provided on the bearing ring 11 (12), but as shown in FIGS. 5(a) and 5(b), the periodic structure 20 may be provided on the roller 13 side. . The periodic structure 20 in this case is oriented along the circumferential direction of the roller 13.

図5(a)では、軸方向両端部側に周期構造20(20C)(20D)を設けている。すなわち、ころは、径方向に沿った状態で放射状に配設されるものであるので、一方の周期構造20C(20D)が外径側に配設され、他方の周期構造20D(20C)が内径側に配設される。この場合、周期構造20C、20D間の周期構造が設けられていない未加工部21Aの範囲(軸方向長さL1)としては、ころ13の軸方向全長の1/3程度としている。また、各周期構造20C、20Dの軸方向長さL2、L3としては、L2=L3としている。なお、L2>L3であっても、L2<L3であってもよい。また、図5(b)では、ころ13の軸方向全長に周期構造20を設けている。 In FIG. 5A, periodic structures 20 (20C) (20D) are provided at both ends in the axial direction. That is, since the rollers are arranged radially along the radial direction, one periodic structure 20C (20D) is arranged on the outer diameter side, and the other periodic structure 20D (20C) is arranged on the inner diameter side. placed on the side. In this case, the range (axial length L1) of the unprocessed portion 21A in which the periodic structure is not provided between the periodic structures 20C and 20D is approximately ⅓ of the total axial length of the roller 13. Further, the axial lengths L2 and L3 of the periodic structures 20C and 20D are set to L2=L3. Note that L2>L3 or L2<L3 may be satisfied. Further, in FIG. 5(b), a periodic structure 20 is provided along the entire length of the roller 13 in the axial direction.

このようにころ13側に周期構造20を設けても、グレーティング状凹凸の周期構造20を設けたことに起因する作用効果を発揮することができる。 Even if the periodic structure 20 is provided on the roller 13 side in this manner, the effects resulting from the provision of the periodic structure 20 having grating-like irregularities can be exhibited.

本発明は前記実施形態に限定されることなく種々の変形が可能であって、例えば、ころ13側に周期構造20を設ける場合、ころ13側のみに設けても、ころ13側および軌道輪11(12)側の両方に設けてもよい。また、ころ13側に設ける場合、いずれか一方の周期構造20C(20D)のみであってもよい。また、ころ13として、実施形態では、クラウニングを設けないものあったが、クラウニングを設けたものであってもよい。クラウニングを設けた場合であっても、ころ13の外周面と、軌道輪11(12)におけるころの接触通過領域Rとの少なくともいずれか一方に周期構造20を設けることになる。 The present invention is not limited to the above embodiments and can be modified in various ways. For example, when the periodic structure 20 is provided on the roller 13 side, even if it is provided only on the roller 13 side, the periodic structure 20 may be provided on the roller 13 side and the bearing ring 11. (12) may be provided on both sides. Further, when provided on the roller 13 side, only one of the periodic structures 20C (20D) may be provided. Further, although the roller 13 in the embodiment is not provided with a crowning, it may be provided with a crowning. Even when crowning is provided, the periodic structure 20 is provided on at least one of the outer circumferential surface of the roller 13 and the contact passage area R of the roller in the bearing ring 11 (12).

図2に示すグレーティング状凹凸の周期構造では、軌道輪11(12)の円周方向に沿って配向しているが、これに限るものではなく、軌道輪11(12)の径方向に沿って配向していてもよく、さらには、径方向に沿って所定角度(任意の角度)で配向していてもよい。また、外周側の周期構造20Aと内周側の周期構造20Bを設ける場合、周期構造20Aと周期構造20Bとの配向方向が同じであっても相違させてもよい。 In the periodic structure of grating-like unevenness shown in FIG. 2, the orientation is along the circumferential direction of the bearing ring 11 (12), but the orientation is not limited to this, and the orientation is along the radial direction of the bearing ring 11 (12). It may be oriented, and furthermore, it may be oriented at a predetermined angle (any angle) along the radial direction. Further, when providing the periodic structure 20A on the outer circumferential side and the periodic structure 20B on the inner circumferential side, the orientation directions of the periodic structure 20A and the periodic structure 20B may be the same or different.

外周側に設けられた周期構造20(20A)は、外周側の接触通過領域Rよりも外径側にはみ出し、内周側に設けられた周期構造20(20B)は、内周側の接触通過領域Rよりも内径側にはみ出していたが、はみ出さないようにしてもよい。はみ出すようにする場合、外周側のみはみ出すようにしたり、内周側のみはみ出したりするようにしてもよい。なお、はみ出さないようにする場合、接触通過領域Rの境界線(外周縁又は内周縁)上であっても、境界線より接触通過領域R内になっていてもよい。 The periodic structure 20 (20A) provided on the outer circumference side protrudes to the outer diameter side beyond the contact passage area R on the outer circumference side, and the periodic structure 20 (20B) provided on the inner circumference side protrudes beyond the contact passage area R on the inner circumference side. Although it protruded to the inner diameter side from the region R, it may be arranged not to protrude. When it protrudes, it may protrude only on the outer periphery side or may protrude only on the inner periphery side. In addition, in order to prevent it from protruding, it may be on the boundary line (outer periphery or inner periphery) of the contact passage area R, or it may be within the contact passage area R from the boundary line.

周期構造20を形成する際に、前記実施形態では、パルスレーザであるフェムト秒レーザを用いたが、フェムト秒レーザ以外のピコ秒レーザやナノ秒レーザといったパルスレーザを使用することもできる。 When forming the periodic structure 20, in the embodiment, a femtosecond laser, which is a pulsed laser, is used, but a pulsed laser other than a femtosecond laser, such as a picosecond laser or a nanosecond laser, can also be used.

環境保護の観点から、摺動部の摩擦低減と同時に潤滑油の使用量削減が重要な課題となっている。そのため、自動車や産業機器では潤滑油供給を必要最小量とした低摩擦運転が望まれている。また、潤滑油の消費が少ないグリース潤滑の適用拡大も検討されている。各種機器の摺動部に数多く使用されているスラスト針状ころ軸受では、周速差に起因する差動すべりが生じ、潤滑油が不足すると比較的大きなトルクと摩耗が発生するため、枯渇潤滑下での摩擦・摩耗特性の向上が求められている。一方、超短パルスレーザにより形成されるグレーティング状の周期構造20は、油分に対し高い濡れ性を示し、潤滑油の保持性を向上することができる。また、グリース潤滑下では、基油分離が促進され、高濃度化した増ちょう剤による保護膜が形成されることから、スラストころ軸受やスラスト針状ころ軸受の枯渇潤滑下での摩擦・摩耗特性の向上が期待できる。そこで、スラスト針状ころ軸受のレース面(軌道輪の軌道面:摺動面)にグレーティング状の周期構造を形成し、摩擦・摩耗に及ぼす影響を油膜切れが生じやすい低速条件下において検証した。 From the perspective of environmental protection, reducing friction in sliding parts and reducing the amount of lubricant used are important issues. Therefore, in automobiles and industrial equipment, low-friction operation with the minimum amount of lubricant required is desired. Additionally, expansion of the application of grease lubrication, which consumes less lubricating oil, is also being considered. In thrust needle roller bearings, which are used in many sliding parts of various devices, differential slip occurs due to differences in circumferential speed, and a lack of lubricating oil generates relatively large torque and wear. Improvements in friction and wear characteristics are required. On the other hand, the grating-like periodic structure 20 formed by an ultrashort pulse laser exhibits high wettability to oil and can improve lubricant retention. In addition, under grease lubrication, base oil separation is promoted and a protective film formed by highly concentrated thickener is formed, which improves the friction and wear characteristics of thrust roller bearings and thrust needle roller bearings under depleted lubrication. can be expected to improve. Therefore, a grating-like periodic structure was formed on the race surface (sliding surface of the bearing ring) of a thrust needle roller bearing, and its effect on friction and wear was examined under low-speed conditions where oil film is likely to run out.

スラストころ軸受50として、スラスト針状ころ軸受(BA2035)を用い、図2に示すように、両軌道輪11,12の内面11b、12bに外周側と内周側とのグレーティング状の周期構造(ピッチ約900nm、深さ約250nm)20(20A,20B)を形成し、回転トルク測定を行った。周期構造20の配向方向は円周方向とした。ニードル(ころ13)のピッチ径を含む領域(幅2.9mm)は未加工とし、大きな差動すべりが生じるニードル(ころ13)の外端面側1mmと内端面側0.5mmは周期構造上を通過する配置とした。比較のため、周期構造20を形成しない未加工レース(未加工軌道輪)でも回転トルク測定を実施した。 A thrust needle roller bearing (BA2035) is used as the thrust roller bearing 50, and as shown in FIG. 20 (20A, 20B) with a pitch of about 900 nm and a depth of about 250 nm), and the rotational torque was measured. The periodic structure 20 was oriented in the circumferential direction. The region (width 2.9 mm) including the pitch diameter of the needle (roller 13) is left unprocessed, and 1 mm on the outer end surface side and 0.5 mm on the inner end surface side of the needle (roller 13), where large differential slip occurs, are processed on the periodic structure. It was arranged so that it would pass through. For comparison, rotational torque was also measured on an unprocessed race (unprocessed bearing ring) in which the periodic structure 20 was not formed.

試験条件は荷重を40Nとし、潤滑剤はPAO6(ポリアルファオレフィン)、U3-P(脂肪族ウレアグリース)(増ちょう剤量:13%、基油:PAO6、ちょう度:282)の2種類とした。この場合、図8に示すような試験機51を用いた。この試験機51は、軸受50を受ける下型52と、軸受50を押圧する上型53と、上型53から突出される軸部54とを備える。この場合、軸部54に矢印X方向の荷重を付加して、その状態で図示省略の回転駆動機構にて、その軸部54を中心に矢印Y方向に回転させる。 The test conditions were a load of 40N, and two types of lubricants: PAO6 (polyalphaolefin) and U3-P (aliphatic urea grease) (thickener amount: 13%, base oil: PAO6, consistency: 282). did. In this case, a testing machine 51 as shown in FIG. 8 was used. This testing machine 51 includes a lower mold 52 that receives the bearing 50, an upper mold 53 that presses the bearing 50, and a shaft portion 54 that projects from the upper mold 53. In this case, a load is applied to the shaft portion 54 in the direction of the arrow X, and in this state, the shaft portion 54 is rotated in the direction of the arrow Y using a rotation drive mechanism (not shown).

試験前に潤滑剤を上下レース(軌道輪11、12の軌道面)にそれぞれ約15mgずつ付着させ、無負荷にて軸受を回転させて潤滑剤を均等化した。次に、余剰な潤滑剤を除去するため、保持器付さニードルを取り出しエタノールにて超音波洗浄を行った後、なじみを実施した。なじみとして、10min毎に各5段階の増速・減速運転(ピッチ径位置での回転速度: 34.1mm/s→182.6mm/s→34.1mm/s)に続いて、一定速度(50.5mm/s)で5時間の運転を行った。 Before the test, approximately 15 mg of lubricant was applied to each of the upper and lower races (the raceway surfaces of raceways 11 and 12), and the bearing was rotated under no load to equalize the lubricant. Next, in order to remove excess lubricant, the needle with the retainer was taken out and subjected to ultrasonic cleaning with ethanol, followed by running-in. For acclimatization, the speed is increased and decelerated in 5 steps every 10 min (rotational speed at pitch diameter position: 34.1 mm/s → 182.6 mm/s → 34.1 mm/s), followed by constant speed (50 mm/s). .5 mm/s) for 5 hours.

なじみを終了した軸受から保持器付きニードルを取り出してエタノールにて超音波洗浄し、一定速度(50.5mm/s)で1回目の回転トルク測定を1時間行った。同じ手順で超音波洗浄と回転トルク測定を4回繰り返した。トルク測定回数が増えるほど保持器付きニードルに付著した潤滑剤が除去されるため、厳しい枯渇状態での評価となる。測定で得られた回転トルクをニードルのピッチ半径と荷重で除して摩擦係数を算出した. The needle with retainer was taken out from the bearing that had finished breaking in, and it was ultrasonically cleaned with ethanol, and the first rotational torque measurement was performed at a constant speed (50.5 mm/s) for 1 hour. Ultrasonic cleaning and rotational torque measurement were repeated four times using the same procedure. As the number of torque measurements increases, the lubricant attached to the retainer-equipped needle is removed, resulting in evaluation under severe depletion conditions. The coefficient of friction was calculated by dividing the rotational torque obtained in the measurement by the pitch radius of the needle and the load.

潤滑剤としてPAO6(ポリアルファオレフィン)を用いた場合
一定速度(50.5mm/s)で5時間のなじみ運転中の摩擦係数を図9に示す。周期構造の有無にかかわらず、なじみ開始90分後に摩擦係数が最大となり、その後5時間まで摩擦係数の低下が継続した。周期構造形成品のなじみ運転中の最大摩擦係数は未加工品より大きくなったが、5時間後の摩擦係数は未加工品に対し半減した。なじみ終了後に測定した1回目~4回目までの摩擦係数を図10に示す。測定回数の増加にともない潤滑剤が枯渇するが、周期構造形成品の摩擦係数は全潤滑状態で未加工品より低下した。未加工品は4回目の測定で急激な摩擦係数の上昇が発生したが、周期構造形成品では安定した摩擦係数が維持された。低速条件下での主要な摩擦要因として、ころ13とレース(軌道輪11,12)とのすべり摩擦、保持器14とレース(軌道輪11,12)のすべり摩擦などがあるが、周期構造20の潤滑油保持や摩擦粉トラップ効果により摩擦の増加が抑制されたと考えられる。一方、未加工品では潤滑油の枯渇により摩擦が増大し、逃げ場のない摩耗粉が大きく成長、移着することで急激な摩擦係数の上昇が発生したと考えられる。
When PAO6 (polyalphaolefin) is used as a lubricant, the friction coefficient during a 5-hour break-in operation at a constant speed (50.5 mm/s) is shown in FIG. Regardless of the presence or absence of a periodic structure, the friction coefficient reached its maximum 90 minutes after the start of break-in, and the friction coefficient continued to decrease for up to 5 hours thereafter. The maximum friction coefficient of the periodic structure formed product during running-in was greater than that of the unprocessed product, but the friction coefficient after 5 hours was half that of the unprocessed product. Figure 10 shows the friction coefficients measured from the first to fourth times after the break-in. As the number of measurements increases, the lubricant becomes depleted, but the friction coefficient of the periodic structure-formed product was lower than that of the unprocessed product under full lubrication. For the unprocessed product, a sudden increase in the friction coefficient occurred at the fourth measurement, but for the periodic structure formed product, a stable friction coefficient was maintained. The main friction factors under low speed conditions include sliding friction between the rollers 13 and races (bearing rings 11, 12), sliding friction between the retainer 14 and races (bearing rings 11, 12), etc. It is thought that the increase in friction was suppressed by the retention of lubricating oil and the effect of trapping friction particles. On the other hand, in the unprocessed product, the friction increases due to the depletion of lubricating oil, and it is thought that the wear particles that have no place to escape grow and transfer, causing a sudden increase in the coefficient of friction.

大きな差動すべりが生じる外端面から1150μmのニードル表面(ころ表面)の試験後の様子を図11に示す。未加工レース(周期構造未加工品)を用いたニードル表面(ころ表面)は転がり方向に明瞭な傷が認められたが、周期構造が形成された加工品を用いたニードル表面(ころ表面)では、ほとんど傷の発生が認められなかった。 FIG. 11 shows the state of the needle surface (roller surface) 1150 μm from the outer end surface, where a large differential slip occurs, after the test. Clear scratches were observed in the rolling direction on the needle surface (roller surface) made of unprocessed race (product without periodic structure), but on the needle surface (roller surface) made with processed product with periodic structure formed. , almost no scratches were observed.

また、差動すべりが生じない 中央部付近のニードル表面の試験後の様子を図12に示す。中央部付近では差動すべりが生じないため,未加工レース(周期構造未加工品)を用いたニードル表面(ころ表面),周期構造が形成された加工品を用いたニードル表面(ころ表面)ともにほとんど傷の発生が認められなかった。 Figure 12 shows the state of the needle surface near the center, where differential slip does not occur, after the test. Since differential slip does not occur near the center, both the needle surface (roller surface) using an unprocessed race (periodically structured product) and the needle surface (roller surface) using a processed product with a periodic structure are Almost no scratches were observed.

潤滑剤としてU3-P(脂肪族ウレアグリース)を用いた場合
一定速度(50.5mm/s)で5時間のなじみ運転中の摩擦係数を図13に示す。周期構造の有無にかかわらず、PAO6潤滑時より摩擦係数が低下した。100mm/s以下の低速域では、増ちょう剤由来の付着物により潤滑膜厚が増加し、これが摩擦係数低減の要因と考えられる。未加工品は5時間のなじみ期間中に9%の摩擦増加が見られた。一方、周期構造形成品は、ほぼー定の摩擦係数を維持し、5時間の平均摩擦係数は未加工品に対して16%低減した。周期構造の基油分離作用で増ちょう剤が高濃度化され、増ちょう剤由来の保護膜形成が促進されたことで摩擦が低減したと考えられる。未加工品では保護膜の剥離速度が形成速度を上回るため、摩擦が増加したと考えられる。なじみ終了後に測定した1回目から4回目までの摩擦係数を図14に示す。
When U3-P (aliphatic urea grease) was used as the lubricant, the friction coefficient during 5 hours of break-in operation at a constant speed (50.5 mm/s) is shown in FIG. Regardless of the presence or absence of a periodic structure, the coefficient of friction was lower than when using PAO6 lubrication. In a low speed range of 100 mm/s or less, the lubricant film thickness increases due to deposits derived from the thickener, and this is considered to be a factor in reducing the friction coefficient. The raw product showed a 9% increase in friction during the 5 hour break-in period. On the other hand, the periodic structure formed product maintained a nearly constant friction coefficient, and the average friction coefficient for 5 hours was reduced by 16% compared to the unprocessed product. It is thought that friction was reduced by increasing the concentration of the thickener due to the base oil separation effect of the periodic structure and promoting the formation of a protective film derived from the thickener. In the unprocessed product, the rate of peeling of the protective film exceeded the rate of formation, which is thought to be the reason for the increase in friction. FIG. 14 shows the friction coefficients measured from the first to fourth times after the break-in was completed.

PA06潤滑時と同様、周期構造形成品の摩擦係数は全潤滑状態で、未加工品より低下した。また、未加工品は4回目の測定で急激な摩擦係数の上昇が発生したが、周期構造形成品では安定した摩擦係数が維持された。グリース潤滑時では、周期構造のグリース保持や摩耗粉トラップ効果に加えて、油分に対して高い濡れ性を示す周期構造が、増ちょう剤由来の保護膜形成を促進することや転走面外に排出されたグリースが基油分離され、転走面(摺動面)周縁部から基油が再流入することで、枯渇潤滑下での摩擦係数上昇が抑制されたと考えられる。 As with the case of PA06 lubrication, the friction coefficient of the periodic structure-formed product was lower than that of the unprocessed product in the fully lubricated state. In addition, although the friction coefficient of the unprocessed product suddenly increased at the fourth measurement, the friction coefficient of the periodic structure-formed product remained stable. During grease lubrication, in addition to the effect of the periodic structure in retaining grease and trapping wear particles, the periodic structure, which exhibits high wettability to oil, promotes the formation of a protective film derived from the thickener and prevents the formation of particles outside the rolling contact surface. It is thought that the base oil was separated from the discharged grease and the base oil re-inflowed from the peripheral edge of the raceway surface (sliding surface), thereby suppressing the increase in the coefficient of friction under depleted lubrication.

大きな差動すべりが生じる外端面から1150μmのニードル表面(ころ表面)の試験後の様子を図15に示す。未加工レース(周期構造未加工品)を用いたニードル表面(ころ表面)は転がり方向に明瞭な傷が認められたが、周期構造が形成された加工品を用いたニードル表面(ころ表面)では、ほとんど傷の発生が認められなかった。 FIG. 15 shows the state of the needle surface (roller surface) 1150 μm from the outer end face after the test, where a large differential slip occurs. Clear scratches were observed in the rolling direction on the needle surface (roller surface) made of unprocessed race (product without periodic structure), but on the needle surface (roller surface) made with processed product with periodic structure formed. , almost no scratches were observed.

また、差動すべりが生じない 中央部付近のニードル表面の試験後の様子を図16に示す。中央部付近では差動すべりが生じないため、未加工レース(周期構造未加工品)を用いたニードル表面(ころ表面)、周期構造が形成された加工品を用いたニードル表面(ころ表面)ともにほとんど傷の発生が認められなかった。 Figure 16 shows the state of the needle surface near the center, where differential slip does not occur, after the test. Since differential slip does not occur near the center, both the needle surface (roller surface) using an unprocessed race (periodic structure unprocessed product) and the needle surface (roller surface) using a processed product with a periodic structure are formed. Almost no scratches were observed.

このため、スラストころ軸受(スラスト針状ころ軸受)の摩擦・摩耗に及ぼす周期構造の影響について検証した結果、以下の結論を得た。
(1)周期構造が形成された軌道輪は、潤沢潤滑下での摩擦低減効果が認められる。
(2)周期構造が形成された軌道輪は、枯渇潤滑下での焼き付き防止に有効である。
(3)周期構造が形成された軌道輪は、ニードル(ころ)の摩耗低下に有効である。
Therefore, as a result of examining the influence of the periodic structure on the friction and wear of thrust roller bearings (thrust needle roller bearings), we came to the following conclusions.
(1) A bearing ring with a periodic structure is recognized to have a friction reducing effect under abundant lubrication.
(2) A bearing ring with a periodic structure is effective in preventing seizure under depleted lubrication.
(3) A bearing ring with a periodic structure is effective in reducing wear on needles (rollers).

11、12 軌道輪
13 ころ
20、20A、20B、20C、20D 周期構造
21 未加工部
50 軸受
R 接触通過領域
11, 12 Bearing ring 13 Roller 20, 20A, 20B, 20C, 20D Periodic structure 21 Unprocessed part 50 Bearing R Contact passage area

Claims (4)

軸方向に互いに対向する一対の軌道輪と、この軌道輪の間に径方向に沿った状態で放射状に配設される複数個のころとを備え、前記一対の軌道輪は、それぞれ、中心孔が設けられたリング状平板体からなるとともに、前記ころは針状ころ又は円筒ころであるスラストころ軸受であって、
少なくともいずれか一方の軌道輪におけるころの接触通過領域と、ころの外周面との少なくともいずれか一方に、複数の微細溝で構成されるグレーティング状凹凸の周期構造を設けたものであり、前記グレーティング状凹凸の周期構造が軌道輪におけるころの接触通過領域の内周側および外周側に設けられ、外周側に設けられた周期構造は、接触通過領域の外周縁よりも外径側にはみ出し、内周側に設けられた周期構造は、接触通過領域の内周縁よりも内径側にはみ出し、接触通過領域の中心線上の差動すべりが生じない範囲は、前記グレーティング状凹凸の周期構造を有さない面としたことを特徴とするスラストころ軸受。
A pair of bearing rings facing each other in the axial direction, and a plurality of rollers arranged radially between the bearing rings in a radial direction , each of the pair of bearing rings having a center hole. A thrust roller bearing consisting of a ring-shaped flat plate body provided with rollers, the rollers being needle rollers or cylindrical rollers,
A periodic structure of grating-like unevenness composed of a plurality of fine grooves is provided on at least one of the contact passage area of the roller in at least one of the bearing rings and the outer circumferential surface of the roller. A periodic structure with irregularities in the shape of a groove is provided on the inner and outer circumferential sides of the contact passage area of the roller in the bearing ring, and the periodic structure provided on the outer circumference protrudes to the outer diameter side from the outer circumference of the contact passage area, and The periodic structure provided on the circumferential side protrudes radially inward from the inner peripheral edge of the contact passage area, and the range where differential slip does not occur on the center line of the contact passage area does not have the periodic structure of the grating-like unevenness. A thrust roller bearing characterized by a flat surface.
軸方向に互いに対向する一対の軌道輪と、この軌道輪の間に径方向に沿った状態で放射状に配設される複数個のころとを備えたスラストころ軸受であって、
少なくともいずれか一方の軌道輪におけるころの接触通過領域と、ころの外周面との少なくともいずれか一方に、複数の微細溝で構成されるグレーティング状凹凸の周期構造を設けたものであり、前記グレーティング状凹凸の周期構造が軌道輪におけるころの接触通過領域の内周側および外周側に設けられ、外周側に設けられた周期構造は、接触通過領域の外周縁よりも外径側にはみ出し、内周側に設けられた周期構造は、接触通過領域の内周縁よりも内径側にはみ出し、接触通過領域の中心線上の差動すべりが生じない範囲は、前記グレーティング状凹凸の周期構造を有さない面とし、前記グレーティング状凹凸の周期構造が、前記軌道輪の円周方向に沿って配向していることを特徴とするスラストころ軸受。
A thrust roller bearing comprising a pair of bearing rings facing each other in the axial direction and a plurality of rollers arranged radially along the radial direction between the bearing rings,
A periodic structure of grating-like unevenness composed of a plurality of fine grooves is provided on at least one of the contact passage area of the roller in at least one of the bearing rings and the outer circumferential surface of the roller. A periodic structure with irregularities in the shape of a groove is provided on the inner and outer circumferential sides of the contact passage area of the roller in the bearing ring, and the periodic structure provided on the outer circumference protrudes to the outer diameter side from the outer circumference of the contact passage area, and The periodic structure provided on the circumferential side protrudes radially inward from the inner peripheral edge of the contact passage area, and the range where differential slip does not occur on the center line of the contact passage area does not have the periodic structure of the grating-like unevenness. A thrust roller bearing characterized in that the periodic structure of the grating-like unevenness is oriented along the circumferential direction of the bearing ring.
前記グレーティング状凹凸の周期構造の凹凸が50nm以上10μm以下かつ周期ピッチが10μm以下であることを特徴とする請求項1又は請求項2に記載のスラストころ軸受。。 The thrust roller bearing according to claim 1 or 2, characterized in that the periodic structure of the grating-like unevenness has an unevenness of 50 nm or more and 10 μm or less and a periodic pitch of 10 μm or less. . 前記グレーティング状凹凸の周期構造は、凸部頂点が非平坦面となって連続的に高さが変化するものであることを特徴とする請求項1~請求項3のいずれか1項に記載のスラストころ軸受。 4. The periodic structure of the grating-like unevenness has a convex apex that is a non-flat surface and whose height changes continuously. Thrust roller bearing.
JP2019208661A 2019-11-19 2019-11-19 thrust roller bearing Active JP7398932B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019208661A JP7398932B2 (en) 2019-11-19 2019-11-19 thrust roller bearing

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019208661A JP7398932B2 (en) 2019-11-19 2019-11-19 thrust roller bearing

Publications (2)

Publication Number Publication Date
JP2021080999A JP2021080999A (en) 2021-05-27
JP7398932B2 true JP7398932B2 (en) 2023-12-15

Family

ID=75964629

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019208661A Active JP7398932B2 (en) 2019-11-19 2019-11-19 thrust roller bearing

Country Status (1)

Country Link
JP (1) JP7398932B2 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009108901A (en) 2007-10-29 2009-05-21 Canon Machinery Inc Rolling slide face structure
JP2018194149A (en) 2017-05-22 2018-12-06 キヤノンマシナリー株式会社 Slide surface structure

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008128398A (en) * 2006-11-22 2008-06-05 Ntn Corp Manufacturing method of bearing ring for thrust bearing, manufacturing device of thrust bearing, bearing ring for thrust bearing and thrust bearing
JP2009108963A (en) * 2007-10-31 2009-05-21 Ntn Corp Rolling member
JP2015175497A (en) * 2014-03-18 2015-10-05 Ntn株式会社 thrust needle bearing

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009108901A (en) 2007-10-29 2009-05-21 Canon Machinery Inc Rolling slide face structure
JP2018194149A (en) 2017-05-22 2018-12-06 キヤノンマシナリー株式会社 Slide surface structure

Also Published As

Publication number Publication date
JP2021080999A (en) 2021-05-27

Similar Documents

Publication Publication Date Title
EP2097208B1 (en) Friction piece in a lubricated medium, working at contact pressures higher than 200 mpa
JP6964392B2 (en) Sliding surface structure and manufacturing method of sliding surface structure
JP2009002436A (en) Rolling slide member
JP2008045573A (en) Rolling sliding member and its manufacturing method as well as rolling device
KR101803120B1 (en) Dirt guide grooves in lubricated plain bearings
CN103671556A (en) Rolling bearing
JP6612053B2 (en) Sliding surface structure
JP7398932B2 (en) thrust roller bearing
EP2434172B1 (en) Roller and cage assembly, roller bearing and cage assembly, and cage
JP2007270919A (en) Rolling slide member
JP2007255604A (en) One-way clutch
KR102647465B1 (en) conical roller bearings
JP2010180971A (en) Rolling bearing and manufacturing method
JP6004355B2 (en) Lubricating layer breakage suppressing method and structure having sliding portion
WO2013087429A1 (en) A process for preparing a protective layer on a tribological surface of a mechanical component
WO2016072305A1 (en) Rotational sliding bearing
EP2933362A1 (en) Ring-traveler system of ring spinning machine
JP7249743B2 (en) thrust plain bearing
JP2009185938A (en) Roller bearing
JP2008032052A (en) Thrust roller bearing
JP5619937B2 (en) Sliding surface structure
JP2006322504A (en) Tapered roller bearing
JP2003314561A (en) Ball bearing
JP2003176826A (en) Rolling bearing
JP7373898B2 (en) Contact surface structure

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220512

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230125

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230202

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230329

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230703

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230824

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20231117

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20231205

R150 Certificate of patent or registration of utility model

Ref document number: 7398932

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150