JP5259455B2 - Flat sliding mechanism - Google Patents

Flat sliding mechanism Download PDF

Info

Publication number
JP5259455B2
JP5259455B2 JP2009046058A JP2009046058A JP5259455B2 JP 5259455 B2 JP5259455 B2 JP 5259455B2 JP 2009046058 A JP2009046058 A JP 2009046058A JP 2009046058 A JP2009046058 A JP 2009046058A JP 5259455 B2 JP5259455 B2 JP 5259455B2
Authority
JP
Japan
Prior art keywords
groove
sliding
plane
shallow
deep groove
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2009046058A
Other languages
Japanese (ja)
Other versions
JP2010196884A (en
Inventor
博司 沢田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Machinery Inc
Original Assignee
Canon Machinery Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Machinery Inc filed Critical Canon Machinery Inc
Priority to JP2009046058A priority Critical patent/JP5259455B2/en
Publication of JP2010196884A publication Critical patent/JP2010196884A/en
Application granted granted Critical
Publication of JP5259455B2 publication Critical patent/JP5259455B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Bearings For Parts Moving Linearly (AREA)

Description

本発明は、平面摺動機構に関する。   The present invention relates to a planar sliding mechanism.

相対する平面間で摺動を行う平面摺動機構は、その用途に応じて例えば自動車等の動的機構に使用されるスラスト軸受や、工作機械の案内機構に代表される直動摺動機構などに利用されている。   The planar sliding mechanism that slides between the opposing planes is a thrust bearing used in a dynamic mechanism such as an automobile, or a linear sliding mechanism represented by a guide mechanism of a machine tool, depending on the application. Has been used.

ここで、例えば直動すべり案内機構として、下記特許文献1には、摺動面間の潤滑性の向上を目的として、摺動表面の一方または両方に、相互に深さの異なる複数の溝状の凹部を摺動方向とは直交する向きに形成したものが提案されている。   Here, as a linear motion sliding guide mechanism, for example, in Patent Document 1 below, a plurality of groove shapes with different depths are formed on one or both of the sliding surfaces for the purpose of improving the lubricity between the sliding surfaces. Have been proposed in which the recesses are formed in a direction perpendicular to the sliding direction.

また、スラスト軸受面構造として、下記特許文献2に記載の軸受面構造が提案されている。この軸受面構造は、軸受面全体に油を効率よく供給することを目的とするもので、放射状に伸びる給油溝の回転方向下流側に、給油溝より浅く、かつ下流側に向かって径方向および周方向の溝深さが浅くなる先細り形状の油導入溝を形成している。   Further, as a thrust bearing surface structure, a bearing surface structure described in Patent Document 2 has been proposed. This bearing surface structure is intended to efficiently supply oil to the entire bearing surface, and is radially downstream of the oil supply groove extending radially, shallower than the oil supply groove and radially toward the downstream side. A tapered oil introduction groove is formed in which the circumferential groove depth becomes shallow.

特開2002−235852号公報JP 2002-235852 A 特開2008−144864号公報JP 2008-144864 A

上記特許文献1に開示されている溝状の凹部は互いに独立しており、また潤滑油等をこの凹部に補給するための機構も存在しないことから、例えば油浴潤滑状態のように潤滑油が潤沢に供給される条件でなければ所要の油膜形成効果を期待することは難しい。特に、工作機械のすべり直動案内のように、開放型の摺動平面を有するすべり直動案内機構の場合には、上記特許文献1に係る技術を適用しても良好な油膜形成を図ることは難しい。   The groove-like recesses disclosed in Patent Document 1 are independent from each other, and there is no mechanism for supplying lubricant to the recesses. It is difficult to expect the required oil film forming effect unless the conditions are supplied in abundance. In particular, in the case of a sliding linear motion guide mechanism having an open sliding plane, such as a sliding linear motion guide of a machine tool, a good oil film can be formed even if the technique according to Patent Document 1 is applied. Is difficult.

上記特許文献2に開示のスラスト軸受面構造では、テーパ状の油導入部が有する高い油の引き込み能力により比較的厚みのある油膜が形成される。しかし、このように油の引き込み力のみに主眼を置いた形状の油導入部では、摺動する相手部材の荷重が大きい場合やすべり速度が遅い場合など、十分な厚みの油膜が形成し難い状況では油膜厚さの変動が大きくなり、油膜厚さの安定性に欠ける。また、十分な厚みの油膜が形成されている場合でも、速度変動や荷重変動により油膜の厚みが変動し易く十分な油膜剛性が得られないため、相手部材の位置精度の低下を招くおそれがある。   In the thrust bearing surface structure disclosed in Patent Document 2, a relatively thick oil film is formed by the high oil drawing capacity of the tapered oil introduction portion. However, in the case of the oil introduction part that focuses on only the oil pulling force in this way, it is difficult to form an oil film of sufficient thickness, such as when the load of the mating member is large or the sliding speed is slow Then, the fluctuation of the oil film thickness becomes large, and the stability of the oil film thickness is lacking. Even when an oil film having a sufficient thickness is formed, the oil film thickness is likely to fluctuate due to speed fluctuations and load fluctuations, and sufficient oil film rigidity cannot be obtained. .

以上の事情に鑑み、本明細書では、すべり速度や荷重の大きさに関らず、油膜厚みの変動が小さく油膜剛性に優れた平面摺動機構を提供することを、本発明により解決すべき技術的課題とする。   In view of the above circumstances, in the present specification, it should be solved by the present invention to provide a plane sliding mechanism that has a small oil film thickness variation and excellent oil film rigidity regardless of the sliding speed and the magnitude of the load. Technical issue.

本発明は、前記課題の解決を図るためになされたものである。すなわち、本発明に係る平面摺動機構は、相対する平面間で潤滑流体の膜を介して相対摺動を行うための平面摺動機構であって、何れか一方の平面には、相対する平面間に潤滑流体を供給する深溝と、深溝に比べて浅い浅溝とが設けられ、浅溝は、周期性をもって並列に配置され、並列配置された複数の浅溝は一方の端部において深溝と交わると共に他方の端部において一方の平面に向けて立ち上がっており、かつ相対する他方の平面の摺動方向に対して平行または90°未満の傾斜角で傾斜する向きに配置されている点をもって特徴付けられる。なお、ここでいう「周期性をもって並列に配置」には、相互に深さ寸法や幅寸法ないし長手寸法の異なる複数種の浅溝の組み合わせが周期的に現れるように各浅溝が並列に配置されたものの他、同一形状の浅溝が一定の間隔で並列に配置されたものや、所定の間隔の変動を伴って並列に配置されたものなどが含まれる。 The present invention has been made to solve the above problems. In other words, the plane sliding mechanism according to the present invention is a plane sliding mechanism for performing relative sliding between opposing planes via a film of lubricating fluid, and either plane has an opposing plane. A deep groove for supplying a lubricating fluid therebetween and a shallow groove shallower than the deep groove are provided, and the shallow grooves are arranged in parallel with periodicity, and the plurality of shallow grooves arranged in parallel are deep grooves at one end. Majiwa Rutotomoni Ri other rises towards one of the flat at the end contact, and that they are arranged in a direction inclined at an inclination angle of less than parallel or 90 ° to the sliding direction of the opposite other plane Is characterized by In this case, “arranged in parallel with periodicity” means that the shallow grooves are arranged in parallel so that a combination of a plurality of types of shallow grooves having different depth dimensions, width dimensions or longitudinal dimensions appears periodically. In addition to the above-described ones, those in which shallow grooves of the same shape are arranged in parallel at a constant interval, and those in which the shallow grooves are arranged in parallel with a predetermined interval are included.

本発明は、摺動平面上に設けられた溝の深さ寸法と潤滑流体膜の厚み寸法との関係に着目してなされたもので、後述の実験結果からも分かるように、相互に溝深さの異なる深溝と浅溝とが交わるように配置すると共に、相対的に浅い側の溝を所定の態様に配列することにより、すべり速度や負荷の大きさに関らず安定した油膜の形成を実現可能としたものである。すなわち、相対摺動する平面のうち一方の平面に設けた複数の浅溝を周期性をもって並列に配置し、かつこれら並列配置された複数の浅溝を何れも深溝と交わるように配置することで、摺動平面間に形成される潤滑流体膜の厚みの変動幅が小さくなり、膜厚が安定することで摩擦係数の変動幅も小さくなる。これは、以下の作用に起因するものと考えられる。すなわち、1本の深溝に対して複数本の浅溝を上記のように交差させて配置することにより、膜厚が比較的大きい場合には、浅溝に起因する油圧の立ち上がり(動圧効果)はほとんど生じず、浅溝の存在が深溝に起因する動圧効果を低減させるため、膜厚を低減する向きに作用する。また、周期性をもって並列に配置した複数の浅溝を摺動方向に対して平行または鋭角に傾斜する向きに配置するようにしたので、形成され得る流体膜の厚みが比較的小さい場合、主に浅溝の長手方向に沿って潤滑流体の流れ込みが生じ、反深溝側の端部で大きな動圧効果が生じる。動圧効果は、溝深さが油膜厚さに近いほど大きく、同程度の場合に最大となるため、油膜厚みの小さい場合、浅溝により剛性の高い流体膜を形成することができる。その結果、潤滑流体の膜厚の変動幅が小さくなるものと考えられる。   The present invention has been made by paying attention to the relationship between the depth dimension of the groove provided on the sliding plane and the thickness dimension of the lubricating fluid film. By arranging the deep grooves and shallow grooves of different thicknesses to cross each other and arranging the relatively shallow grooves in a predetermined manner, it is possible to form a stable oil film regardless of the sliding speed and the magnitude of the load. It was made feasible. That is, by arranging a plurality of shallow grooves provided in one of the planes that slide relative to each other in parallel with periodicity, and arranging the plurality of shallow grooves arranged in parallel so as to intersect with the deep grooves. The fluctuation range of the thickness of the lubricating fluid film formed between the sliding planes is reduced, and the fluctuation range of the friction coefficient is reduced by stabilizing the film thickness. This is considered due to the following actions. That is, by arranging a plurality of shallow grooves so as to intersect one deep groove as described above, when the film thickness is relatively large, the hydraulic pressure rises due to the shallow grooves (dynamic pressure effect). Hardly occurs, and the presence of the shallow groove reduces the dynamic pressure effect caused by the deep groove, and thus acts in the direction of reducing the film thickness. In addition, since the plurality of shallow grooves arranged in parallel with periodicity are arranged in a direction parallel to the sliding direction or inclined at an acute angle, mainly when the thickness of the fluid film that can be formed is relatively small, The lubricating fluid flows in along the longitudinal direction of the shallow groove, and a large dynamic pressure effect is generated at the end portion on the anti-deep groove side. The dynamic pressure effect is greater when the groove depth is closer to the oil film thickness, and is maximized when the groove depth is the same. Therefore, when the oil film thickness is small, a highly rigid fluid film can be formed by the shallow groove. As a result, it is considered that the fluctuation range of the film thickness of the lubricating fluid becomes small.

また、深溝は、この深溝が形成される一方の平面の端部まで伸びていてもよい。このように構成することで、深溝が一方の平面の端部で開放されるので、深溝領域での負圧の発生を防いで安定した流体膜の形成を図ることができる。 Further, the deep groove may extend to an end portion of one plane where the deep groove is formed. With this configuration, since the deep groove is opened at the end of one plane, it is possible to prevent the generation of negative pressure in the deep groove region and to form a stable fluid film.

ここで、深溝や浅溝の配置態様に関し、例えば深溝は、相対する他方の平面の摺動方向に対して直交する向きに配置されていてもよい。このように構成することで、深溝と、深溝と交わる全ての浅溝に向けて漏れなくかつ偏りなく潤滑流体を供給することができる。   Here, regarding the arrangement mode of the deep groove and the shallow groove, for example, the deep groove may be arranged in a direction orthogonal to the sliding direction of the other opposite plane. By comprising in this way, lubricating fluid can be supplied to a deep groove and all the shallow grooves which cross | intersect a deep groove without leak and without bias.

また、複数の浅溝は、一方の端部において深溝に対して直交する向きに交わっていてもよい。特に、上述のように相対する平面間の相対摺動方向に直交する向きに深溝を配置する場合には、浅溝が何れも摺動方向に対して平行に配置されることになるので、最も効果的に浅溝による動圧効果を得ることができる。また、この場合、併せて、浅溝の長手寸法を同じにすることで並列に配置した浅溝の反深溝側の端部(他方の端部)の位置を揃えることができ、これにより、一方の平面の幅方向(摺動方向に直交する向き)に均等な動圧効果を発生させて、均一な厚みの潤滑流体膜を形成することができる。 In addition, the plurality of shallow grooves may intersect at a direction perpendicular to the deep groove at one end . In particular, when the deep grooves are arranged in the direction perpendicular to the relative sliding direction between the opposing planes as described above, the shallow grooves are all arranged parallel to the sliding direction. The dynamic pressure effect by the shallow groove can be obtained effectively. Further, in this case, the length of the shallow groove can be made the same, so that the end of the shallow groove arranged in parallel on the side opposite to the deep groove (the other end) can be aligned. A uniform dynamic pressure effect can be generated in the width direction of the plane (direction orthogonal to the sliding direction), and a lubricating fluid film having a uniform thickness can be formed.

また、複数の浅溝は、深溝の両側に配置されていてもよい。このように構成することで、例えば相対する他方の平面が深溝に対して交差する向きに往復摺動する場合、一方の摺動方向に対しては深溝の一方の側に配置した複数の浅溝が機能し、他方の摺動方向に対しては深溝の他方の側に配置した複数の浅溝が機能する。これにより、往復動を行う直動案内機構や、正逆両回転するスラスト軸受に対しても本発明を適用することができる。また、本発明のように、浅溝と深溝とを組合せて配置するのであれば、浅溝の幅寸法を小さく設定しても所要の動圧効果を発揮するのに十分な溝長さを確保することができるので、深溝の両側にそれぞれ多数本の浅溝を並列配置することに特に支障は生じない。   The plurality of shallow grooves may be disposed on both sides of the deep groove. By configuring in this way, for example, when reciprocating sliding in the direction in which the opposite other plane intersects the deep groove, a plurality of shallow grooves arranged on one side of the deep groove with respect to one sliding direction A plurality of shallow grooves arranged on the other side of the deep groove function in the other sliding direction. Thus, the present invention can be applied to a linear motion guide mechanism that performs reciprocal motion and a thrust bearing that rotates both forward and backward. Moreover, if the shallow groove and the deep groove are arranged in combination as in the present invention, a sufficient groove length is secured to exert the required dynamic pressure effect even if the width dimension of the shallow groove is set small. Therefore, there is no particular problem in arranging a large number of shallow grooves in parallel on both sides of the deep groove.

また、複数の浅溝は、10μm以下のピッチで形成されていてもよい。このように構成することで、潤滑流体の側方漏れを一層生じ難くして、動圧の発生効果をさらに高めることができる。その結果、側方での圧力降下を少なくして、ローリング誤差を小さくすることができる。   The plurality of shallow grooves may be formed at a pitch of 10 μm or less. By comprising in this way, the side leakage of lubricating fluid can be made harder to occur, and the effect of generating dynamic pressure can be further enhanced. As a result, the pressure drop on the side can be reduced and the rolling error can be reduced.

あるいは、浅溝は、1μm以下の深さに形成されていてもよい。後述する実験結果からも分かるように、一般的な動圧溝のオーダー(数μmから数十μm)よりも小さいサイズに浅溝を形成することで、特に膜厚が1μm以下となる摺動域において優れた動圧効果を発揮して高剛性の流体膜を形成することができる。   Alternatively, the shallow groove may be formed to a depth of 1 μm or less. As can be seen from the experimental results to be described later, a sliding region in which the film thickness is particularly 1 μm or less is formed by forming the shallow groove in a size smaller than the order of a general dynamic pressure groove (several μm to several tens μm). Can exhibit a high dynamic pressure effect and form a highly rigid fluid film.

以上の構成に係る平面摺動機構に関し、例えば複数の浅溝は、加工閾値近傍の照射強度で直線偏光のレーザを一方の平面に照射し、照射部分をオーバーラップさせながら走査することで自己組織的に形成されたものであってもよい。詳細は特許掲載公報第4054330号に譲るが、この種のいわゆるレーザを用いた自己組織的な並列溝の形成方法によれば、機械加工では困難な1μm以下のオーダーのピッチと溝深さを併せ持つ浅溝群を容易に形成できる。   Regarding the planar sliding mechanism according to the above configuration, for example, the plurality of shallow grooves irradiate one plane with a linearly polarized laser beam with an irradiation intensity in the vicinity of the processing threshold, and perform scanning while overlapping the irradiated portions. It may be formed automatically. Details are given in Japanese Patent Publication No. 4054330. According to this type of so-called laser-based self-organized parallel groove forming method, both pitch and groove depth of the order of 1 μm or less, which are difficult to machine, are obtained. The shallow groove group can be easily formed.

以上のように、本発明によれば、すべり速度や荷重の大きさに関らず、油膜厚みの変動が小さく油膜剛性に優れた平面摺動機構を提供することができる。また、本発明であれば、高剛性を要するスラスト軸受などに限らず、油膜厚みの変動が加工精度に直結する工作機械の案内機構等にも好適に適用できる。   As described above, according to the present invention, it is possible to provide a flat sliding mechanism that is small in oil film thickness variation and excellent in oil film rigidity regardless of the sliding speed and the load. Further, the present invention can be suitably applied not only to a thrust bearing that requires high rigidity but also to a guide mechanism of a machine tool in which a variation in oil film thickness is directly linked to machining accuracy.

本発明の一実施形態に係る平面摺動機構の要部平面図である。It is a principal part top view of the plane sliding mechanism which concerns on one Embodiment of this invention. 図1に示す平面摺動機構のA−A断面図であって、油膜厚さが比較的大きい場合の摺動状態を概念的に示す断面図である。It is AA sectional drawing of the plane sliding mechanism shown in FIG. 1, Comprising: It is sectional drawing which shows notionally the sliding state in case an oil film thickness is comparatively large. 図1に示す平面摺動機構のA−A断面図であって、油膜厚さが比較的小さい場合の摺動状態を概念的に示す断面図である。It is AA sectional drawing of the plane sliding mechanism shown in FIG. 1, Comprising: It is sectional drawing which shows notionally the sliding state in case an oil film thickness is comparatively small. 本発明の他の実施形態に係る平面摺動機構の要部平面図である。It is a principal part top view of the plane sliding mechanism which concerns on other embodiment of this invention. 本発明の他の実施形態に係る平面摺動機構の要部平面図である。It is a principal part top view of the plane sliding mechanism which concerns on other embodiment of this invention. 摺動実験の結果を示す図であって、比較例に係る平面摺動機構のすべり速度と動摩擦係数との関係を示す図である。It is a figure which shows the result of a sliding experiment, Comprising: It is a figure which shows the relationship between the sliding speed and dynamic friction coefficient of the plane sliding mechanism which concerns on a comparative example. 摺動実験の結果を示す図であって、比較例に係る平面摺動機構のすべり速度と動摩擦係数との関係を示す図である。It is a figure which shows the result of a sliding experiment, Comprising: It is a figure which shows the relationship between the sliding speed and dynamic friction coefficient of the plane sliding mechanism which concerns on a comparative example. 摺動実験の結果を示す図であって、実施例に係る平面摺動機構のすべり速度と動摩擦係数との関係を示す図である。It is a figure which shows the result of a sliding experiment, Comprising: It is a figure which shows the relationship between the sliding speed and dynamic friction coefficient of the plane sliding mechanism which concerns on an Example. 摺動実験の結果を示す図であって、比較例に係る平面摺動機構のすべり速度と油膜厚さとの関係を示す図である。It is a figure which shows the result of a sliding experiment, Comprising: It is a figure which shows the relationship between the sliding speed and oil film thickness of the plane sliding mechanism which concerns on a comparative example. 摺動実験の結果を示す図であって、実施例に係る平面摺動機構のすべり速度と油膜厚さとの関係を示す図である。It is a figure which shows the result of a sliding experiment, Comprising: It is a figure which shows the relationship between the sliding speed and oil film thickness of the plane sliding mechanism which concerns on an Example. 摺動実験の結果を示す図であって、比較例に係る平面摺動機構の、すべり速度を異ならせた場合における荷重と平均油膜厚さとの関係を示す図である。It is a figure which shows the result of a sliding experiment, Comprising: It is a figure which shows the relationship between the load and average oil film thickness in the case of varying the sliding speed of the plane sliding mechanism which concerns on a comparative example. 摺動実験の結果を示す図であって、実施例に係る平面摺動機構の、すべり速度を異ならせた場合における荷重と平均油膜厚さとの関係を示す図である。It is a figure which shows the result of a sliding experiment, Comprising: It is a figure which shows the relationship between the load and average oil film thickness in the case of varying the sliding speed of the plane sliding mechanism which concerns on an Example.

以下、本発明に係る平面摺動機構の実施形態を図1〜図5に基づき説明する。   Hereinafter, an embodiment of a plane sliding mechanism according to the present invention will be described with reference to FIGS.

図1は、本発明の一実施形態に係る平面摺動機構1の要部平面図を示している。また、図2は、図1に示す平面摺動機構1のA−A断面図を示している。これらの図から分かるように、平面摺動機構1を構成する一方の平面2には、その長手方向に沿って所定の間隔おきに後述する深溝3および複数の浅溝4が形成されている。   FIG. 1: has shown the principal part top view of the plane sliding mechanism 1 which concerns on one Embodiment of this invention. Moreover, FIG. 2 has shown AA sectional drawing of the plane sliding mechanism 1 shown in FIG. As can be seen from these drawings, a deep groove 3 and a plurality of shallow grooves 4 which will be described later are formed on the one flat surface 2 constituting the flat sliding mechanism 1 at predetermined intervals along the longitudinal direction thereof.

ここで、一方の平面2には、図2に示すように、相対する平面2,5間に潤滑流体(ここでは例えば潤滑油)を供給するための深溝3が形成されている。また、図1や図2に示すように、深溝3よりも浅く、かつその幅も狭い複数の浅溝4,4…が形成されている。これら複数の浅溝4,4…は周期性をもって並列に形成されており、何れの浅溝4も隣接する深溝3と交わっている。この実施形態では、複数の浅溝4が何れも深溝3と所定の角度で交わる向きに配置されると共に、各浅溝4がその端部で深溝3の一方の縁とつながっている(図2を参照)。   Here, as shown in FIG. 2, a deep groove 3 for supplying a lubricating fluid (here, for example, lubricating oil) is formed in one plane 2 between the opposing planes 2 and 5. As shown in FIGS. 1 and 2, a plurality of shallow grooves 4, 4... Shallower than the deep groove 3 and narrower in width are formed. The plurality of shallow grooves 4, 4... Are formed in parallel with periodicity, and any shallow groove 4 intersects the adjacent deep groove 3. In this embodiment, the plurality of shallow grooves 4 are all arranged in a direction intersecting with the deep grooves 3 at a predetermined angle, and each shallow groove 4 is connected to one edge of the deep groove 3 at the end thereof (FIG. 2). See).

これら深溝3と浅溝4の平面的な配置関係について見ると、深溝3は、この実施形態では、相対する他方の平面5(を有する相手部材6)の摺動方向に直交する向きに配置されており、その両端を一方の平面2の両側の端部に開放した形態をなしている。故に、深溝3内部は外気と連通可能な状態におかれている。   Looking at the planar arrangement relationship between the deep grooves 3 and the shallow grooves 4, in this embodiment, the deep grooves 3 are arranged in a direction perpendicular to the sliding direction of the other flat surface 5 (having the mating member 6). The both ends are open to the end portions on both sides of one plane 2. Therefore, the inside of the deep groove 3 is in a state where it can communicate with the outside air.

複数の浅溝4,4…は、この実施形態では直線形状をなし、所定のピッチで格子状に配置される。また、何れの浅溝4,4…も深溝3と直交する向き、ここでは結果的に他方の平面5(相手部材6)の摺動方向と平行となる向きに配置されている。また、上記のように配置された深溝3の双方の側に配置された全ての浅溝4,4…は同じ長手寸法に形成されており、深溝3とは反対側の端部が一方の平面2の幅方向に一列に揃った状態で配置されている。   The plurality of shallow grooves 4, 4... Have a linear shape in this embodiment, and are arranged in a lattice pattern at a predetermined pitch. Each of the shallow grooves 4, 4... Is arranged in a direction orthogonal to the deep groove 3, and in this case, as a result, parallel to the sliding direction of the other flat surface 5 (the mating member 6). Further, all the shallow grooves 4, 4... Arranged on both sides of the deep groove 3 arranged as described above are formed in the same longitudinal dimension, and the end opposite to the deep groove 3 is one plane. 2 are arranged in a line in the width direction.

次に、深溝3と浅溝4の寸法関係について見ると、深溝3の溝深さWaは、相対する双方の平面2,5間に潤滑油を供給できる限りにおいて特に制限されないが、浅溝4の溝深さWbとの関係についてはWa>Wbが常に成立つように設定される。また、一方の平面2のうち少なくとも深溝3の形成されていない領域と、この領域と対向する他方の平面5との間に油膜形成に足る潤滑油の動圧効果を生じ得るように深溝3の寸法を定めることも可能であり、例えば相手部材6の重量(支持荷重)やすべり速度を考慮して定めるのがよい。具体的には、深溝3の溝深さWaを1μm以上100μm以下に設定するのがよく、2μm以上10μm以下に設定するのがよりよい。また、図1に示す向きに深溝3を配置する場合、溝深さWaに対する溝幅の比が好ましくは10以上100以下、より好ましくは20以上50以下の範囲に収まるように深溝3の寸法比を設定するのがよい。   Next, looking at the dimensional relationship between the deep groove 3 and the shallow groove 4, the groove depth Wa of the deep groove 3 is not particularly limited as long as lubricating oil can be supplied between the two opposing planes 2, 5. As for the relationship with the groove depth Wb, Wa> Wb is always established. Further, the deep groove 3 is formed so that a dynamic pressure effect of the lubricating oil sufficient to form an oil film can be generated between at least one of the planes 2 where the deep groove 3 is not formed and the other plane 5 opposed to this region. It is also possible to determine the dimensions. For example, it is preferable to determine the dimensions in consideration of the weight (support load) of the mating member 6 and the sliding speed. Specifically, the groove depth Wa of the deep groove 3 is preferably set to 1 μm or more and 100 μm or less, and more preferably set to 2 μm or more and 10 μm or less. When the deep groove 3 is disposed in the direction shown in FIG. 1, the ratio of the groove width to the groove depth Wa is preferably 10 or more and 100 or less, more preferably 20 or more and 50 or less. It is good to set.

浅溝4の溝深さWbは、上述のように深溝3の溝深さWaより小さく設定される。具体的には、浅溝4溝深さWbに対する深溝3の溝深さWaの比が5以上200以下となるように、より好ましくは10以上100以下となるように、さらに好ましくは20以上50以下となるように設定される。また、油膜厚さが小さい場合に浅溝4による高剛性の油膜形成を図る観点からは、溝深さWbを1μm以下、好ましくは500nm以下に設定するのがよい。並列配置される複数の浅溝4,4…間のピッチについても特に制限はないが、形成される浅溝4,4…の溝深さ、幅寸法、長手寸法などを考慮に入れて、適当な大きさ(例えば10μm以下)に設定される。なお、浅溝4の寸法、特に溝深さWbに関しては、浅溝4,4…が形成される一方の平面2の面粗さないし平面度との関係で規定することもでき、例えば平面2の表面粗さRaないし平面度が溝深さWbの値を上回ることのないように平面2の面精度および浅溝4の溝深さWbを設定することもできる。油膜の確保のためである。   The groove depth Wb of the shallow groove 4 is set to be smaller than the groove depth Wa of the deep groove 3 as described above. Specifically, the ratio of the groove depth Wa of the deep groove 3 to the shallow groove 4 groove depth Wb is 5 or more and 200 or less, more preferably 10 or more and 100 or less, and still more preferably 20 or more and 50. It is set to be as follows. From the viewpoint of forming a highly rigid oil film by the shallow groove 4 when the oil film thickness is small, the groove depth Wb is set to 1 μm or less, preferably 500 nm or less. The pitch between the plurality of shallow grooves 4, 4... Arranged in parallel is not particularly limited, but is appropriate in consideration of the groove depth, width dimension, longitudinal dimension, etc. of the formed shallow grooves 4, 4. A large size (for example, 10 μm or less) is set. The dimensions of the shallow groove 4, especially the groove depth Wb, can be defined in relation to the roughness or flatness of one plane 2 on which the shallow grooves 4, 4,... Are formed. It is also possible to set the surface accuracy of the flat surface 2 and the groove depth Wb of the shallow groove 4 so that the surface roughness Ra or flatness thereof does not exceed the value of the groove depth Wb. This is to secure an oil film.

上記浅溝4は公知の溝形成手段を採用することができる。また、上記複数の浅溝4,4…についてもその形成手段は特に問わないが、上述のように1μm以下の溝深さを有するものを形成する場合には、例えば加工閾値近傍の照射強度で直線偏光のレーザを一方の平面に照射し、照射部分をオーバーラップさせながら走査することで自己組織的に形成する手段が有効である。この手段によれば、照射するレーザに含まれる入射光の波長以下の周期(ピッチ)および深さで複数の浅溝4,4…を形成することができる。   As the shallow groove 4, known groove forming means can be adopted. Further, the means for forming the plurality of shallow grooves 4, 4... Is not particularly limited. However, when forming a groove having a groove depth of 1 μm or less as described above, the irradiation intensity is, for example, near the processing threshold Effective is a means of forming a self-organized structure by irradiating a linearly polarized laser beam on one plane and scanning while overlapping the irradiated portions. According to this means, it is possible to form a plurality of shallow grooves 4, 4.

次に、上記構成の平面摺動機構1の動作について説明する。まず、図2に示すように、
相対する他方の平面5(相手部材6)のすべり速度が大きい場合、あるいは相手部材6からの荷重が小さい場合には、主に深溝3からの潤滑油の供給により、相対する双方の平面2,5間に比較的膜厚の大きい油膜が形成される。溝深さWa,Wbとの関係で言えば、浅溝4の溝深さWbよりも深溝3の溝深さWaに比較的近い大きさの油膜厚みWcを有する油膜が形成される。この場合、深溝3の摺動方向前方側の縁の部分(図2中左側の縁の部分)で油圧の立ち上がりが生じる。また、この場合には、深溝3とその摺動方向前方側でつながる浅溝4,4…の存在が深溝3の摺動方向前方側の縁の部分と平面5の間隔を広げることになるため、深溝3の動圧効果を低下させ、油膜厚みの急激な増加を抑制する向きに作用する。
Next, the operation of the plane sliding mechanism 1 having the above configuration will be described. First, as shown in FIG.
When the sliding speed of the other opposing flat surface 5 (the mating member 6) is high or when the load from the mating member 6 is small, both the opposing flat surfaces 2 are mainly supplied by supplying lubricating oil from the deep groove 3. An oil film having a relatively large film thickness is formed between the five. In terms of the relationship with the groove depths Wa and Wb, an oil film having an oil film thickness Wc that is relatively closer to the groove depth Wa of the deep groove 3 than the groove depth Wb of the shallow groove 4 is formed. In this case, the hydraulic pressure rises at the edge portion on the front side in the sliding direction of the deep groove 3 (left edge portion in FIG. 2). In this case, the presence of the shallow grooves 4, 4... Connected to the deep groove 3 on the front side in the sliding direction widens the distance between the edge portion on the front side in the sliding direction of the deep groove 3 and the flat surface 5. It acts to reduce the dynamic pressure effect of the deep groove 3 and to suppress the rapid increase in oil film thickness.

また、図3に示すように、他方の平面5のすべり速度が小さい場合、あるいは相手部材6からの荷重が大きい場合には、深溝3から浅溝4への潤滑油の流れ込みにより、浅溝4の、深溝3とは離れた側の端部で深溝3の動圧効果を上回る大きな動圧効果を生じる。この主に浅溝4の動圧効果によって、相対する双方の平面2,5間に比較的膜厚の小さい高剛性な油膜が形成される。溝深さWa,Wbとの関係で言えば、深溝3の溝深さWaよりも浅溝4の溝深さWbに比較的近い大きさの油膜厚みWcを有する油膜が形成される。   As shown in FIG. 3, when the sliding speed of the other plane 5 is low, or when the load from the mating member 6 is large, the flow of the lubricating oil from the deep groove 3 to the shallow groove 4 causes the shallow groove 4 to flow. A large dynamic pressure effect exceeding the dynamic pressure effect of the deep groove 3 is produced at the end portion on the side away from the deep groove 3. Due to the dynamic pressure effect of the shallow groove 4 mainly, a highly rigid oil film having a relatively small film thickness is formed between the opposing planes 2 and 5. In terms of the relationship with the groove depths Wa and Wb, an oil film having an oil film thickness Wc that is relatively closer to the groove depth Wb of the shallow groove 4 than the groove depth Wa of the deep groove 3 is formed.

また、深溝3および複数の浅溝4,4…による動圧効果が効果的に生じるように、深溝3および複数の浅溝4,4…の形状(寸法)やその配置態様を設定するようにすることで、油膜が比較的厚い場合には油膜厚みの変動を抑えて、言い換えると相手部材6の浮上量の変動を抑えて他方の平面5との間で高い位置精度(平行度など)を発揮することができる。また、油膜が比較的薄い場合には他方の平面5との間で所要の位置精度を保ちつつも高い油膜剛性を発揮することができる。   Further, the shape (dimensions) of the deep grooves 3 and the plurality of shallow grooves 4, 4... And the arrangement manner thereof are set so that the dynamic pressure effect by the deep grooves 3 and the plurality of shallow grooves 4, 4,. Thus, when the oil film is relatively thick, the fluctuation of the oil film thickness is suppressed, in other words, the fluctuation of the flying height of the counterpart member 6 is suppressed, and high positional accuracy (parallelism, etc.) is achieved with respect to the other plane 5. It can be demonstrated. Further, when the oil film is relatively thin, high oil film rigidity can be exhibited while maintaining a required positional accuracy with respect to the other flat surface 5.

以上、本発明の一実施形態を説明したが、本発明は上記例示の形態に限定されるものではなく、本発明の範囲内において任意の形態を採り得ることはもちろんである。   As mentioned above, although one embodiment of the present invention was described, the present invention is not limited to the above exemplary form, and it is needless to say that any form can be adopted within the scope of the present invention.

例えば、上記実施形態では、深溝3と所定の角度で交わる複数の浅溝4,4…を、その長手方向が他方の平面5の摺動方向と平行となる向きに配置した場合を説明したが、もちろんこれ以外の向きに配置することも可能である。図4はその一例を示したものであって、深溝3とその端部でつながる複数の浅溝4,4…を、他方の平面5の摺動方向に対して何れも所定の角度に傾斜させて配置した場合を図示している。このように、浅溝4は摺動方向に対して平行または90°未満の傾斜角で傾斜する限りにおいて、言い換えると、摺動方向に直交しない限りにおいて任意の角度を採ることができる。また、深溝3とつながる全ての浅溝4,4…が同一の向きに揃っている必要はなく、図4に示すように、深溝3の一方の側と他方の側とで浅溝4の傾斜角が異なっていてもよく、隣接する浅溝4,4間で傾斜角が異なっていても構わない。   For example, in the above embodiment, a case has been described where a plurality of shallow grooves 4, 4... Intersecting with the deep groove 3 at a predetermined angle are arranged in a direction in which the longitudinal direction is parallel to the sliding direction of the other plane 5. Of course, it is possible to arrange them in other directions. FIG. 4 shows an example thereof. A plurality of shallow grooves 4, 4... Connected at the deep groove 3 and its end are inclined at a predetermined angle with respect to the sliding direction of the other plane 5. The case where it arrange | positions is shown in figure. Thus, the shallow groove 4 can take any angle as long as it is parallel to the sliding direction or inclined at an inclination angle of less than 90 °, in other words, as long as it is not orthogonal to the sliding direction. Further, it is not necessary that all the shallow grooves 4, 4... Connected to the deep groove 3 are aligned in the same direction, and the shallow groove 4 is inclined on one side and the other side of the deep groove 3 as shown in FIG. The angles may be different, and the inclination angles may be different between the adjacent shallow grooves 4 and 4.

また、浅溝4の長手寸法についても、必ずしも全ての浅溝4,4…の長手寸法が同一である必要はなく、配置態様に応じて適宜長手寸法を異ならせたものであってもよい。図5はその一例を示すもので、同図に示す平面摺動機構1においては、一方の平面2上に、複数の浅溝4,4…が何れも摺動方向と平行に配置されると共に、油圧の立ち上がり部となる、深溝3から離れた側の端部が幅方向に一列に揃うように各浅溝4の長手寸法が設定されている。   Also, the longitudinal dimensions of the shallow grooves 4 do not necessarily have to be the same for all the shallow grooves 4, 4..., And may be appropriately varied according to the arrangement mode. FIG. 5 shows an example. In the plane sliding mechanism 1 shown in FIG. 5, a plurality of shallow grooves 4, 4... Are arranged on one plane 2 in parallel with the sliding direction. The longitudinal dimensions of the respective shallow grooves 4 are set so that the end portions on the side away from the deep grooves 3 that are hydraulic rising portions are aligned in a line in the width direction.

また、深溝3の配置態様についても特に制限されることはなく、例えば図2や図4に示すように、摺動方向と直交する向きに配置することもでき、あるいは、図5に示すように、摺動方向と所定の角度(鋭角)で交差する向きに配置することもできる。   Also, the arrangement of the deep grooves 3 is not particularly limited, and for example, as shown in FIGS. 2 and 4, they can be arranged in a direction orthogonal to the sliding direction, or as shown in FIG. Further, it can be arranged in a direction intersecting with the sliding direction at a predetermined angle (acute angle).

もちろん、深溝3や浅溝4の形状についても例示の態様に限定される必要はなく、例えば図示は省略するが、深溝3をV字状として平面2の側方から深溝3内に潤滑油を供給し易くする等、深溝3や浅溝4を1以上の直線ないし曲線の任意の組合せにより形成するようにしても構わない。   Of course, the shape of the deep groove 3 and the shallow groove 4 need not be limited to the illustrated embodiment. For example, although illustration is omitted, the deep groove 3 is V-shaped and lubricating oil is injected into the deep groove 3 from the side of the plane 2. The deep grooves 3 and the shallow grooves 4 may be formed by an arbitrary combination of one or more straight lines or curves so as to facilitate supply.

また、上記以外の事項についても、本発明の技術的意義を没却しない限りにおいて他の具体的形態を採り得ることはもちろんである。   Of course, other specific forms can be adopted for matters other than the above as long as the technical significance of the present invention is not lost.

以下、本発明に係る平面摺動機構の有効性を検証するための実験について述べる。   Hereinafter, an experiment for verifying the effectiveness of the planar sliding mechanism according to the present invention will be described.

本実験は、試験片の傾斜による潤滑特性の変化を防止するため、平行すべりを容易に実現できるリングオンディスク試験装置を用いて行った。回転側のリング状試験片にはSUS440Cの焼入れ材を使用した。固定側のディスク状試験片にはSiCを使用した。何れの試験片の摺動平面についても表面粗さRa0.02μm以下、平面度0.1μm以下とした。ディスク状試験片の摺動平面は全て鏡面とした。リング状試験片(外径:16mm、内径:10mm)については、摺動平面が(1)鏡面、(2)深溝のみ、(3)深溝と浅溝との組合せ、の3種類を用意した。(1)および(2)が比較例、(3)が実施例である。深溝はリング状平面の半径方向に伸びる向きに、言い換えると相手部材(ディスク)の摺動方向に直交する向きに配置した。これら深溝は円周方向等間隔に8本配置した。深溝の幅寸法200μm、溝深さ6μmとした。浅溝は深溝の両側縁に約700nmのピッチで格子状に並列配置した。深溝を中央として1mm幅の領域内に浅溝が配置されるよう長手寸法を設定した(約400μm)。浅溝の溝深さは200nm、配置方向は深溝と直交する向きとした。これら複数の浅溝は、直線偏光で波長800nmのフェムト秒レーザを加工閾値近傍の照射強度で試験片の摺動平面に照射し、その照射部をオーバーラップさせながら走査することで、自己組織的に形成した。潤滑油(粘度グレード:VG32)を予め摺動平面上に400mg供給しておき、実験中は無給油とした。   This experiment was conducted using a ring-on-disk test apparatus that can easily realize parallel sliding in order to prevent changes in lubrication characteristics due to the inclination of the test piece. A hardened material of SUS440C was used for the ring-shaped test piece on the rotating side. SiC was used for the disk-shaped test piece on the fixed side. The sliding plane of any test piece was set to have a surface roughness Ra of 0.02 μm or less and a flatness of 0.1 μm or less. All sliding planes of the disk-shaped test piece were mirror surfaces. Three types of ring-shaped test pieces (outer diameter: 16 mm, inner diameter: 10 mm) were prepared: (1) mirror surface, (2) deep groove only, and (3) combination of deep groove and shallow groove. (1) and (2) are comparative examples, and (3) is an example. The deep grooves were arranged in a direction extending in the radial direction of the ring-shaped plane, in other words, in a direction perpendicular to the sliding direction of the mating member (disk). Eight of these deep grooves were arranged at equal intervals in the circumferential direction. The width of the deep groove was 200 μm and the groove depth was 6 μm. The shallow grooves were arranged in parallel in a lattice pattern at a pitch of about 700 nm on both side edges of the deep grooves. The longitudinal dimension was set (about 400 μm) so that the shallow groove was disposed in a region having a width of 1 mm with the deep groove as the center. The depth of the shallow groove was 200 nm, and the arrangement direction was perpendicular to the deep groove. The plurality of shallow grooves are irradiated with a femtosecond laser having a wavelength of 800 nm and linearly polarized light on the sliding plane of the test piece with an irradiation intensity in the vicinity of the processing threshold, and scanning is performed while overlapping the irradiated portions. Formed. 400 mg of lubricating oil (viscosity grade: VG32) was previously supplied onto the sliding plane, and no oil was supplied during the experiment.

リングオンディスク試験は、荷重を所定の値に固定し、静止状態からすべり速度1.2m/sで起動させた後、5分ごとにすべり速度を0.14m/sまで段階的に低下させていき、各段階における摺動トルクを測定した。すべり速度は、リング状試験片の平均直径(13mm)での値とした。そして測定した摺動トルクから動摩擦係数を算出した。荷重は9.0N、19.3N、30.0N、40.8N、50.5Nの5段階に設定した。上記試験は、(1)鏡面、(2)深溝のみ、(3)深溝と浅溝との組合せ、の3種類全ての試験片に対して実施した。   In the ring-on-disk test, the load is fixed at a predetermined value, and after starting from a stationary state at a sliding speed of 1.2 m / s, the sliding speed is gradually reduced to 0.14 m / s every 5 minutes. The sliding torque at each stage was measured. The sliding speed was a value at the average diameter (13 mm) of the ring-shaped test piece. The dynamic friction coefficient was calculated from the measured sliding torque. The load was set in five stages of 9.0N, 19.3N, 30.0N, 40.8N, and 50.5N. The above test was performed on all three types of test pieces: (1) mirror surface, (2) deep groove only, and (3) combination of deep groove and shallow groove.

以下、実験結果について述べる。図6は、摺動平面を鏡面とした場合(比較例)の摺動実験の結果を示すもので、横軸はすべり時間[min]、左側の縦軸は動摩擦係数、右側の縦軸はすべり速度[m/s]をそれぞれ示している。図中の破線で示す部分はすべり速度を示しており、実線で示す部分は動摩擦係数を示している。また、図7は、摺動平面を深溝のみで構成した場合(比較例)の摺動実験の結果を示しており、図8は、摺動平面を深溝と浅溝との組合せとした場合(実施例)の摺動実験の結果を示している。横軸と両縦軸の項目、および図中の各種線で示す項目は図7、図8ともに図6と同じである。まず、図6に示す実験結果から、(1)鏡面では、所定のすべり速度(0.54m/s)を境に動摩擦係数の急激な上昇が見られた。これに対して、図7および図8に示すように、(2)深溝のみ、および(3)深溝と浅溝との組合せの場合、測定した全てのすべり速度段階を通じて動摩擦係数が低い状態が見られた。これは、すべり速度の大きさに関らず流体潤滑状態にあったものと考えられる。ここで、図7および図8を詳細に見ると、(2)深溝のみの場合、(1)鏡面の場合よりも動摩擦係数は全般的に低いが、その変動幅は全すべり速度領域において大きく、安定性に欠ける点が見受けられた。これに対して、(3)深溝と浅溝との組合せの場合、動摩擦係数は(2)深溝のみの場合よりも全体的に高めではあるものの、その変動幅は小さく、安定した油膜支持が見て取れた。 The experimental results are described below. FIG. 6 shows the results of a sliding experiment when the sliding plane is a mirror surface (comparative example), where the horizontal axis is the sliding time [min], the left vertical axis is the dynamic friction coefficient, and the right vertical axis is the sliding. The velocity [m / s] is shown respectively. A portion indicated by a broken line in the figure indicates a sliding speed, and a portion indicated by a solid line indicates a dynamic friction coefficient. FIG. 7 shows the result of a sliding experiment when the sliding plane is composed only of deep grooves (comparative example), and FIG. 8 shows the case where the sliding plane is a combination of deep and shallow grooves ( The result of the sliding experiment of Example) is shown. Items on the horizontal axis and both vertical axes, and items indicated by various lines in the figure are the same as those in FIG. First, from the experimental results shown in FIG. 6, (1) on the mirror surface, a rapid increase in the coefficient of dynamic friction was observed at a predetermined sliding speed (0.54 m / s). On the other hand, as shown in FIGS. 7 and 8, in the case of (2) only the deep groove and (3) the combination of the deep groove and the shallow groove, it is observed that the dynamic friction coefficient is low throughout all the measured sliding speed stages. It was. It is considered that this was in a fluid lubrication state regardless of the sliding speed. Here, when FIG. 7 and FIG. 8 are viewed in detail, (2) In the case of only the deep groove, (1) The dynamic friction coefficient is generally lower than that in the case of the mirror surface , but the fluctuation range is large in the entire sliding velocity region, There was a point of lack of stability. In contrast, (3) in the case of a combination of deep grooves and shallow grooves, the coefficient of dynamic friction is generally higher than in the case of (2) only deep grooves, but the fluctuation range is small, and stable oil film support can be seen. It was.

図9および図10は共に、図7および図8に示す実験結果から得たもので、図9が深溝のみ(比較例)の場合のすべり速度の変動に伴う油膜厚さの変化を示している。また、図10が深溝と浅溝との組合せ(実施例)の場合のすべり速度の変動に伴う油膜厚さの変化を示している。ここで、図9、図10共に左側の縦軸は油膜厚さ[μm]、右側の縦軸はすべり速度[m/s]をそれぞれ示している。図中破線で示す部分はすべり速度を示し、実線で示す部分は油膜厚さを示している。油膜厚さは、先の摺動実験で得た動摩擦係数と、使用した潤滑油の粘度(今回は、常温における粘度の値を使用した)とから算出した。図9と図10に示す実験結果から、深溝と浅溝との組合せのほうが、全体的に油膜厚さは小さいものの、その変動幅に関しては深溝のみの場合よりも小さく、安定した油膜形成がなされていたことが分かる。また、各々の油膜厚さの標準偏差を取った場合、深溝と浅溝との組合せの場合では、深溝のみの場合に比べて上記標準偏差が約2分の1に低減することが分かった。   FIGS. 9 and 10 are both obtained from the experimental results shown in FIGS. 7 and 8, and FIG. 9 shows the change in the oil film thickness accompanying the change in the sliding speed when only the deep groove (comparative example) is used. . FIG. 10 shows the change in the oil film thickness accompanying the change in the sliding speed in the case of the combination of the deep groove and the shallow groove (example). Here, in both FIGS. 9 and 10, the left vertical axis represents the oil film thickness [μm], and the right vertical axis represents the sliding speed [m / s]. In the figure, the part indicated by the broken line indicates the sliding speed, and the part indicated by the solid line indicates the oil film thickness. The oil film thickness was calculated from the dynamic friction coefficient obtained in the previous sliding experiment and the viscosity of the used lubricating oil (this time, the viscosity value at room temperature was used). From the experimental results shown in FIG. 9 and FIG. 10, although the combination of deep grooves and shallow grooves has a smaller oil film thickness as a whole, the fluctuation range is smaller than in the case of only deep grooves, and a stable oil film is formed. I understand that it was. In addition, when the standard deviation of each oil film thickness was taken, it was found that the standard deviation was reduced by about a half in the case of a combination of deep grooves and shallow grooves compared to the case of only deep grooves.

図11および図12は共に、各段階の設定荷重における動摩擦係数の測定結果から各すべり速度領域における平均油膜厚さを算出したもので、図11が深溝のみ(比較例)の場合の荷重と平均油膜厚さとの関係、図12が深溝と浅溝との組合せ(実施例)の場合の荷重と平均油膜厚さとの関係をそれぞれ示している。図11、図12共に横軸は荷重[N]、縦軸は平均油膜厚さ[μm]を示している。また、図中菱形で示すプロットはすべり速度1.09m/sの場合の平均油膜厚さを示しており、同様に、図中四角で示すプロットはすべり速度0.54m/s、図中三角で示すプロットはすべり速度0.35m/s、図中罰点で示すプロットはすべり速度0.14m/sの場合の平均油膜厚さをそれぞれ示している。ここで、図11に示す実験結果より、深溝のみの場合、低負荷領域(ここでは図11中左側の破線で描く楕円で囲んだ領域)ではすべり速度が変動した場合の平均油膜厚さの変動幅が大きいことが分かる。これに対して、図12に示す実験結果より、深溝と浅溝との組合せの場合、低負荷領域ではすべり速度が変動しても平均油膜厚さの変動幅は小さい。また、高負荷領域(ここでは図11中右側の実線で描く楕円で囲んだ領域)においては、深溝のみの場合、荷重の増加に伴う平均油膜厚さの減少度合いが比較的大きいのに対して、深溝と浅溝との組合せの場合では、荷重が増加しても平均油膜厚さはそれほど減少しないことが見て取れる。このことから、深溝と浅溝との組合せに係る平面摺動機構は、特に高負荷時において高い剛性を示すものと考えられる。また、高負荷領域において所定の荷重(40N)を超えると、高速すべり時と低速すべり時共に、比較例と実施例とで形成され得る油膜厚さの大きさが逆転(実施例の油膜厚さが比較例のそれを上回る)する現象が見られた。   11 and 12 both calculate the average oil film thickness in each sliding speed region from the measurement result of the dynamic friction coefficient at the set load at each stage. FIG. 11 shows the load and average when only the deep groove (comparative example) is shown in FIG. FIG. 12 shows the relationship between the oil film thickness and the relationship between the load and the average oil film thickness in the case of the combination of the deep groove and the shallow groove (example). 11 and 12, the horizontal axis represents the load [N], and the vertical axis represents the average oil film thickness [μm]. Moreover, the plot shown by the rhombus in the figure shows the average oil film thickness when the sliding speed is 1.09 m / s. Similarly, the plot shown by the square in the figure is a sliding speed of 0.54 m / s and is shown by a triangle in the figure. The plots shown indicate the average oil film thickness when the sliding speed is 0.35 m / s, and the plots indicated by penalty points in the figure indicate the sliding speed of 0.14 m / s. Here, from the experimental results shown in FIG. 11, in the case of only deep grooves, the variation in average oil film thickness when the sliding speed fluctuates in a low load region (here, a region surrounded by an ellipse drawn on the left in FIG. 11). It can be seen that the width is large. On the other hand, from the experimental results shown in FIG. 12, in the case of a combination of deep grooves and shallow grooves, the fluctuation range of the average oil film thickness is small in the low load region even if the sliding speed varies. Further, in the high load region (here, the region surrounded by an ellipse drawn by the solid line on the right side in FIG. 11), in the case of only the deep groove, the degree of decrease in the average oil film thickness accompanying the increase in load is relatively large. In the case of a combination of deep grooves and shallow grooves, it can be seen that the average oil film thickness does not decrease as much as the load increases. From this, it can be considered that the planar sliding mechanism according to the combination of the deep groove and the shallow groove exhibits high rigidity particularly at high load. Also, when a predetermined load (40 N) is exceeded in the high load region, the size of the oil film thickness that can be formed between the comparative example and the example is reversed during both high speed sliding and low speed sliding (the oil film thickness of the example). Was higher than that of the comparative example).

1 平面摺動機構
2 (一方の)平面
3 深溝
4 浅溝
5 (他方の)平面
6 相手部材
Wa 溝深さ(深溝)
Wb 溝深さ(浅溝)
Wc 油膜厚み
DESCRIPTION OF SYMBOLS 1 Plane sliding mechanism 2 (One) plane 3 Deep groove 4 Shallow groove 5 (Other) plane 6 Mating member Wa Groove depth (deep groove)
Wb groove depth (shallow groove)
Wc Oil film thickness

Claims (8)

相対する平面間で潤滑流体の膜を介して相対摺動を行うための平面摺動機構であって、 前記何れか一方の平面には、前記相対する平面間に前記潤滑流体を供給する深溝と、該深溝に比べて浅い浅溝とが設けられ、
前記浅溝は、周期性をもって並列に配置され、
並列配置された前記複数の浅溝は一方の端部において前記深溝と交わると共に他方の端部において前記一方の平面に向けて立ち上がっており、かつ相対する前記他方の平面の摺動方向に対して平行または90°未満の傾斜角で傾斜する向きに配置されている平面摺動機構。
A plane sliding mechanism for performing relative sliding between opposing planes via a film of lubricating fluid, wherein either one of the planes includes a deep groove for supplying the lubricating fluid between the opposing planes. And a shallow groove shallower than the deep groove,
The shallow grooves are arranged in parallel with periodicity,
Arranged in parallel said plurality of shallow grooves are in Ri Contact rises toward the plane of said one in the deep grooves and Majiwa Rutotomoni other end at one end and to the sliding direction opposing said other plane A plane sliding mechanism arranged in parallel or at an inclination angle of less than 90 °.
前記深溝は、前記一方の平面の端部まで伸びている請求項1に記載の平面摺動機構。 The deep groove is planar sliding mechanism according to claim 1 which extends to the end of the one plane. 前記深溝は、前記他方の平面の摺動方向に対して直交する向きに配置されている請求項1又は2に記載の平面摺動機構。   The plane sliding mechanism according to claim 1 or 2, wherein the deep groove is arranged in a direction orthogonal to the sliding direction of the other plane. 前記複数の浅溝は一方の端部において前記深溝に対して直交する向きに交わっている請求項1〜3の何れかに記載の平面摺動機構。 The planar sliding mechanism according to any one of claims 1 to 3, wherein the plurality of shallow grooves intersect in a direction orthogonal to the deep groove at one end . 前記複数の浅溝は、前記深溝の両側に配置されている請求項1〜4の何れかに記載の平面摺動機構。   The planar sliding mechanism according to claim 1, wherein the plurality of shallow grooves are disposed on both sides of the deep groove. 前記複数の浅溝は、10μm以下のピッチで形成されている請求項1〜5の何れかに記載の平面摺動機構。   The planar sliding mechanism according to claim 1, wherein the plurality of shallow grooves are formed at a pitch of 10 μm or less. 前記浅溝は、1μm以下の深さに形成されている請求項1〜6の何れかに記載の平面摺動機構。   The planar sliding mechanism according to claim 1, wherein the shallow groove is formed to a depth of 1 μm or less. 前記複数の浅溝は、加工閾値近傍の照射強度で直線偏光のレーザを前記一方の平面に照射し、該照射部分をオーバーラップさせながら走査することで自己組織的に形成されたものである請求項1〜7の何れかに記載の平面摺動機構。   The plurality of shallow grooves are formed in a self-organized manner by irradiating the one plane with a linearly polarized laser beam with an irradiation intensity in the vicinity of a processing threshold, and scanning while overlapping the irradiated portions. Item 8. A planar sliding mechanism according to any one of Items 1 to 7.
JP2009046058A 2009-02-27 2009-02-27 Flat sliding mechanism Active JP5259455B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009046058A JP5259455B2 (en) 2009-02-27 2009-02-27 Flat sliding mechanism

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009046058A JP5259455B2 (en) 2009-02-27 2009-02-27 Flat sliding mechanism

Publications (2)

Publication Number Publication Date
JP2010196884A JP2010196884A (en) 2010-09-09
JP5259455B2 true JP5259455B2 (en) 2013-08-07

Family

ID=42821801

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009046058A Active JP5259455B2 (en) 2009-02-27 2009-02-27 Flat sliding mechanism

Country Status (1)

Country Link
JP (1) JP5259455B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5726673B2 (en) * 2011-08-09 2015-06-03 キヤノンマシナリー株式会社 Sliding surface structure
JP5619937B2 (en) * 2013-01-15 2014-11-05 キヤノンマシナリー株式会社 Sliding surface structure
JP6723855B2 (en) * 2016-07-22 2020-07-15 キヤノンマシナリー株式会社 Sliding surface structure

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6026324U (en) * 1983-07-29 1985-02-22 オイレス工業株式会社 Synthetic resin thrust bearing
JP2001012455A (en) * 1999-06-30 2001-01-16 Sumitomo Electric Ind Ltd Dynamic pressure bearing with identification groove
JP2001323928A (en) * 2000-05-15 2001-11-22 Daido Metal Co Ltd Thrust bearing

Also Published As

Publication number Publication date
JP2010196884A (en) 2010-09-09

Similar Documents

Publication Publication Date Title
JP5122607B2 (en) Flat sliding mechanism
EP3270016B1 (en) Method of processing a sliding component
Wang et al. The effect of triangle-shaped surface textures on the performance of the lubricated point-contacts
JP5465109B2 (en) Sliding surface structure
US8864381B2 (en) Fluid dynamic bearing device
KR101564355B1 (en) Radial foil bearing
WO2009087995A1 (en) Mechanical seal sliding member, and mechanical seal
CN104185755A (en) Sliding component
JP5259455B2 (en) Flat sliding mechanism
Filgueira Filho et al. Static behavior of plain journal bearings with textured journal-experimental analysis
JP2009108901A (en) Rolling slide face structure
WO2016080207A1 (en) Retainer for thrust roller bearing and method for producing said retainer
CN105965094B (en) Saw cutting device is sawed based on bionic trench structure band
JP2010043680A (en) Floating bush bearing
JP5496575B2 (en) Sliding surface
JP5538476B2 (en) Sliding surface structure
TWM622628U (en) Hydrodynamic bearing
JP2006177542A (en) Spring foil bearing
TWM619455U (en) Double edge-trimming dynamic pressure bearing structure
JP2018091348A (en) bearing
JP5988496B2 (en) Bearing pad for lathe
JP2007100775A (en) Thrust cylindrical roller bearing
JP6275369B2 (en) Material for fluid dynamic pressure bearing, shaft member using the same material and fluid dynamic pressure bearing using coaxial member
TWI786873B (en) Hydrodynamic pressure bearing structure and method for forming groove
Hingawe et al. Improving tribological performance of meso scale air journal bearing using surface texturing: an approach of green tribology

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20111108

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120906

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120911

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121107

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130408

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130424

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160502

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5259455

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250