JP2009108901A - Rolling slide face structure - Google Patents

Rolling slide face structure Download PDF

Info

Publication number
JP2009108901A
JP2009108901A JP2007280461A JP2007280461A JP2009108901A JP 2009108901 A JP2009108901 A JP 2009108901A JP 2007280461 A JP2007280461 A JP 2007280461A JP 2007280461 A JP2007280461 A JP 2007280461A JP 2009108901 A JP2009108901 A JP 2009108901A
Authority
JP
Japan
Prior art keywords
rolling
concave
rolling sliding
raceway surface
passage region
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007280461A
Other languages
Japanese (ja)
Other versions
JP4523026B2 (en
Inventor
Hiroshi Sawada
博司 沢田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Machinery Inc
Original Assignee
Canon Machinery Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Machinery Inc filed Critical Canon Machinery Inc
Priority to JP2007280461A priority Critical patent/JP4523026B2/en
Publication of JP2009108901A publication Critical patent/JP2009108901A/en
Application granted granted Critical
Publication of JP4523026B2 publication Critical patent/JP4523026B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/30Parts of ball or roller bearings
    • F16C33/66Special parts or details in view of lubrication
    • F16C33/6637Special parts or details in view of lubrication with liquid lubricant
    • F16C33/664Retaining the liquid in or near the bearing
    • F16C33/6651Retaining the liquid in or near the bearing in recesses or cavities provided in retainers, races or rolling elements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/30Parts of ball or roller bearings
    • F16C33/58Raceways; Race rings
    • F16C33/583Details of specific parts of races
    • F16C33/585Details of specific parts of races of raceways, e.g. ribs to guide the rollers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C19/00Bearings with rolling contact, for exclusively rotary movement
    • F16C19/02Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows
    • F16C19/10Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for axial load mainly
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2240/00Specified values or numerical ranges of parameters; Relations between them
    • F16C2240/40Linear dimensions, e.g. length, radius, thickness, gap
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2240/00Specified values or numerical ranges of parameters; Relations between them
    • F16C2240/40Linear dimensions, e.g. length, radius, thickness, gap
    • F16C2240/42Groove sizes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2300/00Application independent of particular apparatuses
    • F16C2300/02General use or purpose, i.e. no use, purpose, special adaptation or modification indicated or a wide variety of uses mentioned

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Rolling Contact Bearings (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a rolling slide face structure capable of obtaining excellent friction reduction action. <P>SOLUTION: In the rolling slide face structure with a cross-sectionally recessed curved-like truck surface 4 that a rolling body 1 is rotatively slid, a recessed part 6 extending in a direction intersecting a rolling slide direction of the rolling body 1b is continuously formed in the rolling slide direction on at least one side of the contact passage area B of the rolling body 1 at the truck surface 4. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、転動体が転がり摺動する軌道面を有する転がり摺動面構造に関する。   The present invention relates to a rolling sliding surface structure having a raceway surface on which rolling elements roll and slide.

スラストベアリングやカムフォロア等の転がり摺動部材の耐久性を向上させるために、転動体と転動体が転がり摺動する軌道面との間に潤滑油を膜状に介在させて(以下、油膜という)、互いに摺動する二面間の摩擦を低減させている。   In order to improve the durability of rolling sliding members such as thrust bearings and cam followers, lubricating oil is interposed between the rolling element and the raceway surface on which the rolling element rolls and slides (hereinafter referred to as an oil film). The friction between the two sliding surfaces is reduced.

例えば、特許文献1には、油膜形成能力を向上させるために、軌道面に、微細な凹条部を転動体の転がり摺動方向へ連続的に形成している。この凹条部が潤滑油を保持する油溜まりとして機能することにより、軌道面と転動体との間に油膜を十分に形成することが可能である。また、特に転がり摺動方向に対して強い油膜を形成するために、凹条部を、転がり摺動方向と直交する方向へ延在するように形成している(特許文献1の図2参照)。   For example, in Patent Document 1, in order to improve the oil film forming ability, fine concave portions are continuously formed on the raceway surface in the rolling and sliding direction of the rolling elements. This concave line portion functions as an oil reservoir for holding lubricating oil, so that an oil film can be sufficiently formed between the raceway surface and the rolling elements. Further, in order to form an oil film that is particularly strong in the rolling sliding direction, the recess is formed to extend in a direction perpendicular to the rolling sliding direction (see FIG. 2 of Patent Document 1). .

上記微細な凹条部の周期構造を、固体材料の表面に容易に形成できる加工方法として、レーザによる加工方法がある。具体的には、加工閾値近傍のフルエンスで直線偏光のフェムト秒レーザで固体材料の加工面を走査すると、サブミクロンの周期ピッチと振幅(高低差)を持つグレーティング状の周期構造を自己組織的に形成することができる(例えば、非特許文献1参照)。   There is a laser processing method as a processing method capable of easily forming the periodic structure of the fine concave portions on the surface of the solid material. Specifically, when the processing surface of a solid material is scanned with a linearly polarized femtosecond laser at a fluence near the processing threshold, a grating-like periodic structure with a submicron periodic pitch and amplitude (height difference) is self-organized. (For example, refer nonpatent literature 1).

図10は、周期構造作成装置の模式図である。レーザ発生装置400からフェムト秒レーザLをステージ500上の固体材料Zの鏡面状に研磨された表面に照射する。レーザエネルギーは、1/2波長板600と偏光ビームスプリッタ700を用いて調整可能であり、レンズ800で集光されて固体材料Zの表面に照射される。   FIG. 10 is a schematic diagram of the periodic structure creation device. A femtosecond laser L is irradiated from the laser generator 400 onto the mirror-polished surface of the solid material Z on the stage 500. The laser energy can be adjusted using the half-wave plate 600 and the polarization beam splitter 700, and is condensed by the lens 800 and irradiated onto the surface of the solid material Z.

パルスレーザを固体材料Zの表面に照射すると、入射光のp偏光成分と、表面散乱光のp偏光成分との干渉が起こり、レーザ照射面にレーザ波長間隔でエネルギーの粗密が生じる。入射光のフルエンスがレーザの閾値近傍の場合、高エネルギー部分のみが選択的にアブレーションされる。一旦アブレーションが始まり表面粗さが増加すると、次のレーザ照射時には表面散乱光の強度が増加し、さらにアブレーションが進むと共に、1波長λ離れた位置でも干渉が起こる。入射光が直線偏光の場合、レーザ照射を繰り返すと、それによって入射光の波長λとほぼ同じ間隔で干渉が生じることにより、グレーティング状の周期構造が自己組織的に作成される。パルスレーザをオーバーラップさせながら走査させることで、周期構造を固体材料Zの表面に広範囲に拡張することができる。
特開2005−321048号公報 沢田博司,川原公介,二宮孝文,黒澤宏,横谷篤至:フェムト秒レーザによる微細周期構造の形成,精密工学会誌,69,4,(2003)554.
When the surface of the solid material Z is irradiated with a pulse laser, interference between the p-polarized component of the incident light and the p-polarized component of the surface scattered light occurs, resulting in energy density at the laser wavelength interval on the laser irradiation surface. When the fluence of incident light is near the laser threshold, only the high energy portion is selectively ablated. Once the ablation is started and the surface roughness is increased, the intensity of the surface scattered light is increased at the time of the next laser irradiation, the ablation is further advanced, and interference occurs at a position one wavelength λ away. When the incident light is linearly polarized light, repeated laser irradiation causes interference at approximately the same interval as the wavelength λ of the incident light, thereby creating a grating-like periodic structure in a self-organized manner. The periodic structure can be extended over a wide range on the surface of the solid material Z by scanning the pulse laser while overlapping it.
JP-A-2005-32148 Sawada Hiroshi, Kawahara Kosuke, Ninomiya Takafumi, Kurosawa Hiroshi, Yokoya Atsushi: Formation of Fine Periodic Structures with Femtosecond Laser, Journal of Precision Engineering, 69, 4, (2003) 554.

しかし、上記特許文献1のように、転がり摺動方向に直交する方向へ延びた凹条部を、軌道面に連続的に形成しても、良好な摩擦低減作用を得られない場合がある。以下、このことについて、図11を参照して説明する。   However, as in Patent Document 1, even if the concave strip extending in the direction orthogonal to the rolling sliding direction is continuously formed on the raceway surface, there may be a case where a satisfactory friction reducing action cannot be obtained. Hereinafter, this will be described with reference to FIG.

図11の(a)は、従来の転がり摺動面構造の断面図、(b)はその平面図である。この図11(a)(b)において、符号100は転動体としての球体、符号200は球体100が転がり転動する横断面凹湾曲状の軌道面である。図11(b)に示すように、軌道面200の全面に、転がり摺動方向と直交する方向に延びた凹条部300が、転がり摺動方向へ連続的に形成されている。   11A is a cross-sectional view of a conventional rolling sliding surface structure, and FIG. 11B is a plan view thereof. In FIGS. 11A and 11B, reference numeral 100 denotes a spherical body as a rolling element, and reference numeral 200 denotes a raceway surface having a concave curved cross section on which the spherical body 100 rolls and rolls. As shown in FIG. 11B, a concave strip 300 extending in the direction perpendicular to the rolling sliding direction is continuously formed on the entire raceway surface 200 in the rolling sliding direction.

球体100は軌道面200の幅方向中央(底部)において接触し、その球体100と軌道面200との接触面(接触楕円)を、図11の(b)においてハッチング部Aで示す。そして、球体100が軌道面200に沿って転がり摺動した場合、符号Bで示す領域が、球体100が軌道面200に接触しつつ通過する接触通過領域となる。   The spherical body 100 contacts at the center (bottom) in the width direction of the raceway surface 200, and a contact surface (contact ellipse) between the spherical body 100 and the raceway surface 200 is indicated by a hatched portion A in FIG. When the sphere 100 rolls and slides along the raceway surface 200, the region indicated by reference sign B becomes a contact passage region through which the sphere 100 passes while contacting the raceway surface 200.

接触通過領域の両側では、転がり摺動する球体と軌道面の間に滑りが生じ、この滑りによって、転がり摺動方向と直交する方向に延びた凹条部内の潤滑油に動圧が発生する。そして、潤滑油はその滑りによる動圧の影響を受けて、軌道面の凹条部相互間の凸条部と、球体との間に引き込まれる。これにより、接触通過領域の両側において、潤滑油を軌道面(詳しくは、凹条部相互間の凸条部)と球体との間に介在させることができ、油膜を形成することができる。   On both sides of the contact passage area, slip occurs between the rolling and sliding sphere and the raceway surface, and this slip generates dynamic pressure in the lubricating oil in the concave portion extending in the direction perpendicular to the rolling and sliding direction. Then, the lubricating oil is affected by the dynamic pressure due to the sliding, and is drawn between the ridges between the ridges between the ridges on the raceway surface. As a result, on both sides of the contact passage region, the lubricating oil can be interposed between the raceway surface (specifically, the convex strips between the concave strips) and the sphere, and an oil film can be formed.

一方、接触通過領域では、球体は純転がりし、球体と軌道面の間に滑りはほとんど生じないため、接触通過領域の凹条部内の潤滑油に、滑りによる動圧は発生しにくい。従って、接触通過領域では、凹条部を形成しても、上記のような滑りによる油膜形成作用を得ることができない。また、接触通過領域では、球体が転がり摺動することにより接触通過領域に引き込まれた潤滑油が凹条部に沿って流出する。これらの理由により、接触通過領域においては、凹条部を形成することによって、摩擦力が増大すると考えられるので、軌道面全体としての摩擦低減作用を効果的に得られない問題がある。   On the other hand, in the contact passing region, the sphere rolls purely, and slip hardly occurs between the sphere and the raceway surface, so that the dynamic oil due to the slip is hardly generated in the lubricating oil in the concave portion of the contact passing region. Therefore, in the contact passage region, even if the concave strip portion is formed, the oil film forming action due to the slip as described above cannot be obtained. Further, in the contact passing region, the lubricating oil drawn into the contact passing region flows out along the concave strip portion when the sphere rolls and slides. For these reasons, in the contact passage region, it is considered that the frictional force is increased by forming the concave stripe portion, and thus there is a problem that the friction reducing action as the entire raceway surface cannot be effectively obtained.

そこで、本発明は、上記課題に鑑みて、良好な摩擦低減作用を得ることが可能な転がり摺動面構造を提供する。   Then, in view of the said subject, this invention provides the rolling sliding surface structure which can obtain a favorable friction reduction effect | action.

請求項1の発明は、転動体が転がり摺動する横断面凹湾曲状の軌道面を有する転がり摺動面構造において、前記軌道面における前記転動体の接触通過領域の少なくとも片側に、前記転動体の転がり摺動方向と交差する方向へ延びた凹条部及び/又は凸条部を、転がり摺動方向に連続的に形成したものである。   The invention according to claim 1 is a rolling sliding surface structure having a concave curved raceway surface on which the rolling element rolls and slides, and the rolling element is provided on at least one side of a contact passing region of the rolling element on the raceway surface. The concave strip and / or the convex strip extending in the direction intersecting with the rolling sliding direction are continuously formed in the rolling sliding direction.

ここでいう、「連続的に」は、凹条部及び/又は凸条部を転がり摺動方向に等ピッチで形成したもの、あるいは、不等ピッチ又は部分的に長いピッチで形成したもの、言い換えれば断続的に形成したものも含む。   As used herein, “continuously” means that the concave and / or convex ridges are formed at an equal pitch in the rolling sliding direction, or an unequal pitch or a partly long pitch, in other words. Including those formed intermittently.

上記請求項1の構成では、(転がり摺動する転動体と軌道面の間に)滑りが発生する接触通過領域の両側のうち、少なくとも片側に、油溜まり機能を有する凹条部(及び/又は凸条部)を形成している。上記滑りによって、凹条部(又は凸条部相互空間の隙間)に保持された潤滑油に動圧が生じると、潤滑油はその滑りによる動圧の影響を受けて凹条部相互間の凸条部と転動体との間に引き込まれ介在する。これにより、軌道面と転動体との間に油膜が十分に形成される。一方、(転がり摺動する転動体と軌道面の間に)滑りがほとんど発生しない接触通過領域には、凹条部(及び/又は凸条部)を形成していない。これにより、転動体が転がり摺動することによって接触通過領域に引き込まれた潤滑油が、凹条部に沿って接触通過領域から流出するのを防止することができ、接触通過領域においても油膜を形成することができる。このように、本発明の転がり摺動面構造は、軌道面全体において良好な摩擦低減作用を得ることが可能となる。   In the configuration of claim 1 above, at least one side of the contact passage region where slippage occurs (between the rolling and rolling rolling elements and the raceway surface) is provided with a groove (and / or Ridges). When dynamic pressure is generated in the lubricating oil held in the concave portions (or the gaps between the convex portions) due to the slip, the lubricating oil is affected by the dynamic pressure due to the sliding, and the convex portions between the concave portions are projected. It is drawn and interposed between the strip and the rolling element. Thereby, an oil film is sufficiently formed between the raceway surface and the rolling elements. On the other hand, in the contact passing region where slip hardly occurs (between the rolling element that rolls and slides and the raceway surface), no concave strip (and / or convex strip) is formed. Thereby, it is possible to prevent the lubricating oil drawn into the contact passage region by rolling and sliding of the rolling elements from flowing out of the contact passage region along the concave strip portion, and the oil film is also formed in the contact passage region. Can be formed. Thus, the rolling sliding surface structure of the present invention can obtain a good friction reducing action on the entire raceway surface.

請求項2の発明は、請求項1に記載の転がり摺動面構造において、前記凹条部及び/又は凸条部を、前記接触通過領域の少なくとも片側であって接触通過領域から隔絶して形成したものである。   A second aspect of the present invention is the rolling sliding surface structure according to the first aspect, wherein the concave and / or convex ridges are formed at least on one side of the contact passage region and separated from the contact passage region. It is what.

すなわち、凹条部(及び/又は凸条部)を、滑りによる油膜形成作用が得られない接触通過領域を避けて形成する。これにより、接触通過領域において、転動体が転がり摺動することによって引き込まれた潤滑油の流出を効果的に防止して、油膜を形成することができる。   That is, the concave strip (and / or the convex strip) is formed so as to avoid a contact passage region where an oil film forming action due to sliding cannot be obtained. Thereby, in the contact passage region, it is possible to effectively prevent the lubricating oil drawn by the rolling elements from rolling and sliding, and to form an oil film.

請求項3の発明は、請求項1又は2に記載の転がり摺動面構造において、前記接触領域に完全に包含されるように、前記転がり摺動方向と交差する方向へ延びた凹条部及び/又は凸条部を、転がり摺動方向に連続的に形成したものである。   The invention according to claim 3 is the rolling sliding surface structure according to claim 1 or 2, wherein the groove extends in a direction crossing the rolling sliding direction so as to be completely included in the contact area, and The ridges are formed continuously in the rolling sliding direction.

凹条部(及び/又は凸条部)を、接触通過領域に完全に包含されるように配設したことにより、この凹条部(又は凸条部相互空間の隙間)が、軌道面と転動体との接触面によって密封される。これにより、転動体が軌道面を転がり摺動する際に、潤滑油が凹条部(又は凸条部相互空間の隙間)に沿って流出するのを防止することができる。   By arranging the concave strip (and / or the convex strip) so as to be completely included in the contact passage region, the concave strip (or the gap between the convex strips) is allowed to roll with the raceway surface. Sealed by the contact surface with the moving body. Thereby, when a rolling element rolls and slides on a raceway surface, it can prevent that lubricating oil flows out along a concave strip part (or clearance gap between convex strip parts).

請求項4の発明は、請求項1から3のいずれか1項に記載の転がり摺動面構造において、前記凹条部及び/又は凸条部が、転がり摺動方向に直交する方向に延びたものである。   According to a fourth aspect of the present invention, in the rolling sliding surface structure according to any one of the first to third aspects, the concave strip portion and / or the convex strip portion extend in a direction perpendicular to the rolling sliding direction. Is.

凹条部(及び/又は凸条部)を、転がり摺動方向に対して傾斜するように形成した場合、転動体の転がり摺動する方向によっては、凹条部(又は凸条部相互空間の隙間)に保持された潤滑油が、凹条部(及び/又は凸条部)に沿って軌道面の外側に流出する場合がある。これに対し、上記請求項4のように、凹条部(及び/又は凸条部)を、転がり摺動方向に直交する方向に延ばすことにより、転動体が軌道面の一方向に転がり摺動する場合、又は軌道面の両方向に転がり摺動する場合、どちらの場合においても、潤滑油が凹条部(及び/又は凸条部)に沿って流出するのを抑制することができる。   When the concave strip (and / or the convex strip) is formed so as to be inclined with respect to the rolling sliding direction, depending on the direction in which the rolling element rolls and slides, the concave strip (or the convex strip mutual space) In some cases, the lubricating oil held in the gap) flows out of the raceway surface along the recess (and / or the protrusion). On the other hand, as described in claim 4, the rolling elements are rolled and slid in one direction of the raceway surface by extending the concave ridges (and / or ridges) in a direction orthogonal to the rolling sliding direction. In either case, or in the case of rolling and sliding in both directions of the raceway surface, it is possible to suppress the lubricant oil from flowing out along the concave strip portion (and / or the convex strip portion).

請求項5の発明は、請求項1から4のいずれか1項に記載の転がり摺動面構造において、前記凹条部及び/又は凸条部のピッチを、1μm以下に設定したものである。   A fifth aspect of the present invention is the rolling sliding surface structure according to any one of the first to fourth aspects, wherein the pitch of the concave stripe portion and / or the convex stripe portion is set to 1 μm or less.

これにより、凹条部(及び/又は凸条部)の潤滑油保持能力を向上させて、潤滑油が凹条部(又は凸条部相互空間の隙間)に沿って流出するのを抑制することができる。   Thereby, the lubricating oil retention capability of the groove (and / or the protrusion) is improved, and the lubricant is prevented from flowing out along the groove (or the gap between the protrusions). Can do.

請求項6の発明は、請求項1から5のいずれか1項に記載の転がり摺動面構造において、前記軌道面に、加工閾値近傍のフルエンスで直線偏光のレーザを照射すると共に、その照射部分をオーバーラップさせながら走査して、前記凹条部を自己組織的に転がり摺動方向に連続的に形成したものである。   A sixth aspect of the present invention is the rolling sliding surface structure according to any one of the first to fifth aspects, wherein the raceway surface is irradiated with a linearly polarized laser beam at a fluence in the vicinity of a processing threshold, and an irradiated portion thereof Are scanned while being overlapped, and the concave portion is rolled in a self-organized manner and continuously formed in the sliding direction.

これにより、凹条部の形成が容易となる。   Thereby, formation of a concave part becomes easy.

本発明の転がり摺動面構造によれば、滑りによる動圧の発生し易い接触通過領域の両側のうち、少なくとも片側に、油溜まり機能を有する凹条部(及び/又は凸条部)を形成することによって、動圧の発生が促進され油膜を十分に形成することができる。一方、滑りによる動圧の発生しにくい接触通過領域には、凹条部(及び/又は凸条部)を形成しないことで、潤滑油の流出を防止して油膜を形成することができる。このように、本発明の転がり摺動面構造は、軌道面全体において良好な摩擦低減作用を得ることが可能となる。また、接触通過領域に、応力集中の原因となる凹条部(及び/又は凸条部)を形成しないことにより、亀裂や破損の発生を防止することができる。   According to the rolling sliding surface structure of the present invention, the concave strip portion (and / or the convex strip portion) having an oil reservoir function is formed on at least one side of both sides of the contact passage region where dynamic pressure due to sliding is likely to occur. By doing so, generation | occurrence | production of dynamic pressure is accelerated | stimulated and an oil film can fully be formed. On the other hand, in the contact passage region where the dynamic pressure due to slipping is unlikely to occur, by not forming the concave portion (and / or the convex portion), it is possible to prevent the lubricating oil from flowing out and form an oil film. Thus, the rolling sliding surface structure of the present invention can obtain a good friction reducing action on the entire raceway surface. Further, by not forming the concave strip (and / or the convex strip) that causes stress concentration in the contact passage region, it is possible to prevent the occurrence of cracks and breakage.

以下、本発明の構成を、スラストベアリングの転がり摺動面に適用した実施形態を例に挙げて説明する。
図1は、スラストベアリングの断面図である。図1に示すように、スラストベアリングは、複数の球状の転動体1と、一対の環状のスラスト受座2,2と、スラスト受座2,2間に介装される環状の保持体3とを有する。複数の転動体1は、保持体3によって円周方向に等間隔に保持されている。一対のスラスト受座2,2の互いに対向する面には、それぞれ円環状の軌道面4が形成されており、この軌道面4に沿って転動体1が転がり摺動するようになっている。
Hereinafter, an embodiment in which the configuration of the present invention is applied to a rolling sliding surface of a thrust bearing will be described as an example.
FIG. 1 is a cross-sectional view of a thrust bearing. As shown in FIG. 1, the thrust bearing includes a plurality of spherical rolling elements 1, a pair of annular thrust receiving seats 2, 2, and an annular holding body 3 interposed between the thrust receiving seats 2, 2. Have The plurality of rolling elements 1 are held at equal intervals in the circumferential direction by the holding body 3. An annular raceway surface 4 is formed on each of the opposing surfaces of the pair of thrust receiving seats 2, 2, and the rolling element 1 rolls and slides along the raceway surface 4.

図1において上側と下側に配設した一対のスラスト受座2,2の各軌道面4は、同様に構成されている。以下、下側のスラスト受座2の軌道面4を例に、その構成について説明する。   In FIG. 1, the raceway surfaces 4 of the pair of thrust receiving seats 2 and 2 disposed on the upper side and the lower side are similarly configured. Hereinafter, the structure will be described by taking the raceway surface 4 of the lower thrust seat 2 as an example.

図2は、図1に示す下側のスラスト受座2の軌道面4を拡大した横断面図である。図2に示すように、この軌道面4の横断面形状は、凹円弧状に形成されている。   2 is an enlarged cross-sectional view of the raceway surface 4 of the lower thrust seat 2 shown in FIG. As shown in FIG. 2, the cross-sectional shape of the raceway surface 4 is formed in a concave arc shape.

図3は軌道面4の平面図であって、本発明の第1実施形態を示す。なお、軌道面4は、実際は円環状に湾曲して形成されているが、図3では、軌道面4は便宜的に直線状に図示している。   FIG. 3 is a plan view of the raceway surface 4 and shows the first embodiment of the present invention. The raceway surface 4 is actually formed in an annular shape, but in FIG. 3, the raceway surface 4 is illustrated in a straight line for convenience.

この実施形態では、転動体1は軌道面4の幅方向の中央(底部)において接触する。この転動体1と軌道面4が接触する接触面(接触楕円)を、図3のハッチング部Aで示す。また、同図において、符号Bで示す領域は、転動体1が軌道面4に沿って転動した場合に、前記接触面Aが通過する接触通過領域である。   In this embodiment, the rolling element 1 contacts at the center (bottom) in the width direction of the raceway surface 4. A contact surface (contact ellipse) where the rolling element 1 and the raceway surface 4 are in contact is indicated by a hatched portion A in FIG. Moreover, in the same figure, the area | region shown with the code | symbol B is a contact passage area | region through which the said contact surface A passes, when the rolling element 1 rolls along the track surface 4. FIG.

そして、接触通過領域Bを避けるように、その両側に、微細な凹条部6が転がり摺動方向へ連続的に形成されている。ここで、「転がり摺動方向」とは、転動体1が軌道面4に沿って転動する方向であり、図3において縦方向(上下方向)が転がり摺動方向となる。また、この凹条部6は、転がり摺動方向と直交する方向に延びている。   And so that the contact passage area | region B may be avoided, the fine groove part 6 is continuously formed in the rolling sliding direction on the both sides. Here, the “rolling sliding direction” is a direction in which the rolling element 1 rolls along the raceway surface 4, and the vertical direction (vertical direction) in FIG. 3 is the rolling sliding direction. Moreover, this recessed strip part 6 is extended in the direction orthogonal to a rolling sliding direction.

上記凹条部6は、図10に示す装置を使って形成すればよい。具体的には、全面を鏡面状に表面加工した軌道面4の加工予定部(接触通過領域Bの両側)に、加工閾値近傍のフルエンスで直線偏光のレーザを照射する。その照射部分をオーバーラップさせながら走査して自己組織的に凹条部6の周期構造を形成する。また、凹条部6の(周期構造の)ピッチは1μm以下であることが望ましい。この理由については、後述の転がり摺動試験のところで説明する。   What is necessary is just to form the said grooved part 6 using the apparatus shown in FIG. Specifically, a linearly polarized laser beam is irradiated at a fluence in the vicinity of the processing threshold on the planned processing portion (on both sides of the contact passage region B) of the track surface 4 whose surface has been mirror-finished. The irradiation portion is scanned while being overlapped to form the periodic structure of the concave portion 6 in a self-organizing manner. Moreover, it is desirable that the pitch (of the periodic structure) of the concave strips 6 is 1 μm or less. The reason for this will be described later in the rolling sliding test.

一方、接触通過領域Bには、前記凹条部6は形成されておらず、滑面状又は鏡面状に表面処理されたままとなっている。   On the other hand, in the contact passage region B, the concave stripe portion 6 is not formed, and the surface treatment is still performed in a smooth surface or a mirror surface.

図4は本発明の第2実施形態を示す。この実施形態は、接触通過領域Bの両側に形成した凹条部6の内側の端部が、接触通過領域B内へ侵入している。また、図5は本発明の第3実施形態を示す。第3実施形態では、接触通過領域Bの両側に形成された凹条部6が、接触通過領域Bから隔絶している。   FIG. 4 shows a second embodiment of the present invention. In this embodiment, the inner ends of the concave strips 6 formed on both sides of the contact passing area B enter the contact passing area B. FIG. 5 shows a third embodiment of the present invention. In the third embodiment, the concave strips 6 formed on both sides of the contact passing area B are isolated from the contact passing area B.

図4と図5に示すように、凹条部6が形成されていない領域(滑面部)の幅Wは、接触通過領域Bの幅Xより小さく設定してもよいし、接触通過領域Bの幅Xより大きく設定してもよい。ただし、凹条部6が形成されていない領域(滑面部)の幅Wの下限値は、接触通過領域Bの幅Xの0.5倍に設定することが好ましい。また、上記幅Wの上限値は、接触通過領域Bの幅Xの2倍に設定することが好ましい。これら、下限値と上限値の設定理由についても、後述の転がり摺動試験のところで説明する。   As shown in FIG. 4 and FIG. 5, the width W of the region (smooth surface portion) where the recess 6 is not formed may be set smaller than the width X of the contact passage region B, or It may be set larger than the width X. However, it is preferable to set the lower limit value of the width W of the region (smooth surface portion) where the concave strip portion 6 is not formed to 0.5 times the width X of the contact passage region B. The upper limit of the width W is preferably set to twice the width X of the contact passage area B. The reason for setting the lower limit value and the upper limit value will also be described in the later-described rolling sliding test.

なお、図4と図5において、上記説明した符号の箇所以外の符号であって、図3と同一の符号の箇所は、図3と同様の構成であるので説明を省略する。   4 and 5, the reference numerals other than the reference numerals described above and the same reference numerals as those in FIG. 3 have the same configurations as those in FIG.

図6は、本発明の第4実施形態を示す。図6に示すように、接触通過領域Bの両側に、微細な凹条部6が転がり摺動方向に連続的に形成されている。また、接触通過領域Bにも、微細な凹条部6が転がり摺動方向に連続的に形成されている。この接触通過領域Bに形成した凹条部6は、接触通過領域Bに完全に包含されるように配設されている。この接触領域Bに完全に包含される凹条部6の周期構造と、接触通過領域Bの両側に配設した凹条部6の周期構造との間には、それぞれ、凹条部6が形成されていない滑面状又は鏡面状の部分が介在している。なお、図6において、上記説明した符号の箇所以外の符号であって、図3と同一の符号の箇所は、図3と同様の構成であるので説明を省略する。   FIG. 6 shows a fourth embodiment of the present invention. As shown in FIG. 6, fine concave portions 6 are continuously formed in the rolling sliding direction on both sides of the contact passage region B. Also, in the contact passage region B, fine concave strips 6 are continuously formed in the rolling and sliding direction. The recess 6 formed in the contact passing area B is disposed so as to be completely included in the contact passing area B. Between the periodic structure of the concave portion 6 completely included in the contact region B and the periodic structure of the concave portion 6 disposed on both sides of the contact passage region B, the concave portion 6 is formed, respectively. An unsmoothed or mirror-like part is interposed. In FIG. 6, the reference numerals other than the reference numerals described above and the same reference numerals as those in FIG. 3 have the same configurations as those in FIG.

本発明者は、スラストベアリングの転がり摺動試験を行った。以下、この転がり摺動試験について説明する。
図7は、試験装置の簡略図である。この試験装置は、スラストベアリング10の一方(図の上側)のスラスト受座2を保持する上治具11と、他方(図の下側)のスラスト受座2を保持する下治具12を備える。上治具11を下治具12に対し回転させることにより、転動体1を軌道面4に沿って転がり摺動させることができる。このとき転動体1と軌道面4の間に生じる転がり摩擦係数を測定する。また、試験装置は、転動体1にアキシャル方向の荷重を付与するためのエアシリンダ13を備えている。
The inventor conducted a rolling sliding test of the thrust bearing. Hereinafter, this rolling sliding test will be described.
FIG. 7 is a simplified diagram of the test apparatus. This test apparatus includes an upper jig 11 for holding a thrust seat 2 on one side (upper side in the figure) of a thrust bearing 10 and a lower jig 12 for holding the thrust seat 2 on the other side (lower side in the figure). . The rolling element 1 can be rolled and slid along the track surface 4 by rotating the upper jig 11 with respect to the lower jig 12. At this time, the rolling friction coefficient generated between the rolling element 1 and the raceway surface 4 is measured. The test apparatus also includes an air cylinder 13 for applying a load in the axial direction to the rolling element 1.

本試験では、5種類のスラストベアリングを用意した。図8の(a)〜(e)は、それら5種類のスラストベアリングの各軌道面4の平面図である。図8(a)〜(e)において、縦方向が転がり摺動方向、横方向が転がり摺動方向と直交する軌道面4の幅方向である。   In this test, five types of thrust bearings were prepared. (A)-(e) of FIG. 8 is a top view of each track surface 4 of these five types of thrust bearings. 8A to 8E, the vertical direction is the rolling sliding direction, and the horizontal direction is the width direction of the raceway surface 4 orthogonal to the rolling sliding direction.

図8の(a)に示すのは、本発明の転がり摺動面構造を適用した軌道面4である。この軌道面4には、(幅方向中央の)接触通過領域Bの両側に、横方向に延びた凹条部6が、縦方向へ連続的に形成されている。   FIG. 8A shows a raceway surface 4 to which the rolling sliding surface structure of the present invention is applied. On the raceway surface 4, recessed strips 6 extending in the lateral direction are continuously formed in the longitudinal direction on both sides of the contact passage region B (in the center in the width direction).

図8の(b)〜(e)は、(a)の本発明のベアリングとの比較例である。(b)に示す比較例1は、軌道面4の全面に、横方向に延びた凹条部6を、縦方向へ連続的に形成している。(c)に示す比較例2は、軌道面4の全面に、縦方向に延びた凹条部6を、横方向へ連続的に形成している。また、(d)に示す比較例3は、軌道面4の(幅方向中央の)接触通過領域Bに、横方向に延びた凹条部6を、縦方向へ連続的に形成している。この凹条部6の両端は、接触通過領域Bから多少はみ出すように形成されている。(e)に示す比較例4は、軌道面4の(幅方向中央の)接触通過領域Bに、縦方向に延びた凹条部6を、横方向に連続的に形成している。なお、(a)、(d)、(e)において、軌道面4の凹条部6を形成していない部分は、滑面状又は鏡面状に処理されている。   (B)-(e) of FIG. 8 is a comparative example with the bearing of this invention of (a). In Comparative Example 1 shown in (b), the concave strip portion 6 extending in the lateral direction is continuously formed in the longitudinal direction on the entire surface of the raceway surface 4. In Comparative Example 2 shown in (c), the concave strip 6 extending in the vertical direction is continuously formed in the horizontal direction on the entire surface of the raceway surface 4. Moreover, the comparative example 3 shown to (d) forms the groove part 6 extended in the horizontal direction continuously in the vertical direction in the contact passage area | region B (center of the width direction) of the track surface 4. As shown in FIG. Both ends of the concave stripe portion 6 are formed so as to protrude somewhat from the contact passage region B. In Comparative Example 4 shown in (e), in the contact passage region B (in the center in the width direction) of the raceway surface 4, a concave strip portion 6 extending in the vertical direction is continuously formed in the horizontal direction. In addition, in (a), (d), (e), the part which does not form the concave-line part 6 of the track surface 4 is processed into the smooth surface shape or the mirror surface shape.

各凹条部6の深さ及びピッチは同様に形成されている。具体的には、凹条部6の深さは150〜200nm、ピッチは約700nmに設定している。また、各軌道面4に充填する潤滑油として、タービンオイルを使用した。   The depth and pitch of each recess 6 are similarly formed. Specifically, the depth of the recess 6 is set to 150 to 200 nm and the pitch is set to about 700 nm. Turbine oil was used as the lubricating oil to be filled in each raceway surface 4.

転がり摩擦の測定方法について説明する。
まず、図8の(a)〜(e)に示す各種ベアリングにおいて、一対のスラスト受座2,2を、試験装置の上治具11と下治具12に固定すると共に、エアシリンダ13によって転動体1にアキシャル方向の荷重を付与する。次に、上治具11を下治具12に対し回転させることにより、転動体1を軌道面4に沿って転動させる。転がり摩擦の測定前に、回転速度2.4m/s(約59πrad/s)で30分間回転させ、転動体1の温度を定常化させる。その後、回転速度を段階的に低下させながら、転動体1と軌道面4の間に生じる転がり摩擦係数を測定する。
A method for measuring rolling friction will be described.
First, in the various bearings shown in FIGS. 8A to 8E, the pair of thrust receiving seats 2 and 2 are fixed to the upper jig 11 and the lower jig 12 of the test apparatus, and rolled by the air cylinder 13. A load in the axial direction is applied to the moving body 1. Next, the rolling element 1 is rolled along the track surface 4 by rotating the upper jig 11 with respect to the lower jig 12. Before measuring the rolling friction, the rolling body 1 is rotated at a rotational speed of 2.4 m / s (about 59π rad / s) for 30 minutes to stabilize the temperature of the rolling element 1. Thereafter, the rolling friction coefficient generated between the rolling element 1 and the raceway surface 4 is measured while gradually decreasing the rotation speed.

本試験では、図8の(a)〜(e)に示す各種ベアリングにおいて、凹条部6を形成前と、凹条部6を形成後の、それぞれの転がり摩擦を測定した。   In this test, in each of the bearings shown in FIGS. 8A to 8E, the rolling frictions before and after forming the concave strip portion 6 were measured.

図9に転がり摩擦の測定結果を示す。図9の(a)〜(e)は、図8の(a)〜(e)のベアリングに対応している。図9の(a)〜(e)に示すグラフにおいて、縦軸は転動体1と軌道面4の間に生じる摩擦係数を示し、横軸は回転速度を示す。また、丸印でプロットしたデータは、凹条部6を加工前の摩擦係数を示し、三角印でプロットしたデータは、凹条部6を加工後の摩擦係数を示している。   FIG. 9 shows the measurement results of rolling friction. 9A to 9E correspond to the bearings of FIGS. 8A to 8E. In the graphs shown in FIGS. 9A to 9E, the vertical axis represents the friction coefficient generated between the rolling element 1 and the raceway surface 4, and the horizontal axis represents the rotational speed. The data plotted with circles indicates the friction coefficient before processing the concave strip 6, and the data plotted with triangles indicates the friction coefficient after processing the concave strip 6.

まず、図8の(b)に示す比較例1の測定結果から説明する。図9の(b)に示すグラフを見てわかるように、凹条部6を加工後の摩擦係数(三角プロット)は、凹条部6を加工前の摩擦係数(丸プロット)よりある程度低減している。   First, the measurement results of Comparative Example 1 shown in FIG. As can be seen from the graph shown in FIG. 9 (b), the friction coefficient (triangular plot) after processing the concave section 6 is reduced to some extent from the friction coefficient (round plot) before processing the concave section 6. ing.

転動体1が軌道面4に沿って転動すると、接触通過領域Bの両側では、転動体1と軌道面4の間に滑りが生じる。滑りが生じることによって、凹条部6に保持された潤滑油に動圧が発生し、潤滑油はその滑りによる動圧の影響を受けて凹条部6相互間の凸条部と転動体との間に引き込まれ介在する。これにより、接触通過領域Bの両側では、軌道面4と転動体1との間に油膜が形成される。   When the rolling element 1 rolls along the raceway surface 4, slip occurs between the rolling element 1 and the raceway surface 4 on both sides of the contact passage region B. When slipping occurs, dynamic pressure is generated in the lubricating oil held in the concave strip portion 6, and the lubricating oil is affected by the dynamic pressure due to the sliding, and the convex strip portion between the concave strip portions 6 and the rolling element It is drawn between and intervenes. Thereby, an oil film is formed between the raceway surface 4 and the rolling element 1 on both sides of the contact passage region B.

一方、接触通過領域Bでは、転動体1が純転がりするため、軌道面4との間に滑りがほとんど生じない。従って、接触通過領域Bに凹条部6を形成していても、その凹条部6において滑りによる油膜形成作用は得ることができない。さらに、接触通過領域Bでは、アキシャル方向の荷重を受けた転動体1が、軌道面4を押圧することによって、潤滑油が凹条部6に沿って流出したと考えられる。これらの理由により、接触通過領域Bでは摩擦係数が増加し、軌道面4全体として、摩擦係数の低減作用が効果的に得られなかったと推察される。   On the other hand, in the contact passage region B, the rolling element 1 rolls purely, so that there is almost no slip between the raceway surface 4. Therefore, even if the concave strip portion 6 is formed in the contact passage region B, an oil film forming action due to slippage cannot be obtained in the concave strip portion 6. Further, in the contact passing region B, it is considered that the rolling oil 1 that has received a load in the axial direction presses the raceway surface 4 so that the lubricating oil has flowed out along the concave strip 6. For these reasons, it is inferred that the friction coefficient increased in the contact passage region B, and the friction surface reducing action was not effectively obtained for the entire raceway surface 4.

図8の(c)に示す比較例2は、図9の(c)に示すように、凹条部6を加工前の摩擦係数と、加工後の摩擦係数について、差はほとんど認められない。この比較例2は、凹条部6が転がり摺動方向と平行を成すように延びているので、凹条部6に保持された潤滑油に滑りによる動圧が生じにくい。また、直交方向に延びた凹条部6に比べて、潤滑油の保持能力が低い。このことから、図8の(c)に示す比較例2は、図8の(b)の比較例1よりも、摩擦低減作用が得られなかったと考えられる。   In Comparative Example 2 shown in FIG. 8 (c), as shown in FIG. 9 (c), there is almost no difference between the friction coefficient before processing the concave strip 6 and the friction coefficient after processing. In Comparative Example 2, the concave strip portion 6 extends so as to be parallel to the rolling sliding direction, and therefore, the lubricating oil held by the concave strip portion 6 is less likely to generate dynamic pressure due to slipping. Further, the lubricating oil retention capability is low as compared with the concave strip portion 6 extending in the orthogonal direction. From this, it is considered that Comparative Example 2 shown in FIG. 8C did not provide a friction reducing action as compared with Comparative Example 1 shown in FIG.

また、図8の(d)と(e)に示す比較例3及び比較例4は、図9の(d)と(e)に示すように、どちらも凹条部6を加工後の摩擦係数(三角プロット)は、凹条部6を加工前の摩擦係数(丸プロット)より大きく増大した。これら比較例3と比較例4は、接触通過領域Bに凹条部6を形成しているが、接触通過領域Bでは滑りによる油膜形成作用は得られない。また、転動体1が接触通過領域Bを押圧することによって、潤滑油が凹条部6に沿って流出したと考えられる。これらの理由により、摩擦係数が増加したものと推察される。   Further, in Comparative Example 3 and Comparative Example 4 shown in FIGS. 8 (d) and 8 (e), as shown in FIGS. 9 (d) and 9 (e), the friction coefficient after machining the recess 6 is both. The (triangular plot) greatly increased the coefficient of friction of the concave strip 6 before processing (circle plot). In Comparative Example 3 and Comparative Example 4, the concave portion 6 is formed in the contact passage region B, but in the contact passage region B, an oil film forming action due to slipping cannot be obtained. In addition, it is considered that the lubricating oil has flowed out along the concave strip portion 6 when the rolling element 1 presses the contact passage region B. For these reasons, it is presumed that the coefficient of friction has increased.

上記図8の(b)〜(e)の比較例の試験結果に対して、図8の(a)に示す本発明の実施例は、図9の(a)に示すように、凹条部6を加工後の摩擦係数(三角プロット)は、凹条部6を加工前の摩擦係数(丸プロット)に比べ、特に、高速域での摩擦係数低減作用が大きい。   In contrast to the test results of the comparative examples of FIGS. 8B to 8E, the embodiment of the present invention shown in FIG. 8A has a concave portion as shown in FIG. The friction coefficient after processing 6 (triangular plot) has a greater effect of reducing the friction coefficient especially in the high speed region than the friction coefficient before processing the concave strip 6 (circle plot).

本発明の実施例は、軌道面4の接触通過領域Bの両端側に、凹条部6を形成している。転動体1が軌道面4を転動すると、接触通過領域Bの両端側において、転動体1との間に滑りが生じる。この滑りによって、凹条部6に保持された潤滑油に動圧が生じると、潤滑油はその滑りによる動圧の影響を受けて凹条部6相互間の凸条部と転動体との間に引き込まれ介在する。これにより、接触通過領域Bの両端側では、軌道面4と転動体1との間に油膜が十分に形成される。   In the embodiment of the present invention, the concave stripe portions 6 are formed on both end sides of the contact passage region B of the raceway surface 4. When the rolling element 1 rolls on the raceway surface 4, slip occurs between the rolling element 1 and both ends of the contact passage region B. When dynamic pressure is generated in the lubricating oil held by the concave strip 6 due to the slip, the lubricating oil is affected by the dynamic pressure due to the slip, and the gap between the convex strip between the concave strips 6 and the rolling elements. Is drawn into and intervenes. As a result, an oil film is sufficiently formed between the raceway surface 4 and the rolling element 1 at both ends of the contact passing region B.

一方、接触通過領域Bでは、滑りがほとんど生じないため、滑りによる油膜形成作用は得られない。しかし、接触通過領域Bには、凹条部6が形成されていないので、転動体1の転がり摺動により引き込まれた潤滑油が、凹条部6に沿って接触通過領域Bから流出することがない。これにより、軌道面4の接触通過領域Bと転動体1との間に油膜を形成することができる。上記理由から、本発明の実施例は、軌道面4全体に渡って十分な油膜を形成することが可能であり、摩擦を効果的に低減できたと推察される。   On the other hand, in the contact passage region B, since slip hardly occurs, an oil film forming action due to slip cannot be obtained. However, since the concave portion 6 is not formed in the contact passage region B, the lubricating oil drawn by the rolling sliding of the rolling element 1 flows out from the contact passage region B along the concave portion 6. There is no. Thereby, an oil film can be formed between the contact passage region B of the raceway surface 4 and the rolling element 1. For the above reason, it is presumed that the embodiment of the present invention can form a sufficient oil film over the entire raceway surface 4 and can effectively reduce the friction.

また、本発明の転がり摺動構造において、凹条部6が形成されていない領域(滑面部)の幅をWの下限値を、接触通過領域Bの幅Xの0.5倍に設定したのは、接触通過領域Bにおける摩擦の増大を抑制するためである。つまり、前記幅Wが下限値より小さいと、接触通過領域Bへの凹条部6の侵入量が多くなり、潤滑油が凹条部6に沿って流出し易くなるからである。   Further, in the rolling sliding structure of the present invention, the width of the region (smooth surface portion) where the concave stripe portion 6 is not formed is set to the lower limit value of W to 0.5 times the width X of the contact passage region B. This is to suppress an increase in friction in the contact passage region B. That is, if the width W is smaller than the lower limit value, the amount of the recessed portion 6 entering the contact passage region B increases, and the lubricating oil easily flows out along the recessed portion 6.

また、凹条部6が形成されていない領域(滑面部)の幅をWの上限値を、接触通過領域Bの幅Xの2倍に設定したのは、この上限値を超えると、凹条部6の形成する範囲が少なくなり、滑りによる動圧が発生しにくくなるためである。   Moreover, when the upper limit of W is set to twice the width X of the contact passage region B, the width of the region (smooth surface portion) where the recess 6 is not formed exceeds the upper limit. This is because the range formed by the portion 6 is reduced, and it is difficult for dynamic pressure due to sliding to occur.

また、図示しないが、実験において、凹条部6が形成されていない領域(滑面部)の幅Wが、接触通過領域Bの幅Xの0.5倍以上、かつ、2倍以下の範囲(0.5X≦W≦2X)では、凹条部形成後に明確な摩擦低減効果が認められた。しかし、凹条部6が形成されていない領域(滑面部)の幅Wが、接触通過領域Bの幅Xの3倍以上(W≧3X)の場合は、凹条部形成前と凹条部形成後において摩擦低減効果の差がほとんど認められなかった。   Although not shown in the drawings, in the experiment, the width W of the region (smooth surface portion) where the concave stripe portion 6 is not formed is in a range of 0.5 times or more and 2 times or less the width X of the contact passage region B ( In 0.5X ≦ W ≦ 2X), a clear friction reducing effect was recognized after the formation of the concave strip portion. However, when the width W of the region (smooth surface portion) where the concave portion 6 is not formed is more than three times the width X of the contact passage region B (W ≧ 3X), before the concave portion is formed and the concave portion There was almost no difference in friction reduction effect after formation.

また、凹条部6の周期構造のピッチを1μm以下に設定することにより、凹条部6の潤滑油の保持能力を高め、潤滑油が凹条部6に沿って流出するのを抑制することが可能である。   Further, by setting the pitch of the periodic structure of the concave strip portion 6 to 1 μm or less, the lubricating oil retention capability of the concave strip portion 6 is enhanced, and the lubricant oil is prevented from flowing out along the concave strip portion 6. Is possible.

上記図6に示す実施形態は、接触通過領域Bに、つまり滑りによる動圧の発生しにくい箇所に、凹条部6を連続的に形成している。例えば、図8の(d)に示す比較例は、アキシャル方向の荷重を受けた転動体1が、軌道面4の幅方向中央を押圧することによって、潤滑油が凹条部6に沿って流出する。しかし、図6の実施形態は、凹条部6を接触通過領域Bに完全に包含されるように形成しているので、凹条部6は転動体1と軌道面4の接触面(ハッチング部A)によって密封される。これにより、凹条部6からの潤滑油の流出を防止することができ、潤滑油の保持能力を維持することが可能である。また、この実施形態において、接触通過領域Bの両側に形成した凹条部6の周期構造、及び、凹条部6の非形成部(滑面部)では、上述した図8の(a)の実施形態における摩擦低減作用と同様の作用を得ることが可能である。   In the embodiment shown in FIG. 6, the concave strip portion 6 is continuously formed in the contact passage region B, that is, in a place where dynamic pressure due to sliding is difficult to occur. For example, in the comparative example shown in FIG. 8 (d), the rolling element 1 that has received a load in the axial direction presses the center in the width direction of the raceway surface 4, so that the lubricating oil flows out along the recess 6. To do. However, in the embodiment of FIG. 6, the concave strip portion 6 is formed so as to be completely included in the contact passage region B, so the concave strip portion 6 is a contact surface (hatching portion) between the rolling element 1 and the raceway surface 4. Sealed by A). Thereby, the outflow of the lubricating oil from the concave strip portion 6 can be prevented, and the retaining ability of the lubricating oil can be maintained. Moreover, in this embodiment, in the periodic structure of the concave strip portion 6 formed on both sides of the contact passage region B and the non-formed portion (smooth surface portion) of the concave strip portion 6, the implementation of FIG. It is possible to obtain the same action as the friction reducing action in the embodiment.

以上、本発明の一実施形態について説明したが、本発明は上述の実施形態に限定されるものではなく、本発明の要旨を逸脱しない範囲で、種々の変更を加え得ることは勿論である。上述の本発明の実施形態は、本発明の転がり摺動面構造をスラストベアリングに適用した場合を例に挙げて説明したが、本発明の構成を、直線状の軌道面や、樽型の外周面を有するころが転動可能な軌道面、あるいは転動体が2点で接触する(アンギュラコンタクトする)横断面ゴシックアーチ状又は楕円状の軌道面などにも適用可能である。   As mentioned above, although one Embodiment of this invention was described, this invention is not limited to the above-mentioned embodiment, Of course, a various change can be added in the range which does not deviate from the summary of this invention. In the above-described embodiment of the present invention, the case where the rolling sliding surface structure of the present invention is applied to a thrust bearing has been described as an example. However, the configuration of the present invention is not limited to a linear raceway surface or a barrel-shaped outer periphery. The present invention can also be applied to a raceway surface on which a roller having a surface can roll, or a raceway surface having a cross-sectional Gothic arch shape or an elliptical shape in which a rolling element contacts at two points (angular contact).

前記凹条部は接触通過領域の片側にのみ形成してもよい。また、凹条部は転がり摺動方向に直交する方向に延在する場合に限らず、転がり摺動方向に対して傾斜する方向に延在させてもよい。凹条部の代わりに、凸条部を形成したり、又は凹条部と凸条部の組み合わせたりして、軌道面に凹凸面を構成することも可能である。   The concave portion may be formed only on one side of the contact passage region. Further, the concave stripe portion is not limited to the case of extending in the direction orthogonal to the rolling sliding direction, but may be extended in a direction inclined with respect to the rolling sliding direction. It is also possible to form a concavo-convex surface on the raceway surface by forming a ridge portion instead of the ridge portion, or by combining the ridge portion and the ridge portion.

スラストベアリングの断面図である。It is sectional drawing of a thrust bearing. 図1のスラストベアリングの軌道面を拡大した図である。It is the figure which expanded the raceway surface of the thrust bearing of FIG. 本発明の転がり摺動面構造の第1実施形態を示す平面図である。It is a top view which shows 1st Embodiment of the rolling sliding surface structure of this invention. 本発明の転がり摺動面構造の第2実施形態を示す平面図である。It is a top view which shows 2nd Embodiment of the rolling sliding surface structure of this invention. 本発明の転がり摺動面構造の第3実施形態を示す平面図である。It is a top view which shows 3rd Embodiment of the rolling sliding surface structure of this invention. 本発明の転がり摺動面構造の第4実施形態を示す平面図である。It is a top view which shows 4th Embodiment of the rolling sliding surface structure of this invention. 転がり摺動試験装置の簡略図である。It is a simplified diagram of a rolling sliding test apparatus. 転がり摺動試験に使用する5種類の軌道面を示す図であって、(a)は本発明の軌道面の平面図、(b)〜(e)は比較例の軌道面の平面図である。It is a figure which shows five types of track surfaces used for a rolling sliding test, Comprising: (a) is a top view of the track surface of this invention, (b)-(e) is a top view of the track surface of a comparative example. . 転がり摺動試験の測定結果を示すグラフであって、(a)は本発明の測定結果を示すグラフ、(b)〜(e)は比較例の測定結果を示すグラフである。It is a graph which shows the measurement result of a rolling sliding test, Comprising: (a) is a graph which shows the measurement result of this invention, (b)-(e) is a graph which shows the measurement result of a comparative example. 周期構造作成装置の模式図である。It is a schematic diagram of a periodic structure creation apparatus. 従来の転がり摺動面構造を示す図であって、(a)はその断面図、(b)はその平面図である。It is a figure which shows the conventional rolling sliding surface structure, Comprising: (a) is the sectional drawing, (b) is the top view.

符号の説明Explanation of symbols

1 転動体
4 軌道面
6 凹条部
B 接触通過領域
W 幅
X 幅
DESCRIPTION OF SYMBOLS 1 Rolling body 4 Track surface 6 Concave strip B Contact passage area W Width X Width

Claims (6)

転動体が転がり摺動する横断面凹湾曲状の軌道面を有する転がり摺動面構造において、
前記軌道面における前記転動体の接触通過領域の少なくとも片側に、前記転動体の転がり摺動方向と交差する方向へ延びた凹条部及び/又は凸条部を、転がり摺動方向に連続的に形成したことを特徴とする転がり摺動面構造。
In the rolling sliding surface structure having a raceway surface having a concave curved cross section where the rolling element rolls and slides,
On at least one side of the contact passage region of the rolling element on the raceway surface, a concave strip and / or a convex strip extending in a direction intersecting the rolling sliding direction of the rolling element is continuously provided in the rolling sliding direction. A rolling sliding surface structure characterized by being formed.
前記凹条部及び/又は凸条部を、前記接触通過領域の少なくとも片側であって接触通過領域から隔絶して形成した請求項1に記載の転がり摺動面構造。   The rolling sliding surface structure according to claim 1, wherein the concave stripe portion and / or the convex stripe portion is formed on at least one side of the contact passage region and separated from the contact passage region. 前記接触領域に完全に包含されるように、前記転がり摺動方向と交差する方向へ延びた凹条部及び/又は凸条部を、転がり摺動方向に連続的に形成した請求項1又は2に記載の転がり摺動面構造。   The concave and / or convex ridges extending in a direction crossing the rolling and sliding direction are formed continuously in the rolling and sliding direction so as to be completely included in the contact area. Rolling sliding surface structure as described in 1. 前記凹条部及び/又は凸条部が、前記転がり摺動方向に直交する方向に延びた請求項1から3のいずれか1項に記載の転がり摺動面構造。   The rolling sliding surface structure according to any one of claims 1 to 3, wherein the concave and / or convex strips extend in a direction orthogonal to the rolling sliding direction. 前記凹条部及び/又は凸条部のピッチを、1μm以下に設定した請求項1から4のいずれか1項に記載の転がり摺動面構造。   The rolling sliding surface structure according to any one of claims 1 to 4, wherein a pitch of the concave stripe portion and / or the convex stripe portion is set to 1 µm or less. 前記軌道面に、加工閾値近傍のフルエンスで直線偏光のレーザを照射すると共に、その照射部分をオーバーラップさせながら走査して、前記凹条部を自己組織的に前記転がり摺動方向に連続的に形成した請求項1から5のいずれか1項に記載の転がり摺動面構造。   The track surface is irradiated with a linearly polarized laser beam at a fluence near the processing threshold, and the irradiated portion is scanned while being overlapped, and the concave strip portion is continuously organized in the rolling sliding direction in a self-organizing manner. The rolling sliding surface structure according to any one of claims 1 to 5, wherein the rolling sliding surface structure is formed.
JP2007280461A 2007-10-29 2007-10-29 Rolling sliding surface structure Active JP4523026B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007280461A JP4523026B2 (en) 2007-10-29 2007-10-29 Rolling sliding surface structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007280461A JP4523026B2 (en) 2007-10-29 2007-10-29 Rolling sliding surface structure

Publications (2)

Publication Number Publication Date
JP2009108901A true JP2009108901A (en) 2009-05-21
JP4523026B2 JP4523026B2 (en) 2010-08-11

Family

ID=40777603

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007280461A Active JP4523026B2 (en) 2007-10-29 2007-10-29 Rolling sliding surface structure

Country Status (1)

Country Link
JP (1) JP4523026B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013194536A (en) * 2012-03-16 2013-09-30 Panasonic Corp Sealed compressor and refrigerating apparatus
EP2700834A1 (en) * 2012-08-21 2014-02-26 Jtekt Corporation Rolling bearing with dynamic pressure generating grooves formed in a raceway of a bearing ring
EP2711572A3 (en) * 2012-09-20 2014-07-09 Jtekt Corporation Rolling bearing with lubricant pockets in the raceway
JP2016070454A (en) * 2014-10-01 2016-05-09 キヤノンマシナリー株式会社 Process of manufacture of slide member
CN110645264A (en) * 2019-08-12 2020-01-03 江苏大学 Rolling bearing inner ring raceway and rolling bearing
JP2021080999A (en) * 2019-11-19 2021-05-27 キヤノンマシナリー株式会社 Thrust roller bearing
KR20210083304A (en) 2018-11-22 2021-07-06 가부시키가이샤 하모닉 드라이브 시스템즈 Wave generator of wave gear device
US11603918B2 (en) 2018-11-22 2023-03-14 Harmonic Drive Systems Inc. Strain wave gearing device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56109925A (en) * 1980-01-28 1981-08-31 Skf Ab Inner ring of bearing
JP2007040481A (en) * 2005-08-04 2007-02-15 Nsk Ltd Rolling bearing
JP2007270919A (en) * 2006-03-30 2007-10-18 Nsk Ltd Rolling slide member
JP2009002436A (en) * 2007-06-21 2009-01-08 Nsk Ltd Rolling slide member

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56109925A (en) * 1980-01-28 1981-08-31 Skf Ab Inner ring of bearing
JP2007040481A (en) * 2005-08-04 2007-02-15 Nsk Ltd Rolling bearing
JP2007270919A (en) * 2006-03-30 2007-10-18 Nsk Ltd Rolling slide member
JP2009002436A (en) * 2007-06-21 2009-01-08 Nsk Ltd Rolling slide member

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013194536A (en) * 2012-03-16 2013-09-30 Panasonic Corp Sealed compressor and refrigerating apparatus
EP2700834A1 (en) * 2012-08-21 2014-02-26 Jtekt Corporation Rolling bearing with dynamic pressure generating grooves formed in a raceway of a bearing ring
CN103629244A (en) * 2012-08-21 2014-03-12 株式会社捷太格特 Rolling bearing
US8770847B2 (en) 2012-08-21 2014-07-08 Jtekt Corporation Rolling bearing
CN103629244B (en) * 2012-08-21 2017-08-25 株式会社捷太格特 Rolling bearing
EP2711572A3 (en) * 2012-09-20 2014-07-09 Jtekt Corporation Rolling bearing with lubricant pockets in the raceway
US8821025B2 (en) 2012-09-20 2014-09-02 Jtekt Corporation Rolling bearing
JP2016070454A (en) * 2014-10-01 2016-05-09 キヤノンマシナリー株式会社 Process of manufacture of slide member
EP3885607A4 (en) * 2018-11-22 2022-04-13 Harmonic Drive Systems Inc. Wave generator of strain wave gearing device
KR20210083304A (en) 2018-11-22 2021-07-06 가부시키가이샤 하모닉 드라이브 시스템즈 Wave generator of wave gear device
US11603918B2 (en) 2018-11-22 2023-03-14 Harmonic Drive Systems Inc. Strain wave gearing device
US11649886B2 (en) 2018-11-22 2023-05-16 Harmonic Drive Systems Inc. Wave generator of strain wave gearing device
CN110645264B (en) * 2019-08-12 2021-02-12 江苏大学 Rolling bearing inner ring raceway and rolling bearing
CN110645264A (en) * 2019-08-12 2020-01-03 江苏大学 Rolling bearing inner ring raceway and rolling bearing
JP2021080999A (en) * 2019-11-19 2021-05-27 キヤノンマシナリー株式会社 Thrust roller bearing
JP7398932B2 (en) 2019-11-19 2023-12-15 キヤノンマシナリー株式会社 thrust roller bearing

Also Published As

Publication number Publication date
JP4523026B2 (en) 2010-08-11

Similar Documents

Publication Publication Date Title
JP4523026B2 (en) Rolling sliding surface structure
JP6964392B2 (en) Sliding surface structure and manufacturing method of sliding surface structure
JP6763850B2 (en) Manufacturing method of sliding parts and sliding parts
JP4263185B2 (en) Low friction sliding surface
ES2955811T3 (en) Steel sheet with a deterministic surface structure
JP2012007712A (en) Sliding surface structure
JP2009002436A (en) Rolling slide member
JP6612053B2 (en) Sliding surface structure
JP2007270919A (en) Rolling slide member
US20170298990A1 (en) Self-lubricating roller bearing and methods of making and using self-lubricating roller bearing
JP2008045573A (en) Rolling sliding member and its manufacturing method as well as rolling device
JP2005321048A (en) Rolling slide part, and method for manufacturing the same
JP6879824B2 (en) Sliding surface structure
US9156080B2 (en) Casting die
JP5538476B2 (en) Sliding surface structure
JP5496575B2 (en) Sliding surface
JP5259455B2 (en) Flat sliding mechanism
JP5638455B2 (en) Sliding surface structure
JP5917646B2 (en) Manufacturing method of sliding member
JP2004324670A (en) Roller bearing
JP7455030B2 (en) Rolling element structure and roller bearings
JP7373898B2 (en) Contact surface structure
JP2007321806A (en) Rolling slide part and rolling device equipped with rolling slide part
JP2008298144A (en) Method of processing of rolling contact surface
JP2013160338A (en) Sliding surface structure, and method for manufacturing the same

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100226

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100302

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100325

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100511

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100526

R150 Certificate of patent or registration of utility model

Ref document number: 4523026

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130604

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250